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Abstract. For each vector v we define the notion of a v-positive type for infinite-
measure-preserving transformations, a refinement of positive type as introduced by Hajian
and Kakutani. We prove that a positive type transformation need not be (1, 2)-positive
type. We study this notion in the context of Markov shifts and multiple recurrence, and
give several examples.

1. Introduction. Let (X,B, µ) be a standard Borel measure space with
a sigma-finite nonatomic measure. Let T : X → X be a measure-preserving
transformation (i.e., T−1(A) is measurable and µ(T−1A) = µ(A) for all
A ∈ B). We will assume that T is invertible and T−1 is measure-preserving.
We concentrate on measure spaces with infinite measure. A transformation is
ergodic if every invariant set is null or conull. Wandering sets A are those for
which µ(A ∩ TnA) = 0 for all n ∈ Z \ {0}. A transformation is conservative
if it admits no wandering sets of positive measure. It follows that a transfor-
mation T is conservative ergodic if for any positive measure sets A and B
there exists a positive integer n such that µ(A ∩ TnB) > 0. If an invertible
measure-preserving transformation is ergodic on a nonatomic space, then it
is conservative (see e.g. [S08, Lemma 3.9.1]). All of our transformations will
be assumed to be conservative ergodic.

To classify infinite-measure-preserving transformations, Hajian and Ka-
kutani [HK64] introduced the notions of zero type and positive type. A trans-
formation T is of zero type if for all sets A of finite measure,

lim
n→∞

µ(A ∩ T−nA) = 0.

A transformation T is of positive type if for all sets A of positive finite
measure,

lim sup
n→∞

µ(A ∩ T−nA) > 0.
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If T is infinite-measure-preserving and ergodic, the Birkhoff ergodic the-
orem immediately implies that

lim inf
n

µ(A ∩ T−nA) = 0 for all finite measure A.

The lim sup definition for positive type thus captures the greatest possible
variation in the limit behavior of these intersections. In [HK64], Hajian and
Kakutani note that conservative ergodic infinite-measure-preserving trans-
formations are either zero type or positive type. Additionally, it is known
that such a transformation T is zero type if and only if all powers T k are
zero type (where the proof does not depend on ergodicity).

In this paper, we introduce a new concept inspired by the definition of
positive type, called v-positive type, for each vector v in Zd. This notion
provides a further classification of positive type transformations. We also
define a concept related to v-positive type that we call v-multiplicative-
positive type. In Section 2 we introduce the main definitions and prove that
v-multiplicative-positive type is equivalent to the corresponding Cartesian
product transformation being positive type. It is a direct consequence of
the definitions that v-positive type implies v-multiplicative-positive type,
but we prove that the converse does not hold. In fact, in Section 4 we
prove that for every v such that vd/v1 ≥ d, there is a transformation that
is v-multiplicative-positive type but not v-positive type. We also construct
v-positive type transformations for each v. These constructions are rank-one
examples and use basic approximation results from Section 3.

In Section 5, we use results involving Markov shifts to discuss connec-
tions with multiple recurrence, specifically that v-positive type is a stronger
condition than k-recurrence. Section 6 provides miscellaneous results about
the behavior of µ(A ∩ TniA) for more general sequences {ni}. These results
are both interesting in their own right and explain why the definition of
v-positive type is the most natural definition to consider. Section 7 discusses
varying the vector v to compare v-positive type and w-positive type and
proves that except for the obvious obstructing relationships between v and
w, v-positive type and w-positive type are independent.

2. v-positive type and v-multiplicative-positive type. We begin
with a vector, v = (v1, . . . , vd) ∈ (Z+)d. We study each vector essentially
independently of all other vectors until Section 7. Section 6 provides some
motivation for the following definitions.

Definition 2.1. A transformation T is v-positive type for a set A if

lim sup
n→∞

µ(A ∩ T v1nA ∩ · · · ∩ T vdnA) > 0.

We define T to be v-positive type if it is v-positive for all sets of positive
finite measure.
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Definition 2.2. A transformation T is v-multiplicative-positive type for
a set A if

lim sup
n→∞

µ(A ∩ T v1nA) · · ·µ(A ∩ T vdnA) > 0.

We similarly define T to be v-multiplicative-positive type if it is v-multi-
plicative-positive type for all sets of positive finite measure.

Of course, these definitions can only be satisfied if T is positive type.
They offer, however, a way for further classifying into subcategories differ-
ent positive type transformations. Note that we can easily confine ourselves
to vectors in (Z+)d, for given (v1, . . . , vd) ∈ Zd where v1 is the negative
number of largest absolute value, then 0 < µ(A ∩ T v1nA ∩ · · · ∩ T vdnA) =
µ(T−v1nA ∩ A ∩ T (−v1+v2)nA ∩ · · · ∩ T (−v1+vd)nA), so that we can investi-
gate the v-positive type of T by evaluating the w-positive type of T where
w = (v2 − v1, v3 − v1, . . . , vd − v1,−v1) ∈ (Z+)d. It is typical to list these
vectors with vi distinct and vi+1 > vi.

In general, of the two definitions, T v-multiplicative-positive type is easier
to work with. The following theorem explains some of this ease, where the
proof technique is adapted from Aaronson and Nakada [AN00]. We start
with two lemmas before presenting the theorem.

Lemma 2.3. Suppose that T is conservative ergodic and v-multiplicative-
positive type. Then, for every collection A1, . . . , Ad of sets of positive finite
measure,

lim supµ(A1 ∩ T v1nA1) · · ·µ(Ad ∩ T vdnAd) > 0.

Proof. As T is ergodic, we can find c2, . . . , cd such that
C = A1 ∩ T c2A2 ∩ · · · ∩ T cdAd

has µ(C) > 0. Then lim supµ(C ∩T v1nC) · · ·µ(C ∩T vdnC) > 0 but we note
that µ(Aj ∩ T vjnAj) = µ(T cjAj ∩ T vjn+cjAj) ≥ µ(C ∩ TnvjC) so that we
can deduce the desired result.

As a corollary which is not used in the main proof of the following theo-
rem, we have:

Corollary 2.4. Suppose that T is conservative ergodic and is positive
type. Then, for every finite collection of sets A1, . . . , Am of positive finite
measure, we have

lim supµ(A1 ∩ TnA1) · · ·µ(Am ∩ TnAm) > 0.

The first part of the following lemma is standard.
Lemma 2.5. Let T be a conservative, ergodic and measure-preserving

transformation and let k ∈ Z+. Then there exists a measurable set B and
an integer 1 ≤ ` ≤ k such that B, TB, . . . , T `−1B is a partition of X and
every positive measure invariant subset of T k contains (mod µ) at least one
of B, TB, . . . , T `−1B.
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Proof. First, consider all T k-invariant sets of positive measure. Given
such a set A, we can create a partition B with base set B from A in the fol-
lowing canonical method: We consider intersections of the form A ∩ T i1A ∩
· · · ∩ T irA where ij < k and the ij are distinct. There are a finite number
of such sets, and we pick B = A ∩ T i1A ∩ · · · ∩ T irA of positive measure
with highest possible value of r and then, to break any ties, of minimal mea-
sure. (When all powers of T are conservative ergodic, for example, both A
and B will be forced to be X, the entire space.) Now, as A is T k-invariant,
by definition B is as well, and so B ∪ · · · ∪ T k−1B = X by the ergod-
icity of T . We then define ` = `B to be the smallest positive number
such that B ∩ T `B = B. Such an ` ≤ k must exist by the T k-invariance
of B. (For example, note that if T k is ergodic, then ` = 1. In fact, one
can construct examples B, T for any ` | k.) Then by the maximality of r,
if 1 ≤ j < `, then µ(B ∩ T jB) = 0. In fact, if 1 ≤ j < i < `, then
µ(T iB ∩ T jB) = µ(T i−jB ∩ B) = 0 by the same argument. By our choice
of `, we have B ∪ · · · ∪ T `−1B = X. Thus, B = {B, TB, . . . , T `−1B} is a
partition of X.

Now, we use a minimizing argument. Given any two partition bases, B
and C, there is some choice of i such that µ(B ∩ T iC) > 0. Let S be the set
of partition bases. Note of course that every set in S has positive measure
and S is nonempty. Decreasing chains in S are of the form · · · ⊂ B ⊂ C ⊂ D
where the inclusions are proper with respect to the measure. Next, note that
for each B ∈ S, B ∪ T 1B ∪ · · · ∪ T `BB = X. Now, if B ⊂ C, note that
µ(X \ (B ∪ T 1B ∪ · · · ∪ T `CB)) > 0 as µ(C \ B) > 0 and C is a partition
base, so we can conclude that `B > `C . As `B ≤ k for all B ∈ S, we see that
chains in S must be finite. In fact, as we have a bound k, there must be a
maximum `B for B ∈ S and we pick a B with corresponding maximum `B,
noting that it necessarily must be the base set of a minimal partition, i.e. a
base not positive-measure containing the base set to any other partition.

Given a T k-invariant set A of positive measure, chosen without loss of
generality such that µ(B∩A) > 0, we wish to show thatB ⊂ Amod µ. If, not,
i.e. if µ(B \A) > 0, then C = A∩B is T k invariant as well and C ⊂ B with
positive measure inclusion and so we can find the corresponding partition
base set C ′ ⊂ C which has the property that C ′ ⊂ B with strict µ-inclusion.
This violates the minimality property of B, and so we can conclude that
B ⊂ A mod µ.

Theorem 2.6. Let T be a conservative ergodic transformation on
(X,B, µ) and let v = (v1, . . . , vd) where each vi is in Z+. Then T v1×· · ·×T vn
is positive type if and only if T is v-multiplicative-positive type.

Proof. One direction is clear. If T v1 × · · · × T vn is positive type, then in
particular it is positive type for the set A×· · ·×A for each A ⊂ X of positive
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finite measure, so T clearly is v-multiplicative-positive type with respect to
each of these A.

For the other direction, starting from the assumption that T has v-multi-
plicative-positive type, we proceed as follows. Let S := T v1 × · · · × T vd be a
measure-preserving transformation on the space (Xd,Bd, µd = µ× · · · × µ).
To show that S has positive type, define

W := {B ∈ Bd : 0 < µd(B) <∞, limµd(B ∩ SnB) = 0}.
Then, by a standard argument, we can find a set Z which is a countable
union of sets in W such that every set in W is contained up to a set of
measure zero in Z. We observe that

limµd(B ∩ SnC) = 0

for all finite measure sets B,C ∈ W. This can be seen in a short num-
ber of steps: If lim supµd(B ∩ SnC) > 0, we could find a sequence {ni}
satisfying µd(B ∩ SniC) > ε for a fixed ε > 0 and then as B and C are
each of finite measure, we could find N ∈ ni and a subsequence {n′j} such
that µd(B ∩ SNC ∩ Sn

′
jC) > ε′ for some fixed ε′ > 0. Of course, we then

have lim supµd(SNC ∩ Sn
′
jC) ≥ ε′, which is a contradiction of the defining

property of W.
This fact gives us that if A,B ∈ W, then A ∪ B ⊂ W. If A ⊂ Z has

µ(A) <∞, then it can be approximated up to epsilon measure by sets inW,
which then quickly implies that A ∈ W. So, the argument above shows that
limµd(B ∩ SnC) = 0 for B,C ⊂ Z where µ(B), µ(C) <∞.

Returning to the main proof, it suffices to show that if T is v-multi-
plicative-positive type, then µ(Z) = 0. We will stop briefly to note that if T vi
is ergodic for some 1 ≤ i ≤ d, then the argument in [AN00, Proposition 2.2 ]
can be used to finish our proof. However, the following proof is more general,
working even when T vi is nonergodic for all i. To continue, assume for the
sake of contradiction that Z has positive measure in Xd.

If we define Ri := I × · · · × T vi × · · · × I, then for any A ∈ W,

µd(RiA ∩ SRiA) = µd(A ∩ S) = 0,

so that RiA ∈ W and therefore RiZ = Z mod µ.
Then define pi : Z → X and πi : Z → Xd−1 by pi(x1, . . . , xd) = xi

and πi(x1, . . . , xd) = (x1, . . . , xi−1, xi+1, . . . , xd). We start an inductive pro-
cess, beginning with i = 1. First note that for any measurable subset A,
by our restrictions at the beginning of the paper, we can conclude that
pi(A) is measurable. For x ∈ π1(Z), we define V 1

x := p1(π
−1
1 (x)), a mea-

surable set. V 1
x is a T v1-invariant subset of X, and so if it is of positive

measure, by Lemma 2.5 applied to k = v1, it contains one T j(x)B1 of
B1, T

1B1, . . . , T
`−1B. If D1 ⊂ π1(Z) is the subset containing x such that
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µ(V 1
x ) > 0, then as Z has positive measure, µd−1(D1) > 0. We then have a

map f : D1 → {1, . . . , `}. There must be some j such that f−1(j) has posi-
tive measure. In fact, define C1 = {x ∈ D1 : T

jB ⊂ V 1
x }, where f−1(j) ⊂ C1,

then define A1 = T jB1 and note that Z1 = A1 × C1 ⊂ Z has positive mea-
sure. Furthermore, for i ≥ 2, we see that Ri(Z1) = Z1, and so we can proceed
inductively to find Zd ⊂ Zd−1 ⊂ · · · ⊂ Z1 ⊂ Z where Zd has positive mea-
sure and in fact A1 × · · · ×Ad ⊂ Zd ⊂ Z. For each i, take a subset A′i ⊂ Ai
of positive finite measure.

By Lemma 2.3 and the fact that T is v-multiplicative-positive type, we
can conclude that lim supµd(A′1 × · · · ×A′d ∩ S(A′1 × · · · ×A′d)) > 0 so that∏
iA
′
i 6⊆ Z. Thus, by contradiction, Z is trivial, and so S is positive type.

Therefore, v-multiplicative-positive type of T is just another name for
positive type of T v1 × · · · × T vd . All results obtained for positive type trans-
formations apply. For example, if T v1×· · ·×T vd is ergodic, a transformation
is either v-multiplicative-positive type or v-multiplicative-zero type. For this
reason, the remainder of the paper will focus primarily on v-positive type, a
property that is less well understood.

3. Rank-one constructions and approximation. Rank-one trans-
formations are a much-studied type of transformation, easily described by
defining the transformation iteratively on intervals; see e.g. [S08]. We begin
with a review of the cutting and stacking method of constructing rank-one
examples and then proceed to a number of lemmas which help in the tran-
sition from considering columns and levels to considering arbitrary positive
measure sets, as far as it can be accomplished.

A column, denoted here by C, is an ordered set of h > 0 pairwise disjoint
intervals in R of the same measure. (Cutting and stacking can be adapted to
construct nonsingular examples, but we do not consider them here.) These
intervals are called levels, and C is said to have height h. We consider these
levels to be “stacked” so that the element i + 1 is directly above i, for all
0 ≤ i ≤ h−2. For a level I in a column C, denote by h(I) ∈ {0, . . . , h−1} the
height of I, its position in C. Let w(C) denote the measure of each level in C.
We define the column map TC to map a point in the level i, 0 ≤ i ≤ h− 2,
to the point directly above in the level i+1. Thus, if we let J be the bottom
level of the column C, then the ith level will be T iC(J). The map TC brings
the bottom h − 1 levels to the top h − 1 levels. A cutting and stacking
construction for a measure-preserving transformation T : X → X consists
of a sequence of columns Cn =

{
Jn, . . . , T

hn−1Jn
}
of height hn such that:

(i) Jn is a disjoint union of elements from {Jn+1, . . . , T
hn+1−1Jn+1}.

(ii) Cn+1 is obtained from Cn by cutting Cn into rn ≥ 2 subcolumns
Cin of equal measure, putting a number of spacers (new levels of the



EXTENSIONS OF POSITIVE TYPE TRANSFORMATIONS 155

same measure as any of the levels in the rn subcolumns) above each
subcolumn, mapping the top level of each subcolumn to the spacer
above it, and stacking left under right. In this way, Cn+1 consists
of rn copies of Cn, possibly separated by spacers, which are also
included in Cn.

(iii)
⋃
nCn is a generating subalgebra of the Borel sets B. In our case,

this usually requires that there be enough spacers for
⋃
nCn to have

infinite measure.
(iv) The pointwise limit of TCn as n increases is T .

To discuss these cutting and stacking constructions, we introduce the
idea of descendants. Given a level J (J ∈ Cn) and any column Cm where
m ≥ n, we define the m-descendants of J to be the collection of levels in Cm
whose disjoint union is J . We denote this set by D(J,m). Occasionally, we
will also use D(J,m) to refer to the heights of the m-descendants of J . (For
more results using this notion of descendants, see [DGPS].) An important
observation is the following:

Lemma 3.1. Suppose that T is a rank-one transformation on an infinite
measure space X, and that J is a level of the jth column. Then µ(J ∩ TnJ)
> 0 if and only if there exists m such that n ∈ D(J,m)−D(J,m).

Proof. First, suppose that µ(J∩TnJ) > 0 for some n > 0. Choosem such
that max(D(J,m))+n ≤ hm. Then we can write J =

⋃
D(J,m) J

l, where the
union is over all the m-descendants of J . Further, write J l = T h(l)I, where
I is the bottom level of Cm. Then the condition µ(J ∩ TnJ) > 0 becomes

µ((
⋃
T h(l)I) ∩ (

⋃
Tn+h(l)I)) > 0,

which implies that D(J,m) ∩ (n + D(J,m)) 6= ∅, that is, n ∈ D(J,m) −
D(J,m).

Observe that actually we can compute the exact value of µ(J ∩ TnJ) by
using this notion of descendants. Indeed, for large enough N there will be at
least n spacers on top of the last column and therefore Tn will be defined in
CN on each of the descendants of J . Thus, we obtain

Corollary 3.2. Suppose that T is a rank-one transformation on an
infinite measure space X, and that J is a level of the jth column. Then if
µ(J ∩ TnJ) > 0, then for all large N ,

µ(J ∩ TnJ) = |D(J,N) ∩ (D(J,N) + n)|
|D(J,N)|

.

Definition 3.3. A transformation T is v-α-type if for all sets A of pos-
itive (finite) measure,

lim supµ(A ∩ T v1nA ∩ · · · ∩ T vdnA) = αµ(A).
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This definition is inspired by [HK64] and is useful for proving results al-
lowing us to move from a sufficient semiring of intervals to all sets of positive
measure. In fact, considering the larger class of transformations which have
an α such that any set A of positive (finite) measure has

lim supµ(A ∩ T v1nA ∩ · · · ∩ T vdnA) ≥ αµ(A)

gives us similar results, but we stick to the precedent. The concept of α-type
is also discussed in [OH71] and in the dissertation [L09].

Next, we have a basic analytic lemma. The exact statement of this lemma
is from [BFMCS].

Lemma 3.4 (Double Approximation Lemma). Let ε>0, δ>0, 1>τ >0
and I be an interval τ -full of a measurable set A. If {rn} is an infinite se-
quence such that rn > 1 for large enough n, there exists an N ∈ N such that if

Ik =

[
k

r1 · · · rN
,
k + 1

r1 · · · rN

]
for 0 ≤ k ≤ r1 · · · rN − 1,

then there exists a subset K ⊂ {0, 1, . . . , r1 · · · rN − 1} with |K| >
(τ − δ)r1 · · · rN such that each Ij, j ∈ K, is (1− ε)-full of A.

The next lemma is critical for verifying all of our later v-positive type
examples.

Lemma 3.5. If T is a rank-one transformation that is v-α-type for all
intervals that appear in a level of any of the defining columns, then T is
v-positive type.

Proof. If I, T v1nI, . . . , T vdnI are in CN and are each (1 − δ)-full of A,
then I ∩ T v1nI ∩ · · · ∩ T vdnI is (1 − δ(d + 1))-full of A. Then, given I that
is (1− δ)-full of A, we can choose τ = 1− 2δ so that beyond an N , τ of the
subintervals of I which appear as its descendants in later columns will be
(1− δ)-full. Then, it is a simple calculation to see that if n is chosen so that
µ(I ∩ T v1nI ∩ . . . ∩ T vdn) > (1− ε)αµ(I), then the descendants will give

µ(A ∩ · · · ∩ T vdnA) ≥ (1− ε)(α− 2δ(d+ 1))(1− δ(d+ 1))µ(I).

Now, if we simply approximate all of A with intervals I that are (1− δ)-full
of A (choosing δ small enough so that 2δ(d + 1) < α), we have shown that
A has v-positive type. Of course we can do so and the result follows.

Lemma 3.6. If T is a transformation that is v-α-type along a fixed se-
quence (i.e. the lim sup occurs along the same subsequence) for all sets that
are elements of a sufficient semiring, then T is v-α-type for all sets.

The proof is essentially the same as the one given in [S08, Lemma 6.7.3].
This lemma will be used in all of the examples in this section, where the
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sufficient semiring is the set of all levels, and the common subsequence will
usually be some variant of {hn}.

Lemma 3.7. If T is v-zero type for all columns Cm, then T is v-zero type.

Proof. If T is infinite-measure-preserving, the columns grow so that X =⋃
mCm. For any setA of positive finite measure and any ε > 0, we can pickM

such that µ(A ∩ CcM ) < ε. Then

µ(A ∩ T v1nA ∩ · · · ∩ T vdnA) < µ(CM ∩ T v1nCM ∩ · · · ∩ T vdnCM ) + (d+ 1)ε.

From this, we see that in fact A is v-zero type.

We can now exhibit examples of rank-one transformations that are v-pos-
itive type and others that are not, which we do in Sections 4 and 5.

Note what these basic lemmas do not allow us to do. Moving from a
sufficient semiring (usually composed of unions of intervals) to all finite-
positive-measure sets for v-positive type transformations is difficult without
the additional control of v-α-type.

4. Rank-one examples. Many of these examples are most easily seen
visually, and we encourage the drawing of diagrams such as the ones shown
below.

Example 4.1. For every vector (v1, . . . , vd), we can create a transforma-
tion T that is v-positive type very simply.

An example for d = 2 is given below. Let T be a cutting and stack-
ing transformation starting with C0 consisting of one level, [0, 1]. Then,
for infinitely many n, cut the column Cn into d + 1 subcolumns and for
0 ≤ i ≤ d − 1, on top of the (d − i)th subcolumn (called Cd−i+1

n ) put
hn(vi+1 − vi − 1) spacers (v0 = 0). The effect of the procedure is to put
the first level of the (d − i)th subcolumn hnvi levels away from the first
level of the (d + 1)th subcolumn. As long as this is done infinitely often,

C2
n

C1
n

C0
n

hnv1

hnv2

hn(v2 − v1)

Fig. 1. d = 2 example
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at {nk}, then µ(I ∩ T hnk
v1I ∩ · · · ∩ T hnk

vdI) > µ(I)
d+1 , when I is any level of

any of the defining columns of T . By the lemma above, as this gives that T
is v- 1

d+1 -type for all of these intervals, we find that in fact T is v-positive for
all sets of positive measure.

This argument is very flexible, because we can add however many spacers
we want after the last subcolumn and we need only perform this procedure
infinitely often, not at every step. For example, the construction given in
[DGMS] describes how to make a rank-one power weakly mixing transfor-
mation with a procedure that needs similarly only occur infinitely often,
and this procedure could be combined with the procedure in this example
to create a rank-one transformation that is both power weakly mixing and
v-positive type. Furthermore, as the set of finite integer-valued vectors is
countable, we can use this same basic construction to create a rank-one
transformation that is v-positive type for each v ∈ Zd (for all values of
d > 1) and additionally power weakly mixing.

Next, we show that v-positive type and v-multiplicative-positive type are
not equivalent. Before tackling a general example, here is a specific one.

Example 4.2. Let v = (1, 2). We construct a rank-one transformation T
that is v-multiplicative positive type (hence positive type) but not v-positive
type.

Start out with C0 = I = [0, 1]. At each step cut into four subcolumns. On
the first subcolumn, put no spacers. On the next column, put 3hn spacers.
On the third subcolumn, put hn spacers. On the last subcolumn, put 8hn
spacers. Now, this is clearly v-multiplicative-positive type for I (just take
overlap T vim for m = hn) and similarly for all interval levels. As the con-
struction has overlap occurring at 1

4µ(I), T is v-multiplicative-positive type
for all positive measure sets.

To show T is not v-positive type, we show this for I. For eachm, consider
n where hn−1 < m ≤ hn = 16hn−1. Then, to show that µ(I ∩ TmI ∩ T 2mI)
= 0, we look at the four subcolumns A,B,C,D of Cn−1 (not including
spacers). It is clear that any nonzero intersection of I, TmI, and T 2mI will
happen between two or more of the above subcolumns but in no case purely
within one subcolumn. Therefore, it is just a matter of tracking down the
different possible combinations of subcolumns and showing that there can be
no overlap. We show these different scenarios with corresponding pictures.
To start, we note that µ(D ∩ TmC ∩ T 2mI) = 0, as levels in D and C that
are both in I are at most 2hn−1 + 8hn−2 apart and levels in D and B that
are both in I are at least 5hn−1 + 8hn−2 > 2(2hn−1 + 8hn−2) apart. Thus
no possible m can give this type of overlap. See Figure 2.

For the second scenario, we consider B ∩TmA∩T 2mI overlap. Although
m ≤ hn, we might have overlap occurring in a larger picture, as illustrated
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D

C

B

A

9hn−1

2hn−1

4hn−1

hn−1

minimum distance: 5hn−1 + 8hn−2

maximum distance: 2hn−1 + 8hn−2

Fig. 2. Disproving nontrivial D ∩ TmC ∩ T 2mI overlap

below with Figure 3. Here the maximum distance available (hn−1 + 8hn−2)
is even smaller than that considered in the first case, and the minimum dis-
tance (hn−1 + 8hn−2) is even larger, so the same argument as before shows
that there must be zero overlap incorporating a smaller subcolumn.

C

B

A

D′

4hn−1

hn−1

minimum distance: 8hn−1 + 8hn−2

maximum distance: hn−1 + 8hn−2

9hn−1

Fig. 3. Disproving nontrivial B ∩ TmA ∩ T 2mI overlap

The impossibility of the third scenario, requiring µ((C ∪D)∩Tm(A∪B)
∩ T 2mI) = 0, follows very similarly and is shown in Figure 4.

Tracking down each of these scenarios gives a contradiction requiring the
intersection to have measure 0, and so we conclude that for hn−1 ≤ m ≤ n,
µ(I ∩ TmI ∩ T 2mI) = 0. Unlike the previous example, there is little flexibil-
ity, because if one were to perform cutting and stacking steps of a different
type, one would need to check that these additional steps do not incidentally
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D

C

B

A

D′

2hn−1

4hn−1

hn−1

minimum distance: 8hn−1 + 8hn−2

maximum distance: 7hn−1 + 8hn−2

9hn−1

Fig. 4. Disproving nontrivial (C ∪D) ∩ Tm(A ∪B) ∩ T 2mI overlap

bestow v-positive type. However, note that the proof above actually shows
that T is v-positive type for no A of finite measure, as we can choose a finite
union of levels J ⊂ Cn such that A ⊂ J (within ε) and then for m > hn, we
have µ(J ∩ TmJ ∩ T 2mJ) = 0 by the argument above.

Now, the above example generalizes to the following example:

Example 4.3. For every vector v with vd/v1 ≥ d, we can create a rank-
one transformation T that is v-multiplicative-positive type but not v-positive
type.

This transformation is in a spirit similar to the previous one. To cre-
ate T with cutting and stacking, let C0 = [0, 1]. At each step, cut into 2d
subcolumns. Then, on top of the (2i − 1)th subcolumn 1 ≤ i ≤ d, place
(vi − 1)hn spacers. On top of the 2ith subcolumn (i < d), place Mhn spac-
ers, where M ≥ vd(vd + 1)/v1. On top of the last column, put khn spacers
so that the spacers added on top of the last subcolumn have measure at
least vd times the sum of the measures of each subcolumn and of the spacers
put on top of each of the previous subcolumns. It is fairly clear that T is
v-multiplicative-positive type. Whenever n = hm, the desired inequality will
be achieved for any level interval. And by the lemma above that means T is
v-multiplicative-positive type for any set of positive measure.

To see that T is not v-positive type, we primarily concentrate on the
beginning level I = C0. (Note that a failure for this interval will imply a
failure for all other levels but perhaps not for other sets.) For any m, pick n
so hn−1 < m ≤ hn. Then, considering subcolumns X2i and X2i−1, we note
that if µ(X2i∩Tmv1X2i−1) > 0, then the maximum value for v1m is vdhn−1+
khn−2 ≤ (vd + 1)hn−1 and then T−vdmX2i will be entirely contained within
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the spacers above X2i−2. Similarly, in the other case, if µ(Xi∩T v1mXj) > 0,
then T−vdmXi is contained in spacers, by the choice of M detailed above.

In fact, the above two examples are examples of rank-one transformations
that are clearly positive type (as they are v-multiplicative-positive type), but
in fact we can show that they are v-zero type. The argument above showed
that for I = C0,

µ(I ∩ T v1nI ∩ · · · ∩ T vdnI)→ 0.

This argument generalizes easily to I = Ck for any k. In fact, the argument
given holds if we confine ourselves to m ≥ hN where N ≥ k, and so the limit
for any I = Ck will still be zero, and by Lemma 3.7, we can conclude that
T is v-zero type.

5. Multiple recurrence and positive type. Just as the rank-one ex-
amples helped us distinguish v-positive type from v-multiplicative-positive
type, Markov shift examples allow us to distinguish between v-recurrence
and v-positive type. Multiple recurrence is a property famously studied in
the finite measure case, culminating in Furstenberg’s Multiple Recurrence
Theorem. More recently, it has been studied in the infinite measure case,
the reader may refer to [AN00] for Markov shift examples and [EHH98] for
odometer (rank-one) examples.

Definition 5.1. A transformation T is k-recurrent if for every measur-
able set A of positive measure, there exists an integer n > 0 such that

µ(A ∩ TnA ∩ · · · ∩ T knA) > 0,

and T is multiply recurrent if it is k-recurrent for every positive integer k.

Analogously, we define v-recurrence as the notion that for a given positive
measure set A and vector v, there exists an n > 0 such that µ(A ∩ T v1nA ∩
· · · ∩ T vdnA) > 0. We must conclude that v-recurrence and v-positive type,
although the latter implies the former, are different notions. An example
showing this is given by a conservative ergodic Markov shift such that T ×T
is conservative ergodic, while T × T × T is not conservative [KP63]. Then T
cannot have positive type, otherwise, by [AN00, Proposition 2.2], T ×T ×T
will also have positive type, so, in particular, it will be conservative (or more
generally, such a T is remotely infinite [BF64], so of zero type [KS69]). T
is therefore not positive type and thus clearly not (1, 2)-positive type. How-
ever, by [AN00, Theorem 1.1], T ×T conservative is equivalent, for a general
Markov shift T , to (1, 2)-recurrence. This means that this above example is
(1, 2)-recurrent but not (1, 2)-positive type.

6. Results for more general sequences. This section contains some
basic facts that encourage us to believe that the above definitions for v-pos-
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itive type and v-multiplicative-positive type are some of the most natu-
ral properties to consider. Specifically, this section explores the quantities
µ(A ∩ TniA) for a variety of different, more general sequences {ni}.

First, we present a simple result indicating that considering sequences
other than {kn} may prove difficult:

Fact 6.1. For any h there is an ergodic T of positive type, measure-pre-
serving and invertible, such that for some A of positive measure and for any
c not sharing all prime factors of h, limn→∞ µ(T

hn+cA ∩A) = 0.

Proof. To see this, we will construct a generalization of the 2-point ex-
tension. First, pick a prime factor k of h such that k does not divide c. Then
let S : X → X be any measure-preserving invertible positive type transfor-
mation. (Example: the canonical Hajian–Kakutani skyscraper.) Then, create
k copies of this measure space, labeling them Xi and using the same coor-
dinate system on each. Define T as follows: for any x1 ∈ X1, let T (x1) =
x1 ∈ X2, using the same coordinates as mentioned. Similarly, continue up to
T k−1(x1) = x1 ∈ Xk and then let T k(x1) = S(x1) ∈ X1. Because k is prime,
T is conservative ergodic by S’s ergodicity. Then, if A is a positive measure
set so that A ⊂ X1, it is very clear that for any n, µ(T kn+cA ∩A) = 0, and
so the same assertion with h replacing k must also hold.

Fact 6.2. For any k there exist T , A, c such that

lim supµ(A ∩ TnA ∩ T knA) > 0 but limµ(T cA ∩ TnA ∩ T knA) = 0.

Proof. To obtain an example, just take a rank-one construction where
rn = k and add no spacers infinitely often to get the first inequality. How-
ever, pick c to be some integer that is not expressible as

∑
n≤N anhn where

each an is in {−(k− 1), . . . , k+ 1}. If we choose hn to be increasing quickly
enough, there are some c fitting this description.

Given these two facts, it is natural to restrict to considering intersections
merely in the form T knA ∩ A without additional constants. Intersections of
this form are also already studied in the context of recurrence, so this fur-
ther seemed a natural choice. However, when still considering sequences in
general, we did obtain the following two results:

Proposition 6.3. If limn→∞ µ(A∩T anA∩T an+bnA) = 0 for every pair
of infinite sequences {an}, {bn} and every set A of finite positive measure,
then T is zero type.

Proof. The proof proceeds by using the contrapositive. Assume that T
is of positive type. Specifically, for any A of positive finite measure we can
pick a sequence {ak} so that

lim
n→∞

µ(A ∩ T anA) = c > 0.
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Then, we need to simply pick {bn} and {a′n} such that

lim
n→∞

µ(A ∩ T a′nA ∩ T a′n+bnA) > 0.

To see that this is possible, note that we may assume that µ(T anA ∩ A) ≥
c′ = µ(A)/M for some large M . Then, for any beginning N , we note that
µ(
⋃N+2M
n=N A ∩ T anA) ≤ µ(A) and additionally

µ
(N+2M⋃
n=N

A ∩ T anA
)

≥
N+2M∑
n=N

µ(A ∩ T anA)−
∑

N≤n,m≤N+2M

µ(A ∩ T anA ∩ T amA)

≥ 2µ(A)−
∑

N≤n,m≤N+2M

µ(A ∩ T anA ∩ T amA),

and so ∑
N≤n,m≤N+2M

µ(A ∩ T anA ∩ T am) ≥ µ(A);

then there exist some n,m with n ≥ m in the given range such that
µ(A ∩ T anA ∩ T amA) ≥ µ(A)/

(
2M+1

2

)
. We pick a′i = am and bi = an − am

and then choose successive terms ai+1 and bi+1 by increasing N . Then, con-
sequently,

lim sup
n→∞

µ(A ∩ T a′nA ∩ T a′n+bnA) ≥ µ(A)/
(
2M + 1

2

)
> 0.

Proposition 6.4. For any pair of infinite sequences {an}, {bn}, there is
a T of positive type such that limn→∞ µ(A ∩ T anA ∩ T an+bnA) = 0. In fact,
this T can be chosen to be a half-rigid rank-one transformation.

Proof. The transformation constructed will be a variant of the Hajian–
Kakutani skyscraper. At each step of the construction, we divide the column
into two equal pieces each of height hn and stack an additional cn pieces on
top of the rightmost column, where cn is to be determined. Then, we stack
the columns, left under right, and continue. Thus, hn+1 = 2hn + cn, and so
our only task is to pick a sequence {hn} so that the transformation satisfies
the above condition. We note that if I = [0, 1] is the initial column in the
0th step, then µ(I ∩ T hnI) ≥ 1

2µ(I), and so T is clearly of positive type.
In fact, in the nth column, the levels that are contained in I occur at the
following heights: 0, h0, h1, h1+h0, h2, h2+h0, h2+h1, h2+h1+h0, . . . , hn+
hn−1 + · · · + h1 and therefore moving up by hn moves the bottom half of
these levels up to the top half of these intervals. Let In represent the levels
in I that occur in the nth column Cn.
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Now, we pick I = [0, 1]. Then limn→∞ µ(I∩T anI∩T an+bnI) = 0 will hold
if for each n, the difference set of the descendants of I in the N column—
i.e. the set ∆(I,N) = D(I,N) − D(I,N) of numbers, each expressible as∑N

i=0 cihi with each ci in {−1, 0, 1}—contains for any k at most two of
{ak, bk, ak + bk}. For example, if for a particular k the set ∆(I,N) contains
ak and ak + bk but not bk, then µ(I ∩ T akI) 6= 0 and µ(I ∩ T ak+bkI) 6= 0
but µ(T akI ∩ T ak+bkI) = µ(I ∩ T bkI) = 0 by the above discussion, and so
µ(I ∩ T akI ∩ T ak+bkI) = 0. We made this argument for I, but to expand
this conclusion to a general set A of finite measure, we need to make this
argument for any column Cm. Numbers in D(Cm, N) − D(Cm, N) are not
of the form

∑N
i=0 cihi; instead they are of the form

∑N
i=m aihi + b where b’s

only restriction is that |b| ≤ hm. So it is impossible to guarantee the given
statement for k with ak ≤ hm. However, because we care about the limn→∞,
we concern ourselves with k large enough that ak, bk ≥ hm. So long as there
are at most two of {ak, bk, ak + bk} for these large k, the above argument
gives us the statement for Cm. In other words, we will be operating at such
a large scale that the column Cm acts like a level. Now, it follows that the
statement holds for any finite union of levels, and thus, by an approximation
argument, for any finite measure set A.

To choose hn to avoid all of these individual terms, we first require
that hn ≥ 4hn−1 (i.e. cn ≥ 2hn). This condition forces all numbers in
∆ =

⋃
n∆(I,N) to have a unique representation in the form

∑N
i=0 aihi where

ai ∈ {−1, 0, 1} for each i. Additionally, it means that if ak 6∈ ∆(I,N − 1)
and ak ≤ 3hN , then ak 6∈ ∆(I,N). Relatedly, this tells us that if ak, bk ∈
∆(I,N − 1), then either ak + bk ∈ ∆(I,N − 1) or ak + bk 6∈ ∆(I,N). Then,
if ak ∈ ∆(I,N − 1) but bk 6∈ ∆(I,N − 1), we vary cN−1, starting at 3hN−1
and increasing if necessary, so that bk 6∈ ∆(I,N). As we increase, we will
certainly reach a value of cN−1 such that bk ≤ 3hN = 3(2hN−1+ cN−1). But
there are a variety of k that we have to worry about. Specifically, let

Ka = {k | ak ∈ ∆(I,N − 1) but bk 6∈ ∆(I,N − 1)},
Kb = {k | bk ∈ ∆(I,N − 1) but ak 6∈ ∆(I,N − 1)}.

Then Ka and Kb are both finite and depend only on hi, i ≤ N − 1. As
we vary cN−1, these sets will not change. Since they are both finite, we can
increase cN without worrying about adding to these sets. In particular, we
can make cN−1 big enough to miss all ak for k ∈ Kb and bk for k ∈ Ka.
Now, we might introduce new aj , but either we introduce only aj or we in-
troduce both aj , bj ∈ ∆(I,N) by increasing cn−1. In the first case, we have
not violated any conditions and we will deal with that value of j when we
move on to cn or larger. In the second case, as aj , bj 6∈ ∆(I,N), we may
conclude that aj , bj ≥ cN−1 ≥ 2hn−1 so that both aj and bj have hN in
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their descendent expansions. Thus, aj + bj ≥ 2hN − 2hN−1 ≥ hn + 2hN−1,
telling us that aj + bj 6∈ ∆(I,N − 1). Repeating this process, it is clear
that for no k will all three of {ak, bk, ak + ak} be in ∆. Consequently,
limn→∞ µ(A ∩ T anA ∩ T an+bnA) = 0.

In fact, the above constructed T also has

lim
n→∞

µ(A ∩ T an)µ(A ∩ T bnA)µ(A ∩ T an+bnA) = 0.

The above examples show that v-positive type, due partly to its simi-
larity to k-recurrence and partly due to the examples above, is a natural
generalization to consider.

7. Further explorations: positive type for different v. We now
want to discuss vectors v, w in pairs. If T is v-positive type, is it w-positive
type? We start with a new definition for comparing vectors. Unfortunately,
we will require different definitions for v-positive type and v-multiplicative-
positive type.

Definition 7.1. Given two vectors v ∈ Zd and w ∈ Zd′ , if there exist
positive integers n,m, c such that the set of components of nv is included in
the set of components of mw− c, where c = 0 or c = mwi for some i, we say
that v is positive type less than w, from now on denoted v ≤p w. (Note that
this property requires automatically that d ≤ d′.)

Furthermore, if there exist positive integers n,m, c such that each nvi =∑
j∈I(i)mwj −

∑
j′∈J(i)mwj′ , then we say that v is multiplicative-positive

type less than w, denoted v ≤m w. Note that v ≤p w ⇒ v ≤m w but the
reverse direction does not hold.

One note about the above definitions: in the following theorems using
≤m and ≤p, we note that these constructions often hold only for vectors v
in the accepted form, that is, with vi distinct. Any transformation T of pos-
itive type has v-positive type for any v = (`, . . . , `) ∈ Zd. These or other
such “redundant vectors” need to be considered differently from the vectors
in standard format.

Observe also that if v ≤m w, and T is w-multiplicative-positive type,
then T is also v-multiplicative-positive type. Indeed, suppose that nv has
all its components contained in mw. If T has w-multiplicative-positive type,
then Tm has w-multiplicative-positive type, so T has mw-multiplicative-
positive type, hence T has nv-multiplicative-positive type. If we suppose that
T has v-multiplicative-zero type, then T will have trivially nv-multiplicative-
zero type. As this is a contradiction, T also has v-multiplicative-positive
type.
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Theorem 7.2. Suppose v ∈ Zd. Then there exists a rank-one transfor-
mation T which has v-multiplicative-positive type, but which does not have
w-multiplicative-positive type for any w 6≤m v.

Proof. We will construct a rank-one transformation which satisfies the
above conditions as follows. Let I = C0 = [0, 1]. For each m, we construct
Cm+1 by cutting Cm in d + 1 parts and adding spacers on the first d sub-
columns such that the number of levels between the first (d + 1)th of the
bottom level of Cm and the bottom (d+ 1)ths of the other levels are

D′ := {0, v1hm, v2hm, . . . , vdhm} .
On the last subcolumn, we add a lot of spacers. We add sufficiently many
spacers sn so that there is a unique representation of elements in D(I,N)−
D(I,N) in base (hi) and in fact so that where Hm =

∑
k≤m

∑
1≤i≤d vihk we

have the ratio hm+1/Hm grow without bound. Then we stack from left to
right. See Figure 5 for an illustration of this construction where d = 3.

C3

C2

C1

C0

sn

v3hn

v2hn

v1hn

Fig. 5

Now, to see that T is v-multiplicative-positive type we note that for any
n = hm we have (using the notion of descendants)

µ(I∩T v1hmI) · · ·µ(I ∩ T vdhmI)

≥
(
µ(I)

d+ 1
|D′ ∩D′ + v1hm|

)
· · ·
(
µ(I)

d+ 1
|D′ ∩D′ + vdhm|

)
≥
(

1

d+ 1

)d
|D′ ∩D′ + v1hm| · · · |D′ ∩D′ + vdhm| =

(
1

d+ 1

)d
.

In particular, this proves that
lim supµ(I ∩ T v1nI) · · ·µ(I ∩ T vdnI) > 0.
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By the lemmas in earlier sections, as we have this constant
(

1
d+1

)d delineat-
ing the positive overlap, this argument shows T is v-multiplicative-positive
type for all A of positive measure.

Now, given any w ∈ Zd′ , if for every M there exists an n > M such that
µ(I ∩ T v1nI) · · ·µ(I ∩ T vdnI) > 0, we can show that w ≤m v as described
above. First, pick an M large enough so that

hM >
wd′

w1
HM−1.

Then, if we have n > M and the minimum N(n) such that

w1n, . . . , wcn ∈ D(I,N)−D(I,N),

by the construction of the columns Cn, there is a unique representation
of elements in D(I,N) − D(I,N) in base (hj). For each 1 ≤ i ≤ d′ let
Aih`i be the biggest term in the expansion of win. Then, for any i, j de-
rived this way, we note that because hm+1 � hm and by our choice of M ,
we must have h`i = h`j = hN . (Thus `i = `j = N .) In fact, we note that
when we express wi/wj using the expansions, the hN dominate all other
terms. For large enough n, as w1n, . . . , wd′n must all occur in the same scale
(hm ≥ win ≥ hm+1), and as the construction gives the same method for
cutting and stacking at every n, there are a finite number of possibilities for
Ai, Aj as we increase n. As hm+1/HM grows without bound, for some choice
of Ai, Aj , as we increase n we see that

Ai
Aj
− lim

Hn−1
hn

≤ wi
wj
≤ Ai
Aj

+ lim
Hn−1
hn

with both limits zero, so that
wi
wj

=
Ai
Aj

or wi = Ai

(
w1

A1

)
.

However, for each i,

Ai ∈
{
0, v1, v2, . . . , vd, v2 − v1, . . . , vd−1 − vd, . . . ,

∑
I

vj −
∑
J

vi

}
for certain partitions I and J by the construction of T . Substituting
these terms in explicitly, we see that wi = (

∑
vk −

∑
v′k)

w1∑
vj−

∑
v′j
, so

wi
∑
vj−wi

∑
v′j =

∑
vkw1−

∑
v′kw1. Note that the vj , v′j (derived from A1)

are constant and the vk, v′k (derived from Ai) are not. Thus by definition,
w ≤m v.

One note: not all w ≤m v will have w-multiplicative-positive type for
this T . However, variations S on T can be constructed so that S will be
w-multiplicative-positive type. These variations are obtained by putting the
spacers on the subcolumns so that the order is varied, v2hn before v1hn, for
example.
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Theorem 7.3. The same statement as Theorem 7.2 holds for v-positive
type, replacing ≤m with ≤p.

Proof. We construct a similar transformation, with the spacer pattern
seen in Figure 6 so that there are enough spacers sn that all elements of
D(I,N)−D(I,N) have a unique representation in (hi).

Cd

Cd−1

C2

C1

C0

sn

v1hn

(vd−1 − vd−2)hn

vdhn

vd−1hn

vd−2hn

(vd − vd−1)hn

Fig. 6

Then it is clear that this transformation is v-positive type. To see that it
is only v-positive type for w ≤p v, if it is w-positive type, we must have an
infinite sequence of n with win ∈M(n)−D(I,N), where M(n) is fixed and
in D(I,N). Say win is expanded with coefficients Ai in (hi). Then note again
that through the unique representation of win, we pick out the largest term
Aih`i for each 1 ≤ i ≤ d′ and B, the largest term of M(n) (that is, no larger
than the largest term of wi). All h`i must be equal, once we choose n large
enough compared to the terms of w. Then, as before, wi/wj = Ai/Aj but
furthermore by our construction, Ai, Aj ∈ {v1−vJ , v2−vJ , . . . vd−vJ} where
vJ depends only on the value of B, and then the equation wi = w1(Ai)/A1

actually implies that wi = w1(vk−vJ)/(vj−vJ); this gives the correct result,
as the only term that varies with wi is vk.
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Corollary 7.4. Let V = {v} be a finite family of finite vectors. Then
there exists a rank-one transformation T which is v-multiplicative-positive
type for all v ∈ V, but which is not w-multiplicative-positive type for any
finite vector w with w 6≤m v for all v ∈ V. Similarly for positive type.

Proof. We will use the same process as in the proof of the theorem
above to produce a transformation which has the required properties. If
V = V1, . . . , VD we define the transformation T as follows: for each m > 1
with largest prime power pj we divide Cm into d+1 columns where Vi ∈ Zd(V )

so that Vi = (Vi,1, . . . , Vi,d(V )) for i = j mod D and then we add spacers ex-
actly as above except for the last column, where there are enough spacers
added so that hm+1 ≥ HM where HM =

∑
k≤m

∑
i≤m

∑
1≤j≤d(V ) Vi,jhk.

Because for any prime there are an infinite number of powers pi, for any
Vj ∈ V, the corresponding prime p gives that

µ(I ∩ T hpiVj,1I) · · ·µ(I ∩ T hpiVj,d(Vj)I) ≥
(

µ(I)

d(Vj) + 1

)d(Vj)
,

and so T is VJ -positive type.
However, using an argument similar to the above it can be seen that if

T is w-positive type, there must be a v ∈ V such that w ≤m v.
Extension onto Theorem 7.3 is done exactly analogously.

This section essentially showed that except for the “natural” dependen-
cies, different vectors v, w ∈ (Z+)d behave independently for v-positive type.
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