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Abstract. We show that the Moore–Penrose inverse of an operator T is idempotent if
and only if it is a product of two projections. Furthermore, if P and Q are two projections,
we find a relation between the entries of the associated operator matrix of PQ and the
entries of associated operator matrix of the Moore–Penrose inverse of PQ in a certain
orthogonal decomposition of Hilbert C∗-modules.

1. Introduction and preliminaries. Hilbert C∗-modules are objects
like Hilbert spaces, except that the inner product takes its values in a
C∗-algebra, instead of being complex-valued. Throughout the paper A is
a C∗-algebra (not necessarily unital). A (right) pre-Hilbert module over A
is a complex linear space X which is an algebraic right A-module such that
λ(xa) = (λx)a = x(λa) for all x ∈ X , a ∈ A and λ ∈ C, equipped with an
A-valued inner product 〈·, ·〉 : X × X → A satisfying

(i) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 iff x = 0,
(ii) 〈x, y + λz〉 = 〈x, y〉+ λ〈x, z〉,

(iii) 〈x, ya〉 = 〈x, y〉a,
(iv) 〈y, x〉 = 〈x, y〉∗,

for all x, y, z ∈ X , λ ∈ C and a ∈ A. A pre-Hilbert A-module X is called a
Hilbert A-module if it is complete with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2.
Left Hilbert A-modules are defined in a similar way. For example, every
C∗-algebra A is a Hilbert A-module with respect to the inner product
〈x, y〉 = x∗y, and every inner product space is a left Hilbert C-module.

Suppose that X and Y are Hilbert A-modules. Then L(X ,Y) is the set
of all maps T : X → Y for which there is a map T ∗ : Y → X , called the
adjoint of T , such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ X and y ∈ Y. It is
known that any element T of L(X ,Y) is a bounded linear operator, which
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is also A-linear in the sense that T (xa) = (Tx)a for x ∈ X and a ∈ A [LA,
p. 8]. We write L(X ) in place of L(X ,X ), and ker(·) and ran(·) for the kernel
and range of operators, respectively. The identity operator on X is denoted
by 1X or 1 if there is no ambiguity.

Suppose that X is a Hilbert A-module and Y is a closed submodule
of X . We say that Y is orthogonally complemented if X = Y ⊕ Y⊥, where
Y⊥ := {y ∈ X : 〈x, y〉 = 0 for all x ∈ Y} denotes the orthogonal complement
of Y in X . The reader is referred to [F2, F1, LA, MT] and the references
cited therein for more details.

Throughout this paper, X and Y are Hilbert A-modules. Recall that a
closed submodule in a Hilbert module is not necessarily orthogonally com-
plemented; however, Lance proved the following:

Theorem A ([LA, Theorem 3.2]). Suppose that T ∈ L(X ,Y) has closed
range. Then

• ker(T ) is orthogonally complemented in X , with complement ran(T ∗).
• ran(T ) is orthogonally complemented in Y, with complement ker(T ∗).
• T ∗ ∈ L(Y,X ) has closed range.

Definition 1.1. Let T ∈ L(X ,Y). The Moore–Penrose inverse T † of T
(if it exists) is an element in L(Y,X ) which satisfies:

(a) T T †T = T ,
(b) T † T T † = T †,
(c) (T T †)∗ = T T †,
(d) (T † T )∗ = T †T .

The operator T † (if it exists) is unique and T †T and T T † are orthogonal
projections, that is, selfadjoint idempotent operators. Clearly, T is Moore–
Penrose invertible if and only if T ∗ is Moore–Penrose invertible, and in this
case (T ∗)† = (T †)∗. The following theorem is known.

Theorem B ([XS, Theorem 2.2]). Suppose that T ∈ L(X ,Y). Then the
Moore–Penrose inverse T † of T exists if and only if T has closed range.

By Definition 1.1, we have

ran(T ) = ran(T T †), ran(T †) = ran(T †T ) = ran(T ∗),

ker(T ) = ker(T †T ), ker(T †) = ker(T T †) = ker(T ∗),

and by Theorem A,

X = ker(T )⊕ ran(T †) = ker(T †T )⊕ ran(T †T ),

Y = ker(T †)⊕ ran(T ) = ker(T T †)⊕ ran(T T †).

A matrix form of an adjointable operator T ∈ L(X ,Y) can be induced
by some natural decompositions of Hilbert C∗-modules. Indeed, ifM and N
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are closed orthogonally complemented submodules of X and Y, respectively,
and X =M⊕M⊥, Y = N ⊕N⊥, then T can be written as a 2× 2 matrix

T =

[
T1 T2

T3 T4

]
(1.1)

where T1∈L(M,N ), T2∈L(M⊥,N ), T3∈L(M,N⊥) and T4∈L(M⊥,N⊥).
Note that PM denotes the projection corresponding to M.

In fact T1 = PNTPM, T2 = PNT (1 − PM), T3 = (1 − PN )TPM and
T4 = (1− PN )T (1− PM).

Recall that if T ∈ L(X ,Y) has closed renge, then TT † = Pran(T ) and

T †T = Pran(T ∗).

Corollary 1.2. Suppose that T ∈ L(X ,Y) has closed range. Then T
has the following matrix decomposition with respect to the orthogonal de-
compositions X = ran(T ∗)⊕ ker(T ) and Y = ran(T )⊕ ker(T ∗):

T =

[
T1 0

0 0

]
:

[
ran(T ∗)

ker(T )

]
7→
[

ran(T )

ker(T ∗)

]
where T1 is invertible. Moreover

T † =

[
T−11 0

0 0

]
:

[
ran(T )

ker(T ∗)

]
7→
[

ran(T ∗)

ker(T )

]
.

Proof. According to the above discussion, it is enough to set M =
ran(T ∗) and N = ran(T ). Then

T2 = Pran(T )T (1− Pran(T ∗)) = Pran(T )T (PkerT ) = 0,

T3 = (1− Pran(T ))TPran(T ∗) = TPran(T ∗) − Pran(T )TPran(T ∗) = 0,

T4 = (1− Pran(T ))T (1− Pran(T ∗))

= T (1− Pran(T ∗))− Pran(T )T (1− Pran(T ∗)) = 0.

Now we show that T1 is invertible. Let x ∈ ker(T1), so 0 = T1x =
Pran(T )TPran(T ∗)x = Tx, which means that x ∈ ker(T ). On the other
hand T1 ∈ L(ran(T ∗), ran(T )), so x ∈ ker(T1) ⊆ ran(T ∗). Hence x ∈
ker(T ) ∩ ran(T ∗) = {0}. Therefore x = 0. By Definition 1.1, we conclude

that T † =
[
T−1
1 0
0 0

]
.

Let X be a Hilbert A-module and P ∈ L(X ) be an orthogonal projection
with ran(P ) = K. Since X = ran(P ) ⊕ ran(P )⊥ = K ⊕ K⊥, we have the
following representations of the projections P, 1−P ∈ L(X ) with respect to
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the decomposition X = K ⊕K⊥:

P =

[
1K 0

0 0

]
:

[
K
K⊥

]
7→

[
K
K⊥

]
,(1.2)

1− P =

[
0 0

0 1K⊥

]
:

[
K
K⊥

]
7→

[
K
K⊥

]
.(1.3)

If Q ∈ L(X ) is an orthogonal projection and

Q =

[
A B

B∗ D

]
:

[
K
K⊥

]
7→
[
K
K⊥

]
,(1.4)

then A ∈ L(K) and D ∈ L(K⊥) are selfadjoint, and since Q = Q2, we have[
A B

B∗ D

][
A B

B∗ D

]
=

[
A2 +BB∗ AB +BD

B∗A+DB∗ B∗B +D2

]
=

[
A B

B∗ D

]
,

which implies that

A = A2 +BB∗,

B = AB +BD,(1.5)

D = D2 +B∗B.

In the next section we shall use the following result.

Theorem C ([MS, Corollary 2.4]). Suppose that T ∈ L(X ,Y) has closed
range. Then (TT ∗)† = (T ∗)†T †.

Closedness of the range of operators and the structure of Moore–Penrose
inverses are important topics in operator theory. Xu and Sheng [XS] showed
that a bounded adjointable operator between two Hilbert A-modules admits
a bounded Moore–Penrose inverse if and only if the operator has closed
range. In this paper we state conditions equivalent to the Moore–Penrose
inverse being idempotent, and we find a relation between the entries of the
operator matrix associated to PQ and the entries of the operator matrix
associated to (PQ)† for a certain orthogonal decomposition of Hilbert C∗-
modules, where P and Q are two projections in Hilbert C∗-modules.

2. Operator matrix of the Moore–Penrose inverse of an oper-
ator. We begin this section with the following useful facts about products
of module maps with closed range.

Theorem 2.1. Suppose that Q ∈ L(X ) and P ∈ L(Y) are orthogonal
projections and T ∈ L(X ,Y). If PTQ has closed range, then T (PTQ)† and
(PTQ)†T are idempotent closed range operators.



MOORE–PENROSE INVERSE OPERATORS 175

Proof. Since ran(PTQ) is closed, the operator U = (PTQ)† exists and
ran(U) = ran((PTQ)†) = (ran(PTQ)∗) = ran(QT ∗P ), so ran(U) ⊆ ran(Q).
Also

ran(U∗) = ran((PTQ)†)∗ = ran(((PTQ)∗)†) = ran((PTQ)∗)∗ = ran(PTQ)

⊆ ran(P ).

Hence

(2.1) QU = U, PU∗ = U∗, UP = U.

Therefore

(2.2) UTU = UPTQU = U(PTQ)U = UU †U = U.

By multiplying (2.2) on the left by T , we get TU = TUTU = (TU)(TU)
= (TU)2. Again by multiplying (2.2) on the right by T , we obtain
UT = UTUT = (UT )(UT ) = (UT )2. Hence T (PTQ)† and (PTQ)†T are
idempotent. Then [LA, Corollary 3.3] implies that T (PTQ)† and (PTQ)†T
have closed range.

Corollary 2.2. Suppose that P,Q ∈ L(X ) are orthogonal projections.
If PQ has closed range, then U = (PQ)† is idempotent and U = QUP .

Proof. Set T = 1X in Theorem 2.1. Then U = (PQ)† is idempotent.
By using (2.1), we obtain QU2P = U2. Since U is idempotent, the desired
result follows.

The following theorem states some equivalent conditions under which
the Moore–Penrose inverse of an operator is idempotent.

Theorem 2.3. Suppose that T ∈ L(X ) has closed range. Then the fol-
lowing assertions are equivalent:

(i) T = PQ for some projections P and Q,
(ii) T 2 = TT ∗T ,

(iii) T ∗ = T †T 2T †,
(iv) T = T (T †)2T ,
(v) (T †)2 = T †,

(vi) |Tx|2 = 〈Tx, x〉 for all x ∈ (ker(T ))⊥,
(vii) T †T ∗ = T ∗.

Proof. (i)⇒(ii): Obvious.
(ii)⇒(iii): Multiplying T 2 = TT ∗T on the left by T † yields T †TT =

T †TT ∗T = (T (T †T ))∗T = T ∗T . Now, multiplying by T † on the right, we
get the desired result.

(iii)⇒(iv): If T ∗= T †T 2T †, then (T ∗)∗= ((T †T )(TT †))∗= (TT †)(T †T ).
Hence T = T (T †)2T .

(iv)⇒(v): If T = T (T †)2T , then multiplying by T † both on the left and
on the right, we get T †TT † = T †TT †T †TT †, which implies that (T †)2 = T †.
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(v)⇒(i): By multiplying (T †)2=T † on both sides by T , we get TT †T †T
= TT †T , so Pran(T )Pran(T ∗) = T .

(v)⇒(vi): We have shown that if T † is idempotent, then T can be written
as

T = P(ker(T ∗))⊥P(ker(T ))⊥ = Pran(T )P(ker(T ))⊥ .

For all x ∈ (ker(T ))⊥, we know that P(ker(T ))⊥x = x, so

|Tx|2 = 〈T ∗Tx, x〉 = 〈P(ker(T ))⊥Pran(T )P(ker(T ))⊥x, x〉
= 〈Pran(T )P(ker(T ))⊥x, P(ker(T ))⊥x〉 = 〈Tx, x〉.

(vi)⇒(ii): Since |Tx|2 = 〈Tx, x〉 for all x ∈ (ker(T ))⊥, and P(ker(T ))⊥y ∈
(ker(T ))⊥, we have Ty = TP(ker(T ))⊥y and

〈T ∗Ty, y〉 = 〈Ty, Ty〉 = 〈Ty, P(ker(T ))⊥y〉 = 〈P(ker(T ))⊥Ty, y〉

for all y ∈ X . Hence, T ∗T = P(ker(T ))⊥T . So T ∗T = T †TT = T †T 2. Multi-

plying by T on the left, we get TT ∗T = TT †T 2 or TT ∗T = T 2.

(iii)⇒(vii): We have shown above that if (iii) holds then T † is idempo-
tent. This yields the desired implication.

(vii)⇒(iv): Multiplying T †T ∗ = T ∗ by (T ∗)† on the right and by T on
the left, we obtain

TT †T ∗(T ∗)† = TT ∗(T ∗)†,

TT †T ∗(T †)∗ = TT ∗(T †)∗,

TT †(T †T )∗ = T (T †T )∗ (by Theorem C).

Hence T (T †)2T = TT †T = T .

Corollary 2.4. Suppose that T ∈ L(X ) has closed range and T † is
idempotent. Then

T † = T ∗ − Pran(T ∗)[(1− Pran(T ∗))(1− Pran(T ))]
†Pran(T ).

Proof. The proof of Theorem 2.3 implies that T = Pran(T )Pran(T ∗). Now
[LI, Theorem 10] yields the desired formula.

Remark 2.5. A valuable consequence of this theorem is that a closed
range operator T is a product of two projections if and only if its Moore–
Penrose inverse is idempotent, and we also see that the Moore–Penrose
inverse of an idempotent operator is a product of two projections.

Recall that an operator U ∈ L(X ,Y) is said to be unitary if U∗U = 1X
and UU∗ = 1Y . If there exists a unitary element in L(X ,Y), then we say that
X and Y are unitarily equivalent Hilbert A-modules, and we write X ≈ Y.
Moreover, obviously if U is unitary, then U∗ = U †.
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Theorem 2.6. Suppose that X , Y, Z and W are Hilbert A-modules,
and V ∈ L(X ,Y) and U ∈ L(Z,W) are unitary operators. Then for any
T ∈ L(Y,Z) with closed range, (UTV )† = V ∗T †U∗.

Proof. Since U∗U = 1Z , UU∗ = 1W and V ∗V = 1X , V V ∗ = 1Y , by
Definition 1.1 we have

(UTV )V ∗T †U∗(UTV ) = (UT (V V ∗)T †(U∗U)TV = UTV,(a)

V ∗T †U∗(UTV )V ∗T †U∗ = V ∗T †(U∗U)T (V V ∗)T †U∗ = V ∗T †U∗,(b)

((UTV )V ∗T †U∗)∗ = ((UT1YT
†U∗)∗ = ((UTT †U∗)∗ = UTT †U∗(c)

= (UTV )V ∗T †U∗,

(V ∗T †U∗(UTV ))∗ = (V ∗T †1ZTV ))∗ = (V ∗T †TV ))∗(d)

= V ∗T †U∗(UTV ).

Hence (UTV )† = V ∗T †U∗.

In the next theorem we find a relation between the entries of the associ-
ated operator matrix of operators.

Theorem 2.7. Suppose that orthogonal projections P,Q ∈ L(X ) are
represented as in (1.2) and (1.4), and PQ has closed range. Then

(i) (PQ)† =

[
AA† 0

B∗A† 0

]
:

[
K
K⊥

]
7→
[
K
K⊥

]
and ran(PQ) = ran(A).

(ii) B∗A†A = B∗, equivalently AA†B = B.
(iii) A2 +ABB∗A† = A and B∗A2 +B∗BB∗A† = B∗.
(iv) BB∗ commutes with A, and BB∗ commutes with A†.
(v) A+BB∗A = AA† and B∗AA† +DB∗A† = B∗A†.

Proof. (i) Since PQ has closed range, [MS, Corollary 2.4] implies that
(PQ)† = (PQ)∗(PQ(PQ)∗)†. By using this fact and (1.5), we obtain

(PQ)† =

[
A 0

B∗ 0

][
A2 +BB∗ 0

0 0

]†
=

[
A 0

B∗ 0

][
A 0

0 0

]†
=

[
A 0

B∗ 0

][
A† 0

0 0

]
=

[
AA† 0

B∗A† 0

]
.

From (PQ)(PQ)† = Pran(PQ), we deduce

(PQ)(PQ)† =

[
A B

0 0

][
AA† 0

B∗A† 0

]
=

[
AA† 0

0 0

]
.

This immediately implies that ran(PQ) = ran(AA†) = ran(A).
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(ii) By (i), (PQ)† =

[
AA† 0

B∗A† 0

]
and ran(PQ) is closed. Corollary 2.2

implies that (PQ)† is idempotent. Applying Theorem 2.3(vii), we get
(PQ)†(PQ)∗ = (PQ)∗. Hence[

AA† 0

B∗A† 0

][
A 0

B∗ 0

]
=

[
A 0

B∗ 0

]
.

Therefore, B∗A†A = B∗. As A is selfadjoint, by Theorem C we have AA† =
(AA†)∗ = A†A and AA†B = B.

(iii) Applying Theorem 2.3(iii) for PQ, we get[
A 0

B∗ 0

]
=

[
AA† 0

B∗A† 0

][
A2 AB

0 0

][
AA† 0

B∗A† 0

]
.

A straightforward computation shows that

AA†A2AA† +AA†ABB∗A† = A and B∗A†A2AA† +B∗A†ABB∗A† = B∗.

By (ii), we observe that

A2 +ABB∗A† = A and B∗A2 +B∗BB∗A† = B∗.

(iv) Part (iii) and (1.5) show that ABB∗A† = BB∗. Multiplying by A
on the right, we get ABB∗A†A = BB∗A. It follows from (ii) that ABB∗ =
BB∗A, i.e. BB∗ commutes with A. For the second part,

ABB∗ = BB∗A,

ABB∗A† = BB∗AA† (multiplication by A† on the right),

ABB∗A† = BB∗ (by (ii), B∗AA† = B∗),

A†ABB∗A† = A†BB∗ (multiplication by A† on the left),

BB∗A† = A†BB∗ (by (ii), AA†B = B),

which means that BB∗ commutes with A†.

(v) By (i), we have (PQ)† =

[
AA† 0

B∗A† 0

]
. Applying Corollary 2.2 we get

(PQ)† = Q(PQ)†P , which implies that[
AA† 0

B∗A† 0

]
=

[
A B

B∗ D

][
AA† 0

B∗A† 0

][
1K 0

0 0

]
=

[
AAA† +BB∗A 0

B∗AA† +DB∗A† 0

]
.

Therefore, A+BB∗A = AA† and B∗AA† +DB∗A† = B∗A†.

By the previous theorem we state the reverse-order law in the special
case of product operators.
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Theorem 2.8. Let orthogonal projections P,Q ∈ L(X ) be represented
as in (1.2) and (1.4), and assume PQ, B and AB have closed ranges. Then

(i) (AB)† = B†A†.
(ii) ABB∗ has closed range and (ABB∗)† = (B∗)†B†A†.

Proof. To prove (i), note that

(B∗ −B∗BB∗A†)(1−BB†) = B∗(1−BB†)−B∗BB∗A†(1−BB†)
= B∗ −B∗BB† −B∗BB∗A† +B∗BB∗A†BB†

(by Theorem 2.7(iv)) = B∗ −B∗BB† −B∗A†BB∗ +B∗A†BB∗BB†

= B∗ −B∗ −B∗A†BB∗ +B∗A†BB∗ = 0.

By Theorem 2.7(iii), we have B∗A2(1 − BB†) = 0, so B∗A2 = B∗A2BB†.
Taking adjoints we get A2B = BB†A2B. So, condition (ii) of [KA, The-
orem 2.1] holds. By (ii)⇒(iii) of that theorem, B†A† satisfies conditions
(a)–(c) of Definition 1.1.

On the other hand, by Theorem 2.7(ii), we have

(B†A†(AB))∗ = (B†(A†AB))∗ = (B†B)∗ = B†B = B†A†(AB).

Hence B†A† satisfies condition (d) of Definition 1.1. Therefore, B†A† is the
Moore–Penrose inverse of AB.

To prove (ii), by Definition 1.1 we have

(ABB∗)(B∗)†B†A†(ABB∗) = AB(B∗(B∗)†B†)A†(ABB∗)(a)

= ABB†(A†AB)B∗

(by Theorem 2.7(ii)) = ABB†BB∗ = AB(BB†B)∗ = ABB∗;

(B∗)†B†A†(ABB∗)(B∗)†B†A† = (B∗)†B†(A†AB)B∗(B∗)†B†A†(b)

(by Theorem 2.7(ii)) = ((B∗)†B†B)(B∗(B∗)†B†)A†

= (B†BB†)∗(B†BB†)∗A† = (B∗)†B†A†;

(B∗)†B†A†(ABB∗) = (B∗)†B†(A†AB)B∗(c)

(by Theorem 2.7(ii)) = ((B∗)†B†BB∗

= (B†BB†)∗B∗ = (B∗)†B∗ = BB†;

(ABB∗)(B∗)†B†A† = A(B(B†B)∗B†)A† = ABB†A†.(d)

By (i), we have (AB)† = B†A†, hence AB(AB)† = ABB†A† is an orthogonal
projection. Therefore, (B∗)†B†A† is the Moore–Penrose inverse of ABB∗.
Hence ABB∗ has closed range and (ABB∗)† = (B∗)†B†A†.

If B ∈ L(X ) has closed range, then ran(B) = ran(BB∗). In the following
theorem we show that sometimes ran(B) = ran(BB∗), even if the range of
B is not necessarily closed.
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Theorem 2.9. Let orthogonal projections P,Q ∈ L(X ) be represented
as in (1.2) and (1.4), and suppose PQ has closed range. If ‖A‖ < 1, then
ran(B) = ran(BB∗).

Proof. It is trivial that ran(BB∗) ⊆ ran(B). To show the opposite inclu-
sion, let y ∈ ran(B), so there is x ∈ X such that y = Bx. Theorem 2.7(iii)
shows that B = A2B +A†BB∗B. By (1.5), we have

B = (A−BB∗)B +A†BB∗B = AB −BB∗B +A†BB∗B.

Now Theorem 2.7(iv) yields B = AB +BB∗(−B +A†B). Therefore

(2.3) (1−A)Bx = BB∗(−Bx+A†Bx).

From ‖A‖ < 1 we know that 1−A is invertible and (1−A)−1 =
∑∞

n=0A
n.

It follows from this relation, (2.3) and Theorem 2.7(iv) that BB∗ commutes
with An for all n ≥ 1. Continuity of BB∗ implies that

(1−A)−1(1−A)Bx =

∞∑
n=0

AnBB∗(−Bx+A†Bx)

= BB∗
( ∞∑
n=0

An(−Bx+A†Bx)
)
.

Hence y = Bx ∈ ran(BB∗) and ran(B) = ran(BB∗).

Now, we show that there is a relation between the entries of the associ-
ated operator matrix for the composition of three special operators.

Theorem 2.10. Suppose that Q is an orthogonal projection in L(X ),
T ∈ L(X ,Y) and P is an orthogonal projection in L(Y). If T and PTQ
have closed ranges, and (QT ∗PTQ)† commutes with T †T and T =

[
T1 0
0 0

]
,

where T1 is unitary, and

P =

[
A1 B1

B∗1 D1

]
:

[
ran(T )

ker(T ∗)

]
7→
[

ran(T )

ker(T ∗)

]
,

Q =

[
A2 B2

B∗2 D2

]
:

[
ran(T ∗)

ker(T )

]
7→
[

ran(T ∗)

ker(T )

]
,

then:

(i) A1T1A
2
2T
−1
1 A1T1A2 = A1T1A2T

−1
1 A1T1A2,

(ii) B∗1T1A
2
2T
−1
1 A1T1A2 = B∗1T1A2T

−1
1 A1T1A2,

(iii) A1T1B2B
∗
2T
−1
1 A1T1A2 = 0,

(iv) B∗1T1B2B
∗
2T
−1
1 A1T1A2 = 0.

Proof. A straightforward computation shows that

PTQ =

[
A1 B1

B∗1 D1

][
T1 0

0 0

][
A2 B2

B∗2 D2

]
=

[
A1T1A2 A1T1B2

B∗1T1A2 B∗1T1B2

]
.
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By assumption T1 ∈ L(ran(T ∗), ran(T )) is unitary, and from [LA, p. 25]
T1 is invertible and T−11 = T ∗1 . Set

S =

[
A1T1A2 A1T1B2

B∗1T1A2 B∗1T1B2

]
.

Then

T ∗T =

[
1ran(T ∗) 0

0 0

]
and ran(T ∗TS†) ⊆ ran(S†) = ran(S∗).

We know that S†S is a projection on ran(S∗). Therefore S†ST ∗TS† =
T ∗TS†. Hence, condition (ii) of [KA, Theorem 2.1] holds, and by (ii)⇒(iii)
of that theorem, ST † satisfies conditions (a)–(c) of Definition 1.1.

On the other hand, TS†(S†)∗=TS†(S†)∗T †T , or equivalently T (S∗S)† =
T (S∗S)†T †T . We observe that S = PTQ, and (QT ∗PTQ)† commutes with
T †T . Hence condition (ii) of [KA, Theorem 2.2] holds. By (ii)⇒(iii) of that
theorem, ST † satisfies conditions (a), (b), (d) of Definition 1.1. Therefore,
ST † is the Moore–Penrose inverse of TS† and TS† = (ST †)†. In addition[

T1 0

0 0

][
A1T1A2 A1T1B2

B∗1T1A2 B∗1T1B2

]†
=

([
A1T1A2 A1T1B2

B∗1T1A2 B∗1T1B2

][
T−11 0

0 0

])†
=

[
A1T1A2T

−1
1 0

B∗1T1A2T
−1
1 0

]†
.

Now, Theorem 2.1 implies that

TS† =

[
A1T1A2T

−1
1 0

B∗1T1A2T
−1
1 0

]†
is an idempotent operator, so by Theorem 2.3(ii), we can write

(TS†)(TS†)∗(TS†) = (TS†)2

and[
A1T1A2T

−1
1 0

B∗1T1A2T
−1
1 0

][
T1A2T

−1
1 A1 T1A2T

−1
1 B1

0 0

][
A1T1A2T

−1
1 0

B∗1T1A2T
−1
1 0

]

=

[
A1T1A2T

−1
1 0

B∗1T1A2T
−1
1 0

][
A1T1A2T

−1
1 0

B∗1T1A2T
−1
1 0

]
.

In fact

(2.4)

[
A1T1A

2
2T
−1
1 A2

1T1A2T
−1
1 +A1T1A

2
2T
−1
1 B1B

∗
1T1A2T

−1
1 0

B∗1T1A
2
2T
−1
1 A2

1T1A2T
−1
1 +B∗1T1A

2
2T
−1
1 B1B

∗
1T1A2T

−1
1 0

]

=

[
A1T1A2T

−1
1 A1T1A2T

−1
1 0

B∗1T1A2T
−1
1 B∗1T1A2T

−1
1 0

]
.
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Therefore, by (1.5), we have

A1T1A
2
2T
−1
1 (A2

1 +B1B
∗
1)T1A2T

−1
1 = A1T1A

2
2T
−1
1 (A1)T1A2T

−1
1 ,

B∗1T1A
2
2T
−1
1 (A2

1 +B1B
∗
1)T1A2T

−1
1 = B∗1T1A

2
2T
−1
1 (A1)T1A2T

−1
1 .

By (2.4), we have

A1T1A
2
2T
−1
1 A1T1A2 = A1T1A2T

−1
1 A1T1A2,

B∗1T1A
2
2T
−1
1 A1T1A2 = B∗1T1A2T

−1
1 A1T1A2.

Hence, (i) and (ii) are obtained. By (i) and (ii) and (1.5),

A1T1(A
2
2 −A2)T

−1
1 A1T1A2 = A1T1B2B

∗
2T
−1
1 A1T1A2 = 0,

B∗1T1(A
2
2 −A2)T

−1
1 A1T1A2 = B∗1T1B2B

∗
2T
−1
1 A1T1A2 = 0.

Hence, (iii) and (iv) hold.
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