VECTOR FIELDS FROM LOCALLY INVERTIBLE POLYNOMIAL MAPS IN \mathbb{C}^{n}

BY
ALVARO BUSTINDUY (Madrid), LUIS GIRALDO (Madrid) and JESÚS MUCIÑO-RAYMUNDO (Morelia)

Abstract

Let $\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a locally invertible polynomial map. We consider the canonical pull-back vector fields under this map, denoted by $\partial / \partial F_{1}, \ldots, \partial / \partial F_{n}$. Our main result is the following: if $n-1$ of the vector fields $\partial / \partial F_{j}$ have complete holomorphic flows along the typical fibers of the submersion $\left(F_{1}, \ldots, F_{j-1}, F_{j+1}, \ldots, F_{n}\right)$, then the inverse map exists. Several equivalent versions of this main hypothesis are given.

1. Introduction and statement of results. We consider n-webs of polynomial vector fields in \mathbb{C}^{n} which can be obtained from the euclidean n-web \mathcal{W} in \mathbb{C}^{n} by pull-back under a polynomial map

$$
\begin{equation*}
F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} \quad \text { with } \quad \operatorname{det}(D F)=1 \tag{1.1}
\end{equation*}
$$

Recall that the Jacobian Conjecture in \mathbb{C}^{n} asserts the existence of the inverse $\operatorname{map} F^{-1}$. Each of the polynomial vector fields

$$
\begin{equation*}
\frac{\partial}{\partial F_{i}}=\left(F_{1}, \ldots, F_{n}\right)^{*} \frac{\partial}{\partial w_{i}}, \quad i=1, \ldots, n \tag{1.2}
\end{equation*}
$$

has a restriction to the fibers $\mathcal{A}_{i, c}=\left(F_{1}, \ldots, \widehat{F}_{i}, \ldots, F_{n}\right)^{-1}(c)$ of the submersion; as usual, ${ }^{\wedge}$ over the i th coordinate indicates that it is omitted.

It is a classical result that the following assertions are equivalent (see [MO87], Me92], Cam97] and [Bus03]):

- The inverse map exists.
- $\partial / \partial F_{1}, \ldots, \partial / \partial F_{n}$ are complete, i.e. their flows are defined for all complex times $t \in \mathbb{C}$ at every initial condition $p \in \mathbb{C}^{n}$.
- The web of affine curves $\left\{\mathcal{A}_{1, c}, \ldots, \mathcal{A}_{n, c}\right\}$ is topologically trivial, i.e. every $\mathcal{A}_{i, c}$ is biholomorphic to \mathbb{C}.
The map F produces a collection of pairs

$$
\begin{equation*}
\left\{\left(\mathcal{A}_{i, c}, \partial / \partial F_{i}\right) \mid i=1, \ldots, n, c \in \mathbb{C}^{n-1}\right\} \tag{1.3}
\end{equation*}
$$

[^0]Looking at the foliations $\mathcal{F}_{i}=\left\{A_{i, c}\right\}$, the last point has many facets, very roughly speaking: every \mathcal{F}_{i} has trivial monodromy, its global Ehresmann connections are well-defined, no atypical fibers appear in all the submersions $\left(F_{1}, \ldots, \widehat{F}_{i}, \ldots, F_{n}\right)$. By studying this, we can deduce:

Main Theorem. Let $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a polynomial map as in 1.1. If $\partial / \partial F_{2}, \ldots, \partial / \partial F_{n}$ are complete on the typical fibers $\mathcal{A}_{2, c}, \ldots, \mathcal{A}_{n, c}$ of $\left(F_{1}, \ldots, \widehat{F}_{j}, \ldots, F_{n}\right), j=2, \ldots, n$, then F^{-1} exists.

The proof of the main theorem is in two stages. In Lemma 4, we show that the completeness on typical fibers implies the same property on all the fibers $\mathcal{A}_{2, c}, \ldots, \mathcal{A}_{n, c}$. Secondly in Theorem 1 , we consider a global Ehresmann conection in the directions of $\partial / \partial F_{2}, \ldots, \partial / \partial F_{n}$ to get the result. Furthermore, in Theorem 1, several equivalences of the completeness hypothesis are described.

The invertibility of F has been considered from many points of view (see [Ess00]). We start mainly from the algebraic point of view of [A77], [NS83]. For $n=2$, invertibility from completeness in just one pair $\left(\mathcal{A}_{2, c}, \partial / \partial F_{2}\right)$ follows from the Abhyankar-Moh-Suzuki Theorem (see [Dru91, Cam97] and the references therein, as well as Dun08). Actually, our study uses Riemann surfaces ideas and several complex variables.

The content of the work is as follows. In Section 2 we study the pullback vector fields on Riemann surfaces from meromorphic maps. Section 3 contains the study of the pairs 1.3 . The proof of the main result is in Section 4.
2. Meromorphic maps and vector fields on compact Riemann surfaces. Let $\mathbb{C P}^{1}=\mathbb{C}_{w} \cup\{\infty\}$ be the projective line, with affine coordinate w. The vector field $\partial / \partial w$ induces a holomorphic vector field in $\mathbb{C P}^{1}$ having a double zero at $\infty \in \mathbb{C P}{ }^{1}$. Let \mathcal{L} be a compact Riemann surface.

LEMMA 1. Let $f: \mathcal{L} \rightarrow \mathbb{C P}^{1}$ be a non-constant meromorphic function. The non-identically zero meromorphic vector field

$$
\frac{\partial}{\partial f}:=f^{*}\left(\frac{\partial}{\partial w}\right)
$$

is well-defined on \mathcal{L}. Moreover, f has a canonically associated meromorphic one-form ω such that the diagram

commutes. $\partial / \partial f$ and ω are non-identically zero.

The Riemann surface-vector field pairs are denoted by ($\mathcal{L}, \partial / \partial f)$.
The diagram in the lemma comes from the theory of quadratic differentials (see [Str84, (Muc02]).

Proof of Lemma 1. Given f, we define $\omega=d f$ and $\omega(X) \equiv 1$. In addition, ω is called the one-form of time for X, since for $p_{0}, p \in \mathcal{L}$ we have

$$
f(p)-f\left(p_{0}\right)=\int_{p_{0}}^{p} \omega=\left\{\begin{array}{l}
\text { complex time to travel from } \tag{2.1}\\
p_{0} \text { to } p \text { under the local flow of } \partial / \partial f
\end{array}\right\} .
$$

The map from f to ω is elementary. A non-identically zero meromorphic one-form ω determines a univalued meromorphic function $f(p)=\int^{p} \omega$ if and only if the periods and residues of ω vanish, i.e.

$$
\int_{\gamma} \omega=0 \quad \text { for each }[\gamma] \in H_{1}(\mathcal{L}-\{\text { poles of } \omega\}, \mathbb{Z}) .
$$

This is the case of the horizontal arrow in the diagram, all the correspondences are bijections.

For everything that follows, the hypotheses of Lemma 1 are fulfilled.
We relate the poles and singular points of f to the zeros and poles of $\partial / \partial f$, respectively. Recall that the order of a zero $p \in \mathcal{L}$ of a meromorphic vector field X on a compact Riemann surface \mathcal{L} is $s \geq 2$ if and only if its associated real vector field $\Re e(X)$ has $2 s-2$ elliptic sectors at p. Additionally, X has a pole of order $-k \leq-1$ at some p if and only if $\Re e(X)$ has $k+2$ hyperbolic sectors (see [Muc02, p. 232]). We have the following result.

Remark 1. Let $(\mathcal{L}, \partial / \partial f)$ be a pair as in Lemma 1
(1) $\partial / \partial f$ has a pole of order $-\kappa+1 \leq-1$ at $p \in \mathcal{L}$ if and only if p is a ramification point of f of order $\kappa \geq 2$, and $f(p)=q \in \mathbb{C P}^{1}-\{\infty\}$.
(2) $\partial / \partial f$ has a zero of order $\sigma+1 \geq 2$ at $p \in \mathcal{L}$ if and only if p is a ramification point of f of order $\sigma \geq 1$, and $f(p)=\infty \in \mathbb{C P}^{1}$.
(3) $\partial / \partial f$ has zeros.
(4) $\partial / \partial f$ does not have simple zeros.

Lemma 2. Let $(\mathcal{L}, \partial / \partial f)$ be a pair as in Lemma 1. Assume that $\partial / \partial f$ has zeros of orders $\left\{s_{1}, \ldots, s_{r}\right\}$. Then

$$
\operatorname{deg}(f)=\left(s_{1}-1\right)+\cdots+\left(s_{r}-1\right) \geq 1 .
$$

Proof. Several proofs are available, depending on the reader's background.
Case 1. Assume that $\infty \in \mathbb{C P}^{1}$ is a regular value for f. The cardinality r of the fiber $f^{-1}(\infty)=\left\{p_{1}, \ldots, p_{r}\right\} \subset \mathcal{L}$ is the degree of f. Near each p_{ν} the function f is a local biholomorphism. Hence at each point $p_{\nu}, \partial / \partial f$ has a double zero, and the assertion follows.

Case 2. Assume that $\infty \in \mathbb{C P}^{1}$ is a critical value (ramification value) for f. Let p_{ν} be a ramification point over ∞ having $j_{\nu} \geq 2$ as its ramification index. Locally at p_{ν}, the function f is j_{ν}-to-one, and we get $j_{\nu}=($ order of the zero of $\partial / \partial f)-1$.

The analogous formula using the poles of $\partial / \partial f$ requires more information.
Corollary 1. Let $(\mathcal{L}, \partial / \partial f)$ be a pair as in Lemma 1 .
(1) The genus of \mathcal{L} is g, and $\partial / \partial f$ has zeros of order $\left\{s_{1}, \ldots, s_{r}\right\}$ and poles of (negative) order $\left\{-k_{1}, \ldots,-k_{\tau}\right\}$. Then

$$
\operatorname{deg}(f)=2-2 g-r+k
$$

where $k=k_{1}+\cdots+k_{\tau}$.
(2) In addition, $\operatorname{deg}(f) \geq 2$ if and only if $\partial / \partial f$ has at least one pole (of any order).

Proof. We have:

$$
s_{1}+\cdots+s_{r}-k_{1}-\cdots-k_{\tau}=2-2 g
$$

Hence,

$$
\left(s_{1}-1\right)+\cdots+\left(s_{r}-1\right)=2-2 g-r+k_{1}+\cdots+k_{\tau}
$$

We say that $\partial / \partial f$ is complete if its flow is well-defined for all complex times $t \in \mathbb{C}$ and every initial condition.

Corollary 2. Let $(\mathcal{L}, \partial / \partial f)$ be a pair as in Lemma 1. The following assertions are equivalent:
(1) $\partial / \partial f$ is complete .
(2) The pair is $\left(\mathbb{C P}^{1}, \partial / \partial z\right)$ up to biholomorphism.
(3) $\operatorname{deg}(f)=1$.

Proof. The non-identically zero complete vector fields X on compact Riemann surfaces are classified as follows (see LLM00, p. 179]): \mathcal{L} is a torus and X has no poles or zeros, or \mathcal{L} is $\mathbb{C P}^{1}$ and X is holomorphic. Using Remark 1, only the second case is possible with a double zero.

3. Tomography

3.1. Foliations by curves and pull-back vector fields. Following equation (1.1), let

$$
F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}_{z}^{n} \rightarrow \mathbb{C}_{w}^{n}
$$

be a polynomial map having $\operatorname{det}(D F)=1$. Note that to avoid confusion, we use \mathbb{C}_{z}^{n} and \mathbb{C}_{w}^{n} to denote the domain and the target, together with the variables that we use in each of them.

Let us consider the affine coordinate lines

$$
\mathbb{C}_{i, c}:=\left\{\left(c_{1}, \ldots, c_{i-1}, w_{i}, c_{i+1}, \ldots, c_{n}\right)\right\} \subset \mathbb{C}_{w}^{n}
$$

where $w_{i} \in \mathbb{C}$ and $c:=\left(c_{1}, \ldots, \widehat{c}_{i}, \ldots, c_{n}\right) \in \mathbb{C}_{w}^{n-1}$. We have the canonical web in \mathbb{C}_{w}^{n},

$$
\mathcal{W}=\left\{\mathbb{C}_{i, c} \mid i=1, \ldots, n, c \in \mathbb{C}_{w}^{n-1}\right\}
$$

that they define. Under pull-back, we get a new web $F^{*} \mathcal{W}$ of affine curves in \mathbb{C}_{z}^{n}. A first description of it using algebraic geometry is as follows.

Given one direction $i \in\{1, \ldots, n\}$, and fixing $c=\left(c_{1}, \ldots, \widehat{c_{i}}, \ldots, c_{n}\right)$ $\in \mathbb{C}_{w}^{n-1}$, we define

$$
\mathcal{A}_{i, c}=\left(F_{1}, \ldots, \widehat{F}_{i}, \ldots, F_{n}\right)^{-1}(c)
$$

REMARK 2. (1) Each $\mathcal{A}_{i, c}$ is an affine smooth algebraic curve (a complete intersection) in \mathbb{C}_{z}^{n}, possibly with several connected components.
(2) For fixed $i \in\{1, \ldots, n\}$, the curves $\left\{\mathcal{A}_{i, c} \mid c \in \mathbb{C}_{w}^{n-1}\right\}$ define a nonsingular polynomial foliation having $n-1$ first integrals on \mathbb{C}_{z}^{n}.

For the rest of this subsection, we consider the i th direction in the web \mathcal{W}, and the ideas that we develop are valid for any other choice of $i \in\{1, \ldots, n\}$.

Given the curve $\mathcal{A}_{i, c}$, we will consider the associated projective curve $\mathcal{P}_{i, c} \subset \mathbb{C P}_{z}^{n}$ and its desingularization (normalization)

$$
\begin{equation*}
\pi: \mathcal{L}_{i, \mu, c} \rightarrow \mathcal{P}_{i, c} \tag{3.1}
\end{equation*}
$$

To simplify the notation, we omit the reference to the number of connected components of the desingularization given by μ. Therefore, we consider $\mathcal{L}_{i, c}$ (the disjoint union of the connected components $\mathcal{L}_{i, \mu, c}$, for all μ, where c is fixed) as a compact Riemann surface, a priori with several connected components.

We compactify the affine space \mathbb{C}_{w}^{n} in the i th direction, so that we get $\mathbb{C P}^{1} \times \mathbb{C}_{w}^{n-1}$ (to be precise, the $\mathbb{C P}^{1}$-factor should be in the i th place). Note that by the definition of $\mathcal{A}_{i, c}$, the function F induces non-constant holomorphic maps

$$
\begin{equation*}
F_{i, c}: \mathcal{A}_{i, c} \rightarrow \mathbb{C}_{i, c} \tag{3.2}
\end{equation*}
$$

We can summarize all this as follows:

Here π is the normalization map, from the compact Riemann surface $\mathcal{L}_{i, c}$ to the projective curve $\mathcal{P}_{i, c}$. By abuse of notation, the map ν is the immersion of the projective curve $\mathcal{P}_{i, c}$ minus its points at infinity into the affine curve $\mathcal{A}_{i, c}$. The " \cap " are obvious vertical inclusions. In particular, the rightmost one is given by $\left(w_{i}\right) \mapsto\left(c_{1}, \ldots, w_{i}, \ldots, c_{n}\right)$.

Thus, when c varies, (3.3) gives the following objects:
(i) The extensions of the functions in (3.3) to their normalizations

$$
\begin{equation*}
\left\{F_{i, c}: \mathcal{L}_{i, c} \rightarrow \mathbb{C P}^{1} \mid i=1, \ldots, n, c \in \mathbb{C}_{w}^{n-1}\right\} \tag{3.4}
\end{equation*}
$$

induced by F are a well-defined family of non-constant meromorphic functions.
(ii) The associated n-tuples

$$
\begin{equation*}
\left\{\partial / \partial F_{i}=F^{*}\left(\partial / \partial w_{i}\right) \mid i=1, \ldots, n\right\} \tag{3.5}
\end{equation*}
$$

of commuting polynomial vector fields on \mathbb{C}_{z}^{n}. We learned this interesting idea from NS83.
(iii) The vector field $\partial / \partial F_{i}$ is well-defined, non-identically zero and meromorphic on the Riemann surface $\mathcal{L}_{i, c}$; we get a family of pairs

$$
\begin{equation*}
\left\{\left(\mathcal{L}_{i, c}, \partial / \partial F_{i}\right) \mid i=1, \ldots, n, c \in \mathbb{C}_{w}^{n-1}\right\} \tag{3.6}
\end{equation*}
$$

Summing up, each function $F_{i, c}$ and its corresponding vector field $\partial / \partial F_{i, c}$ on $\mathcal{L}_{i, c}$ satisfy Lemma 1 .

Remark 3. For $n=2$, given a map (F_{1}, F_{2}) satisfying (1.1), the associated vector field

$$
\frac{\partial}{\partial F_{1}}=\frac{\partial F_{2}}{\partial z_{2}} \frac{\partial}{\partial z_{1}}-\frac{\partial F_{2}}{\partial z_{1}} \frac{\partial}{\partial z_{2}}
$$

coincides with the usual Hamiltonian vector field of F_{2}. In addition, $\partial / \partial F_{1}$ is tangent to the corresponding affine curves $\mathcal{A}_{1, c}=\left\{F_{2}\left(z_{1}, z_{2}\right)=c\right\}$.

We examine one fiber again and consider its decomposition

$$
\mathcal{L}_{i, c}=\left\{e_{1}, \ldots, e_{v}\right\} \cup\left(\mathcal{A}_{i, c}\right),
$$

where $\left\{e_{1}, \ldots, e_{v}\right\}$ is the finite non-empty collection of points that emerge from the normalization of points at infinity of $\mathcal{P}_{i, c}$, following (3.3), so that $\pi\left(e_{\beta}\right) \in \mathbb{C P}_{\infty}^{n-1} \subset \mathbb{C P}_{z}^{n}$ for $\beta \in\{1, \ldots, v\}$. For simplicity we omit the dependence on i and c in the notation for the points " e ".

A priori, the behavior of each $F_{i, c}$ in (3.4) is reflected in cases (i)-(v) in the table below.

Table 1

	Finite value in $\mathbb{C}_{i, c} \subset \mathbb{C}_{w}^{n}$	Value at infinity in $\{\infty\} \times \mathbb{C}_{w}^{n-1}$
finite point	(i) local biholomorphism	
$p \in \mathcal{A}_{i, c}$	(ii) local biholomorphism	(iv) local biholomorphism
point at infinity	(ii) ramification index ≥ 2	(v) ramification index ≥ 2
$e \in\left\{e_{1}, \ldots, e_{v}\right\}$	(i)	

We recall that under the assumption 1.1 , F is a local biholomorphism, so the empty places in the table are impossible for each function $F_{i, c}$.

To analyze (ii)-(v), we use the vector fields in (3.3), since they describe $F^{*} \mathcal{W}$ (recall the definitions and notation introduced at the beginning of this section) accurately. We get the following.

Corollary 3.
(1) (Regular point of $\left.\partial / \partial F_{i}\right)$ At an affine point $p \in \mathcal{A}_{i, c} \subset \mathbb{C}_{z}^{n}$, $F_{i, c}$ is a local biholomorphism and $\partial / \partial F_{i}$ has a regular point at p (i.e. $\left.\partial / \partial F_{i}(p) \neq 0\right)$. See case (i) in Table 1.
(2) (Removable point of $\left.\partial / \partial F_{i}\right)$ A non-affine point $e \in\left\{e_{1}, \ldots, e_{v}\right\}$ is such that $F_{i, c}$ is a local biholomorphism and its value $F_{i, c}(e)$ is finite if and only if $\partial / \partial F_{i}$ extends at e as a non-zero regular point. See case (ii), ibid.
(3) (Pole of $\left.\partial / \partial F_{i}\right)$ A non-affine point $e \in\left\{e_{1}, \ldots, e_{v}\right\}$ is such that $F_{i, c}$ has a finite value $F_{i, c}(e)$ and ramification index $\kappa \geq 2$ if and only if $\partial / \partial F_{i}$ has a pole of order $-\kappa+1 \leq-1$ at e. See case (iii), ibid.
(4) (Zero of $\left.\partial / \partial F_{i}\right)$ A non-affine point $e \in\left\{e_{1}, \ldots, e_{v}\right\}$ is such that $F_{i, c}$ has infinite value $F_{i, c}(e)$ with ramification index $\sigma \geq 1$ if and only if $\partial / \partial F_{i}$ has a zero of order $(\sigma+1) \geq 2$ at e. The point e is a zero of order 2 for case (iv) or of order at least 3 for case (v), ibid.

The classification in the corollary is very close to the ideas of Drużkowski [Dru91], but our description with vector fields is more explicit.

Note that if e_{α}, e_{β} are two points in $\left\{e_{1}, \ldots, e_{v}\right\}$ such that $\pi\left(e_{\alpha}\right)=$ $\pi\left(e_{\beta}\right)=\varrho \in \mathcal{P}_{i, c}$ is a singular point of $\mathcal{P}_{i, c}$, the behavior of $F_{i, c}$ and $\partial / \partial F_{i}$ at ϱ depends on the choice of the branch of $\mathcal{P}_{i, c}$, i.e. on the choice of e_{α}, e_{β} and not only on the singular point ϱ itself.

Corollary 4. If for the value $c \in \mathbb{C}_{w}^{n-1}$ we have $\mathcal{A}_{i, c} \neq \emptyset$, then the zeros of $\left(\mathcal{L}_{i, c}, \partial / \partial F_{i}\right)$ form non-empty sets and have orders greater than or equal to 2 , simple zeros are impossible.
3.2. Asymptotic values of F and the flows of $\partial / \partial F_{i}$. Now we will describe the interplay between pathological behavior of F, satisfying (1.1), and the local or global flows of $\left\{\partial / \partial F_{i}\right\}$.

The set of asymptotic values of $F, \mathcal{A} \mathcal{V}(F) \subset \mathbb{C}_{w}^{n}$, is the locus where F fails to be proper; this means that there is no compact neighborhood U of $q \in \mathcal{A} \mathcal{V}(F) \subset \mathbb{C}_{w}^{n}$ such that $F^{-1}(U)$ is compact in \mathbb{C}_{z}^{n}.

For dominant polynomial maps in \mathbb{C}^{n}, the structure of the set of asymptotic values is studied in many papers (see for example Jel93, Jel99, Per98] and references therein).

Fixing a direction i, we look at the complete collection

$$
\left\{F_{i, c}: \mathcal{L}_{i, c} \rightarrow \mathbb{C P}^{1} \mid c \in \mathbb{C}_{w}^{n-1}\right\}
$$

and construct the images of the points (ii)-(v) as subsets of $\mathbb{C P}^{1} \times \mathbb{C}_{w}^{n-1}$,
considering the $\mathbb{C P}^{1}$ factor as the compactification in the i th direction. Let us define the images as follows:

$$
\begin{aligned}
& R_{i}:=\left\{F_{i, c}\left(\left\{\text { removable points of } \partial / \partial F_{i}\right\}\right) \mid c \in \mathbb{C}_{w}^{n-1}\right\}, \\
& P_{i}:=\left\{F_{i, c}\left(\left\{\text { poles of } \partial / \partial F_{i}\right\}\right) \mid c \in \mathbb{C}_{w}^{n-1}\right\}, \\
& Z_{i}:=\left\{F_{i, c}\left(\left\{\text { zeros of } \partial / \partial F_{i}\right\}\right) \mid c \in \mathbb{C}_{w}^{n-1}\right\} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& R_{i}, P_{i} \subset \mathbb{C}_{w}^{n} \subset \mathbb{C P}^{1} \times \mathbb{C}_{w}^{n-1}, \\
& Z_{i}=\{\infty\} \times \mathbb{C}_{w}^{n-1} \subset \mathbb{C P}^{1} \times \mathbb{C}_{w}^{n-1} .
\end{aligned}
$$

A priori, R_{i} and/or P_{i} could be empty, but Z_{i} is never empty. Let us define

$$
R=\bigcup_{i=1}^{n} \bar{R}_{i} \quad \text { and } \quad P=\bigcup_{i=1}^{n} \bar{P}_{i}
$$

with the closure taken in \mathbb{C}_{w}^{n} (with the usual topology). Note that a priori $R \cap P \subset \mathbb{C}_{w}^{n}$ can be non-empty.

Remark 4. $\mathcal{A V}(F)=R \cup P$ and by Z. Jelonek's result Jel93], $\mathcal{A V}(F)$ is an algebraic hypersurface or the empty set.

We want to give an interpretation of $R \cup P$ using local flows. Given $\left\{\partial / \partial F_{i}\right\}$ we can denote by

$$
\Psi_{i}(t, p): \Omega_{i} \rightarrow \mathbb{C}_{z}^{n}, \quad i \in\{1, \ldots, n\}
$$

their local flows where t is the complex time. They are holomorphic maps on suitable open $(n+1)$-dimensional complex manifolds Ω_{i}, their maximal domain of definition. We have a dichotomy:

If $\Omega_{i}=\mathbb{C}_{t} \times \mathbb{C}_{z}^{n}$ then $\partial / \partial F_{i}$ is a complete vector field, and $\Psi_{i}(t, p)$ is a flow or a $(\mathbb{C},+)$-action using algebraic language.

If $\Omega_{i} \neq \mathbb{C}_{t} \times \mathbb{C}_{z}^{n}$ then $\partial / \partial F_{i}$ is an incomplete vector field.
Let $\Delta^{n}(p, \varepsilon)$ be the n-dimensional open polydisk with center p and radius $\varepsilon>0$.

Remark 5. For an initial condition $p_{0} \in \mathcal{A}_{i, c}$ the local flow Ψ_{i} can be written using a suitable branch of $F^{-1}: \Delta^{n}\left(F\left(p_{0}\right), \epsilon\right) \subset \mathbb{C}_{w}^{n} \rightarrow \mathbb{C}_{z}^{n}$ of the local inverse as follows:

$$
\begin{equation*}
\Psi_{i}\left(t, p_{0}\right)=F^{-1}\left(F\left(p_{0}\right)+(0, \ldots, t, \ldots, 0)\right) . \tag{3.7}
\end{equation*}
$$

This follows from equation 2.1).
Lemma 3. Let F be a polynomial map with $\operatorname{det}(D F)=1$, and let Ψ_{i} be its ith pull-back local flow as above.
(1) Let $\Delta^{n}(q, \varepsilon)$ be a polydisk inside $\mathbb{C}_{w}^{n}-(R \cup P)$. Then the local holomorphic flows

$$
\Psi_{i}\left(t, p_{0}\right): \Delta(0, \varepsilon) \rightarrow \mathbb{C}_{z}^{n}, \quad i \in\{1, \ldots, n\},
$$

that start at any $p_{0} \in F^{-1}(q)$ are well-defined for $t \in \Delta(0, \varepsilon)$.
(2) Assume that $\Psi_{i}\left(t, p_{0}\right)$ exists for $t \in \Delta(0, \varepsilon)$ at initial conditions p_{0} in an open connected set $B \subset \mathbb{C}_{z}^{n}$. Then the diagram

commutes for $T_{i}\left(t, w_{1}, \ldots, w_{n}\right)=\left(w_{1}, \ldots, w_{i}+t, \ldots, w_{n}\right)$.
(3) $\partial / \partial F_{1}, \ldots, \partial / \partial F_{n}$ are complete if and only if $\mathcal{A} \mathcal{V}(F)=\emptyset$.

An advantage of our construction is the splitting of the asymptotic values $\mathcal{A} \mathcal{V}(F)$ into two sets: the image of removable points R and poles P. We will apply this distinction in Theorem 1.

Proof. The assertions derive from the fact that F sends $\partial / \partial F_{i}$ to $\partial / \partial w_{i}$. Hence, by (2.1) and (3.7) the t in each local flow $\Psi_{i}(t, p)$ is in local correspondence with the variable $\left\{w_{i}\right\}$. Part (3), as far as we know, was first proved in [MO87]. The reader can also find proofs in [Cam97] and [Bus03].

Recall that $\Delta^{n}(q, \varepsilon) \cap \mathcal{A V}(F)=\emptyset$ in Lemma 3(1) is a sufficient but not necessary condition in order that $\Psi_{i}(t, p)$ starting at $p \in\left\{F^{-1}(q)\right\}$ are defined for every time $t \in \Delta(0, \varepsilon)$. A priori, $\left\{F^{-1}(q)\right\}$ can have two or more points.

Now we will examine the polynomial submersion defined by $\left(F_{2}, \ldots, F_{n}\right)$ coming from (1.1). The second and third assertions in Lemma 3 are of particular interest when we search for a map between open plaques in the fibers of the submersions ($F_{1}, \ldots, \widehat{F}_{i}, \ldots, F_{n}$), as follows.

Corollary 5 (Local Ehresmann connections). For $t \in \Delta(0, \varepsilon)$ as in Lemma 3(2)-(3), there exist biholomorphic maps

$$
\Psi_{j}(t,): U \subset \mathcal{A}_{1, c} \rightarrow V \subset \mathcal{A}_{1, c(t)}, \quad j \in\{2, \ldots, n\}
$$

such that U, an open plaque, goes to V and $c(t)=\left(c_{2}, \ldots, c_{j}+t, \ldots, c_{n}\right)$.
Proof. Note that the length of the time and the size of U are bounded as in Lemma 3(1).

A priori the study ot the local bifurcations $\left(\mathcal{A}_{i, c}, \partial / \partial F_{i}\right)$ with respect to $\{c\}$ is a hard problem. The local behavior of non-bifurcation pairs can be seen in the next result and the main theorem will give global non-bifurcation conditions.

Corollary 6. Let $p_{0} \in \mathcal{L}_{i, c}$ be such that $F\left(p_{0}\right) \in \mathcal{A V}(F)$.
(1) If p_{0} is a removable point of $\partial / \partial F_{i}$, then $\Psi_{i}\left(t, p_{0}\right)$ can be extended to an open neighborhood $V\left(p_{0}\right) \subset \mathcal{L}_{i, c}$ as a holomorphic flow.
(2) If p_{0} is a pole of order $-k$, then the local flow does not exist (even as a C^{0} map). $F^{-1}: \mathbb{C}_{w}^{n} \rightarrow \mathbb{C}_{z}^{n}$ does not exist.
Proof. For the first assertion, note that the flow is along the complex trajectory. The second assertion follows from Corollary 1 .
4. Invertible polynomial maps. A curve

$$
\mathcal{A}_{i, c}=\left(F_{1}, \ldots, \widehat{F}_{i}, \ldots, F_{n}\right)^{-1}(c),
$$

coming from a map satisfying (1.1), is a typical fiber if there is an open neighborhood \mathcal{U} of $c \in \mathbb{C}_{w}^{n-1}$ such that the restriction $\left(F_{1}, \ldots, \widehat{F}_{i}, \ldots, F_{n}\right)$: $\left(F_{1}, \ldots, \widehat{F}_{i}, \ldots, F_{n}\right)^{-1}(\mathcal{U}) \rightarrow \mathcal{U}$ is a topologically trivial fiber bundle; otherwise $\mathcal{A}_{i, c^{\prime}}$ is an atypical fiber.

For $n=2$ the set of atypical fibers is always empty or finite (see Bro83]). For $n \geq 3$, the set of atypical fibers of $\left(F_{1}, \ldots, \widehat{F}_{i}, \ldots, F_{n}\right)$ can be a hypersurface, probably reducible.

Lemma 4. Let $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}_{z}^{n} \rightarrow \mathbb{C}_{w}^{n}$ be a polynomial map with $\operatorname{det}(D F)=1$. If $\partial / \partial F_{2}, \ldots, \partial / \partial F_{n}$ are complete on typical $\mathcal{A}_{2, c}, \ldots, \mathcal{A}_{n, c}$ of $\left(F_{1}, \ldots, \widehat{F}_{j}, \ldots, F_{n}\right), j=2, \ldots, n$, then they are also complete on their atypical fibers.

Note that in the hypothesis, a priori a typical $\mathcal{A}_{j, c}$ can be reducible and also support a complete $\partial / \partial F_{j}$. In this case $\mathcal{A}_{j, c}$ is a union of copies of \mathbb{C}.
 tions will be true for $\Psi_{3}, \ldots, \Psi_{n}$.

The atypical fibers of F_{i} determine a hypersurface $\mathbf{A}_{i} \subset \mathbb{C}_{z}^{n}$, probably reducible. There is a finite set Γ_{i} of values such that F_{i} is a locally trivial fiber bundle over ($\mathbb{C}_{w_{j}}-\Gamma_{j}$) (see [Bro83]).

The atypical fibers of $\left(F_{1}, F_{3}, \ldots, F_{n}\right)$ satisfy

$$
\begin{equation*}
\left\{\mathcal{A}_{2, c^{\prime}}\right\} \subset \bigcup_{j \neq 2, j=1}^{n} \mathbf{A}_{j} \tag{4.1}
\end{equation*}
$$

since clearly the intersection of typical hypersurfaces

$$
\mathcal{A}_{2, c}=\bigcap_{j \neq 2, j=1}^{n}\left\{F_{j}=c_{j}\right\}
$$

produces a typical fiber of $\left(F_{1}, F_{3}, \ldots, F_{n}\right)$. Here, we are using the fact that each polynomial $F_{1}, F_{3}, \ldots, F_{n}$ determines a locally trivial fiber bundle at every $p_{0} \in \mathcal{A}_{2, c}$, and the transversality condition between $F_{1}, F_{3}, \ldots, F_{n}$ from equation (1.1).

Let p_{0} be a point in an atypical $\mathcal{A}_{2, c^{\prime}}$. The vector field $\left(\partial / \partial F_{2}\right)\left(p_{0}\right)$ is nonzero, and hence at p_{0} the vector field admits a local flow box. The atypical fibers $\left\{\mathcal{A}_{2, c^{\prime}}\right\}$ are contained in the union of hypersurfaces, probably singular, at p_{0} given by 4.1). Moreover if p_{0} is a singular point of the union in 4.1), by the transversality condition from equation (1.1), locally at p_{0}, the hypersurface $\bigcup_{j \neq 2, j=1}^{n} \mathbf{A}_{j}$ admits a local model of the shape $\left\{\tilde{z}_{1} \tilde{z}_{3} \cdots \tilde{z}_{n}=0\right\}$, where at most $n-1$ local coordinates \tilde{z}_{ι} appear, but not necessarily all the $n-1$ coordinates.

As a result, there exists a holomorphic embedding, of a one-dimensional disk, $E: \Delta_{s}(0, \varepsilon) \rightarrow \mathbb{C}_{z}^{n}$ such that
(i) $E(0)=p_{0}$ and the image $E\left(\left(\Delta_{s}(0, \varepsilon)\right)\right.$ intersects the atypical fibers of $\left(F_{1}, F_{3}, \ldots, F_{n}\right)$ only in p_{0},
(ii) at each point, $\partial / \partial F_{2}$ and the tangent vectors to the embedded disk are linearly independent.

Consider the flow $\Psi_{2}(t):,=\left(\Psi_{2,1}, \ldots, \Psi_{2, i}, \ldots, \Psi_{2, n}\right)(t$,$) of \partial / \partial F_{2}$ starting at the initial conditions in the image $E\left(\Delta_{s}(0, \varepsilon)\right)$.

Towards a contradiction, assume that Ψ_{2} is not holomorphic on an atypical fiber; we then look at their components. Thus for at least one index i, $\Psi_{2, i}(t, e(0))$ exists, and it is holomorphic for some disk $\Delta(0, r) \subset \mathbb{C}_{t}$, but not for a complex t_{0} with $r:=\left|t_{0}\right|$.

Without loss of generality we reparametrize E, and assume that the new domain is $\Delta_{s}(0,2 r)$, but preserving the same image and (i) and (ii).

On the other hand, by the completeness hypothesis for $s \in \Delta_{s}(0,2 r)-\{0\}$, $\Psi_{2, i}(t, E(s))$ exists and it is holomorphic on $\Delta_{s}(0,2 r)$, since this is fulfilled for any radius.

With this in mind we construct the following Hartogs figure:

$$
H=\left\{(t, s) \in \Delta^{2}(0,2 r)| | t \mid<r \text { or }|s|>r\right\} \subset \mathbb{C}^{2}
$$

By the Hartogs Theorem (see [FG02, pp. 25-26]), $\Psi_{2, i}$ has a unique holomorphic extension to the whole $\Delta^{2}(0,2 r)$. That is a contradiction to the existence of a pole of $\Psi_{2, i}(t, E(s))$ at $\left(t_{0}, 0\right) \in \Delta^{2}(0,2 r)$. The flow of $\partial / \partial F_{2}$ exists for all complex t at every initial condition $p_{0} \in \mathbb{C}_{z}^{n}$.

The above result seems to be proved by the ideas of other authors; compare [For95] and [Reb04, Proposition 2.8] for the case $n=2$.

Some results on the invertibility of polynomial maps of \mathbb{C}^{n} can be proved using $\left\{\partial / \partial F_{i}\right\}$. The second stage for our main theorem is as follows.

THEOREM 1. Let $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{C}_{z}^{n} \rightarrow \mathbb{C}_{w}^{n}$ be a polynomial map with $\operatorname{det}(D F)=1$. The following assertions are equivalent:
(a) The inverse map $F^{-1}: \mathbb{C}_{w}^{n} \rightarrow \mathbb{C}_{z}^{n}$ exists.
(b) (Global Ehresmann connections) $\left\{\partial / \partial F_{2}, \ldots, \partial / \partial F_{n}\right\}$ are complete on \mathbb{C}_{z}^{n}.
(c) The pairs $\left\{\left(\mathcal{L}_{j, c}, \partial / \partial F_{j}\right)\right\}$ for $j=2, \ldots, n$ and all $c \in\left(F_{1}, \ldots, \widehat{F}_{j}\right.$, $\left.\ldots, F_{n}\right)\left(\mathbb{C}_{z}^{n}\right)$, are biholomorphic to $\left(\mathbb{C P}^{1}, \partial / \partial z_{j}\right)$; the vector fields have only a double zero and no poles on $\mathcal{L}_{j, c}$.
(d) The projective curves $\left\{\mathcal{P}_{j, c}\right\} \subset \mathbb{C P}_{z}^{n}$ for $j=2, \ldots, n$ and all $c \in$ $\left(F_{1}, \ldots, \widehat{F}_{j}, \ldots, F_{n}\right)\left(\mathbb{C}_{z}^{n}\right)$ have only one (irreducible) branch at the hyperplane at infinity of $\mathbb{C P}_{z}^{n}$.
(e) The polynomial submersion $\left(F_{2}, \ldots, F_{n}\right): \mathbb{C}_{z}^{n} \rightarrow \mathbb{C}_{w}^{n-1}$ is a globally trivial topological fiber bundle (no atypical fibers $\mathcal{A}_{1, c^{\prime}}$ appear).
(f) The degree of F is one, and F is injective.

Example 1. For the dominant map $\left(F_{1}, F_{2}\right)\left(z_{1}, z_{2}\right)=\left(z_{1}^{d}, z_{2}\right), d \geq 2$, the critical set $\left\{\operatorname{det}\left(D\left(F_{1}, F_{2}\right)\right)=0\right\}$ is a curve. However, the pull-back $\partial / \partial F_{2}=\partial / \partial z_{1}$ is complete and the typical $\mathcal{A}_{2, c}$ has d connected components. Therefore, we cannot avoid $\operatorname{det}(D F)=1$ in Theorem 1.

We point out below the new contributions in this paper:
(i) We work in any dimension $n \geq 2$ and use only $j=2, \ldots, n$ as directions in (b)-(e).
(ii) The equivalence between (a) and the completeness of all $\left\{\partial / \partial F_{1}\right.$, $\left.\ldots, \partial / \partial F_{n}\right\}$ was shown by G. H. Meisters and C. Olech MO87. A simple proof is also given by A. Bustinduy [Bus03]. Our present assertion is only for $j=2, \ldots, n$.
(iii) The equivalence between (a) and (d), in case $n=2$, is a classical result of S. S. Abhyankar (see A77 or Ess00, Thm. 10.2.23(1), p. 253)].
(iv) $(\mathrm{b}) \Rightarrow(\mathrm{a})$ is a kind of cancellation theorem for \mathbb{C}_{z}^{n} in the presence of $\operatorname{det}(D F)=1$. For cancellation problems see [Kr89].
(v) Recall that $(\mathrm{f}) \Rightarrow(\mathrm{a})$ is the celebrated theorem by Newman, Biały-nicki-Birula and Rosenlicht BB-R62].
Proof of Theorem 1, (a) \Rightarrow (b). By using MO87] or Bus03], the vector fields $\left\{\partial / \partial F_{1}, \ldots, \partial / \partial F_{n}\right\}$ are holomorphic and complete on \mathbb{C}_{z}^{n}.
(b) \Rightarrow (a). If we assume that the set of asymptotic values $\mathcal{A V}(F)$ is empty, then F is invertible. Therefore, we must assume $\mathcal{A V}(F) \neq \emptyset$.

The completeness of $\left\{\partial / \partial F_{2}, \ldots, \partial / \partial F_{n}\right\}$ imposes that $\mathcal{A} \mathcal{V}(F)$ is invariant under the flows of $\left\{\Psi_{2}, \ldots, \Psi_{n}\right\}$ on \mathbb{C}_{w}^{n}. Thus, $\mathcal{A \mathcal { V }}(F)=\bigcup_{\alpha}\left\{w_{1}=c_{1 \alpha}\right\}$ is a union of parallel hyperplanes.

Consider an affine typical $\mathcal{A}_{1, c}$, so that $F\left(\mathcal{A}_{1, c}\right)=\left\{\left(z_{1}, c_{2}, \ldots, c_{n}\right)\right\}$. Every point $p \in \mathbb{C}_{z}^{n}$ has a unique canonically associated $\Pi(p) \in \mathcal{A}_{1, c}$ using the Ehresmann connection from Corollary 5 and the completeness of the vector fields as follows. Given the image $F(p)=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}_{w}^{n}$:

- move p following the flow of $\partial / \partial F_{2}$ for $t_{2}=w_{2}-c_{2}$, and get p_{2};
- move p_{2} following the flow of $\partial / \partial F_{3}$ for $t_{3}=w_{3}-c_{3}$, and get $p_{3} ; \ldots$;
- move p_{n-1} following the flow of $\partial / \partial F_{n}$ for $t_{n}=w_{n}-c_{n}$, and get p_{n}.

As a result, then $\Pi(p) \in \mathcal{A}_{1, c}=p_{n}$ is well-defined and unique since the complete vector fields $\partial / \partial F_{2}, \ldots, \partial / \partial F_{n}$ commute. We have constructed a holomorphic fiber bundle

$$
\begin{equation*}
\Pi: \mathbb{C}_{z}^{n} \rightarrow \mathcal{A}_{1, c} . \tag{4.2}
\end{equation*}
$$

Each fiber $\Pi^{-1}\left(p_{0}\right) \subset \mathbb{C}_{z}^{n}, p_{0} \in \mathcal{A}_{1, c}$, is biholomorphic to \mathbb{C}^{n-1}.
To prove this last assertion, we use the fact that the fiber $\Pi^{-1}\left(p_{0}\right)$ supports $n-1$ complete commuting $\left\{\partial / \partial F_{2}, \ldots, \partial / \partial F_{n}\right\}$. Hence, the fiber is biholomorphic to $\mathbb{C}^{\ell} \times\left(\mathbb{C}^{*}\right)^{n-\ell-1}$ using the ideas in Bus03, Section 3]. Moreover, the vector fields have double zeros at infinity, since by Remark 1 (iv) zeros of order one are forbidden. The \mathbb{C}^{*} factors are impossible, and so the fiber looks like \mathbb{C}^{n-1}.

Concerning the number of components of $\mathcal{A}_{1, c}$, if we assume for a moment that $\mathcal{A}_{1, c}$ has several connected components, recalling that the fiber is \mathbb{C}^{n-1} which is connected, then the total space of the fiber bundle will be disconnected. This contradicts the fact that the total space of the fiber bundle (4.2) is the original \mathbb{C}_{z}^{n}. Therefore, the typical $\mathcal{A}_{1, c}$ is irreducible.

We remark that the fiber bundle (4.2) has a section: namely the original $\mathcal{A}_{1, c}$ as a submanifold of the total space \mathbb{C}_{z}^{n}.

If $\mathcal{A}_{1, c} \subset \mathcal{L}_{1, c}$ has at least two punctures (some puncture(s) come from the zero(s) of the $\partial / \partial F_{1}$ and at least a second puncture from $\left.F\left(\mathcal{A}_{1, c}\right) \cap \mathcal{A} \mathcal{V}(F)\right)$, then the fundamental group of this fiber is non-trivial.

On the other hand, the homotopy sequence for differentiable fiber bundles with a section (see [Eb07, Prop. 4.20, p. 221]) asserts that the fundamental group of the total space is isomorphic to the product of the fundamental groups of the base and the fiber. In our case $\pi_{1}\left(\mathcal{A}_{1, c}\right) \neq e$; however, $\pi_{1}\left(\mathbb{C}_{z}^{n}\right)$ $=e$, which is a contradiction. Thus, $\mathcal{A} \mathcal{V}(\mathcal{F})$ must be empty and $\left\{\partial / \partial F_{i} \mid\right.$ $i=1, \ldots, n\}$ are complete. Hence F^{-1} exists.
(b) $\Leftrightarrow($ c). " \Leftarrow " follows from Corollary 2 . For the converse, the vector fields are complete and each $\mathcal{L}_{j, c}$ is at most a finite union of projective lines $\mathbb{C P}^{1}$. Moreover, using $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$ when F^{-1} exists, the $\mathcal{L}_{j, c}$ have only one connected component, as is asserted in (c).
$(\mathrm{c}) \Leftrightarrow(\mathrm{d})$. If we assume (c), then assertion (d) follows from Corollary 2 and Table 1. Conversely, there is a one-to-one correspondence between branches of the projective fibers $\mathcal{P}_{j, c}$ at the hyperplane at infinity of $\mathbb{C P}_{z}^{n}$ and zeros, removable points and poles of $\partial / \partial F_{j}$ on $\mathcal{L}_{j, c}$. Recalling Corollary 2 and Table 1, we note that complete vector fields of the kind $F^{*}\left(\partial / \partial w_{j}\right)$ have only one double zero on each $\mathcal{P}_{j, c}$. The equivalence follows.
$(\mathrm{b}) \Leftrightarrow(\mathrm{e})$. We assume (b), thus we use the geometry of the set of asymptotic values as in the proof of $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$: each $\mathcal{A}_{1, c}$ can be pushed by the Ehresmann connection of $\left\{\partial / \partial F_{2}, \ldots, \partial / \partial F_{n}\right\}$ for every time. Thus, $\left(F_{2}, \ldots, F_{n}\right)$: $\mathbb{C}_{z}^{n} \rightarrow \mathbb{C}_{w}^{n-1}$ determines a holomorphically trivial fiber bundle. For the converse assertion, if the fiber bundle determined by $\left(F_{2}, \ldots, F_{n}\right)$ as in the line above is topologically trivial, then the fundamental group of the fiber $\mathcal{A}_{1, c}$ is trivial and $\partial / \partial F_{1}$ is complete. Therefore (b) is true.
$(\mathrm{b}) \Leftrightarrow(\mathrm{f})$. Using (b) as hypothesis, $\left(F_{2}, \ldots, F_{n}\right)$ determines a holomorphically trivial fiber bundle with fiber \mathbb{C}^{n-1}, base $\mathcal{A}_{1, c}$ and total space biholomorphic to \mathbb{C}_{z}^{n}, as in (4.2). For topological reasons, $\mathcal{A}_{1, c}$ is a complex line. The degree of F equals the degree of $F_{1, c}: \mathcal{A}_{1, c} \rightarrow \mathbb{C}_{1, c}$ (because $\mathcal{A}_{1, c}$ is a typical fiber), and $F_{1, c}$ is a biholomorphism. Hence, the degree of F is one.

Assume (f); the asymptotic values are $\mathcal{A V}(F)=R \cup P$ as in Remark 4 .
We note that P is empty: otherwise one pair $\left(\mathcal{L}_{i, c}, \partial / \partial F_{i}\right), i \in\{1, \ldots, n\}$, has a pole; then by Remark $1(1), F$ would be of degree greater than or equal to 2 , contrary to hypothesis (f).

As a result, $\mathcal{A V}(F)=R$, and it is empty or a hypersurface (see Remark 4 and Jel93]).

If $R=\emptyset$ then F is bijective and we can conclude that $\left\{\partial / \partial F_{1}, \ldots, \partial / \partial F_{n}\right\}$ are complete.

If $R \neq \emptyset$ then let us use a slight modification of the original idea in the Newman-Białynicki-Birula-Rosenlicht Theorem (see [BB-R62] or more recently Gr99, Section 3.B]).

We note that $F: \mathbb{C}_{z}^{n} \rightarrow \mathbb{C}_{w}^{n}-R$ is a local biholomorphism of degree 1 (since $P=\emptyset$). Therefore,

$$
H_{1}\left(\mathbb{C}_{w}^{n}-R, \mathbb{Z}\right)=\mathbb{Z}^{\oplus \nu}
$$

where ν is the number of irreducible components of R; for the computation of this homology (see Dim92, p. 103]). That contradicts $H_{1}\left(\mathbb{C}_{z}^{n}, \mathbb{Z}\right)=0$. Thus R is empty, and assertion (b) holds.

Corollary 7. If one $\left(\mathcal{L}_{i, c}, \partial / \partial F_{i}\right)$ has a pole, then F^{-1} does not exist.
Acknowledgments. The first and second authors are partially supported by the Spanish MICINN projects MTM2010-15481, MTM2011-26674-C02-02. The third author is partially supported by Conacyt, México.

REFERENCES

[BB-R62] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203.
[Bro83] S. A. Broughton, On the topology of polynomial hypersurfaces, in: Proc. Sympos. Pure Math. 40, Amer. Math. Soc., 1983, 167-178.
[Bus03] A. Bustinduy, Zeroes of complete polynomial vector fields, Proc. Amer. Math. Soc. 131 (2003), 3767-3775.
[Cam97] L. A. Campbell, Jacobian pairs and Hamiltonian flows, J. Pure Appl. Algebra 115 (1997), 15-26.
[Dim92] A. Dimca, Singularities and Topology of Hypersurfaces, Universitext, Springer, New York, 1992.
[Dru91] L. M. Drużkowski, A geometric approach to the Jacobian Conjecture in \mathbb{C}^{2}, Ann. Polon. Math. 55 (1991), 95-101.
[Dun08] L. Dũng Tráng, Simple rational polynomials and the Jacobian Conjecture, Publ. RIMS Kyoto Univ. 44 (2008), 641-659.
[Eb07] W. Ebeling, Functions of Several Complex Variables and their Singularities, Grad. Stud. Math. 83, Amer. Math. Soc., Providence, RI, 2007.
[Ess00] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math. 190, Birkhäuser, Basel, 2000.
[For95] F. Forstnerič, Limits of complete holomorphic vector fields, Math. Res. Lett. 2 (1995), 401-414.
[FG02] K. Fritzsche and H. Grauert, From Holomorphic Functions to Complex Manifolds, Springer, New York, 2002.
[Gr99] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. 1 (1999), 109-197.
[Jel93] Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
[Jel99] Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
[Kr89] H. Kraft, Algebraic automorphisms of affine space, in: Topological Methods in Algebraic Transformation Groups, H. Kraft et al. (eds.), Progr. Math. 80, Birkhäuser, Boston, 1989, 81-105.
[LM00] J. L. López and J. Muciño-Raymundo, On the problem of deciding whether a holomorphic vector field is complete, in: Complex Analysis and Related Topics (Cuernavaca, 1996), Oper. Theory Adv. Appl. 114, Birkhäuser, Basel, 2000, 171-195.
[Me92] G. H. Meisters, Inverting polynomial maps of n-space by solving differential equations, in: Delay and Differential Equations (Ames, IA, 1991), World Sci., River Edge, NJ, 1992, 107-166.
[MO87] G. H. Meisters and C. Olech, A poly-flow formulation of the Jacobian conjecture, Bull. Polish Acad. Sci. Math. 35 (1987), 725-731.
[Muc02] J. Muciño-Raymundo, Complex structures adapted to smooth vector fields, Math. Ann. 322 (2002), 229-265.
[NS83] P. Nousiainen and M. E. Sweedler, Automorphisms of polynomial power series rings, J. Pure Appl. Algebra 29 (1983), 93-97.
[Per98] R. Peretz, The geometry of the asymptotics of polynomial maps, Israel J. Math. 105 (1998), 1-59.
[Reb04] J. Rebelo, Meromorphic vector fields and elliptic fibrations, Michigan Math. J. 52 (2004), 33-59.
[Str84] K. Strebel, Quadratic Differentials, Ergeb. Math. Grenzgeb. (3) 5, Springer, Berlin, 1984.

Alvaro Bustinduy
Luis Giraldo
Departamento de Ingeniería Industrial Instituto de Matemática Interdisciplinar (IMI)
Escuela Politécnica Superior
Universidad Antonio de Nebrija
C/ Pirineos 55
28040 Madrid, Spain
E-mail: abustind@nebrija.es
Jesús Muciño-Raymundo
Centro de Ciencias Matemáticas
UNAM, Campus Morelia
A.P. 61-3 (Xangari) 58089
Morelia, Michoacán, México
E-mail: muciray@matmor.unam.mx

[^0]: 2010 Mathematics Subject Classification: Primary 14R15; Secondary 37F75, 32M17, 32M25.
 Key words and phrases: holomorphic foliations, Jacobian conjecture, non-singular complex polynomial vector fields.

