VOL. 140	2015	NO. 2

LARGE FREE SUBGROUPS OF AUTOMORPHISM GROUPS OF ULTRAHOMOGENEOUS SPACES

BY
SZYMON GŁĄB and FILIP STROBIN (Łódź)

Abstract

We consider the following notion of largeness for subgroups of S_{∞}. A group G is large if it contains a free subgroup on \mathfrak{c} generators. We give a necessary condition for a countable structure A to have a large group $\operatorname{Aut}(A)$ of automorphisms. It turns out that any countable free subgroup of S_{∞} can be extended to a large free subgroup of S_{∞}, and, under Martin's Axiom, any free subgroup of S_{∞} of cardinality less than \mathfrak{c} can also be extended to a large free subgroup of S_{∞}. Finally, if G_{n} are countable groups, then either $\prod_{n \in \mathbb{N}} G_{n}$ is large, or it does not contain any free subgroup on uncountably many generators.

1. Introduction. In this paper we study properties of the automorphism group $\operatorname{Aut}(A)$ of an ultragomogeneous countable structure A. An ultrahomogeneous structure A can be seen as the Fraïssé limit of its Fraïssé class, that is, the class \mathcal{K} of all finitely generated substructures of A. A Fraïssé class has three properties: the hereditary property, the joint embedding property, and the amalgamation property. (For details see [H].) Some connections between properties of the Fraïssé classes \mathcal{K} and the automorphism groups of their Fraïssé limits are given for example in [KPT], [KS].

We are going to search for large free subgroups of $\operatorname{Aut}(A)$, for countable structures A. Macpherson [M1] showed that if A is ω-categorical, then Aut (A) contains a dense free subgroup of rank ω, and the automorphism group of the random graph contains a dense free subgroup on two generators. Cameron [C, p. 84] proved that every closed oligomorphic subgroup of S_{∞} contains $\operatorname{Aut}(\mathbb{Q}, \leq)$, and the latter group contains a free subgroup of rank continuum. Melles and Shelah [MS proved that if A is a saturated model of a complete theory T with $|A|=\lambda>|T|$, then $\operatorname{Aut}(A)$ has a dense free subgroup of cardinality 2^{λ}. Gartside and Knight [GK] showed that if A is ω-categorical and $K_{n}=\left\{\left(g_{1}, \ldots, g_{n}\right) \in \operatorname{Aut}(A)^{n}: g_{1}, \ldots, g_{n}\right.$ are free generators $\}$, then K_{n} is comeager in $\operatorname{Aut}(A)^{n}$ for every n. Some other results of this sort can be found in the survey paper [M2]. It was proved by Shelah [Sh1] that $\operatorname{Aut}(A)$ cannot be a free uncountable group when A is a

[^0]countable structure. Recently, Shelah [Sh2] proved that even no uncountable Polish group can be free.

Let $(A, \mathcal{C}, \mathcal{F}, \mathcal{R})$ be a countable structure where \mathcal{C} stands for the set of all constants, \mathcal{F} for the set of functions and \mathcal{R} for the set of relations. We will use one symbol A for both a structure and its underlying set. Recall that a structure A is ultrahomogeneous if every embedding of a finitely generated substructure can be extended to an automorphism of A. We denote by $\operatorname{gen}(X)$ the substructure of A generated by X, i.e., the intersection of all substructures containing X. In particular, $\operatorname{gen}(\emptyset)=\operatorname{gen}(\mathcal{C})$. Let $\operatorname{Aut}(A)$ denote the group of all automorphisms of A. Since A is countable, $\operatorname{Aut}(A)$ is isomorphic to a closed subgroup of the group S_{∞} of all permutations of \mathbb{N}. With the topology inherited from $S_{\infty}, \operatorname{Aut}(A)$ is a topological group. If $B_{1}, B_{2} \subset A$ are finitely generated substructures and $g: B_{1} \rightarrow B_{2}$ is an isomorphism, then g will be called a partial isomorphism. The set of all partial isomorphisms of A will be denoted by $\operatorname{Part}(A)$.

We denote by \mathbb{P} the set of all pairs (n, p) where $p:\{0,1\}^{n} \rightarrow \operatorname{Part}(A)$ and $\operatorname{dom}(p(s))$ is an n-element substructure of A for every $s \in\{0,1\}^{n}$. The set \mathbb{P} is ordered in the following way: $(n, p) \leq(k, q)$ if and only if $k \leq n$ and $q(t) \subset p(s)$ (i.e., $p(s)$ extends $q(t))$ provided $t \prec s$ (i.e., s is an extension of t). We will show that, under some reasonable assumption on A, the generic filter G on \mathbb{P} produces a family of \mathfrak{c} free generators in $\operatorname{Aut}(A)$. Note that the poset \mathbb{P} is countable, and therefore it has the countable chain property. In Section 2 we will use the Rasiowa-Sikorski lemma to get a generic filter G that intersects countably many dense subsets of \mathbb{P}. In this way we will infer that $\operatorname{Aut}(A)$ contains a free subgroup on \mathfrak{c} generators, and this result is valid in ZFC. In Section 3 it will be proved (by a similar argument and also under ZFC) that any countably generated free subgroup of S_{∞} can be extended to a \mathfrak{c}-generated free subgroup of S_{∞}, and that under Martin's Axiom any $<\mathfrak{c}$-generated free subgroup of S_{∞} can be extended to a \mathfrak{c}-generated free subgroup of S_{∞}. In Section 4 we prove the following dichotomy: the product $\prod_{n \in \mathbb{N}} G_{n}$ of countable groups G_{n} either contains a \mathfrak{c}-generated free subgroup, or contains no uncountably generated free subgroup. Section 5 brings final remarks and open questions.
2. c-generated free subgroups of $\operatorname{Aut}(A)$. In this section we will assume that every finitely generated substructure of A is finite, that is, its Fraïssé class consists of finite structures. The next lemma shows that a generic filter gives a family of functions which map A onto itself.

Lemma 2.1. For every $k \in A$, the set

$$
D_{k}:=\left\{(n, p) \in \mathbb{P}: \forall s \in\{0,1\}^{n} k \in \operatorname{dom}(p(s)) \cap \operatorname{rng}(p(s))\right\}
$$

is dense in \mathbb{P}.

Proof. Let $k \in A$ and $(n, p) \in \mathbb{P}$. For any $s \in \operatorname{dom}(p)$, let $\tilde{p}(s)$ be an automorphism of A such that $p(s) \subset \tilde{p}(s)$. Let $\left(C_{m}\right)$ be an increasing sequence of finitely generated structures such that $A=\bigcup_{m \in \mathbb{N}} C_{m}$. Then there exists n_{0} such that for any $s \in \operatorname{dom}(p)$, we have $\operatorname{dom}(p(s)) \subset C_{n_{0}}$ and

$$
k \in \operatorname{dom}\left(\tilde{p}(s) \upharpoonright C_{n_{0}}\right) \cap \operatorname{rng}\left(\tilde{p}(s) \upharpoonright C_{n_{0}}\right) .
$$

Let $n^{\prime}=\left|C_{n_{0}}\right|$, and for any $t \in\{0,1\}^{n^{\prime}}$, set $p^{\prime}(t)=\tilde{p}(t \mid n) \mid C_{n_{0}}$. Then $\left(n^{\prime}, p^{\prime}\right) \leq(n, p)$ and $\left(n^{\prime}, p^{\prime}\right) \in D_{k}$.

In the following reasoning, we will apply the above trick of using an increasing sequence (C_{m}) without any comments.

If $g \in \operatorname{Part}(A)$, then we set $V(g):=\{f \in \operatorname{Aut}(A): g \in f\}$. It is well known that the family of all sets of the form $V(g)$ constitutes a basis of the natural topology on $\operatorname{Aut}(A)$.

Lemma 2.2. Let F be a nowhere dense subset of $\operatorname{Aut}(A)$. Then the set

$$
D_{F}=\left\{(n, p) \in \mathbb{P}: \forall s \in\{0,1\}^{n} V(p(s)) \cap F=\emptyset\right\}
$$

is dense in \mathbb{P}.
Proof. Let $(n, p) \in \mathbb{P}$. Since F is nowhere dense, for every $s \in\{0,1\}^{n}$ there exists an embedding $g_{s}: B_{s} \rightarrow A\left(B_{s}\right.$ is a finitely generated substructure) such that g_{s} is an extension of $p(s)$ and $V\left(g_{s}\right) \cap F=\emptyset$. Let $C=\operatorname{gen}\left(\bigcup\left\{\operatorname{dom}\left(g_{s}\right): s \in \operatorname{dom}(p)\right\}\right)$. Let $n^{\prime}=|C|$, and for every $t \in\{0,1\}^{n^{\prime}}$ let $p^{\prime}(t): C \rightarrow A$ be an embedding and an extension of $g_{t \mid n}$. Then ($\left.n^{\prime}, p^{\prime}\right) \leq$ (n, p) and $\left(n^{\prime}, p^{\prime}\right) \in D_{F}$ (because $\left.V\left(p^{\prime}(t)\right) \subset V\left(g_{t \mid n}\right)\right)$.

Consider the following example. Let $A=\mathbb{N}$, and define unary relations R_{n} on $A, n \in \mathbb{N}$, by $x \in R_{n}$ if and only if $x=2 n$ or $x=2 n+1$. Since ($A,\left\{R_{n}\right.$: $n \in \mathbb{N}\}$) is a relational structure, any of its finitely generated substructures is finite. If $f \in \operatorname{Aut}(A)$, then $f(2 n)=2 n$ and $f(2 n+1)=2 n+1$, or $f(2 n+1)=2 n$ and $f(2 n)=2 n+1$. Clearly, A is ultrahomogeneous and $\operatorname{Aut}(A)$ is isomorphic to $\mathbb{Z}_{2}^{\mathbb{N}}$. Hence for any $f \in \operatorname{Aut}(A)$ we have $f \circ f=\mathrm{id}$, which means that $\operatorname{Aut}(A)$ does not even contain a free subgroup on one generator.

This example shows that to get a promised large free subgroup, we need an additional assumption.

Let us introduce the following definition. We say that a relational structure A is ω-independent if for any finitely generated substructures B_{1}, B_{2} of A, and for any m, there is a set $D \subset A \backslash\left(B_{1} \cup B_{2}\right)$ consisting of $m+1$ elements such that, for any embedding $f: B_{1} \rightarrow B_{2}$ and any partial permutation g of D, the function $f \cup g$ is an embedding of $B_{1} \cup \operatorname{dom}(g)$ into A.

Now we show that some natural examples of ultrahomogeneous structures are ω-independent and have the property that every finitely generated substructure is finite.

1. First consider \mathbb{N} without any structure. Then every finite set is a finitely generated substructure, and the embeddings are exactly the one-to-one mappings. To see that \mathbb{N} is ω-independent, fix two finite subsets $B_{1}, B_{2} \subset \mathbb{N}$. Let $C=B_{1} \cup B_{2}$ and let x_{0}, \ldots, x_{m} be pairwise distinct elements of $\mathbb{N} \backslash C$. Then it is clear that the union of any one-to-one mapping $f: B_{1} \rightarrow B_{2}$ and a partial permutation g of x_{0}, \ldots, x_{m} is an embedding.
2. The next example is a rational Urysohn space \mathbb{U}. Recall that a metric space is a rational Urysohn space if it is countable and every finite rational space (i.e., with rational distances) has an isometric copy in \mathbb{U}. It is known that \mathbb{U} is ultrahomogeneous in the sense that, for every finite rational metric space $C \subset \mathbb{U}$ and every isometric embedding $f: C \rightarrow \mathbb{U}$, there is an isometry $\tilde{f}: \mathbb{U} \rightarrow \mathbb{U}$ which extends f. The following is standard and well known:

Claim 2.3. Assume that A is an ultrahomogeneous structure. Let Y be a structure which is isomorphic to a finitely generated substructure of A such that $Y=X \cup Z, X \cap Z=\emptyset$ and $X \subset A$, for some X, Z. Then there is $Z^{\prime} \subset A$ and a partial isomorphism $g: Z \rightarrow Z^{\prime}$ such that the mapping $h: Y \rightarrow X \cup Z^{\prime}$ given by $h(x)=x$ for $x \in X$ and $h(x)=g(x)$ for $x \in Z$ is a partial isomorphism of Y and $X \cup Z^{\prime}$.

Now we prove that the Urysohn space is ω-independent. Let B_{1}, B_{2} be two finite subspaces of $\mathbb{U}, C=B_{1} \cup B_{2}$, let d be a metric on \mathbb{U}, and let $M=\max \{d(z, c): z, c \in C\}+1$. Define a finite rational metric space (Y, ρ) as follows. Let $Y=C \cup\left\{a_{0}, \ldots, a_{m}\right\}$ where a_{0}, \ldots, a_{m} are distinct elements which do not belong to C. If $x, y \in C$, then set $\rho(x, y)=d(x, y)$; if $x \in C$ and $y=a_{i}$, then set $\rho(x, y)=M$; finally, if $x=a_{i}$ and $y=a_{j}$, then $\rho(x, y)=1$ if $i \neq j$ and $\rho(x, y)=0$ if $i=j$.

Then (Y, ρ) is a finite rational metric space. Moreover, by Claim 2.3 , there are $x_{0}, \ldots, x_{m} \in \mathbb{U} \backslash C$ such that $d\left(x, x_{i}\right)=M$ for every $x \in C$ and $i=0, \ldots, m$, and $d\left(x_{i}, x_{j}\right)=1$ for $i \neq j$. If $f: B_{1} \rightarrow B_{2}$ is an isometric embedding and g is partial permutation of x_{0}, \ldots, x_{m}, then it is easy to see that the union of f and g is an isometric embedding. Hence the rational Urysohn space \mathbb{U} is ω-independent.
3. Let \mathbb{G} be a random graph, that is, a countable infinite graph where for any finite disjoint sets X and Y we can find a vertex with edges going to every vertex in X but to no vertex in Y. We will show that \mathbb{G} is ω independent. Fix two finite graphs B_{1} and B_{2}. Take any distinct x_{0}, \ldots, x_{m}, and define a graph $B_{1} \cup B_{2} \cup\left\{x_{0}, \ldots, x_{m}\right\}$ as an extension of $B_{1} \cup B_{2}$ such that there are no edges between x_{0}, \ldots, x_{m} and $B_{1} \cup B_{2}$, and there is no edge between x_{i} and x_{j} for $i, j \leq m$. Using Claim 2.3 we may assume that $x_{0}, \ldots, x_{m} \in \mathbb{G} \backslash\left(B_{1} \cup B_{2}\right)$. Let g be any partial permutation of x_{0}, \ldots, x_{m} and $f: B_{1} \rightarrow B_{2}$ be an embedding. Set $f_{g}=f \cup g: B_{1} \cup \operatorname{dom}(g) \rightarrow \mathbb{G}$.

Let $a, b \in B_{1} \cup \operatorname{dom}(g)$. If $a, b \in B_{1}$, then there is an edge between a and b if and only if there is an edge between $f_{g}(a)$ and $f_{g}(b)$. If a or b is among x_{0}, \ldots, x_{m}, then there is neither an edge between a and b nor one between $f_{g}(a)$ and $f_{g}(b)$. Thus f_{g} embeds $B_{1} \cup \operatorname{dom}(g)$ into \mathbb{G}.
4. Let \mathbb{G}^{n} be the random K_{n}-free graph, that is, the ultrahomogeneous countable graph which omits K_{n}, the complete graph on n vertices. Equivalently, \mathbb{G}^{n} is the Fraïssé limit of the class of all finite K_{n}-free graphs. Using the same argument as for the random graph, one can see that \mathbb{G}^{n} is ω-independent.
5. Let \mathbb{E} be a countable equivalence relation with infinitely many infinite equivalence classes. Let $f: B_{1} \rightarrow B_{2}$ be an embedding between two finite equivalence relations B_{1} and B_{2} (i.e., finite sets with equivalence classes induced from \mathbb{E}). Take a set $\left\{x_{0}, \ldots, x_{m}\right\}$ of elements from a fixed equivalence class such that $\left\{x_{0}, \ldots, x_{m}\right\} \cap\left(B_{1} \cup B_{2}\right)=\emptyset$. Clearly for any partial permutation g of $\left\{x_{0}, \ldots, x_{m}\right\}$ the function $f \cup g$ is an embedding.
6. The same reasoning remains true if one considers \mathbb{E}^{n}, a countable equivalence relation with n infinite equivalence classes.
7. Let (\mathbb{D}, \leq) be the universal countable ultrahomogeneous partially ordered set. This is the Fraïssé limit of all finite partially ordered sets - see Sch and So for more information. Let $f: B_{1} \rightarrow B_{2}$ be an embedding between two finite suborders B_{1} and B_{2} of \mathbb{D}. Take a set $\left\{x_{0}, \ldots, x_{m}\right\} \subset \mathbb{D}$ such that
$\forall i, j\left(i \neq j \Rightarrow \neg\left(x_{i} \leq x_{j}\right)\right)$ and $\forall y \in B_{1} \cup B_{2} \forall i\left(\neg\left(x_{i} \leq y\right)\right.$ and $\left.\neg\left(y \leq x_{i}\right)\right)$. Then for any partial permutation g of $\left\{x_{0}, \ldots, x_{m}\right\}$, the function $f \cup g$ is an embedding.

Let x_{0}, \ldots, x_{m} be pairwise distinct elements of A. A shift on $\left\{x_{0}, \ldots, x_{m}\right\}$ is a partial function $\varphi:\left\{x_{0}, \ldots, x_{m}\right\} \rightarrow A$ such that $\varphi\left(x_{i}\right)=x_{i-1}$ for $i=1, \ldots, m$ (φ is a left-shift) or $\varphi\left(x_{i}\right)=x_{i+1}$ for $i=0, \ldots, m-1$ (φ is a rightshift). Note that φ is undefined either at x_{0} or at x_{m}, so φ is actually a partial mapping on $\left\{x_{0}, \ldots, x_{m}\right\}$. An $\left(x_{0}, \ldots, x_{m}\right)$-function, where x_{0}, \ldots, x_{m} are pairwise distinct, is a partial function $g: \bigcup_{i=1}^{k} I_{i} \rightarrow A$ such that:
(i) I_{1}, \ldots, I_{k} are pairwise disjoint;
(ii) each I_{i} is of the form $\left\{x_{p}, x_{p+1}, \ldots, x_{q}\right\}$ for some $0 \leq p<q \leq m$;
(iii) each restriction $g\left\lceil I_{i}\right.$ is a shift.

We will consider the following condition:
(*) For any finitely generated substructures $B_{1}, B_{2} \subset A$ and any $m \in \mathbb{N}$, there exist pairwise distinct $x_{0}, \ldots, x_{m} \in A \backslash\left(B_{1} \cup B_{2}\right)$ such that for any embedding $f: B_{1} \rightarrow B_{2}$ and any $\left(x_{0}, \ldots, x_{m}\right)$-function g, there exists an embedding $f_{g}: \operatorname{gen}\left(B_{1} \cup \operatorname{dom}(g)\right) \rightarrow A$ with $f, g \subset f_{g}$.

Since every $\left(x_{0}, \ldots, x_{m}\right)$-function g is a partial permutation of $\left\{x_{0}, \ldots, x_{m}\right\}$, condition ($*$) is weaker than ω-independence.

Assume that A is the Fraïssé limit of a class \mathcal{K}_{0}. Let
$\mathcal{K}=\mathcal{K}_{0} \star \mathcal{L O}:=\left\{\langle B, \leq\rangle: B \in \mathcal{K}_{0}\right.$ and \leq is a linear ordering on $\left.B\right\}$.
The class \mathcal{K}_{0} has the strong amalgamation property if for any $A, B, C \in \mathcal{K}_{0}$ and embeddings $f: A \rightarrow B$ and $g: A \rightarrow C$, there is $D \in \mathcal{K}_{0}$ and embeddings $r: B \rightarrow D$ and $s: C \rightarrow D$ with $r \circ f=s \circ g$ such that $r(B) \cap s(C)=$ $r(f(A))=s(g(A))$. In KPT it was proved that if \mathcal{K}_{0} is a Fraïssé class with strong amalgamation property, then so is \mathcal{K}. We will denote the Fraïssé limit of \mathcal{K} by A_{\leq}.

Lemma 2.4. Let A be an ω-independent ultrahomogeneous relational countable structure. Then A_{\leq}satisfies (*).

Proof. Let $B_{1}, B_{2} \subset A$ and let $m \in \mathbb{N}$. Since A is ω-independent, there is a set $\left\{y_{0}, \ldots, y_{m}\right\} \subset A \backslash\left(B_{1} \cup B_{2}\right)$ such that, for any embedding f : $B_{1} \rightarrow B_{2}$ and any partial permutation g of y_{0}, \ldots, y_{m}, the function $f \cup g$ is an embedding. We define a linear order \preceq on $B_{1} \cup B_{2} \cup\left\{y_{0}, \ldots, y_{m}\right\}$ as follows: \preceq on $B_{1} \cup B_{2}$ equals $\leq, y_{i} \preceq y_{k}$ provided $i \leq k$, and $x \preceq y_{i}$ for every $x \in B_{1} \cup B_{2}$ and $i=0, \ldots, m$. Since $B_{1} \cup B_{2} \cup\left\{y_{0}, \ldots, y_{m}\right\}$ is a substructure of A, and \preceq is a linear order on it, the structure $\left\langle B_{1} \cup B_{2} \cup\left\{y_{0}, \ldots, y_{m}\right\}, \preceq\right\rangle$ can be embedded into A_{\leq}. By Claim 2.3 we can find $x_{0}, \ldots, x_{m} \in A$ such that $\left\langle B_{1} \cup B_{2} \cup\left\{x_{0}, \ldots, x_{m}\right\}, \leq\right\rangle$ is a substructure of A_{\leq}isomorphic to $\left\langle B_{1} \cup\right.$ $\left.B_{2} \cup\left\{y_{0}, \ldots, y_{m}\right\}, \preceq\right\rangle$.

Take any A_{\leq}-embedding $f: B_{1} \rightarrow B_{2}$ and any $\left(x_{0}, \ldots, x_{m}\right)$-function g. Then $f \cup g$ is an A-embedding. Note that both f and g preserve \leq. Since each element of $B_{1} \cup B_{2}$ is in relation \leq to each x_{i}, the function $f \cup g$ is an A_{\leq}-embedding. -
8. Consider the structure (\mathbb{Q}, \leq) of all rational numbers. If \mathbb{N} stands for the natural numbers without any structure, then (\mathbb{Q}, \leq) is isomorphic to \mathbb{N}_{\leq}. By Lemma 2.4 . (\mathbb{Q}, \leq) has ($*$).
9. Let $(\mathbb{B}, \vee, \wedge, \neg, 0,1)$ be a countable atomless Boolean algebra. Let $B_{1}, B_{2} \subset \mathbb{B}$ be finite subalgebras and let $f: B_{1} \rightarrow B_{2}$ be an embedding. Let $C=\operatorname{gen}\left(B_{1} \cup B_{2}\right)$ be the smallest subalgebra of \mathbb{B} containing B_{1} and B_{2}. Let $\left\{c_{i}: i \in I\right\}$ be the set of all atoms of C. We say that a finite subalgebra X of \mathbb{B} is independent of C provided there is a finite set $\left\{x_{j}: j \in J\right\}$ with $\operatorname{gen}\left(\left\{x_{j}: j \in J\right\}\right)=X$ and

$$
\bigwedge_{j \in J_{1}} x_{j} \wedge \bigwedge_{j \in J_{2}} \neg x_{j} \wedge c_{i} \neq 0
$$

for every $i \in I$ and every partition J_{1}, J_{2} of J. Clearly, such an algebra X exists and any one-to-one self-mapping of $\left\{x_{j}: j \in J\right\}$ can be extended to an automorphism of X.

Claim 2.5. Let X be a finite algebra independent of $X_{1} \cup X_{2}$, and let g be an automorphism of X. Then $f \cup g$ can be extended to an embedding $f_{g}: \operatorname{gen}\left(B_{1} \cup X\right) \rightarrow \mathbb{B}$.

Proof. Let $\left\{a_{k}: k \in K\right\}$ be the set of all atoms of B_{1}, and $\left\{b_{k}: k \in K\right\}$ $\subset B_{2}$ be such that $f\left(a_{k}\right)=b_{k}$. The atoms of $\operatorname{gen}\left(B_{1} \cup X\right)$ are of the form

$$
\bigwedge_{j \in J_{1}} x_{j} \wedge \bigwedge_{j \in J_{2}} \neg x_{j} \wedge a_{k}
$$

for every $k \in K$ and every partition J_{1}, J_{2} of J. Define f_{g} on atoms as follows:

$$
f_{g}\left(\bigwedge_{j \in J_{1}} x_{j} \wedge \bigwedge_{j \in J_{2}} \neg x_{j} \wedge a_{k}\right)=g\left(\bigwedge_{j \in J_{1}} x_{j} \wedge \bigwedge_{j \in J_{2}} \neg x_{j}\right) \wedge f\left(a_{k}\right) .
$$

Clearly, f_{g} can be uniquely extended to a homomorphism $f_{g}: \operatorname{gen}\left(B_{1} \cup X\right)$ $\rightarrow \mathbb{B}$. We need only prove that f_{g} is one-to-one. Suppose that

$$
f_{g}\left(\bigwedge_{j \in J_{1}} x_{j} \wedge \bigwedge_{j \in J_{2}} \neg x_{j} \wedge a_{k}\right)=f_{g}\left(\bigwedge_{j \in J_{1}^{\prime}} x_{j} \wedge \bigwedge_{j \in J_{2}^{\prime}} \neg x_{j} \wedge a_{k^{\prime}}\right) .
$$

Then

$$
g\left(\bigwedge_{j \in J_{1}} x_{j} \wedge \bigwedge_{j \in J_{2}} \neg x_{j}\right) \wedge f\left(a_{k}\right)=g\left(\bigwedge_{j \in J_{1}^{\prime}} x_{j} \wedge \bigwedge_{j \in J_{2}^{\prime}} \neg x_{j}\right) \wedge f\left(a_{k^{\prime}}\right) .
$$

Since X is independent of B_{2}, both sides of the above equality are nonzero. As f is embedding, we have $a_{k}=a_{k^{\prime}}$. Moreover, g is an isomorphism of X, so $J_{1}=J_{1}^{\prime}$ and $J_{2}=J_{2}^{\prime}$.

Let $B_{1}, B_{2} \subset \mathbb{B}$ be finite subalgebras and let $f: B_{1} \rightarrow B_{2}$ be an embedding. For any $m \in \mathbb{N}$ one can find x_{0}, \ldots, x_{m} witnessing that $X=$ $\operatorname{gen}\left(\left\{x_{0}, \ldots, x_{m}\right\}\right)$ is independent of $C=\operatorname{gen}\left(B_{1} \cup B_{2}\right)$. Let g be any partial permutation of x_{0}, \ldots, x_{m}. We extend g to an isomorphism of X, and using Claim 2.5, we find an embedding f_{g} extending $f \cup g$. This shows that \mathbb{B} is ω-independent (in particular, it satisfies ($*$)).

Note that \mathbb{B} is not a relational structure, so we cannot apply Lemma 2.4 .
It is folklore that $\mathbb{U}, \mathbb{G}, \mathbb{G}^{n}, \mathbb{E}$ and \mathbb{E}^{n} have the strong amalgamation property, and there exist their ordered counterparts: the ordered rational Urysohn space \mathbb{U}_{\leq}, the ordered random graph \mathbb{G}_{\leq}, the ordered K_{n}-free random graph \mathbb{G}_{\leq}^{n}, and the ordered relations \mathbb{E}_{\leq}and \mathbb{E}_{\leq}^{n}. All of those structures are relational and ω-independent, so we can apply Lemma 2.4 to conclude that each of them satisfies condition (*).

Now we will show how (*) implies the existence of a large free subgroup of $\operatorname{Aut}(A)$.

Let $m \in \mathbb{N}$ and let $r_{1}, \ldots, r_{k} \in\{1, \ldots, m\}$ be such that $r_{i} \neq r_{i+1}$ for $i \in\{1, \ldots, k-1\}$, and let $n_{1}, \ldots, n_{k} \in \mathbb{Z} \backslash\{0\}$. Then

$$
\begin{equation*}
w\left(y_{1}, \ldots, y_{m}\right)=y_{r_{1}}^{n_{1}} \ldots y_{r_{k}}^{n_{k}} \tag{2.1}
\end{equation*}
$$

will be called a word of length n where $n=\left|n_{1}\right|+\cdots+\left|n_{k}\right|$. If additionally, f_{1}, \ldots, f_{m} are functions or partial functions defined on A, then we denote by $w\left(f_{1}, \ldots, f_{m}\right)$ the function defined in a natural way: the operation is the composition and the domain of $w\left(f_{1}, \ldots, f_{m}\right)$ is the natural domain. It is possible that $w\left(f_{1}, \ldots, f_{m}\right)=\emptyset$, and if all f_{i} are elements of $\operatorname{Aut}(A)$, then so is $w\left(f_{1}, \ldots, f_{m}\right)$. We also consider the empty set \emptyset as a word of length zero. In that case we also define $w\left(f_{1}, \ldots, f_{k}\right)=\mathrm{id}$, the identity function. Clearly, $f_{1}, \ldots, f_{m} \in \operatorname{Aut}(A)$ are free generators, i.e., they generate a free subgroup of $\operatorname{Aut}(A)$, if $w\left(f_{1}, \ldots, f_{m}\right) \neq$ id for every nonempty word $w\left(y_{1} \ldots, y_{m}\right)$.

Lemma 2.6. For every nonempty word $w\left(y_{1}, \ldots, y_{m}\right)$ of length n, and for distinct x_{0}, \ldots, x_{n}, there exist $\left(x_{0}, \ldots, x_{n}\right)$-functions g_{1}, \ldots, g_{m} such that $w\left(g_{1}, \ldots, g_{m}\right)\left(x_{0}\right)=x_{n}$.

Proof. Assume that w is given by (2.1). We will define $g_{r_{k}}, g_{r_{k-1}}, \ldots, g_{r_{1}}$ step by step. Since it is possible that $r_{i}=r_{j}$ for $i \neq j$, some of the functions g_{1}, \ldots, g_{m} may be defined in more than one step.

If $n_{k}<0$, then set $g_{r_{k}}\left(x_{i}\right)=x_{i-1}$ for $i=1, \ldots,\left|n_{k}\right|$, and if $n_{k}>0$, then set $g_{r_{k}}\left(x_{i}\right)=x_{i+1}$ for $i=0, \ldots,\left|n_{k}\right|-1$.

If $n_{k-1}<0$, then set $g_{r_{k-1}}\left(x_{i}\right)=x_{i-1}$ for $i=\left|n_{k}\right|+1, \ldots,\left|n_{k}\right|+\left|n_{k-1}\right|$, and if $n_{k-1}>0$, then set $g_{r_{k-1}}\left(x_{i}\right)=x_{i+1}$ for $i=\left|n_{k}\right|, \ldots,\left|n_{k}\right|+\left|n_{k-1}\right|-1$.

We continue this procedure, and finally, if $n_{1}<0$, we set $g_{r_{1}}\left(x_{i}\right)=x_{i-1}$ for $i=\left|n_{k}\right|+\cdots+\left|n_{2}\right|+1, \ldots,\left|n_{k}\right|+\cdots+\left|n_{1}\right|$, and if $n_{k}>0$, we set $g_{r_{1}}\left(x_{i}\right)=x_{i+1}$ for $i=\left|n_{k}\right|+\cdots+\left|n_{2}\right|, \ldots,\left|n_{k}\right|+\cdots+\left|n_{1}\right|-1$.

To illustrate the reasoning consider the following example. Let $w\left(y_{1}, y_{2}\right)$ $=y_{1}^{-2} y_{2} y_{1}^{3}$. Then $r_{1}=1, r_{2}=2, r_{3}=1, n_{1}=-2, n_{2}=1, n_{3}=3$ and we define g_{1} as the right-shift on $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}, g_{2}$ as the right-shift on $\left\{x_{3}, x_{4}\right\}$, and finally g_{1} as the left-shift on $\left\{x_{4}, x_{5}, x_{6}\right\}$. Then g_{1} is a union of two shifts.

Lemma 2.7. Assume that A has property (*). For any nonempty word $w\left(y_{1}, \ldots, y_{m}\right)$ and any pairwise distinct finite sequences s_{1}, \ldots, s_{m} of 0 's and 1's of the same length, the set
$D_{w}^{s_{1}, \ldots, s_{m}}=\left\{(n, p):\left|s_{1}\right| \leq n\right.$ and for every $t_{1}, \ldots, t_{m} \in\{0,1\}^{n}$ with $s_{i} \prec t_{i}$

$$
\text { we have } \left.w\left(p\left(t_{1}\right), \ldots, p\left(t_{m}\right)\right) \neq \mathrm{id}\right\}
$$

is dense in \mathbb{P}.
Proof. Choose any $(n, p) \in \mathbb{P}$ and let B_{1} be a finitely generated substructure of A such that $\bigcup\{\operatorname{dom}(p(s)): s \in \operatorname{dom}(p)\} \subset B_{1}$ and $\left|B_{1}\right| \geq\left|s_{1}\right|$. Set $n^{\prime}=\left|B_{1}\right|$ and for every $s \in\{0,1\}^{n^{\prime}}$ let $p^{\prime}(s): B_{1} \rightarrow A$ be an embedding which extends $p(s \upharpoonright n)$. Then $\left(n^{\prime}, p^{\prime}\right) \leq(n, p)$.

Let $B_{2}=\operatorname{gen}\left(\bigcup\left\{\operatorname{rng}\left(p^{\prime}(s)\right): s \in \operatorname{dom}\left(p^{\prime}\right)\right\}\right)$, and let $\left(x_{0}, \ldots, x_{|w|}\right)$, where $|w|$ stands for the length of w, be chosen as in $(*)$. Then choose $\left(x_{0}, \ldots, x_{|w|}\right)$ -
functions g_{1}, \ldots, g_{m} as in Lemma 2.6. Now, for every $i=1, \ldots, m$ and every $s \in\{0,1\}^{n^{\prime}}$ with $s_{i} \prec s$, let $f_{s}: \operatorname{gen}\left(B_{1} \cup \operatorname{dom}\left(g_{i}\right)\right) \rightarrow A$ be chosen for $p^{\prime}(s)$ and g_{i}, according to $(*)$. Let $E=\operatorname{gen}\left(\bigcup\left\{\operatorname{dom}\left(f_{s}\right): s_{i} \prec s\right\}\right)$ and $n^{\prime \prime}=|E|$. Finally, for every $t \in\{0,1\}^{n^{\prime \prime}}$, let $p^{\prime \prime}(s): E \rightarrow A$ be defined in the following way. If $s_{i} \prec t$ for some $i=1, \ldots, m$, then $p^{\prime \prime}(t)$ is an extension of $f_{t \mid n^{\prime}}$; otherwise, let $p^{\prime \prime}(t)$ be any extension of $p^{\prime}\left(t \upharpoonright n^{\prime}\right)$. Then $\left(n^{\prime \prime}, p^{\prime \prime}\right) \leq\left(n^{\prime}, p^{\prime}\right)$, and consequently $\left(n^{\prime \prime}, p^{\prime \prime}\right) \leq(n, p)$.

We need to show that $\left(n^{\prime \prime}, p^{\prime \prime}\right) \in D_{w}^{s_{1}, \ldots, s_{m}}$. If $t_{1}, \ldots, t_{m} \in\{0,1\}^{n^{\prime \prime}}$ are such that $s_{i} \prec t_{i}$, then $p^{\prime \prime}\left(t_{1}\right), \ldots, p^{\prime \prime}\left(t_{m}\right)$ are extensions of g_{1}, \ldots, g_{m}, respectively. Thus by Lemma 2.6 we obtain

$$
w\left(p^{\prime \prime}\left(t_{1}\right), \ldots, p^{\prime \prime}\left(t_{m}\right)\right)\left(x_{0}\right)=w\left(g_{1}, \ldots, g_{m}\right)\left(x_{0}\right)=x_{|w|}
$$

Theorem 2.8. Assume that A satisfies (*). Then for every residual set $Z \subset \operatorname{Aut}(A)$, there is a family $\mathcal{F} \subset Z$ of \mathfrak{c} free generators.

Proof. Let Z be a residual subgroup of $\operatorname{Aut}(A)$. By Lemmas 2.1, 2.2, 2.7 and the Rasiowa-Sikorski lemma, there exists a filter G on \mathbb{P}, which has nonempty intersection with all sets $D_{k}, D_{w}^{s_{1}, \ldots, s_{l}}$ and $D_{F_{n}}$, where $\left(F_{n}\right)$ is a sequence of nowhere dense sets such that $\operatorname{Aut}(A) \backslash Z=\bigcup F_{n}$.

Let $g:\{0,1\}^{\mathbb{N}} \rightarrow \operatorname{Aut}(A)$ be defined in the following way. If $\alpha \in\{0,1\}^{\mathbb{N}}$, then

$$
g(\alpha)=\bigcup\{p(\alpha \upharpoonright n):(n, p) \in G\}
$$

First we show that $g(\alpha)$ is well defined. If $(n, p),\left(n^{\prime}, p^{\prime}\right) \in G$, then there is $(m, q) \in G$ below (n, p) and $\left(n^{\prime}, p^{\prime}\right)$. This ensures that if $x \in \operatorname{dom}(p(\alpha \upharpoonright n)) \cap$ $\operatorname{dom}\left(p^{\prime}\left(\alpha \upharpoonright n^{\prime}\right)\right)$, then $p(\alpha \upharpoonright n)(x)=p^{\prime}\left(\alpha \upharpoonright n^{\prime}\right)(x)$.

Now, we show that $\operatorname{dom}(g(\alpha))=\operatorname{rng}(g(\alpha))=A$. Let $k \in A$. Since D_{k} is dense, there is $(n, p) \in D_{k} \cap G$. Then

$$
k \in \operatorname{dom}(p(\alpha\lceil n)) \cap \operatorname{rng}(p(\alpha\lceil n)) \subset \operatorname{dom}(g(\alpha)) \cap \operatorname{rng}(g(\alpha))
$$

Now we show that $g(\alpha) \in \operatorname{Aut}(A)$. It is enough to show that for any finitely generated substructure $C, g(\alpha) \upharpoonright C$ is an embedding. Assume $C=$ $\left\{x_{1}, \ldots, x_{k}\right\}$. Since $C \subset \operatorname{dom}(g(\alpha))$, there are $\left(p_{1}, n_{1}\right), \ldots,\left(p_{k}, n_{k}\right) \in G$ such that $x_{i} \in \operatorname{dom}\left(p_{i}\left(\alpha \upharpoonright n_{i}\right)\right)$. Since G is a filter, there is $(m, q) \in G$ below each $\left(n_{i}, p_{i}\right)$. This shows that $g(\alpha)\left(x_{i}\right)=q(\alpha \upharpoonright m)\left(x_{i}\right)$ for every $i=1, \ldots, k$. Thus $g(\alpha) \upharpoonright C=q(\alpha \upharpoonright m) \upharpoonright C$, which shows that it is an embedding.

Now we will show that $g(\alpha) \in Z$. Let $k \in \mathbb{N}$ and let $(n, p) \in G \cap D_{F_{k}}$. Then $g(\alpha) \in V(p(\alpha \upharpoonright n)) \subset \operatorname{Aut}(A) \backslash F_{k}$. Since k has been taken arbitrarily, $g(\alpha) \in \operatorname{Aut}(A) \backslash \bigcup_{n \in \mathbb{N}} F_{n}=Z$.

It remains to show that $\left\{g(\alpha): \alpha \in\{0,1\}^{\mathbb{N}}\right\}$ is a family of free generators. Let $w\left(y_{1}, \ldots, y_{m}\right)$ be any word and $\alpha_{1}, \ldots, \alpha_{m}$ be distinct elements of $\{0,1\}^{\mathbb{N}}$. Let $k \in \mathbb{N}$ be such that $\alpha_{i} \upharpoonright k \neq \alpha_{j} \upharpoonright k$ for $i \neq j$, and let $(n, p) \in D_{w}^{\alpha_{1} \upharpoonright k, \ldots, \alpha_{m} \upharpoonright k} \cap G$. Since $\alpha_{i} \upharpoonright k \prec \alpha_{i} \upharpoonright n$ for $i=1, \ldots, m$, for some
$x \in A$ we have

$$
w\left(g\left(\alpha_{1}\right), \ldots, g\left(\alpha_{m}\right)\right)(x)=w\left(p\left(\alpha_{1} \upharpoonright n\right), \ldots, p\left(\alpha_{m} \upharpoonright n\right)\right)(x) \neq x
$$

This ends the proof.
Let us note that condition $(*)$ does not imply that $\operatorname{Aut}(A)$ is oligomorphic (e.g. let A be the rational Urysohn space), therefore our result is different from that of Cameron mentioned in the Introduction.
3. Large free subgroups of S_{∞}. Now we show that, in the case of S_{∞}, the automorphism group of \mathbb{N} without any structure, we can strengthen the conclusion of Theorem 2.8. Clearly, S_{∞} is simply the group of all bijections of \mathbb{N}. We say that a bijection $f \in S_{\infty}$ is proper (or has infinite support) if for every finite set $B \subset \mathbb{N}$, there is $x \notin B$ such that $f(x) \neq x$.

Lemma 3.1. Assume f_{1}, \ldots, f_{m} are free generators and $w\left(y_{1}, \ldots, y_{m}\right)$ is any nonempty word. Then $w\left(f_{1}, \ldots, f_{m}\right)$ is proper.

Proof. This follows from the fact that each $f \in S_{\infty}$ with $f^{n} \neq \mathrm{id}$ for every $n>0$ (which clearly holds for the function $w\left(f_{1}, \ldots, f_{m}\right)$) is automatically proper. Indeed, otherwise f would correspond to a bijection of a finite set (that is, $f=g \cup \mathrm{id}_{\mathbb{N} \backslash A}$ for some finite $A \subset \mathbb{N}$, where g is a permutation of A), and hence $f^{n}=\mathrm{id}$ where $n=|A|$!.

Lemma 3.2. Let A be a relational structure which is ω-independent. For any bijections $f_{1}, \ldots, f_{k} \in \operatorname{Aut}(A), k \geq 2$, such that f_{2}, \ldots, f_{k-1} are proper, any nonzero numbers n_{1}, \ldots, n_{k-1} and every finite structure $C \subset A$, there exist $x \in A \backslash C$, finite structures $B_{1}, B_{2} \subset A \backslash C$ and a bijection $g: B_{1} \rightarrow B_{2}$ such that $x \in \operatorname{dom}\left(f_{k} \circ g^{n_{k-1}} \circ f_{k-1} \circ g^{n_{k-2}} \circ \cdots \circ g^{n_{1}} \circ f_{1}\right)$ and

$$
f_{k} \circ g^{n_{k-1}} \circ f_{k-1} \circ g^{n_{k-2}} \circ \cdots \circ g^{n_{1}} \circ f_{1}(x) \neq x
$$

Proof. We assume $k>2$ (the case $k=2$ is much simpler and will be obvious after considering the case $k>2$). Since A is ω-independent, there exist $y_{0}, \ldots, y_{t}, t>2|C|+5 k$, such that for any isomorphism $h: C \rightarrow C$ and any partial permutation h^{\prime} of y_{0}, \ldots, y_{t}, the function $h \cup h^{\prime}$ is an embedding.

We first show that there are elements $x_{0}, \ldots, x_{2 k-1}$ such that:
(a) $x_{i} \notin C$ for $i=0, \ldots, 2 k-1$;
(b) $f_{i}\left(x_{2 i-2}\right)=x_{2 i-1}$ for $i=1, \ldots, k$;
(c) $x_{1}, \ldots, x_{2 k-2}$ are distinct;
(d) $x_{0} \neq x_{2 k-1}$.

First, take

$$
x_{1} \in\left\{y_{0}, \ldots, y_{t}\right\} \backslash\left(f_{1}^{-1}(C) \cup C\right)
$$

and set $x_{0}=f_{1}^{-1}\left(x_{1}\right)$. Then take

$$
x_{2} \in \mathbb{N} \backslash\left(f_{2}^{-1}(C) \cup C \cup f_{2}^{-1}\left(\left\{x_{0}, x_{1}\right\}\right) \cup\left\{x_{0}, x_{1}\right\}\right)
$$

such that $f_{2}\left(x_{2}\right) \neq x_{2}$ and set $x_{3}=f_{2}\left(x_{2}\right)$. It is easy to see that (a) holds for $i=0,1,2,3$; (b) holds for $i=1,2$; and x_{1}, x_{2}, x_{3} are distinct. In the next step we take

$$
x_{4} \in \mathbb{N} \backslash\left(f_{3}^{-1}(C) \cup C \cup f_{3}^{-1}\left(\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}\right) \cup\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}\right)
$$

such that $f_{3}\left(x_{4}\right) \neq x_{4}$ and set $x_{5}=f_{3}\left(x_{4}\right)$. We continue this procedure, and finally we take

$$
x_{2 k-2} \in \mathbb{N} \backslash\left(f_{k}^{-1}(C) \cup C \cup f_{k}^{-1}\left(\left\{x_{0}, \ldots, x_{2 k-3}\right\}\right) \cup\left\{x_{0}, \ldots, x_{2 k-3}\right\}\right)
$$

and $x_{2 k-1}=f_{k}\left(x_{2 k-2}\right)$. Then (a)-(d) are satisfied.
Now take elements $y_{0}^{1}, \ldots, y_{\left|n_{1}\right|}^{1}, y_{0}^{2}, \ldots, y_{\left|n_{2}\right|}^{2}, \ldots, y_{0}^{k-1}, \ldots, y_{\left|n_{k-1}\right|}^{k-1}$ such that
(i) $y_{0}^{i}=x_{2 i-1}$ and $y_{\left|n_{i}\right|}^{i}=x_{2 i}$ for $i=1, \ldots, k-1$;
(ii) $y_{j}^{i} \notin C$ for all i, j;
(iii) $y_{0}^{1}, \ldots, y_{\left|n_{1}\right|}^{1}, y_{0}^{2}, \ldots, y_{\left|n_{2}\right|}^{2}, \ldots, y_{0}^{k-1}, \ldots, y_{\left|n_{k-1}\right|}^{k-1}$ are distinct.

By (a) and (c), we can choose such elements. For every $i=1, \ldots, k-1$, let

$$
D_{i}= \begin{cases}\left\{y_{0}^{i}, \ldots, y_{\left|n_{i}\right|-1}^{i}\right\} & \text { if } n_{i}>0 \\ \left\{y_{1}^{i}, \ldots, y_{\left|n_{i}\right|}^{i}\right\} & \text { if } n_{i}<0\end{cases}
$$

Now we define a function g on $B=D_{1} \cup \cdots \cup D_{k-1}$ in the following way. For every $i=1, \ldots, k-1$, set

$$
g\left(y_{l}^{i}\right)= \begin{cases}y_{l+1}^{i} & \text { if } n_{i}>0, l=0, \ldots,\left|n_{i}\right|-1 \\ y_{l-1}^{i} & \text { if } n_{i}<0, l=1, \ldots,\left|n_{i}\right|\end{cases}
$$

By (iii), the function g is well defined, one-to-one, and $B \cup g(B) \subset \mathbb{N} \backslash C$. Also, for every $i=1, \ldots, k-1$, by (i), we have

$$
g^{n_{i}}\left(x_{2 i-1}\right)=g^{n_{i}}\left(y_{0}^{i}\right)=y_{\left|n_{i}\right|}^{i}=x_{2 i} .
$$

Together with (b) and (d), this gives the assertion.
LEMmA 3.3. Assume that $f_{1}, \ldots, f_{m} \in S^{\infty}$ are pairwise distinct free generators. Then there is $g \in S_{\infty} \backslash\left\{f_{1}, \ldots, f_{m}\right\}$ such that f_{1}, \ldots, f_{m}, g are free generators.

Proof. It is enough to show that there exists $g \in S_{\infty}$ such that for any word $w=w\left(y_{1}, \ldots, y_{m+1}\right)$ such that y_{m+1} appears in $w, w\left(f_{1}, \ldots, f_{m}, g\right) \neq$ id. The family of such words is countable; enumerate it as $W=\left\{w_{n}: n \in \mathbb{N}\right\}$. We will define sequences $\left(C_{n}\right)$ and $\left(C_{n}^{\prime}\right)$ of pairwise disjoint, finite subsets of \mathbb{N}, and a sequence of partial functions $\left(g_{n}\right)$, such that for every $n \in \mathbb{N}$,

1. $C_{n}^{\prime} \subset C_{n}$;
2. $C_{n} \backslash C_{n}^{\prime} \neq \emptyset$;
3. $g_{n}: C_{n}^{\prime} \rightarrow C_{n}$ is one-to-one;
4. there is $x_{n} \in C_{n}$ such that $x_{n} \in \operatorname{dom}\left(w_{n}\left(f_{1}, \ldots, f_{m}, g_{n}\right)\right)$ and $w_{n}\left(f_{1}, \ldots, f_{m}, g_{n}\right)\left(x_{n}\right) \neq x_{n}$.
Then any bijective extension of $g=\bigcup_{n \in \mathbb{N}} g_{n}$ will satisfy our needs. Such an extension exists, since by $1-3$, the sets $\operatorname{dom}(g), \mathbb{N} \backslash \operatorname{dom}(g), \operatorname{rng}(g)$ and $\mathbb{N} \backslash \operatorname{rng}(g)$ are infinite.

Let $n=1$. Write y instead of y_{m+1}. Then

$$
w_{1}=u_{k} \cdot y^{n_{k-1}} \cdot u_{k-1} \cdot y^{n_{k-2}} \cdots y^{n_{1}} \cdot u_{1}
$$

for some words u_{1}, \ldots, u_{k} in which y does not appear (it is possible that u_{1} or u_{k} are empty words, but for $i \notin\{1, k\}, u_{i}$ is nonempty). By Lemma 3.2 applied to the functions $f_{i}=u_{i}\left(f_{1}, \ldots, f_{m}\right)$ (if u_{i} is empty, then $f_{i}=$ id) and $C=\emptyset$, there are finite sets B_{1}, B_{2}, an element x_{1} and a bijective map $g_{1}: B_{1} \rightarrow B_{2}$ such that $x_{1} \in \operatorname{dom}\left(w_{1}\left(f_{1}, \ldots, f_{m}, g_{1}\right)\right)$ and $w_{1}\left(f_{1}, \ldots, f_{m}, g_{1}\right)\left(x_{1}\right) \neq x_{1}$. Let $C_{1}=B_{1} \cup B_{2} \cup\left\{x_{1}, y_{1}\right\}$, where y_{1} is not in $B_{1} \cup B_{2} \cup\left\{x_{1}\right\}$, and $C_{1}^{\prime}=B_{1}$.

Assume that we have already made the construction up to step n. Then we proceed exactly as in the first step, but for the word w_{n+1}, and we use Lemma 3.2 for $C=C_{1} \cup \cdots \cup C_{n}$.

If w, w^{\prime} are words, then we write $w^{\prime} \leq w$ whenever w^{\prime} is created from w by erasing some symbols on the left side. In particular,

$$
y_{r_{2}}^{n_{2}} \ldots y_{r_{k}}^{n_{k}} \leq y_{r_{1}}^{n_{1}} y_{r_{2}}^{n_{2}} \ldots y_{r_{k}}^{n_{k}}
$$

and if $n_{1}>0$, then

$$
y_{r_{1}}^{n_{1}-1} y_{r_{2}}^{n_{2}} \ldots y_{r_{k}}^{n_{k}} \leq y_{r_{1}}^{n_{1}} y_{r_{2}}^{n_{2}} \ldots y_{r_{k}}^{n_{k}} .
$$

Also, we assume that $\emptyset \leq w$ for any w.
Lemma 3.4. For any $k, l \in \mathbb{N}$, any word $w\left(y_{1}, \ldots, y_{m}\right)$ with $k+l=m$, any free generators $f_{1}, \ldots, f_{k} \in S^{\infty}$, and any pairwise different sequences s_{1}, \ldots, s_{l} of 0 's and 1's of the same length, the set

$$
\begin{array}{r}
D_{w, f_{1}, \ldots, f_{k}}^{s_{1}, \ldots, s_{l}}=\left\{(n, p): n \geq\left|s_{1}\right|\right. \\
\text { and if } t_{1}, \ldots, t_{l} \in\{0,1\}^{n} \text { with } s_{i} \prec t_{i} \\
\text { then } \left.w\left(f_{1}, \ldots, f_{k}, p\left(t_{1}\right), \ldots, p\left(t_{l}\right)\right) \neq \mathrm{id}\right\}
\end{array}
$$

is dense in \mathbb{P}.
Proof. Take any $(n, p) \in \mathbb{P}$ and set $D=\bigcup\{\operatorname{dom}(p(s)) \cup \operatorname{rng}(p(s))$: $s \in \operatorname{dom}(p)\}$. Let $g_{1}, \ldots, g_{l} \in S_{\infty} \backslash\left\{f_{1}, \ldots, f_{k}\right\}$ be pairwise distinct and such that $f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}$ are free generators; we can find such g_{i} 's by Lemma 3.3. Set $B=\bigcup\left\{w^{\prime}\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}\right)^{-1}(D): w^{\prime} \leq w\right\}$, where $w^{\prime}\left(f_{1}, \ldots, g_{l}\right)^{-1}(D)$ denotes the preimage of D under $w^{\prime}\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}\right)$; in particular, $D \subset B$. Since $f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}$ are free and B is finite, by Lemma 3.1 there exists $x \in \mathbb{N} \backslash B$ such that $w\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}\right)(x) \neq x$.

For every $i=1, \ldots, l$, let
$E^{i}=\left\{w^{\prime}\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}\right)(x): w^{\prime} \leq w\right.$ and w^{\prime} begins with $\left.y_{k+i}\right\}$,
$E_{i}=\left\{w^{\prime}\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}\right)(x): y_{k+i} w^{\prime} \leq w\right\}$.
Since $x \in \mathbb{N} \backslash B$, we have $E_{i} \cap D=\emptyset$ and $E^{i} \cap D=\emptyset$. Now for every $i=1, \ldots, n$ set $h_{i}=g_{i} \upharpoonright E_{i}$. Then h_{i} is a bijection between E_{i} and E^{i}.

We are ready to define (n^{\prime}, p^{\prime}). Let

$$
n^{\prime}=n+\left|s_{1}\right|+\max \left\{\left|E_{1}\right|, \ldots,\left|E_{n}\right|\right\} .
$$

For $i=1, \ldots, l$, let $G_{i} \subset \mathbb{N} \backslash\left(B \cup E_{i} \cup E^{i}\right)$ be such that $\left|G_{i}\right|+n+\left|E_{i}\right|=n^{\prime}$.
Now, for $t \in\{0,1\}^{n^{\prime}}$ with $s_{i} \prec t$, set

$$
p^{\prime}(t)=p(t \mid n) \cup h_{i} \cup \operatorname{id}_{G_{i}} .
$$

For the remaining $t \in\{0,1\}^{n^{\prime}}$, let $p^{\prime}(t)$ be any bijective extension of $p(t\lceil n)$ with $\left|\operatorname{dom}\left(p^{\prime}(t)\right)\right|=n^{\prime}$. Clearly, $\left(n^{\prime}, p^{\prime}\right) \in \mathbb{P}$ and $\left(n^{\prime}, p^{\prime}\right) \leq(n, p)$. If t_{1}, \ldots, t_{l} are in $\{0,1\}^{n^{\prime}}$ and $s_{i} \prec t_{i}$ for $i=1, \ldots, l$, then

$$
\begin{aligned}
w\left(f_{1}, \ldots, f_{k}, p^{\prime}\left(t_{1}\right), \ldots, p^{\prime}\left(t_{l}\right)\right)(x) & =w\left(f_{1}, \ldots, f_{k}, h_{1}, \ldots, h_{l}\right)(x) \\
& =w\left(f_{1}, \ldots, f_{k}, g_{1}, \ldots, g_{l}\right)(x) \neq x .
\end{aligned}
$$

Hence $\left(n^{\prime}, p^{\prime}\right) \in D_{w, f_{1}, \ldots, f_{k}}^{g_{1}, \ldots, g_{l}}$.
Now we extend Theorem 2.8 and Lemma 3.3
Theorem 3.5. For any residual set $Z \subset S_{\infty}$ and any countable family \mathcal{F} of free generators, there is a family $\mathcal{F}^{\prime} \subset Z$ of free generators of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{F}^{\prime}$ is a family of free generators.

Proof. The proof is very similar to that of Theorem 2.8 using the Rasio-wa-Sikorski lemma, we choose a generic filter G which has nonempty intersection with all sets $D_{k}, D_{F_{k}}, D_{w}^{s_{1}, \ldots, s_{l}}$ and $D_{w, f_{1}, \ldots, f_{k}}^{s_{1}, \ldots, s_{l}}$ (where f_{1}, \ldots, f_{k} are elements of \mathcal{F}). Again, for every $\alpha \in\{0,1\}^{\mathbb{N}}$, we set

$$
g(\alpha)=\bigcup\{p(\alpha\lceil n):(n, p) \in G\} .
$$

In view of the proof of Theorem 2.8, we only have to show that $\mathcal{F} \cup\{g(\alpha)$: $\left.\alpha \in\{0,1\}^{\mathbb{N}}\right\}$ is a family of free generators. Let $w=w\left(y_{1}, \ldots, y_{n}\right)$ be any word, let $k, l \in \mathbb{N}$ be such that $k+l=n$, and let $f_{1}, \ldots, f_{k} \in \mathcal{F}$ be distinct. Let $\alpha_{1}, \ldots, \alpha_{l}$ be different elements of $\{0,1\}^{\mathbb{N}}$, and let $r \in \mathbb{N}$ be such that $\alpha_{i} \upharpoonright r \neq \alpha_{j} \upharpoonright r$ for $i \neq j$. Let $(n, p) \in D_{w, f_{1}, \ldots, f_{k}}^{\alpha_{1} \upharpoonright, \ldots, \alpha_{l} \upharpoonright r} \cap G$. Since $\alpha_{i} \upharpoonright r \prec \alpha_{i} \upharpoonright n$ for $i=1, \ldots, l$, there is $x \in \mathbb{N}$ such that

$$
\begin{aligned}
w\left(f_{1}, \ldots, f_{k}, g\left(\alpha_{1}\right), \ldots,\right. & \left.g\left(\alpha_{l}\right)\right)(x) \\
& =w\left(f_{1}, \ldots, f_{k}, p\left(\alpha_{1} \upharpoonright n\right), \ldots, p\left(\alpha_{l} \upharpoonright n\right)\right)(x) \neq x .
\end{aligned}
$$

This ends the proof.

Let \mathcal{M} stand for the σ-ideal of meager subsets of \mathbb{R}. Let $\mathfrak{m}_{\text {countable }}=$ $\min \{\kappa$: "MA (κ) for countable posets" fails $\}$ (MA stands for Martin's Axiom). It is well known (see [V]) that

$$
\mathfrak{m}_{\text {countable }}=\operatorname{cov}(\mathcal{M}):=\min \{|\mathcal{F}|: \bigcup \mathcal{F}=\mathbb{R}, \mathcal{F} \subset \mathcal{M}\}
$$

Since the poset \mathbb{P} is countable, we obtain the following.
Theorem 3.6. For any residual set $Z \subset S_{\infty}$ and any family \mathcal{F} of free generators of cardinality less than $\operatorname{cov}(\mathcal{M})$, there is a family $\mathcal{F}^{\prime} \subset Z$ of free generators of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{F}^{\prime}$ is a family of free generators.
4. Products of countable groups. In this section we will give a necessary and sufficient condition on a sequence of countable groups G_{1}, G_{2}, \ldots for the existence of a free subgroup of $\prod G_{n}$ of \mathfrak{c} generators. A family $\left\{X_{s}: s \in S\right\}$ of subsets of \mathbb{N} is independent if $\bigcap_{s \in E} X_{s} \cap \bigcap_{s \in F}\left(\mathbb{N} \backslash X_{s}\right) \neq \emptyset$ for every finite $F, E \subset S$ with $E \cap F=\emptyset$. It is well known that there is an independent family of cardinality \mathfrak{c}.

Lemma 4.1. Let $n \geq 2$. There exists a family $\mathcal{F}=\left\{f_{\alpha}: \alpha<\mathfrak{c}\right\}$ of functions from $\{0, \ldots, n-1\}^{\mathbb{N}}$ such that for any $\alpha_{0}<\cdots<\alpha_{n-1}<\mathfrak{c}$ there is $k \in \mathbb{N}$ such that $f_{\alpha_{i}}(k)=i$.

Proof. Let $\left\{p_{k}: k \in \mathbb{N}\right\}$ be an enumeration of all subsets of \mathbb{N} of cardinality n. Enumerate each p_{k} as $\left\{p_{k}(0), \ldots, p_{k}(n-1)\right\}$. Let $\left\{U_{\alpha}: \alpha<\mathfrak{c}\right\}$ be an independent family of \mathbb{N}. For any α we define $f_{\alpha}: \mathbb{N} \rightarrow\{0, \ldots, n-1\}$ as follows. Fix $k \in \mathbb{N}$. If there is $i<n$ such that $p_{k}(i) \in U_{\alpha}$ and $p_{k}(j) \notin U_{\alpha}$ for every $j \neq i$, then set $f_{\alpha}(k)=i$; otherwise set $f_{\alpha}(k)=0$.

Let $\alpha_{0}<\cdots<\alpha_{n-1}$. Pick $m_{i} \in U_{\alpha_{i}} \backslash \bigcup_{j \neq i} U_{\alpha_{j}}$ and set $p(i)=m_{i}$ for $i<n$. There is $k \in \mathbb{N}$ with $p=p_{k}$. Then $f_{\alpha_{i}}(k)=i$.

Recall that if a word w is of the form $w=w\left(y_{1}, \ldots, y_{m}\right)$, then we assume that all variables of w are in y_{1}, \ldots, y_{m}, but not necessarily all y_{i} 's must appear in w.

Theorem 4.2. Let $G_{n}, n \in \mathbb{N}$, be a family of groups.
(i) If for any nonempty word $w\left(y_{1}, \ldots, y_{m}\right)$ there are infinitely many n 's for which there are $g_{n, 1}, \ldots, g_{n, m} \in G_{n}$ with $w\left(g_{n, 1}, \ldots, g_{n, m}\right) \neq e_{n}$ where e_{n} is a neutral element of G_{n}, then $\prod_{n=1}^{\infty} G_{n}$ contains a free group on \mathfrak{c} generators.
(ii) If every G_{n} is countable, and for some nonempty word $w\left(y_{1}, \ldots, y_{m}\right)$, almost every n and all $g_{n, 1}, \ldots, g_{n, m} \in G_{n}$ we have $w\left(g_{n, 1}, \ldots, g_{n, m}\right)$ $=e_{n}$, then $\prod_{n=1}^{\infty} G_{n}$ does not contain any free group on uncountably many generators.
Proof. Assume that for any word $w\left(y_{1}, \ldots, y_{m}\right)$ there are infinitely many n 's for which there are $g_{n, 1}^{w}, \ldots, g_{n, m}^{w} \in G_{n}$ with $w\left(g_{n, 1}^{w}, \ldots, g_{n, m}^{w}\right) \neq e_{n}$. For
any nonempty word $w=w\left(y_{1}, \ldots, y_{m}\right)$, set $E_{w}=\left\{n \in \mathbb{N}\right.$: there are $g_{n, 1}^{w}, \ldots, g_{n, m}^{w} \in G_{n}$ with $\left.w\left(g_{n, 1}^{w}, \ldots, g_{n, m}^{w}\right) \neq e_{n}\right\}$. Then $\left\{E_{w}: w=w\left(y_{1}, \ldots, y_{m}\right)\right.$ is a nonempty word $\}$ is a countable family of infinite sets. Let $\left\{E_{w}^{\prime}: w=w\left(y_{1}, \ldots, y_{m}\right)\right.$ is a nonempty word $\}$ be a disjoint refinement of this family, i.e., a family of pairwise disjoint infinite sets with $E_{w}^{\prime} \subset E_{w}$ for any nonempty word w. For any $\alpha<\mathfrak{c}$, define $f_{\alpha} \in \prod G_{n}$ as follows. Let w be a word. Consider two cases.

1. If $w=w\left(y_{k}\right)$ is a word with one variable y_{k}, then let $\left\{f_{\alpha}^{w}: \alpha<\mathfrak{c}\right\}$ be an enumeration of the set $\prod_{n \in E_{w}^{\prime}}\left\{e_{n}, g_{n, k}^{w}\right\} \backslash \prod_{n \in E_{w}^{\prime}}\left\{e_{n}\right\}$.
2. If $w=w\left(y_{1}, \ldots, y_{m}\right)$, then using Lemma 4.1 we can find a family $\left\{f_{\alpha}^{w}\right.$: $\alpha<\mathfrak{c}\}$ such that for any $\alpha_{1}<\cdots<\alpha_{m}$ there is $n \in E_{w}^{\prime}$ with $f_{\alpha_{i}}^{w}(n)=g_{n, k_{i}}^{w}$ for $i \leq m$. Finally, let $f_{\alpha}(n)=f_{\alpha}^{w}(n)$ if $n \in E_{w}^{\prime}$, and $f_{\alpha}(n)=e_{n}$ otherwise. Clearly, in both cases, $\left\{f_{\alpha}: \alpha<\mathfrak{c}\right\}$ consists of free generators.

Assume now the G_{n} are countable, and let $w\left(y_{1}, \ldots, y_{m}\right)$ be a word such that there is N with $w\left(g_{n, 1}, \ldots, g_{n, m}\right)=e_{n}$ for $n \geq N$ and all $g_{n, 1}, \ldots, g_{n, m}$ in G_{n}. Suppose $\prod_{n=1}^{\infty} G_{n}$ contains a free group on uncountably many generators, say $\left\{f_{\alpha}: \alpha<\omega_{1}\right\}$. Then for any distinct $\alpha_{1}, \ldots, \alpha_{m}<\omega_{1}$ there is $n<N$, depending on α_{i} 's, with $w\left(f_{\alpha_{1}}(n), \ldots, f_{\alpha_{m}}(n)\right) \neq e_{n}$. As the groups G_{n} are countable, one can find two distinct m-element sets $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ of ordinals less than ω_{1} such that

$$
w\left(f_{\alpha_{1}}(n), \ldots, f_{\alpha_{m}}(n)\right)=w\left(f_{\beta_{1}}(n), \ldots, f_{\beta_{m}}(n)\right)
$$

for every $n<N$. Then

$$
w\left(f_{\alpha_{1}}(n), \ldots, f_{\alpha_{m}}(n)\right) w^{-1}\left(f_{\beta_{1}}(n), \ldots, f_{\beta_{m}}(n)\right)=e_{n}
$$

for every $n \in \mathbb{N}$. This contradicts the fact that $\left\{f_{\alpha}: \alpha<\omega_{1}\right\}$ are free generators.

From Theorem 4.2 we immediately obtain the following dichotomy.
Corollary 4.3. Let $G_{n}, n \in \mathbb{N}$, be countable groups. Then $\prod_{n \in \mathbb{N}} G_{n}$ either contains free subgroups on \mathfrak{c} generators, or does not contain free subgroups on uncountably many generators.
5. Final remarks and open questions. The results of Section 2 can be deduced from those of Section 3 for some class of structures. We say that a subset X of A is independent if any bijection $f: X \rightarrow X$ can be extended to an automorphism of A. If A contains an infinite independent set X, then take a set $\mathcal{F} \subset S_{\infty}(X)$ of \mathfrak{c} free generators, and extend every $f \in \mathcal{F}$ to an automorphism f^{\prime} of A. Then $\mathcal{F}^{\prime}=\left\{f^{\prime}: f \in \mathcal{F}\right\}$ is a set of free generators in $\operatorname{Aut}(A)$.

Let X be an infinite independent, in the sense of Boolean algebras, set in \mathbb{B}. Then X is independent in the above sense. Now, let $X \subset \mathbb{U}$ be an
isometric copy of \mathbb{N} with the metric d given by $d(x, y)=1 \Leftrightarrow x \neq y$. Then X is an independent subset of \mathbb{U}. However, \mathbb{Q} does not contain an independent subset of cardinality greater than 2 . The direct sum of countably many copies of $(\mathbb{Q},+)$ is a countable ultrahomogeneous structure, and any of its finitely generated substructures is a torsion free Abelian group. Note that all of its finitely generated substructures are infinite and each of them contains an infinite independent subset. Hence the automorphism group of such a substructure contains a large free subgroup, and this cannot be proved by our method.

We are interested in extending small free subgroups of $\operatorname{Aut}(A)$ to large free groups. We introduce the cardinal number
$\mathfrak{f}_{A}=\min \{|\mathcal{F}|: \mathcal{F}$ is a maximal set of free generators in $\operatorname{Aut}(A)\}$
where "maximal" means that \mathcal{F} cannot be extended to a larger set of free generators. In Section 3 we proved that $\mathfrak{f}:=\mathfrak{f}_{\mathbb{N}}$ is an uncountable cardinal $\geq \operatorname{cov}(\mathcal{M})$.

We end with a list of open questions:

1. Can one prove a similar result to that in Section 2 for structures whose finitely generated substructures are infinite?
2. Does ($*$) imply that \mathfrak{f}_{A} is uncountable? Does Martin's Axiom imply that $\mathfrak{f}_{A}=\mathfrak{c}$?
3. Is it true that $\mathfrak{f}=\operatorname{cov}(\mathcal{M})$?
4. Is it true that either $\operatorname{Aut}(A)$ does not contain an uncountably (infinitely) generated free subgroup, or it contains a free subgroup on \mathfrak{c} generators?

Acknowledgements. The authors have been supported by the National Science Centre Poland Grant no. DEC-2012/07/D/ST1/02087.

REFERENCES

[C] P. J. Cameron, Oligomorphic Permutation Groups, London Math. Soc. Lecture Note Ser. 152, Cambridge Univ. Press, Cambridge, 1990.
[GK] P. M. Gartside and R. W. Knight, Ubiquity of free groups, Bull. London Math. Soc. 35 (2003), 624-634.
[H] W. Hodges, Model Theory, Encyclopedia Math. Appl. 42, Cambridge Univ. Press, Cambridge, 1993.
[KPT] A. S. Kechris, V. G. Pestov and S. Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005), 106-189.
[KS] A. S. Kechris and M. Sokić, Dynamical properties of the automorphism groups of the random poset and random distributive lattice, Fund. Math. 218 (2012), 69-94.
[M1] H. D. Macpherson, Groups of automorphisms of \aleph_{1}-categorical structures, Quart. J. Math. Oxford Ser. (2) 37 (1986), 449-465.
[M2] H. D. Macpherson, A survey of homogeneous structures, Discrete Math. 311 (2011), 1599-1634.
[MS] G. Melles and S. Shelah, Aut(M) has a large dense free subgroup for saturated M, Bull. London Math. Soc. 26 (1994), 339-344.
[Sch] J. H. Schmerl, Countable homogeneous partially ordered sets, Algebra Universalis 9 (1979), 317-321.
[Sh1] S. Shelah, A countable structure does not have a free uncountable automorphism group, Bull. London Math. Soc. 35 (2003), 1-7.
[Sh2] S. Shelah, Polish algebras, shy from freedom, Israel J. Math. 181 (2011), 477-507.
[So] M. Sokić, Ramsey properties of finite posets, Order 29 (2012), 1-30.
[V] J. E. Vaughan, Small uncountable cardinals and topology (with an appendix by S. Shelah), in: Open Problems in Topology, North-Holland, Amsterdam, 1990, 195-218.

Szymon Głąb, Filip Strobin
Institute of Mathematics
Lodz University of Technology
Wólczańska 215
93-005 Łódź, Poland
E-mail: szymon.glab@p.lodz.pl
filip.strobin@p.lodz.pl

Received 25 October 2013;
revised 27 February 2015

[^0]: 2010 Mathematics Subject Classification: Primary 20E05; Secondary 20B27, 54H11. Key words and phrases: ultrahomogeneus structures, large substructures, free groups.

