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Abstract. We show that the Moore—Penrose inverse of an operator 7' is idempotent if
and only if it is a product of two projections. Furthermore, if P and @) are two projections,
we find a relation between the entries of the associated operator matrix of PQ and the
entries of associated operator matrix of the Moore—Penrose inverse of P(Q) in a certain
orthogonal decomposition of Hilbert C*-modules.

1. Introduction and preliminaries. Hilbert C"*-modules are objects
like Hilbert spaces, except that the inner product takes its values in a
C*-algebra, instead of being complex-valued. Throughout the paper A is
a C*-algebra (not necessarily unital). A (right) pre-Hilbert module over A
is a complex linear space X which is an algebraic right A-module such that
AMza) = (Azx)a = z(Xa) for all z € X, a € A and X € C, equipped with an
A-valued inner product (-,-) : X x X — A satisfying

(i) (x,x) >0, and (x,z) =0iff x =0,
<H> <xa Y+ )\Z> = <.%',y> + )\<1’, Z>,
(i) (z,ya) = (z,y)a,
(iv) (y,z) = (z,9)",
for all z,y,z2 € X, A € C and a € A. A pre-Hilbert A-module X is called a
Hilbert A-module if it is complete with respect to the norm ||z = ||(z, z)||*/2
Left Hilbert A-modules are defined in a similar way. For example, every
C*-algebra A is a Hilbert A-module with respect to the inner product
(x,y) = x*y, and every inner product space is a left Hilbert C-module.
Suppose that X and ) are Hilbert A-modules. Then £(X,)) is the set
of all maps T : X — Y for which there is a map T* : J — X, called the
adjoint of T', such that (Tx,y) = (x,T*y) for all z € X and y € Y. It is
known that any element 7" of £(X',)) is a bounded linear operator, which
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is also A-linear in the sense that T'(za) = (T'z)a for z € X and a € A [LA]
p. 8]. We write £(X) in place of L(X, X'), and ker(-) and ran(-) for the kernel
and range of operators, respectively. The identity operator on X is denoted
by 1x or 1 if there is no ambiguity.

Suppose that X is a Hilbert A-module and Y is a closed submodule
of X. We say that ) is orthogonally complemented if X = Y @ Y+, where
Vt:={y € X:(z,y) =0forall z €Y} denotes the orthogonal complement
of ¥ in X. The reader is referred to [F2, [F'1, [LA, MT] and the references
cited therein for more details.

Throughout this paper, X and ) are Hilbert A-modules. Recall that a
closed submodule in a Hilbert module is not necessarily orthogonally com-
plemented; however, Lance proved the following;:

THEOREM A ([LAl Theorem 3.2]). Suppose that T € L(X,Y) has closed
range. Then

e ker(T') is orthogonally complemented in X, with complement ran(T™).

e ran(7T) is orthogonally complemented in Y, with complement ker(T*).

o T*c L(Y,X) has closed range.

DEFINITION 1.1. Let T € £(X,)Y). The Moore-Penrose inverse TT of T
(if it exists) is an element in L(), X) which satisfies:

(a) TTIT =T,

(b) TVTTT =TT,

(c) (PTTy =TT,

(d) (TTT)* = T'T.

The operator T (if it exists) is unique and 71T and T'T" are orthogonal
projections, that is, selfadjoint idempotent operators. Clearly, T is Moore—

Penrose invertible if and only if 7™ is Moore—Penrose invertible, and in this
case (T*)T = (TT)*. The following theorem is known.

THEOREM B ([XS| Theorem 2.2]). Suppose that T € L(X,Y). Then the
Moore—Penrose inverse TY of T exists if and only if T has closed range.

By Definition we have
ran(T) = ran(TTT), ran(T") = ran(TTT) = ran(T*),
ker(T) = ker(T'T), ker(TT) = ker(T T') = ker(T™),
and by Theorem A,
X = ker(T) @ ran(T") = ker(T7T) @ ran(T'T),
Y =ker(T") @ ran(T) = ker(TT") @ ran(T T7).

A matrix form of an adjointable operator T" € L£(X,)) can be induced
by some natural decompositions of Hilbert C*-modules. Indeed, if M and N



MOORE-PENROSE INVERSE OPERATORS 173

are closed orthogonally complemented submodules of X and ), respectively,
and X = M @& ML, Y =N@N,, then T can be written as a 2 x 2 matrix

(1.1) T = [Tl TZ]

T3 Ty

where Ty € LM, N), To € LML N), Ts€ LM, N*) and Ty € LML, N,
Note that Py denotes the projection corresponding to M.

In fact Ty = PyT Py, To = PyT(1 — Py), T35 = (1 — Py)T Py and
Ty = (1 — PA)T(1 = Pry).

Recall that if T € £(X,)) has closed renge, then TTT = Pran(ry and
T = Pran(r)-

COROLLARY 1.2. Suppose that T € L(X,Y) has closed range. Then T

has the following matrix decomposition with respect to the orthogonal de-
compositions X = ran(T*) @ ker(T') and Y = ran(T") & ker(T™):

7= o o) Ly ) ~ L)

where T1 is invertible. Moreover

ot [Tfl 0] _ [ran(T)] . [ran(T*)}

0 0] |ker(T%) ker(T)

Proof. According to the above discussion, it is enough to set M =
ran(7*) and N = ran(7T"). Then

T = Pran(T)T(1 - Pran(T*)) = Pran(T)T(PkerT) =0,
I3 = (1 - Pran(T))TPran(T*) = TPran(T*) - Pran(T)TPran(T*) =0,
Ty = (1 - Pran(T))T‘(1 - Pran(T*))

= T(l - Pran(T*)) - ‘Pran(T)CT(1 - Pran(T*)) = 0.

Now we show that 77 is invertible. Let x € ker(71), so 0 = Tz =
Pran(r)T Pran(r+yr = Tz, which means that z € ker(7). On the other
hand 77 € L(ran(7*),ran(7)), so x € ker(T}) C ran(7*). Hence = €
ker(T) Nran(T*) = {0}. Therefore = 0. By Definition we conclude

that T = [T 0]

Let X be a Hilbert .A-module and P € L(X) be an orthogonal projection
with ran(P) = K. Since X = ran(P) @ ran(P)* = K ® K, we have the
following representations of the projections P,1 — P € L(X’) with respect to
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the decomposition X = K @ K+

1 O K K
12 P: : )
(1.2) 0 0 Kt Kt
0 O K K
(1.3) 1-P= o e
0 11 K K

If @ € L(X) is an orthogonal projection and
A B K K
= =[5 o) L]~ i)
then A € £L(K) and D € L(K') are selfadjoint, and since Q@ = Q2, we have
[A B][A B} B [ A% + BB* AB—i—BD} B [A B]
B* DJ|B* D B*A+ DB* B*B+ D? B* DJ
which implies that

A= A®? + BB*,
(1.5) B = AB+ BD,
D = D? + B*B.

In the next section we shall use the following result.

THEOREM C (|[MS], Corollary 2.4]). Suppose that T € L(X,Y) has closed
range. Then (TT*)' = (T*)ITT.

Closedness of the range of operators and the structure of Moore—Penrose
inverses are important topics in operator theory. Xu and Sheng [XS] showed
that a bounded adjointable operator between two Hilbert A-modules admits
a bounded Moore—Penrose inverse if and only if the operator has closed
range. In this paper we state conditions equivalent to the Moore—Penrose
inverse being idempotent, and we find a relation between the entries of the
operator matrix associated to PQ and the entries of the operator matrix
associated to (PQ)T for a certain orthogonal decomposition of Hilbert C*-
modules, where P and () are two projections in Hilbert C*-modules.

2. Operator matrix of the Moore—Penrose inverse of an oper-
ator. We begin this section with the following useful facts about products
of module maps with closed range.

THEOREM 2.1. Suppose that QQ € L(X) and P € L(Y) are orthogonal
projections and T € L(X,Y). If PTQ has closed range, then T(PTQ)! and
(PTQ)'T are idempotent closed range operators.
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Proof. Since ran(PTQ) is closed, the operator U = (PTQ)" exists and
ran(U) = ran((PTQ)") = (ran(PTQ)*) = ran(QT*P), so ran(U) C ran(Q).
Also

ran(U*) = ran((PTQ)")* = ran(((PTQ)")") = ran((PTQ)*)* = ran(PTQ)

C ran(P).
Hence
(2.1) QU=U, PU"=U* UP=U.
Therefore
(2.2) UTU = UPTQU = U(PTQ)U =UU'U =U.

By multiplying on the left by T', we get TU = TUTU = (TU)(TU)
= (TU)% Again by multiplying on the right by T, we obtain
UT = UTUT = (UT)(UT) = (UT)?. Hence T(PTQ)" and (PTQ)'T are
idempotent. Then [LA] Corollary 3.3] implies that T(PTQ)" and (PTQ)'T
have closed range. =

COROLLARY 2.2. Suppose that P,Q € L(X) are orthogonal projections.
If PQ has closed range, then U = (PQ)' is idempotent and U = QU P.

Proof. Set T = 1y in Theorem Then U = (PQ)' is idempotent.
By using (2.1)), we obtain QU?P = U?. Since U is idempotent, the desired
result follows. =

The following theorem states some equivalent conditions under which
the Moore—Penrose inverse of an operator is idempotent.

THEOREM 2.3. Suppose that T € L(X) has closed range. Then the fol-
lowing assertions are equivalent:

Proof. (1)=(ii): Obvious.

(ii)=-(iii): Multiplying 72 = TT*T on the left by TT yields TTTT =
TITT*T = (T(TTT))*T = T*T. Now, multiplying by 7' on the right, we
get the desired result.

(iil)=(iv): If T*=TTT2Tt, then (T*)* = (T'T)(TTH))* = (TTH(TTT).
Hence T = T(TT)2T.

(iv)=(v): If T = T(TT)2T, then multiplying by T both on the left and
on the right, we get TTTTT = TYTTYTITT?, which implies that (T1)? = T,
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(v)=(i): By multiplying (T1)2=TT on both sides by T, we get TT T'T
=TT'T, 50 Pron()Bran(r) = T

(v)=(vi): We have shown that if T is idempotent, then T can be written
as

T = Puyer(r+))L Plier(r))+ = Pran() Plrer()) -
For all € (ker(T))*, we know that Pler(ry)ro =, s0
|T£E‘2 = <T*TI’ ‘T> = <P(ker(T))J-Pran(T)P(ker(T))J-m’x>
= (Pran() Per (1)L > Pler(ry)2 @) = (T, 7).
(vi)=(ii): Since |Tz|?> = (T, ) for all 2 € (ker(T))*, and Per(my) 1y €
(ker(T))*, we have Ty = T Pyer(ry)+y and
<T*Ty7 y) = <Ty7 Ty> = <Ty? P(ker(T))ly> = <P(ker(T))iTy7 y>
for all y € X. Hence, T*T = Pyeyry) T- So T*T = TITT = T'T?. Multi-
plying by T on the left, we get TT*T = TT'T? or TT*T = T2.
(iii)=(vii): We have shown above that if (iii) holds then Tt is idempo-
tent. This yields the desired implication.
(vii)=(iv): Multiplying TTT* = T* by (T*)' on the right and by T on
the left, we obtain
TTIT*(T*)" = TT*(T*)T,
TTIT*(TT* = TT*(T")*,
TT(TTT)* = T(TTT)* (by Theorem C).
Hence T(TV2T =TT T =T. u

COROLLARY 2.4. Suppose that T € L(X) has closed range and TT is
idempotent. Then

Th=T7* - Pran(T*)K1 - Pran(T*))(1 - Pran(T))]TPran(T)'

Proof. The proof of Theorem @ implies that T' = Pyan (1) Pran(7+)- Now
[LL, Theorem 10] yields the desired formula. =

REMARK 2.5. A valuable consequence of this theorem is that a closed
range operator 1" is a product of two projections if and only if its Moore—
Penrose inverse is idempotent, and we also see that the Moore—Penrose
inverse of an idempotent operator is a product of two projections.

Recall that an operator U € L(X,)) is said to be unitary if U*U = 1x
and UU* = 1y. If there exists a unitary element in £(X,)), then we say that
X and Y are unitarily equivalent Hilbert A-modules, and we write X ~ ).
Moreover, obviously if U is unitary, then U* = UT.
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THEOREM 2.6. Suppose that X, YV, Z and W are Hilbert A-modules,
and V € L(X,Y) and U € L(Z,W) are unitary operators. Then for any
T € L(Y, Z) with closed range, (UTV)! = V*TtU*.

Proof. Since U*U = 1z, UU* = 1yy and V*V = 1y, VV* = 1y, by
Definition [[L1] we have

(a) (UTV)V*TIU*(UTV) = UTWVVHT(U*U)TV = UTYV,
(b) VU (UTV)V*TIU* = VTN (U U)T(VVHTIU* = V*TTU*,

(c) (UTVV*TTU*)* = (UT1yT'U*)* = (UTT'U*)* = UTT'U*
= (UTV)V*TTU*,

(d) (V*THU*(UTV))* = (V*TT12TV))* = (V*TTTV))*
= V*TTU*(UTV).

Hence (UTV)T = V*TTU*. u

In the next theorem we find a relation between the entries of the associ-
ated operator matrix of operators.

THEOREM 2.7. Suppose that orthogonal projections P,Q € L(X) are
represented as in (1.2)) and (1.4), and PQ has closed range. Then

AAT 0]:[IC

(i) (PQ)T = |:B*AT 0 ,CJ_

] o [ /éﬂ and ran(PQ) = ran(A).

(ii) B*ATA = B*, equivalently AATB = B,
(iii) A2+ ABB*A" = A and B*A? + B*BB*A! = B*.
(iv) BB* commutes with A, and BB* commutes with AT.

(v) A+ BB*A = AA" and B*AAT + DB*A' = B*A'.

Proof. (i) Since PQ has closed range, [MS Corollary 2.4] implies that
(PQ)T = (PQ)*(PQ(PQ)*)!. By using this fact and (1.5, we obtain
A 0] [A2+BB* oy B [ A 0} [A OT

B* 0 0 o] LB ollo o

_[A OHAT 0]_[AAT 0]
B*ollo o] |[BrAt o)

From (PQ)(PQ)" = Pran(pq), we deduce

Q) - |

A B}[AAT O]

[AAT 0}
0 0][B*At 0

T
(PQ)(PQ) —{ ol

This immediately implies that ran(PQ) = ran(AA") = ran(A).
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T
@) By 0, (PQ) = | 25

implies that (PQ)' is idempotent. Applying Theorem [2.3} .Vll we get
(PQ)T(PQ)* = (PQ)*. Hence

[AAT OHA 0}_[14 0}
B*At o|[B* 0] |B* 0]
Therefore, B*ATA = B*. As A is selfadjoint, by Theorem C we have AAT =
(AAT)* = ATA and AATB = B.
(iii) Applying Theorem [2 (111) for PQ, we get
{A 0} B [AAT OHA2 ABHAAT 0]
B* 0] [B*At oJlo o J[B*Af o]

] and ran(PQ) is closed. Corollary [2.2

A straightforward computation shows that
AATA?AAT + AATABB*AT = A and B*ATA?AA' + B*ATABB*A" = B
By (ii), we observe that
A2+ ABB*A'=A and B*A?+ B*BB*A' =B
(iv) Part (iii) and show that ABB*A" = BB*. Multiplying by A

on the right, we get ABB*ATA BB*A. It follows from (ii) that ABB* =
BB*A, i.e. BB* commutes with A. For the second part,

ABB* = BB*A,
ABB*A" = BB*AA" (multiplication by A" on the right),
ABB*A" = BB* (by (ii), B*AAT = B*),
ATABB*A' = ATBB*
BB*A' = ATBB*  (by (ii), AA'B = B),

multiplication by AT on the left),

which means that BB* commutes with AT.

AAT 0
(v) By (i), we have (PQ) = [B*AT 0]. Applying Corollary [2.2| we get

(PQ)' = Q(PQ)'P, which implies that
[AAT o] 3 [A BHAAT loC o} B { AAA' + BB*A o}
B*At 0 B* D||B*A" 0J[ 0 0 B*AAT + DB*AT 0]
Therefore, A+ BB*A = AA" and B*AA" + DB*Al = B*Af.

By the previous theorem we state the reverse-order law in the special
case of product operators.
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THEOREM 2.8. Let orthogonal projections P,Q € L(X) be represented
as in (1.2) and (1.4)), and assume PQ, B and AB have closed ranges. Then

(i) (AB)! = BT A",
(ii) ABB* has closed range and (ABB*)! = (B*)TBTAT.
Proof. To prove (i), note that
(B* — B*BB*A")(1 — BB") = B*(1 — BB'") — B*"BB*A'(1 — BB')
= B* -~ B*BB' — B*BB*A' + B*BB*A'BB!
(by Theorem 2.7(iv)) = B* — B*BB' — B*A'BB* + B*A'BB*BB'
= B*— B* - B*A'BB* + B*ATBB* = 0.
By Theorem [2.7(iii), we have B*A2(1 — BB') = 0, so B*A?> = B*A2BB".
Taking adjoints we get A2B = BBTA%B. So, condition (ii) of [KAl The-
orem 2.1] holds. By (ii)=(iii) of that theorem, BYAT satisfies conditions
(a)—(c) of Definition
On the other hand, by Theorem [2.7](ii), we have
(BTAT(AB))* = (B'(ATAB))* = (B'B)* = B'B = BTAT(AB).
Hence BT AT satisfies condition (d) of Definition Therefore, BT AT is the

Moore—Penrose inverse of AB.
To prove (ii), by Definition we have

(a) (ABB*)(B*)'B'AT(ABB*) = AB(B*(B*)B") AT(ABB*)
= ABB'(ATAB)B*
(by Theorem 2.7|ii)) = ABB'BB* = AB(BB'B)* = ABB*;

(b) (B*)'BTAT(ABB*)(B*)'B'AT = (B*)'BT(ATAB)B*(B*)' BT A'
(by Theorem 2.7(ii)) = ((B*)'B'B)(B*(B*)'B) AT
= (B'BB")*(B'BB")*Al = (B*)I BT AT;
(c) (B*)'BTAT(ABB*) = (B*)'BT(ATAB)B*
(by Theorem [2.7(ii)) = (B*)'B'BB*
= (B'BB")*B* = (B*)'B* = BB,
(d) (ABB*)(B*)'BTA" = A(B(B'B)*B") A" = ABBTA'.

By (i), we have (AB)" = BTA' hence AB(AB)! = ABBT AT is an orthogonal
projection. Therefore, (B*)I BT Al is the Moore Penrose inverse of ABB*.
Hence ABB* has closed range and (ABB*)! = (B*)IBTA'. u

If B € L(X) has closed range, then ran(B) = ran(BB*). In the following
theorem we show that sometimes ran(B) = ran(BB*), even if the range of
B is not necessarily closed.
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THEOREM 2.9. Let orthogonal projections P,Q € L(X) be represented

as in (1.2) and (1.4)), and suppose PQ has closed range. If || Al < 1, then
ran(B) = ran(BB¥).
Proof. 1t is trivial that ran(BB*) C ran(B). To show the opposite inclu-

sion, let y € ran(B), so there is z € X such that y = Bz. Theorem [2.7iii)
shows that B = A2B + ATBB*B. By (.5, we have

B=(A—-BB*)B+ A'BB*B= AB - BB*B + A'BB*B.
Now Theorem iv) yields B = AB + BB*(—B + A'B). Therefore
(2.3) (1 — A)Bx = BB*(—Bx + A'Bx).

From ||A]| < 1 we know that 1 — A is invertible and (1 — 4)~1 =32 A",
It follows from this relation, ({2.3)) and Theorem iv) that BB* commutes
with A™ for all n > 1. Continuity of BB* implies that

(1-—A)711-A)Bz= i A"BB*(—Bz + A'Bx)
n=0
= BB* <§: A™(—Bx + ATBa:)).

n=0
Hence y = Bz € ran(BB*) and ran(B) = ran(BB*). =
Now, we show that there is a relation between the entries of the associ-
ated operator matrix for the composition of three special operators.

THEOREM 2.10. Suppose that Q is an orthogonal projection in L(X),
T € L(X,Y) and P is an orthogonal projection in L(Y). If T and PTQ
have closed ranges, and (QT* PTQ)' commutes with T'T and T = [7(;1 8],
where 11 s unitary, and

b {Al Bl] | {ran(T)] . [ran(T)}

B: Dy |ker(T¥) ker(T*)
=5 ) [y ] [y

then:
(1) AL AT AT Ay = A\TH AT P ATy As,
(i) BiTW AT A Ty Ay = BiTi AsT P AT Ay,
(iii) AlTlBQBngllAlTlAg =0,
(iV) BTTlBgBika A1T1A2 = 0.
Proof. A straightforward computation shows that
Al Bl:| |:T1 0:| |:A2 Bz:| . |:A1T1A2 A1T1B2

PTQ = .
@ [Bi* Dillo o]lB; Dy BTy A, B;T\Bs
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By assumption 77 € L(ran(7™),ran(7")) is unitary, and from [LAL p. 25]
Ty is invertible and T, ! = T} Set

. AT1 Ay AT\ Bs

B [B’{TlAg BiTiB> ]
Then

T*T _ |:1ran(T*) 0

0 0] and ran(T*TS") C ran(ST) = ran(S*).

We know that STS is a projection on ran(S*). Therefore STST*TST =
T*TST. Hence, condition (ii) of [KAL Theorem 2.1] holds, and by (ii)=>(iii)
of that theorem, ST satisfies conditions (a)—(c) of Definition

On the other hand, TSt(ST)* =TSt (SH*T1T, or equivalently T'(S*S)t =
T(S*S)ITTT. We observe that S = PTQ, and (QT*PTQ)" commutes with
TTT. Hence condition (ii) of [KAL Theorem 2.2] holds. By (ii)=(iii) of that
theorem, ST satisfies conditions (a), (b), (d) of Definition Therefore,
STT is the Moore-Penrose inverse of T'ST and T'ST = (STT)'. In addition

[Tl OHA1T1A2 AlTlBg]T_([AlTlAg AlTlBgHTl—l oDT

0 0)J[BiTAy BiT1By| \|B:T1Ay BTiBy|| 0 0
[AlTlAQTfl O]T

BT ATy 0]

Now, Theorem [2.1] implies that
TSt = [A1T1A2Tf1 OT
BiTh AT 0
is an idempotent operator, so by Theorem (ii), we can write
(TSH(TSH*(TST) = (TST)?
and
[AlTlAngl o] [TlAlelAl T1A2T11B1} [AlTlAngl 0]
BiT1 AT 0 0 0 BiTi AT 0
B [AlTlAng_l 0] {AlTlAngl o]
B AT 0 [ BiT AT 0
In fact
(2 4) |:A1T1A%T1_1A%T1A2T1_1 —I—AlTlAng_lBlBTTlAQTl_I 0:|
' BiTy AT P A2T Ao Ty + BTV AT, ' BiBiTi ATt 0
_ [A1T1A2T11A1T1A2T11 0]
BiT ATy ' BfTV ATy 0]
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Therefore, by , we have
ATy AT (A2 + By BT ATt = Ay AST (AT AT
BiTy AT Y (A + BB Th ATy = Bi Ty AST (A Ty AT
By , we have
ATy AST YA T Ay = A\Th ATy AL T As,
BiTy AT A1 Th Ay = Bi Ty ATy P ATy As.
Hence, (i) and (ii) are obtained. By (i) and (ii) and (L.5),
ATy (A3 — AT AT Ay = A\Ti Bo BTy P A1 Th As = 0,
BiTi (A3 — A)T7 A1 T1 Ay = BiT1 B B3Ty P ATy Ay = 0.
Hence, (iii) and (iv) hold. =
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