LARGE FREE SUBGROUPS OF AUTOMORPHISM GROUPS OF ULTRAHOMOGENEOUS SPACES

BY

SZYMON GŁĄB and FILIP STROBIN (Łódź)

Abstract. We consider the following notion of largeness for subgroups of S_{∞} . A group G is large if it contains a free subgroup on \mathfrak{c} generators. We give a necessary condition for a countable structure A to have a large group $\operatorname{Aut}(A)$ of automorphisms. It turns out that any countable free subgroup of S_{∞} can be extended to a large free subgroup of S_{∞} , and, under Martin's Axiom, any free subgroup of S_{∞} of cardinality less than \mathfrak{c} can also be extended to a large free subgroup of S_{∞} . Finally, if G_n are countable groups, then either $\prod_{n\in\mathbb{N}}G_n$ is large, or it does not contain any free subgroup on uncountably many generators.

1. Introduction. In this paper we study properties of the automorphism group $\operatorname{Aut}(A)$ of an ultragomogeneous countable structure A. An ultrahomogeneous structure A can be seen as the Fraïssé limit of its Fraïssé class, that is, the class $\mathcal K$ of all finitely generated substructures of A. A Fraïssé class has three properties: the hereditary property, the joint embedding property, and the amalgamation property. (For details see [H].) Some connections between properties of the Fraïssé classes $\mathcal K$ and the automorphism groups of their Fraïssé limits are given for example in [KPT], [KS].

We are going to search for large free subgroups of $\operatorname{Aut}(A)$, for countable structures A. Macpherson [M1] showed that if A is ω -categorical, then $\operatorname{Aut}(A)$ contains a dense free subgroup of rank ω , and the automorphism group of the random graph contains a dense free subgroup on two generators. Cameron [C, p. 84] proved that every closed oligomorphic subgroup of S_{∞} contains $\operatorname{Aut}(\mathbb{Q}, \leq)$, and the latter group contains a free subgroup of rank continuum. Melles and Shelah [MS] proved that if A is a saturated model of a complete theory T with $|A| = \lambda > |T|$, then $\operatorname{Aut}(A)$ has a dense free subgroup of cardinality 2^{λ} . Gartside and Knight [GK] showed that if A is ω -categorical and $K_n = \{(g_1, \ldots, g_n) \in \operatorname{Aut}(A)^n : g_1, \ldots, g_n \text{ are free generators}\}$, then K_n is comeager in $\operatorname{Aut}(A)^n$ for every n. Some other results of this sort can be found in the survey paper [M2]. It was proved by Shelah [Sh1] that $\operatorname{Aut}(A)$ cannot be a free uncountable group when A is a

DOI: 10.4064/cm140-2-7

²⁰¹⁰ Mathematics Subject Classification: Primary 20E05; Secondary 20B27, 54H11. Key words and phrases: ultrahomogeneus structures, large substructures, free groups.

countable structure. Recently, Shelah [Sh2] proved that even no uncountable Polish group can be free.

Let $(A, \mathcal{C}, \mathcal{F}, \mathcal{R})$ be a countable structure where \mathcal{C} stands for the set of all constants, \mathcal{F} for the set of functions and \mathcal{R} for the set of relations. We will use one symbol A for both a structure and its underlying set. Recall that a structure A is ultrahomogeneous if every embedding of a finitely generated substructure can be extended to an automorphism of A. We denote by $\operatorname{gen}(X)$ the substructure of A generated by X, i.e., the intersection of all substructures containing X. In particular, $\operatorname{gen}(\emptyset) = \operatorname{gen}(\mathcal{C})$. Let $\operatorname{Aut}(A)$ denote the group of all automorphisms of A. Since A is countable, $\operatorname{Aut}(A)$ is isomorphic to a closed subgroup of the group S_{∞} of all permutations of \mathbb{N} . With the topology inherited from S_{∞} , $\operatorname{Aut}(A)$ is a topological group. If $B_1, B_2 \subset A$ are finitely generated substructures and $g: B_1 \to B_2$ is an isomorphism, then g will be called a partial isomorphism. The set of all partial isomorphisms of A will be denoted by $\operatorname{Part}(A)$.

We denote by \mathbb{P} the set of all pairs (n,p) where $p:\{0,1\}^n\to \operatorname{Part}(A)$ and dom(p(s)) is an *n*-element substructure of A for every $s \in \{0,1\}^n$. The set \mathbb{P} is ordered in the following way: $(n,p) \leq (k,q)$ if and only if $k \leq n$ and $q(t) \subset p(s)$ (i.e., p(s) extends q(t)) provided $t \prec s$ (i.e., s is an extension of t). We will show that, under some reasonable assumption on A, the generic filter G on \mathbb{P} produces a family of \mathfrak{c} free generators in $\operatorname{Aut}(A)$. Note that the poset \mathbb{P} is countable, and therefore it has the countable chain property. In Section 2 we will use the Rasiowa–Sikorski lemma to get a generic filter Gthat intersects countably many dense subsets of P. In this way we will infer that Aut(A) contains a free subgroup on \mathfrak{c} generators, and this result is valid in ZFC. In Section 3 it will be proved (by a similar argument and also under ZFC) that any countably generated free subgroup of S_{∞} can be extended to a \mathfrak{c} -generated free subgroup of S_{∞} , and that under Martin's Axiom any $< \mathfrak{c}$ -generated free subgroup of S_{∞} can be extended to a \mathfrak{c} -generated free subgroup of S_{∞} . In Section 4 we prove the following dichotomy: the product $\prod_{n\in\mathbb{N}}G_n$ of countable groups G_n either contains a \mathfrak{c} -generated free subgroup, or contains no uncountably generated free subgroup. Section 5 brings final remarks and open questions.

2. c-generated free subgroups of Aut(A). In this section we will assume that every finitely generated substructure of A is finite, that is, its Fraïssé class consists of finite structures. The next lemma shows that a generic filter gives a family of functions which map A onto itself.

Lemma 2.1. For every $k \in A$, the set

$$D_k := \{(n, p) \in \mathbb{P} : \forall s \in \{0, 1\}^n \ k \in \text{dom}(p(s)) \cap \text{rng}(p(s))\}$$

is dense in \mathbb{P} .

Proof. Let $k \in A$ and $(n,p) \in \mathbb{P}$. For any $s \in \text{dom}(p)$, let $\tilde{p}(s)$ be an automorphism of A such that $p(s) \subset \tilde{p}(s)$. Let (C_m) be an increasing sequence of finitely generated structures such that $A = \bigcup_{m \in \mathbb{N}} C_m$. Then there exists n_0 such that for any $s \in \text{dom}(p)$, we have $\text{dom}(p(s)) \subset C_{n_0}$ and

$$k \in \operatorname{dom}(\tilde{p}(s) \upharpoonright C_{n_0}) \cap \operatorname{rng}(\tilde{p}(s) \upharpoonright C_{n_0}).$$

Let $n' = |C_{n_0}|$, and for any $t \in \{0,1\}^{n'}$, set $p'(t) = \tilde{p}(t \upharpoonright n) \upharpoonright C_{n_0}$. Then $(n',p') \leq (n,p)$ and $(n',p') \in D_k$.

In the following reasoning, we will apply the above trick of using an increasing sequence (C_m) without any comments.

If $g \in \text{Part}(A)$, then we set $V(g) := \{ f \in \text{Aut}(A) : g \in f \}$. It is well known that the family of all sets of the form V(g) constitutes a basis of the natural topology on Aut(A).

LEMMA 2.2. Let F be a nowhere dense subset of Aut(A). Then the set

$$D_F = \{(n, p) \in \mathbb{P} : \forall s \in \{0, 1\}^n \ V(p(s)) \cap F = \emptyset\}$$

is dense in \mathbb{P} .

Proof. Let $(n,p) \in \mathbb{P}$. Since F is nowhere dense, for every $s \in \{0,1\}^n$ there exists an embedding $g_s : B_s \to A$ (B_s is a finitely generated substructure) such that g_s is an extension of p(s) and $V(g_s) \cap F = \emptyset$. Let $C = \text{gen}(\bigcup \{\text{dom}(g_s) : s \in \text{dom}(p)\})$. Let n' = |C|, and for every $t \in \{0,1\}^{n'}$ let $p'(t) : C \to A$ be an embedding and an extension of $g_{t \mid n}$. Then $(n', p') \le (n, p)$ and $(n', p') \in D_F$ (because $V(p'(t)) \subset V(g_{t \mid n})$).

Consider the following example. Let $A = \mathbb{N}$, and define unary relations R_n on $A, n \in \mathbb{N}$, by $x \in R_n$ if and only if x = 2n or x = 2n+1. Since $(A, \{R_n : n \in \mathbb{N}\})$ is a relational structure, any of its finitely generated substructures is finite. If $f \in \operatorname{Aut}(A)$, then f(2n) = 2n and f(2n+1) = 2n+1, or f(2n+1) = 2n and f(2n) = 2n+1. Clearly, A is ultrahomogeneous and $\operatorname{Aut}(A)$ is isomorphic to $\mathbb{Z}_2^{\mathbb{N}}$. Hence for any $f \in \operatorname{Aut}(A)$ we have $f \circ f = \operatorname{id}$, which means that $\operatorname{Aut}(A)$ does not even contain a free subgroup on one generator.

This example shows that to get a promised large free subgroup, we need an additional assumption.

Let us introduce the following definition. We say that a relational structure A is ω -independent if for any finitely generated substructures B_1, B_2 of A, and for any m, there is a set $D \subset A \setminus (B_1 \cup B_2)$ consisting of m+1 elements such that, for any embedding $f: B_1 \to B_2$ and any partial permutation g of D, the function $f \cup g$ is an embedding of $B_1 \cup \text{dom}(g)$ into A.

Now we show that some natural examples of ultrahomogeneous structures are ω -independent and have the property that every finitely generated substructure is finite.

- 1. First consider \mathbb{N} without any structure. Then every finite set is a finitely generated substructure, and the embeddings are exactly the one-to-one mappings. To see that \mathbb{N} is ω -independent, fix two finite subsets $B_1, B_2 \subset \mathbb{N}$. Let $C = B_1 \cup B_2$ and let x_0, \ldots, x_m be pairwise distinct elements of $\mathbb{N} \setminus C$. Then it is clear that the union of any one-to-one mapping $f: B_1 \to B_2$ and a partial permutation g of x_0, \ldots, x_m is an embedding.
- **2.** The next example is a rational Urysohn space \mathbb{U} . Recall that a metric space is a rational Urysohn space if it is countable and every finite rational space (i.e., with rational distances) has an isometric copy in \mathbb{U} . It is known that \mathbb{U} is ultrahomogeneous in the sense that, for every finite rational metric space $C \subset \mathbb{U}$ and every isometric embedding $f: C \to \mathbb{U}$, there is an isometry $\tilde{f}: \mathbb{U} \to \mathbb{U}$ which extends f. The following is standard and well known:
- CLAIM 2.3. Assume that A is an ultrahomogeneous structure. Let Y be a structure which is isomorphic to a finitely generated substructure of A such that $Y = X \cup Z$, $X \cap Z = \emptyset$ and $X \subset A$, for some X, Z. Then there is $Z' \subset A$ and a partial isomorphism $g: Z \to Z'$ such that the mapping $h: Y \to X \cup Z'$ given by h(x) = x for $x \in X$ and h(x) = g(x) for $x \in Z$ is a partial isomorphism of Y and $X \cup Z'$.

Now we prove that the Urysohn space is ω -independent. Let B_1, B_2 be two finite subspaces of \mathbb{U} , $C = B_1 \cup B_2$, let d be a metric on \mathbb{U} , and let $M = \max\{d(z,c): z,c \in C\} + 1$. Define a finite rational metric space (Y,ρ) as follows. Let $Y = C \cup \{a_0,\ldots,a_m\}$ where a_0,\ldots,a_m are distinct elements which do not belong to C. If $x,y \in C$, then set $\rho(x,y) = d(x,y)$; if $x \in C$ and $y = a_i$, then set $\rho(x,y) = M$; finally, if $x = a_i$ and $y = a_j$, then $\rho(x,y) = 1$ if $i \neq j$ and $\rho(x,y) = 0$ if i = j.

Then (Y, ρ) is a finite rational metric space. Moreover, by Claim 2.3, there are $x_0, \ldots, x_m \in \mathbb{U} \setminus C$ such that $d(x, x_i) = M$ for every $x \in C$ and $i = 0, \ldots, m$, and $d(x_i, x_j) = 1$ for $i \neq j$. If $f : B_1 \to B_2$ is an isometric embedding and g is partial permutation of x_0, \ldots, x_m , then it is easy to see that the union of f and g is an isometric embedding. Hence the rational Urysohn space \mathbb{U} is ω -independent.

3. Let \mathbb{G} be a random graph, that is, a countable infinite graph where for any finite disjoint sets X and Y we can find a vertex with edges going to every vertex in X but to no vertex in Y. We will show that \mathbb{G} is ω -independent. Fix two finite graphs B_1 and B_2 . Take any distinct x_0, \ldots, x_m , and define a graph $B_1 \cup B_2 \cup \{x_0, \ldots, x_m\}$ as an extension of $B_1 \cup B_2$ such that there are no edges between x_0, \ldots, x_m and $B_1 \cup B_2$, and there is no edge between x_i and x_j for $i, j \leq m$. Using Claim 2.3 we may assume that $x_0, \ldots, x_m \in \mathbb{G} \setminus (B_1 \cup B_2)$. Let g be any partial permutation of x_0, \ldots, x_m and $f: B_1 \to B_2$ be an embedding. Set $f_g = f \cup g: B_1 \cup \text{dom}(g) \to \mathbb{G}$.

Let $a, b \in B_1 \cup \text{dom}(g)$. If $a, b \in B_1$, then there is an edge between a and b if and only if there is an edge between $f_g(a)$ and $f_g(b)$. If a or b is among x_0, \ldots, x_m , then there is neither an edge between a and b nor one between $f_g(a)$ and $f_g(b)$. Thus f_g embeds $B_1 \cup \text{dom}(g)$ into \mathbb{G} .

- **4.** Let \mathbb{G}^n be the random K_n -free graph, that is, the ultrahomogeneous countable graph which omits K_n , the complete graph on n vertices. Equivalently, \mathbb{G}^n is the Fraïssé limit of the class of all finite K_n -free graphs. Using the same argument as for the random graph, one can see that \mathbb{G}^n is ω -independent.
- **5.** Let \mathbb{E} be a countable equivalence relation with infinitely many infinite equivalence classes. Let $f: B_1 \to B_2$ be an embedding between two finite equivalence relations B_1 and B_2 (i.e., finite sets with equivalence classes induced from \mathbb{E}). Take a set $\{x_0, \ldots, x_m\}$ of elements from a fixed equivalence class such that $\{x_0, \ldots, x_m\} \cap (B_1 \cup B_2) = \emptyset$. Clearly for any partial permutation g of $\{x_0, \ldots, x_m\}$ the function $f \cup g$ is an embedding.
- **6.** The same reasoning remains true if one considers \mathbb{E}^n , a countable equivalence relation with n infinite equivalence classes.
- 7. Let (\mathbb{D}, \leq) be the universal countable ultrahomogeneous partially ordered set. This is the Fraïssé limit of all finite partially ordered sets—see [Sch] and [So] for more information. Let $f: B_1 \to B_2$ be an embedding between two finite suborders B_1 and B_2 of \mathbb{D} . Take a set $\{x_0, \ldots, x_m\} \subset \mathbb{D}$ such that

 $\forall i, j \ (i \neq j \Rightarrow \neg(x_i \leq x_j)) \text{ and } \forall y \in B_1 \cup B_2 \ \forall i \ (\neg(x_i \leq y) \text{ and } \neg(y \leq x_i)).$ Then for any partial permutation g of $\{x_0, \ldots, x_m\}$, the function $f \cup g$ is an embedding.

Let x_0, \ldots, x_m be pairwise distinct elements of A. A shift on $\{x_0, \ldots, x_m\}$ is a partial function $\varphi: \{x_0, \ldots, x_m\} \to A$ such that $\varphi(x_i) = x_{i-1}$ for $i = 1, \ldots, m$ (φ is a left-shift) or $\varphi(x_i) = x_{i+1}$ for $i = 0, \ldots, m-1$ (φ is a right-shift). Note that φ is undefined either at x_0 or at x_m , so φ is actually a partial mapping on $\{x_0, \ldots, x_m\}$. An (x_0, \ldots, x_m) -function, where x_0, \ldots, x_m are pairwise distinct, is a partial function $g: \bigcup_{i=1}^k I_i \to A$ such that:

- (i) I_1, \ldots, I_k are pairwise disjoint;
- (ii) each I_i is of the form $\{x_p, x_{p+1}, \dots, x_q\}$ for some $0 \le p < q \le m$;
- (iii) each restriction $g \upharpoonright I_i$ is a shift.

We will consider the following condition:

(*) For any finitely generated substructures $B_1, B_2 \subset A$ and any $m \in \mathbb{N}$, there exist pairwise distinct $x_0, \ldots, x_m \in A \setminus (B_1 \cup B_2)$ such that for any embedding $f: B_1 \to B_2$ and any (x_0, \ldots, x_m) -function g, there exists an embedding $f_g: \text{gen}(B_1 \cup \text{dom}(g)) \to A$ with $f, g \subset f_g$.

Since every (x_0, \ldots, x_m) -function g is a partial permutation of $\{x_0, \ldots, x_m\}$, condition (*) is weaker than ω -independence.

Assume that A is the Fraïssé limit of a class \mathcal{K}_0 . Let

 $\mathcal{K} = \mathcal{K}_0 \star \mathcal{LO} := \{ \langle B, \leq \rangle : B \in \mathcal{K}_0 \text{ and } \leq \text{ is a linear ordering on } B \}.$

The class K_0 has the strong amalgamation property if for any $A, B, C \in K_0$ and embeddings $f: A \to B$ and $g: A \to C$, there is $D \in K_0$ and embeddings $r: B \to D$ and $s: C \to D$ with $r \circ f = s \circ g$ such that $r(B) \cap s(C) = r(f(A)) = s(g(A))$. In [KPT] it was proved that if K_0 is a Fraïssé class with strong amalgamation property, then so is K. We will denote the Fraïssé limit of K by $A_{<}$.

Lemma 2.4. Let A be an ω -independent ultrahomogeneous relational countable structure. Then A_{\leq} satisfies (*).

Proof. Let $B_1, B_2 \subset A$ and let $m \in \mathbb{N}$. Since A is ω -independent, there is a set $\{y_0, \ldots, y_m\} \subset A \setminus (B_1 \cup B_2)$ such that, for any embedding $f: B_1 \to B_2$ and any partial permutation g of y_0, \ldots, y_m , the function $f \cup g$ is an embedding. We define a linear order \preceq on $B_1 \cup B_2 \cup \{y_0, \ldots, y_m\}$ as follows: \preceq on $B_1 \cup B_2$ equals \leq , $y_i \preceq y_k$ provided $i \leq k$, and $x \preceq y_i$ for every $x \in B_1 \cup B_2$ and $i = 0, \ldots, m$. Since $B_1 \cup B_2 \cup \{y_0, \ldots, y_m\}$ is a substructure of A, and Δ is a linear order on it, the structure $\langle B_1 \cup B_2 \cup \{y_0, \ldots, y_m\}, \Delta \rangle$ can be embedded into $A \subseteq$. By Claim 2.3 we can find $x_0, \ldots, x_m \in A$ such that $\langle B_1 \cup B_2 \cup \{x_0, \ldots, x_m\}, \Delta \rangle$ is a substructure of $A \subseteq$ isomorphic to $\langle B_1 \cup B_2 \cup \{y_0, \ldots, y_m\}, \Delta \rangle$.

Take any A_{\leq} -embedding $f: B_1 \to B_2$ and any (x_0, \ldots, x_m) -function g. Then $f \cup g$ is an A-embedding. Note that both f and g preserve \leq . Since each element of $B_1 \cup B_2$ is in relation \leq to each x_i , the function $f \cup g$ is an A_{\leq} -embedding. \blacksquare

- **8.** Consider the structure (\mathbb{Q}, \leq) of all rational numbers. If \mathbb{N} stands for the natural numbers without any structure, then (\mathbb{Q}, \leq) is isomorphic to \mathbb{N}_{\leq} . By Lemma 2.4, (\mathbb{Q}, \leq) has (*).
- **9.** Let $(\mathbb{B}, \vee, \wedge, \neg, 0, 1)$ be a countable atomless Boolean algebra. Let $B_1, B_2 \subset \mathbb{B}$ be finite subalgebras and let $f: B_1 \to B_2$ be an embedding. Let $C = \text{gen}(B_1 \cup B_2)$ be the smallest subalgebra of \mathbb{B} containing B_1 and B_2 . Let $\{c_i : i \in I\}$ be the set of all atoms of C. We say that a finite subalgebra X of \mathbb{B} is independent of C provided there is a finite set $\{x_j : j \in J\}$ with $\text{gen}(\{x_j : j \in J\}) = X$ and

$$\bigwedge_{j \in J_1} x_j \wedge \bigwedge_{j \in J_2} \neg x_j \wedge c_i \neq 0$$

for every $i \in I$ and every partition J_1, J_2 of J. Clearly, such an algebra X exists and any one-to-one self-mapping of $\{x_j : j \in J\}$ can be extended to an automorphism of X.

CLAIM 2.5. Let X be a finite algebra independent of $X_1 \cup X_2$, and let g be an automorphism of X. Then $f \cup g$ can be extended to an embedding $f_g : \text{gen}(B_1 \cup X) \to \mathbb{B}$.

Proof. Let $\{a_k : k \in K\}$ be the set of all atoms of B_1 , and $\{b_k : k \in K\}$ $\subset B_2$ be such that $f(a_k) = b_k$. The atoms of $gen(B_1 \cup X)$ are of the form

$$\bigwedge_{j \in J_1} x_j \wedge \bigwedge_{j \in J_2} \neg x_j \wedge a_k$$

for every $k \in K$ and every partition J_1, J_2 of J. Define f_g on atoms as follows:

$$f_g\Big(\bigwedge_{j\in J_1} x_j \wedge \bigwedge_{j\in J_2} \neg x_j \wedge a_k\Big) = g\Big(\bigwedge_{j\in J_1} x_j \wedge \bigwedge_{j\in J_2} \neg x_j\Big) \wedge f(a_k).$$

Clearly, f_g can be uniquely extended to a homomorphism $f_g : \text{gen}(B_1 \cup X) \to \mathbb{B}$. We need only prove that f_g is one-to-one. Suppose that

$$f_g\Big(\bigwedge_{j\in J_1} x_j \wedge \bigwedge_{j\in J_2} \neg x_j \wedge a_k\Big) = f_g\Big(\bigwedge_{j\in J_1'} x_j \wedge \bigwedge_{j\in J_2'} \neg x_j \wedge a_{k'}\Big).$$

Then

$$g\Big(\bigwedge_{j\in J_1} x_j \wedge \bigwedge_{j\in J_2} \neg x_j\Big) \wedge f(a_k) = g\Big(\bigwedge_{j\in J_1'} x_j \wedge \bigwedge_{j\in J_2'} \neg x_j\Big) \wedge f(a_{k'}).$$

Since X is independent of B_2 , both sides of the above equality are nonzero. As f is embedding, we have $a_k = a_{k'}$. Moreover, g is an isomorphism of X, so $J_1 = J'_1$ and $J_2 = J'_2$.

Let $B_1, B_2 \subset \mathbb{B}$ be finite subalgebras and let $f: B_1 \to B_2$ be an embedding. For any $m \in \mathbb{N}$ one can find x_0, \ldots, x_m witnessing that $X = \text{gen}(\{x_0, \ldots, x_m\})$ is independent of $C = \text{gen}(B_1 \cup B_2)$. Let g be any partial permutation of x_0, \ldots, x_m . We extend g to an isomorphism of X, and using Claim 2.5, we find an embedding f_g extending $f \cup g$. This shows that \mathbb{B} is ω -independent (in particular, it satisfies (*)).

Note that \mathbb{B} is not a relational structure, so we cannot apply Lemma 2.4. It is folklore that \mathbb{U} , \mathbb{G} , \mathbb{G}^n , \mathbb{E} and \mathbb{E}^n have the strong amalgamation property, and there exist their ordered counterparts: the ordered rational Urysohn space \mathbb{U}_{\leq} , the ordered random graph \mathbb{G}_{\leq} , the ordered K_n -free random graph \mathbb{G}_{\leq}^n , and the ordered relations \mathbb{E}_{\leq} and \mathbb{E}_{\leq}^n . All of those structures are relational and ω -independent, so we can apply Lemma 2.4 to conclude that each of them satisfies condition (*).

Now we will show how (*) implies the existence of a large free subgroup of Aut(A).

Let $m \in \mathbb{N}$ and let $r_1, \ldots, r_k \in \{1, \ldots, m\}$ be such that $r_i \neq r_{i+1}$ for $i \in \{1, \ldots, k-1\}$, and let $n_1, \ldots, n_k \in \mathbb{Z} \setminus \{0\}$. Then

$$(2.1) w(y_1, \dots, y_m) = y_{r_1}^{n_1} \dots y_{r_k}^{n_k}$$

will be called a word of length n where $n = |n_1| + \cdots + |n_k|$. If additionally, f_1, \ldots, f_m are functions or partial functions defined on A, then we denote by $w(f_1, \ldots, f_m)$ the function defined in a natural way: the operation is the composition and the domain of $w(f_1, \ldots, f_m)$ is the natural domain. It is possible that $w(f_1, \ldots, f_m) = \emptyset$, and if all f_i are elements of $\operatorname{Aut}(A)$, then so is $w(f_1, \ldots, f_m)$. We also consider the empty set \emptyset as a word of length zero. In that case we also define $w(f_1, \ldots, f_k) = \operatorname{id}$, the identity function. Clearly, $f_1, \ldots, f_m \in \operatorname{Aut}(A)$ are free generators, i.e., they generate a free subgroup of $\operatorname{Aut}(A)$, if $w(f_1, \ldots, f_m) \neq \operatorname{id}$ for every nonempty word $w(y_1, \ldots, y_m)$.

LEMMA 2.6. For every nonempty word $w(y_1, \ldots, y_m)$ of length n, and for distinct x_0, \ldots, x_n , there exist (x_0, \ldots, x_n) -functions g_1, \ldots, g_m such that $w(g_1, \ldots, g_m)(x_0) = x_n$.

Proof. Assume that w is given by (2.1). We will define $g_{r_k}, g_{r_{k-1}}, \ldots, g_{r_1}$ step by step. Since it is possible that $r_i = r_j$ for $i \neq j$, some of the functions g_1, \ldots, g_m may be defined in more than one step.

If $n_k < 0$, then set $g_{r_k}(x_i) = x_{i-1}$ for $i = 1, ..., |n_k|$, and if $n_k > 0$, then set $g_{r_k}(x_i) = x_{i+1}$ for $i = 0, ..., |n_k| - 1$.

If $n_{k-1} < 0$, then set $g_{r_{k-1}}(x_i) = x_{i-1}$ for $i = |n_k| + 1, \dots, |n_k| + |n_{k-1}|$, and if $n_{k-1} > 0$, then set $g_{r_{k-1}}(x_i) = x_{i+1}$ for $i = |n_k|, \dots, |n_k| + |n_{k-1}| - 1$.

We continue this procedure, and finally, if $n_1 < 0$, we set $g_{r_1}(x_i) = x_{i-1}$ for $i = |n_k| + \cdots + |n_2| + 1, \ldots, |n_k| + \cdots + |n_1|$, and if $n_k > 0$, we set $g_{r_1}(x_i) = x_{i+1}$ for $i = |n_k| + \cdots + |n_2|, \ldots, |n_k| + \cdots + |n_1| - 1$.

To illustrate the reasoning consider the following example. Let $w(y_1, y_2) = y_1^{-2} y_2 y_1^3$. Then $r_1 = 1$, $r_2 = 2$, $r_3 = 1$, $n_1 = -2$, $n_2 = 1$, $n_3 = 3$ and we define g_1 as the right-shift on $\{x_0, x_1, x_2, x_3\}$, g_2 as the right-shift on $\{x_3, x_4\}$, and finally g_1 as the left-shift on $\{x_4, x_5, x_6\}$. Then g_1 is a union of two shifts. \blacksquare

LEMMA 2.7. Assume that A has property (*). For any nonempty word $w(y_1, \ldots, y_m)$ and any pairwise distinct finite sequences s_1, \ldots, s_m of 0's and 1's of the same length, the set

$$D_w^{s_1, \dots, s_m} = \{(n, p) : |s_1| \le n \text{ and for every } t_1, \dots, t_m \in \{0, 1\}^n \text{ with } s_i \prec t_i$$

$$\text{we have } w(p(t_1), \dots, p(t_m)) \ne \text{id } \}$$

is dense in \mathbb{P} .

Proof. Choose any $(n, p) \in \mathbb{P}$ and let B_1 be a finitely generated substructure of A such that $\bigcup \{\operatorname{dom}(p(s)) : s \in \operatorname{dom}(p)\} \subset B_1$ and $|B_1| \geq |s_1|$. Set $n' = |B_1|$ and for every $s \in \{0, 1\}^{n'}$ let $p'(s) : B_1 \to A$ be an embedding which extends $p(s \upharpoonright n)$. Then $(n', p') \leq (n, p)$.

Let $B_2 = \text{gen}(\bigcup \{\text{rng}(p'(s)) : s \in \text{dom}(p')\})$, and let $(x_0, \ldots, x_{|w|})$, where |w| stands for the length of w, be chosen as in (*). Then choose $(x_0, \ldots, x_{|w|})$ -

functions g_1, \ldots, g_m as in Lemma 2.6. Now, for every $i = 1, \ldots, m$ and every $s \in \{0,1\}^{n'}$ with $s_i \prec s$, let $f_s : \operatorname{gen}(B_1 \cup \operatorname{dom}(g_i)) \to A$ be chosen for p'(s) and g_i , according to (*). Let $E = \operatorname{gen}(\bigcup \{\operatorname{dom}(f_s) : s_i \prec s\})$ and n'' = |E|. Finally, for every $t \in \{0,1\}^{n''}$, let $p''(s) : E \to A$ be defined in the following way. If $s_i \prec t$ for some $i = 1, \ldots, m$, then p''(t) is an extension of $f_{t \upharpoonright n'}$; otherwise, let p''(t) be any extension of $p'(t \upharpoonright n')$. Then $(n'', p'') \leq (n', p')$, and consequently $(n'', p'') \leq (n, p)$.

We need to show that $(n'', p'') \in D_w^{s_1, \dots, s_m}$. If $t_1, \dots, t_m \in \{0, 1\}^{n''}$ are such that $s_i \prec t_i$, then $p''(t_1), \dots, p''(t_m)$ are extensions of g_1, \dots, g_m , respectively. Thus by Lemma 2.6 we obtain

$$w(p''(t_1),\ldots,p''(t_m))(x_0)=w(g_1,\ldots,g_m)(x_0)=x_{|w|}.$$

THEOREM 2.8. Assume that A satisfies (*). Then for every residual set $Z \subset \operatorname{Aut}(A)$, there is a family $\mathcal{F} \subset Z$ of \mathfrak{c} free generators.

Proof. Let Z be a residual subgroup of $\operatorname{Aut}(A)$. By Lemmas 2.1, 2.2, 2.7 and the Rasiowa–Sikorski lemma, there exists a filter G on \mathbb{P} , which has nonempty intersection with all sets $D_k, D_w^{s_1, \dots, s_l}$ and D_{F_n} , where (F_n) is a sequence of nowhere dense sets such that $\operatorname{Aut}(A) \setminus Z = \bigcup F_n$.

Let $g:\{0,1\}^{\mathbb{N}}\to \operatorname{Aut}(A)$ be defined in the following way. If $\alpha\in\{0,1\}^{\mathbb{N}}$, then

$$g(\alpha) = \bigcup \{p(\alpha {\restriction} n) : (n,p) \in G\}.$$

First we show that $g(\alpha)$ is well defined. If $(n,p), (n',p') \in G$, then there is $(m,q) \in G$ below (n,p) and (n',p'). This ensures that if $x \in \text{dom}(p(\alpha \upharpoonright n)) \cap \text{dom}(p'(\alpha \upharpoonright n'))$, then $p(\alpha \upharpoonright n)(x) = p'(\alpha \upharpoonright n')(x)$.

Now, we show that $dom(g(\alpha)) = rng(g(\alpha)) = A$. Let $k \in A$. Since D_k is dense, there is $(n, p) \in D_k \cap G$. Then

$$k \in \mathrm{dom}(p(\alpha \! \upharpoonright \! n)) \cap \mathrm{rng}(p(\alpha \! \upharpoonright \! n)) \subset \mathrm{dom}(g(\alpha)) \cap \mathrm{rng}(g(\alpha)).$$

Now we show that $g(\alpha) \in \operatorname{Aut}(A)$. It is enough to show that for any finitely generated substructure C, $g(\alpha) \upharpoonright C$ is an embedding. Assume $C = \{x_1, \ldots, x_k\}$. Since $C \subset \operatorname{dom}(g(\alpha))$, there are $(p_1, n_1), \ldots, (p_k, n_k) \in G$ such that $x_i \in \operatorname{dom}(p_i(\alpha \upharpoonright n_i))$. Since G is a filter, there is $(m, q) \in G$ below each (n_i, p_i) . This shows that $g(\alpha)(x_i) = q(\alpha \upharpoonright m)(x_i)$ for every $i = 1, \ldots, k$. Thus $g(\alpha) \upharpoonright C = q(\alpha \upharpoonright m) \upharpoonright C$, which shows that it is an embedding.

Now we will show that $g(\alpha) \in Z$. Let $k \in \mathbb{N}$ and let $(n, p) \in G \cap D_{F_k}$. Then $g(\alpha) \in V(p(\alpha \upharpoonright n)) \subset \operatorname{Aut}(A) \setminus F_k$. Since k has been taken arbitrarily, $g(\alpha) \in \operatorname{Aut}(A) \setminus \bigcup_{n \in \mathbb{N}} F_n = Z$.

It remains to show that $\{g(\alpha): \alpha \in \{0,1\}^{\mathbb{N}}\}$ is a family of free generators. Let $w(y_1,\ldots,y_m)$ be any word and α_1,\ldots,α_m be distinct elements of $\{0,1\}^{\mathbb{N}}$. Let $k \in \mathbb{N}$ be such that $\alpha_i | k \neq \alpha_j | k$ for $i \neq j$, and let $(n,p) \in D_w^{\alpha_1 | k,\ldots,\alpha_m | k} \cap G$. Since $\alpha_i | k \prec \alpha_i | n$ for $i = 1,\ldots,m$, for some

 $x \in A$ we have

$$w(g(\alpha_1),\ldots,g(\alpha_m))(x)=w(p(\alpha_1\upharpoonright n),\ldots,p(\alpha_m\upharpoonright n))(x)\neq x.$$

This ends the proof.

Let us note that condition (*) does not imply that $\operatorname{Aut}(A)$ is oligomorphic (e.g. let A be the rational Urysohn space), therefore our result is different from that of Cameron mentioned in the Introduction.

3. Large free subgroups of S_{∞} . Now we show that, in the case of S_{∞} , the automorphism group of \mathbb{N} without any structure, we can strengthen the conclusion of Theorem 2.8. Clearly, S_{∞} is simply the group of all bijections of \mathbb{N} . We say that a bijection $f \in S_{\infty}$ is proper (or has infinite support) if for every finite set $B \subset \mathbb{N}$, there is $x \notin B$ such that $f(x) \neq x$.

LEMMA 3.1. Assume f_1, \ldots, f_m are free generators and $w(y_1, \ldots, y_m)$ is any nonempty word. Then $w(f_1, \ldots, f_m)$ is proper.

Proof. This follows from the fact that each $f \in S_{\infty}$ with $f^n \neq \text{id}$ for every n > 0 (which clearly holds for the function $w(f_1, \ldots, f_m)$) is automatically proper. Indeed, otherwise f would correspond to a bijection of a finite set (that is, $f = g \cup \text{id}_{\mathbb{N} \setminus A}$ for some finite $A \subset \mathbb{N}$, where g is a permutation of A), and hence $f^n = \text{id}$ where n = |A|!.

LEMMA 3.2. Let A be a relational structure which is ω -independent. For any bijections $f_1, \ldots, f_k \in \operatorname{Aut}(A)$, $k \geq 2$, such that f_2, \ldots, f_{k-1} are proper, any nonzero numbers n_1, \ldots, n_{k-1} and every finite structure $C \subset A$, there exist $x \in A \setminus C$, finite structures $B_1, B_2 \subset A \setminus C$ and a bijection $g: B_1 \to B_2$ such that $x \in \operatorname{dom}(f_k \circ g^{n_{k-1}} \circ f_{k-1} \circ g^{n_{k-2}} \circ \cdots \circ g^{n_1} \circ f_1)$ and

$$f_k \circ g^{n_{k-1}} \circ f_{k-1} \circ g^{n_{k-2}} \circ \cdots \circ g^{n_1} \circ f_1(x) \neq x.$$

Proof. We assume k > 2 (the case k = 2 is much simpler and will be obvious after considering the case k > 2). Since A is ω -independent, there exist $y_0, \ldots, y_t, t > 2|C| + 5k$, such that for any isomorphism $h: C \to C$ and any partial permutation h' of y_0, \ldots, y_t , the function $h \cup h'$ is an embedding.

We first show that there are elements x_0, \ldots, x_{2k-1} such that:

- (a) $x_i \notin C$ for i = 0, ..., 2k 1;
- (b) $f_i(x_{2i-2}) = x_{2i-1}$ for i = 1, ..., k;
- (c) x_1, \ldots, x_{2k-2} are distinct;
- (d) $x_0 \neq x_{2k-1}$.

First, take

$$x_1 \in \{y_0, \dots, y_t\} \setminus (f_1^{-1}(C) \cup C)$$

and set $x_0 = f_1^{-1}(x_1)$. Then take

$$x_2 \in \mathbb{N} \setminus (f_2^{-1}(C) \cup C \cup f_2^{-1}(\{x_0, x_1\}) \cup \{x_0, x_1\})$$

such that $f_2(x_2) \neq x_2$ and set $x_3 = f_2(x_2)$. It is easy to see that (a) holds for i = 0, 1, 2, 3; (b) holds for i = 1, 2; and x_1, x_2, x_3 are distinct. In the next step we take

$$x_4 \in \mathbb{N} \setminus (f_3^{-1}(C) \cup C \cup f_3^{-1}(\{x_0, x_1, x_2, x_3\}) \cup \{x_0, x_1, x_2, x_3\})$$

such that $f_3(x_4) \neq x_4$ and set $x_5 = f_3(x_4)$. We continue this procedure, and finally we take

$$x_{2k-2} \in \mathbb{N} \setminus (f_k^{-1}(C) \cup C \cup f_k^{-1}(\{x_0, \dots, x_{2k-3}\}) \cup \{x_0, \dots, x_{2k-3}\})$$

and $x_{2k-1} = f_k(x_{2k-2})$. Then (a)-(d) are satisfied.

Now take elements $y_0^1,\dots,y_{|n_1|}^1,y_0^2,\dots,y_{|n_2|}^2,\dots,y_0^{k-1},\dots,y_{|n_{k-1}|}^{k-1}$ such that

- (i) $y_0^i = x_{2i-1}$ and $y_{|n_i|}^i = x_{2i}$ for $i = 1, \dots, k-1$;
- (ii) $y_i^i \notin C$ for all i, j;
- (iii) $y_0^1, \dots, y_{|n_1|}^1, y_0^2, \dots, y_{|n_2|}^2, \dots, y_0^{k-1}, \dots, y_{|n_{k-1}|}^{k-1}$ are distinct.

By (a) and (c), we can choose such elements. For every i = 1, ..., k - 1, let

$$D_i = \begin{cases} \{y_0^i, \dots, y_{|n_i|-1}^i\} & \text{if } n_i > 0, \\ \{y_1^i, \dots, y_{|n_i|}^i\} & \text{if } n_i < 0. \end{cases}$$

Now we define a function g on $B = D_1 \cup \cdots \cup D_{k-1}$ in the following way. For every $i = 1, \ldots, k-1$, set

$$g(y_l^i) = \begin{cases} y_{l+1}^i & \text{if } n_i > 0, \ l = 0, \dots, |n_i| - 1, \\ y_{l-1}^i & \text{if } n_i < 0, \ l = 1, \dots, |n_i|. \end{cases}$$

By (iii), the function g is well defined, one-to-one, and $B \cup g(B) \subset \mathbb{N} \setminus C$. Also, for every $i = 1, \dots, k-1$, by (i), we have

$$g^{n_i}(x_{2i-1}) = g^{n_i}(y_0^i) = y_{|n_i|}^i = x_{2i}.$$

Together with (b) and (d), this gives the assertion.

LEMMA 3.3. Assume that $f_1, \ldots, f_m \in S^{\infty}$ are pairwise distinct free generators. Then there is $g \in S_{\infty} \setminus \{f_1, \ldots, f_m\}$ such that f_1, \ldots, f_m, g are free generators.

Proof. It is enough to show that there exists $g \in S_{\infty}$ such that for any word $w = w(y_1, \ldots, y_{m+1})$ such that y_{m+1} appears in $w, w(f_1, \ldots, f_m, g) \neq$ id. The family of such words is countable; enumerate it as $W = \{w_n : n \in \mathbb{N}\}$. We will define sequences (C_n) and (C'_n) of pairwise disjoint, finite subsets of \mathbb{N} , and a sequence of partial functions (g_n) , such that for every $n \in \mathbb{N}$,

- 1. $C'_n \subset C_n$;
- 2. $C_n \setminus C'_n \neq \emptyset$;

- 3. $g_n: C'_n \to C_n$ is one-to-one;
- 4. there is $x_n \in C_n$ such that $x_n \in \text{dom}(w_n(f_1, \ldots, f_m, g_n))$ and $w_n(f_1, \ldots, f_m, g_n)(x_n) \neq x_n$.

Then any bijective extension of $g = \bigcup_{n \in \mathbb{N}} g_n$ will satisfy our needs. Such an extension exists, since by 1–3, the sets dom(g), $\mathbb{N} \setminus dom(g)$, rng(g) and $\mathbb{N} \setminus rng(g)$ are infinite.

Let n = 1. Write y instead of y_{m+1} . Then

$$w_1 = u_k \cdot y^{n_{k-1}} \cdot u_{k-1} \cdot y^{n_{k-2}} \cdots y^{n_1} \cdot u_1$$

for some words u_1, \ldots, u_k in which y does not appear (it is possible that u_1 or u_k are empty words, but for $i \notin \{1, k\}$, u_i is nonempty). By Lemma 3.2 applied to the functions $f_i = u_i(f_1, \ldots, f_m)$ (if u_i is empty, then $f_i = \mathrm{id}$) and $C = \emptyset$, there are finite sets B_1, B_2 , an element x_1 and a bijective map $g_1 : B_1 \to B_2$ such that $x_1 \in \mathrm{dom}(w_1(f_1, \ldots, f_m, g_1))$ and $w_1(f_1, \ldots, f_m, g_1)(x_1) \neq x_1$. Let $C_1 = B_1 \cup B_2 \cup \{x_1, y_1\}$, where y_1 is not in $B_1 \cup B_2 \cup \{x_1\}$, and $C'_1 = B_1$.

Assume that we have already made the construction up to step n. Then we proceed exactly as in the first step, but for the word w_{n+1} , and we use Lemma 3.2 for $C = C_1 \cup \cdots \cup C_n$.

If w, w' are words, then we write $w' \leq w$ whenever w' is created from w by erasing some symbols on the left side. In particular,

$$y_{r_2}^{n_2} \dots y_{r_k}^{n_k} \le y_{r_1}^{n_1} y_{r_2}^{n_2} \dots y_{r_k}^{n_k},$$

and if $n_1 > 0$, then

$$y_{r_1}^{n_1-1}y_{r_2}^{n_2}\dots y_{r_k}^{n_k} \leq y_{r_1}^{n_1}y_{r_2}^{n_2}\dots y_{r_k}^{n_k}$$

Also, we assume that $\emptyset \leq w$ for any w.

LEMMA 3.4. For any $k, l \in \mathbb{N}$, any word $w(y_1, \ldots, y_m)$ with k + l = m, any free generators $f_1, \ldots, f_k \in S^{\infty}$, and any pairwise different sequences s_1, \ldots, s_l of 0's and 1's of the same length, the set

$$D_{w,f_1,\dots,f_k}^{s_1,\dots,s_l} = \{(n,p) : n \ge |s_1| \text{ and if } t_1,\dots,t_l \in \{0,1\}^n \text{ with } s_i \prec t_i$$

$$then \ w(f_1,\dots,f_k,p(t_1),\dots,p(t_l)) \ne id\}$$

is dense in \mathbb{P} .

Proof. Take any $(n,p) \in \mathbb{P}$ and set $D = \bigcup \{ \text{dom}(p(s)) \cup \text{rng}(p(s)) : s \in \text{dom}(p) \}$. Let $g_1, \ldots, g_l \in S_{\infty} \setminus \{f_1, \ldots, f_k\}$ be pairwise distinct and such that $f_1, \ldots, f_k, g_1, \ldots, g_l$ are free generators; we can find such g_i 's by Lemma 3.3. Set $B = \bigcup \{ w'(f_1, \ldots, f_k, g_1, \ldots, g_l)^{-1}(D) : w' \leq w \}$, where $w'(f_1, \ldots, g_l)^{-1}(D)$ denotes the preimage of D under $w'(f_1, \ldots, f_k, g_1, \ldots, g_l)$; in particular, $D \subset B$. Since $f_1, \ldots, f_k, g_1, \ldots, g_l$ are free and B is finite, by Lemma 3.1 there exists $x \in \mathbb{N} \setminus B$ such that $w(f_1, \ldots, f_k, g_1, \ldots, g_l)(x) \neq x$.

For every $i = 1, \ldots, l$, let

$$E^{i} = \{w'(f_{1}, \dots, f_{k}, g_{1}, \dots, g_{l})(x) : w' \leq w \text{ and } w' \text{ begins with } y_{k+i}\},\$$

 $E_{i} = \{w'(f_{1}, \dots, f_{k}, g_{1}, \dots, g_{l})(x) : y_{k+i}w' \leq w\}.$

Since $x \in \mathbb{N} \setminus B$, we have $E_i \cap D = \emptyset$ and $E^i \cap D = \emptyset$. Now for every i = 1, ..., n set $h_i = g_i \upharpoonright E_i$. Then h_i is a bijection between E_i and E^i .

We are ready to define (n', p'). Let

$$n' = n + |s_1| + \max\{|E_1|, \dots, |E_n|\}.$$

For i = 1, ..., l, let $G_i \subset \mathbb{N} \setminus (B \cup E_i \cup E^i)$ be such that $|G_i| + n + |E_i| = n'$. Now, for $t \in \{0, 1\}^{n'}$ with $s_i \prec t$, set

$$p'(t) = p(t \upharpoonright n) \cup h_i \cup \mathrm{id}_{G_i}$$
.

For the remaining $t \in \{0,1\}^{n'}$, let p'(t) be any bijective extension of $p(t \upharpoonright n)$ with $|\operatorname{dom}(p'(t))| = n'$. Clearly, $(n',p') \in \mathbb{P}$ and $(n',p') \leq (n,p)$. If t_1,\ldots,t_l are in $\{0,1\}^{n'}$ and $s_i \prec t_i$ for $i=1,\ldots,l$, then

$$w(f_1, \dots, f_k, p'(t_1), \dots, p'(t_l))(x) = w(f_1, \dots, f_k, h_1, \dots, h_l)(x)$$

= $w(f_1, \dots, f_k, g_1, \dots, g_l)(x) \neq x$.

Hence $(n', p') \in D^{g_1, \dots, g_l}_{w, f_1, \dots, f_k}$.

Now we extend Theorem 2.8 and Lemma 3.3.

THEOREM 3.5. For any residual set $Z \subset S_{\infty}$ and any countable family \mathcal{F} of free generators, there is a family $\mathcal{F}' \subset Z$ of free generators of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{F}'$ is a family of free generators.

Proof. The proof is very similar to that of Theorem 2.8: using the Rasio-wa–Sikorski lemma, we choose a generic filter G which has nonempty intersection with all sets D_k , D_{F_k} , $D_w^{s_1,...,s_l}$ and $D_{w,f_1,...,f_k}^{s_1,...,s_l}$ (where $f_1,...,f_k$ are elements of \mathcal{F}). Again, for every $\alpha \in \{0,1\}^{\mathbb{N}}$, we set

$$g(\alpha) = \bigcup \{ p(\alpha {\restriction} n) : (n,p) \in G \}.$$

In view of the proof of Theorem 2.8, we only have to show that $\mathcal{F} \cup \{g(\alpha) : \alpha \in \{0,1\}^{\mathbb{N}}\}$ is a family of free generators. Let $w = w(y_1, \ldots, y_n)$ be any word, let $k, l \in \mathbb{N}$ be such that k + l = n, and let $f_1, \ldots, f_k \in \mathcal{F}$ be distinct. Let $\alpha_1, \ldots, \alpha_l$ be different elements of $\{0,1\}^{\mathbb{N}}$, and let $r \in \mathbb{N}$ be such that $\alpha_i \upharpoonright r \neq \alpha_j \upharpoonright r$ for $i \neq j$. Let $(n,p) \in D_{w,f_1,\ldots,f_k}^{\alpha_1 \upharpoonright r,\ldots,\alpha_l \upharpoonright r} \cap G$. Since $\alpha_i \upharpoonright r \prec \alpha_i \upharpoonright n$ for $i = 1,\ldots,l$, there is $x \in \mathbb{N}$ such that

$$w(f_1, \dots, f_k, g(\alpha_1), \dots, g(\alpha_l))(x)$$

$$= w(f_1, \dots, f_k, p(\alpha_1 \upharpoonright n), \dots, p(\alpha_l \upharpoonright n))(x) \neq x.$$

This ends the proof. ■

Let \mathcal{M} stand for the σ -ideal of meager subsets of \mathbb{R} . Let $\mathfrak{m}_{countable} = \min\{\kappa : \text{``MA}(\kappa) \text{ for countable posets'' fails}\}$ (MA stands for Martin's Axiom). It is well known (see [V]) that

$$\mathfrak{m}_{\mathrm{countable}} = \mathrm{cov}(\mathcal{M}) := \min\{|\mathcal{F}| : \bigcup \mathcal{F} = \mathbb{R}, \ \mathcal{F} \subset \mathcal{M}\}.$$

Since the poset \mathbb{P} is countable, we obtain the following.

THEOREM 3.6. For any residual set $Z \subset S_{\infty}$ and any family \mathcal{F} of free generators of cardinality less than $cov(\mathcal{M})$, there is a family $\mathcal{F}' \subset Z$ of free generators of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{F}'$ is a family of free generators.

4. Products of countable groups. In this section we will give a necessary and sufficient condition on a sequence of countable groups G_1, G_2, \ldots for the existence of a free subgroup of $\prod G_n$ of \mathfrak{c} generators. A family $\{X_s: s \in S\}$ of subsets of \mathbb{N} is independent if $\bigcap_{s \in E} X_s \cap \bigcap_{s \in F} (\mathbb{N} \setminus X_s) \neq \emptyset$ for every finite $F, E \subset S$ with $E \cap F = \emptyset$. It is well known that there is an independent family of cardinality \mathfrak{c} .

LEMMA 4.1. Let $n \geq 2$. There exists a family $\mathcal{F} = \{f_{\alpha} : \alpha < \mathfrak{c}\}$ of functions from $\{0, \ldots, n-1\}^{\mathbb{N}}$ such that for any $\alpha_0 < \cdots < \alpha_{n-1} < \mathfrak{c}$ there is $k \in \mathbb{N}$ such that $f_{\alpha_i}(k) = i$.

Proof. Let $\{p_k : k \in \mathbb{N}\}$ be an enumeration of all subsets of \mathbb{N} of cardinality n. Enumerate each p_k as $\{p_k(0), \ldots, p_k(n-1)\}$. Let $\{U_\alpha : \alpha < \mathfrak{c}\}$ be an independent family of \mathbb{N} . For any α we define $f_\alpha : \mathbb{N} \to \{0, \ldots, n-1\}$ as follows. Fix $k \in \mathbb{N}$. If there is i < n such that $p_k(i) \in U_\alpha$ and $p_k(j) \notin U_\alpha$ for every $j \neq i$, then set $f_\alpha(k) = i$; otherwise set $f_\alpha(k) = 0$.

Let $\alpha_0 < \cdots < \alpha_{n-1}$. Pick $m_i \in U_{\alpha_i} \setminus \bigcup_{j \neq i} U_{\alpha_j}$ and set $p(i) = m_i$ for i < n. There is $k \in \mathbb{N}$ with $p = p_k$. Then $f_{\alpha_i}(k) = i$.

Recall that if a word w is of the form $w = w(y_1, \ldots, y_m)$, then we assume that all variables of w are in y_1, \ldots, y_m , but not necessarily all y_i 's must appear in w.

Theorem 4.2. Let G_n , $n \in \mathbb{N}$, be a family of groups.

- (i) If for any nonempty word $w(y_1, \ldots, y_m)$ there are infinitely many n's for which there are $g_{n,1}, \ldots, g_{n,m} \in G_n$ with $w(g_{n,1}, \ldots, g_{n,m}) \neq e_n$ where e_n is a neutral element of G_n , then $\prod_{n=1}^{\infty} G_n$ contains a free group on \mathfrak{c} generators.
- (ii) If every G_n is countable, and for some nonempty word $w(y_1, \ldots, y_m)$, almost every n and all $g_{n,1}, \ldots, g_{n,m} \in G_n$ we have $w(g_{n,1}, \ldots, g_{n,m}) = e_n$, then $\prod_{n=1}^{\infty} G_n$ does not contain any free group on uncountably many generators.

Proof. Assume that for any word $w(y_1, \ldots, y_m)$ there are infinitely many n's for which there are $g_{n,1}^w, \ldots, g_{n,m}^w \in G_n$ with $w(g_{n,1}^w, \ldots, g_{n,m}^w) \neq e_n$. For

any nonempty word $w = w(y_1, \ldots, y_m)$, set

$$E_w = \{n \in \mathbb{N} : \text{there are } g_{n,1}^w, \dots, g_{n,m}^w \in G_n \text{ with } w(g_{n,1}^w, \dots, g_{n,m}^w) \neq e_n\}.$$

Then $\{E_w : w = w(y_1, \ldots, y_m) \text{ is a nonempty word}\}$ is a countable family of infinite sets. Let $\{E_w' : w = w(y_1, \ldots, y_m) \text{ is a nonempty word}\}$ be a disjoint refinement of this family, i.e., a family of pairwise disjoint infinite sets with $E_w' \subset E_w$ for any nonempty word w. For any $\alpha < \mathfrak{c}$, define $f_\alpha \in \prod G_n$ as follows. Let w be a word. Consider two cases.

- 1. If $w = w(y_k)$ is a word with one variable y_k , then let $\{f_{\alpha}^w : \alpha < \mathfrak{c}\}$ be an enumeration of the set $\prod_{n \in E'_m} \{e_n, g_{n,k}^w\} \setminus \prod_{n \in E'_m} \{e_n\}$.
- 2. If $w = w(y_1, \ldots, y_m)$, then using Lemma 4.1 we can find a family $\{f_{\alpha}^w : \alpha < \mathfrak{c}\}$ such that for any $\alpha_1 < \cdots < \alpha_m$ there is $n \in E'_w$ with $f_{\alpha_i}^w(n) = g_{n,k_i}^w$ for $i \leq m$. Finally, let $f_{\alpha}(n) = f_{\alpha}^w(n)$ if $n \in E'_w$, and $f_{\alpha}(n) = e_n$ otherwise. Clearly, in both cases, $\{f_{\alpha} : \alpha < \mathfrak{c}\}$ consists of free generators.

Assume now the G_n are countable, and let $w(y_1, \ldots, y_m)$ be a word such that there is N with $w(g_{n,1}, \ldots, g_{n,m}) = e_n$ for $n \geq N$ and all $g_{n,1}, \ldots, g_{n,m}$ in G_n . Suppose $\prod_{n=1}^{\infty} G_n$ contains a free group on uncountably many generators, say $\{f_{\alpha} : \alpha < \omega_1\}$. Then for any distinct $\alpha_1, \ldots, \alpha_m < \omega_1$ there is n < N, depending on α_i 's, with $w(f_{\alpha_1}(n), \ldots, f_{\alpha_m}(n)) \neq e_n$. As the groups G_n are countable, one can find two distinct m-element sets $\{\alpha_1, \ldots, \alpha_m\}$ and $\{\beta_1, \ldots, \beta_m\}$ of ordinals less than ω_1 such that

$$w(f_{\alpha_1}(n),\ldots,f_{\alpha_m}(n))=w(f_{\beta_1}(n),\ldots,f_{\beta_m}(n))$$

for every n < N. Then

$$w(f_{\alpha_1}(n), \dots, f_{\alpha_m}(n))w^{-1}(f_{\beta_1}(n), \dots, f_{\beta_m}(n)) = e_n$$

for every $n \in \mathbb{N}$. This contradicts the fact that $\{f_{\alpha} : \alpha < \omega_1\}$ are free generators.

From Theorem 4.2 we immediately obtain the following dichotomy.

COROLLARY 4.3. Let G_n , $n \in \mathbb{N}$, be countable groups. Then $\prod_{n \in \mathbb{N}} G_n$ either contains free subgroups on \mathfrak{c} generators, or does not contain free subgroups on uncountably many generators.

5. Final remarks and open questions. The results of Section 2 can be deduced from those of Section 3 for some class of structures. We say that a subset X of A is *independent* if any bijection $f: X \to X$ can be extended to an automorphism of A. If A contains an infinite independent set X, then take a set $\mathcal{F} \subset S_{\infty}(X)$ of \mathfrak{c} free generators, and extend every $f \in \mathcal{F}$ to an automorphism f' of A. Then $\mathcal{F}' = \{f': f \in \mathcal{F}\}$ is a set of free generators in $\operatorname{Aut}(A)$.

Let X be an infinite independent, in the sense of Boolean algebras, set in \mathbb{B} . Then X is independent in the above sense. Now, let $X \subset \mathbb{U}$ be an

isometric copy of \mathbb{N} with the metric d given by $d(x,y) = 1 \Leftrightarrow x \neq y$. Then X is an independent subset of \mathbb{U} . However, \mathbb{Q} does not contain an independent subset of cardinality greater than 2. The direct sum of countably many copies of $(\mathbb{Q}, +)$ is a countable ultrahomogeneous structure, and any of its finitely generated substructures is a torsion free Abelian group. Note that all of its finitely generated substructures are infinite and each of them contains an infinite independent subset. Hence the automorphism group of such a substructure contains a large free subgroup, and this cannot be proved by our method.

We are interested in extending small free subgroups of $\operatorname{Aut}(A)$ to large free groups. We introduce the cardinal number

$$\mathfrak{f}_A = \min\{|\mathcal{F}| : \mathcal{F} \text{ is a maximal set of free generators in } \operatorname{Aut}(A)\}$$

where "maximal" means that \mathcal{F} cannot be extended to a larger set of free generators. In Section 3 we proved that $\mathfrak{f} := \mathfrak{f}_{\mathbb{N}}$ is an uncountable cardinal $\geq \operatorname{cov}(\mathcal{M})$.

We end with a list of open questions:

- 1. Can one prove a similar result to that in Section 2 for structures whose finitely generated substructures are infinite?
- 2. Does (*) imply that \mathfrak{f}_A is uncountable? Does Martin's Axiom imply that $\mathfrak{f}_A = \mathfrak{c}$?
- 3. Is it true that $\mathfrak{f} = \text{cov}(\mathcal{M})$?
- 4. Is it true that either $\operatorname{Aut}(A)$ does not contain an uncountably (infinitely) generated free subgroup, or it contains a free subgroup on $\mathfrak c$ generators?

Acknowledgements. The authors have been supported by the National Science Centre Poland Grant no. DEC-2012/07/D/ST1/02087.

REFERENCES

- [C] P. J. Cameron, Oligomorphic Permutation Groups, London Math. Soc. Lecture Note Ser. 152, Cambridge Univ. Press, Cambridge, 1990.
- [GK] P. M. Gartside and R. W. Knight, Ubiquity of free groups, Bull. London Math. Soc. 35 (2003), 624–634.
- [H] W. Hodges, Model Theory, Encyclopedia Math. Appl. 42, Cambridge Univ. Press, Cambridge, 1993.
- [KPT] A. S. Kechris, V. G. Pestov and S. Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005), 106–189.
- [KS] A. S. Kechris and M. Sokić, Dynamical properties of the automorphism groups of the random poset and random distributive lattice, Fund. Math. 218 (2012), 69–94.
- [M1] H. D. Macpherson, Groups of automorphisms of ℵ₁-categorical structures, Quart.
 J. Math. Oxford Ser. (2) 37 (1986), 449–465.

- [M2] H. D. Macpherson, A survey of homogeneous structures, Discrete Math. 311 (2011), 1599–1634.
- [MS] G. Melles and S. Shelah, Aut(M) has a large dense free subgroup for saturated M, Bull. London Math. Soc. 26 (1994), 339–344.
- [Sch] J. H. Schmerl, Countable homogeneous partially ordered sets, Algebra Universalis 9 (1979), 317–321.
- [Sh1] S. Shelah, A countable structure does not have a free uncountable automorphism group, Bull. London Math. Soc. 35 (2003), 1–7.
- [Sh2] S. Shelah, Polish algebras, shy from freedom, Israel J. Math. 181 (2011), 477–507.
- [So] M. Sokić, Ramsey properties of finite posets, Order 29 (2012), 1–30.
- [V] J. E. Vaughan, Small uncountable cardinals and topology (with an appendix by S. Shelah), in: Open Problems in Topology, North-Holland, Amsterdam, 1990, 195–218.

Szymon Głąb, Filip Strobin Institute of Mathematics Lodz University of Technology Wólczańska 215 93-005 Łódź, Poland E-mail: szymon.glab@p.lodz.pl filip.strobin@p.lodz.pl

> Received 25 October 2013; revised 27 February 2015 (6055)