COLLOQUIUM MATHEMATICUM

A CONVOLUTION PROPERTY OF SOME MEASURES WITH SELF-SIMILAR FRACTAL SUPPORT

BY
DENISE SZECSEI (Daytona Beach, FL)

Abstract

We define a class of measures having the following properties: (1) the measures are supported on self-similar fractal subsets of the unit cube $I^{M}=$ $[0,1)^{M}$, with 0 and 1 identified as necessary; (2) the measures are singular with respect to normalized Lebesgue measure m on I^{M}; (3) the measures have the convolution property that $\mu * L^{p} \subseteq L^{p+\varepsilon}$ for some $\varepsilon=$ $\varepsilon(p)>0$ and all $p \in(1, \infty)$.

We will show that if $(1 / p, 1 / q)$ lies in the triangle with vertices $(0,0),(1,1)$ and $(1 / 2,1 / 3)$, then $\mu * L^{p} \subseteq L^{q}$ for any measure μ in our class.

1. Introduction. Let T denote the circle group \mathbb{R} / \mathbb{Z} and, for $1 \leq p<\infty$, let L^{p} denote the usual Lebesgue space formed with respect to normalized Lebesgue measure m on T. While every complex Borel measure μ on T acts as a convolution operator on any L^{p}-space: $\mu * L^{p} \subseteq L^{p}$, there are also probability measures μ on T which are singular with respect to m and have the property that for each $p \in(1, \infty), \mu * L^{p} \subseteq L^{p+\varepsilon}$ for some $\varepsilon=\varepsilon(p)>0$. An example of such a measure, as well as a discussion of this phenomenon, can be found in [4]. The Cantor-Lebesgue measure is a singular measure on the circle group \mathbb{R} / \mathbb{Z}, and its support is the Cantor set, which is a self-similar fractal subset of \mathbb{R}. Oberlin [3] showed that for each $p \in(1, \infty)$ there is an $\varepsilon>0$ for which the Cantor-Lebesgue measure has the convolution property that $\|\lambda * f\|_{L^{p+\varepsilon}} \leq\|f\|_{L^{p}}$. We will generalize this result by defining a class of measures having the following properties:
(1) the measures are supported on self-similar fractal subsets of the unit cube $I^{M}=[0,1)^{M}$, with 0 and 1 identified as necessary;
(2) the measures are singular with respect to normalized Lebesgue measure m on I^{M}
(3) the measures have the convolution property that $\mu * L^{p} \subseteq L^{p+\varepsilon}$ for some $\varepsilon=\varepsilon(p)>0$ and all $p \in(1, \infty)$.

We will show that if $(1 / p, 1 / q)$ lies in the triangle with vertices $(0,0)$, $(1,1)$ and $(1 / 2,1 / 3)$, then $\mu * L^{p} \subseteq L^{q}$ for any measure μ in our class.

This paper is organized as follows: $\S 2$ introduces our class of sets and measures, while $\S 3$ is concerned with their convolution properties.
2. The class \Im of self-similar fractal sets. Let I^{M} denote the unit cube in \mathbb{R}^{M} viewed as an abelian group with binary operation componentwise addition modulo 1. Fix $0<r<1$ and distinct $x_{0}, x_{1}, \ldots, x_{n} \in I^{M}$, where $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ forms a subgroup of I^{M}. Denote this subgroup G_{1}. We will be dealing with certain iterated function systems $\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ on I^{M} where f_{i} will have the form $f_{i}=r x+x_{i}$. A discussion of iterated function systems can be found in [1] and [2]. This type of iterated function system realizes the ratio list (r, \ldots, r). Because of the identification of the edges of the M-dimensional torus, there may be some confusion regarding the interpretation of " + ". If we consider I^{M} as a subset of \mathbb{R}^{M}, where "+" denotes addition inherited from \mathbb{R}^{M}, then each f_{i} is a similarity, and we can obtain the invariant set for these iterated function systems ([1], [2]). When we generate the invariant set using the sets G_{1} and S_{1}, as described below, we will identify the edges of the M-dimensional torus, and "+" will denote addition modulo 1 , so that we remain in the group G_{n}.

Let $S_{1}=\left\{x_{1}, \ldots, x_{n}\right\}$ and consider the iterated function system $\left(f_{1}, \ldots, f_{n}\right)$ realizing the ratio list (r, \ldots, r). Write S for the invariant set of this iterated function system. We will define two sequences of sets, $\left\{S_{N}\right\}$ and $\left\{G_{N}\right\}$, in similar fashions. Let

$$
\begin{aligned}
& S_{N}=\bigcup_{k=1}^{n} f_{k}\left(S_{N-1}\right) \doteq \bigcup_{k=1}^{n}\left(r S_{N-1}+x_{k}\right)=\bigcup_{k=1}^{n}\left(S_{N-1}+r^{N-1} x_{k}\right) \\
& G_{N}=\bigcup_{k=0}^{n} f_{k}\left(G_{N-1}\right) \doteq \bigcup_{k=0}^{n}\left(r G_{N-1}+x_{k}\right)=\bigcup_{k=0}^{n}\left(G_{N-1}+r^{N-1} x_{k}\right)
\end{aligned}
$$

for $N \geq 2$. Since S_{1} and G_{1} are compact sets, the invariant sets S and G for their respective iterated function systems can be generated from S_{1} and G_{1}.

We will say that $S \in \Im$ if the following three conditions hold:

- $0 \in S_{1}$.
- There exists a non-empty bounded open set V in I^{M} such that $f_{i}(V) \cap$ $f_{j}(V)=\emptyset$ for $i \neq j$, and $V \supset \bigcup_{i=0}^{n} f_{i}(V)$. This condition is referred to as the open set condition.
- G_{N} is the subgroup of I^{M} generated by $S_{N},\left|S_{N}\right|=\left|S_{1}\right|^{N}$ and $\left|G_{N}\right|=$ $\left|G_{1}\right|^{N}$.

Examples of fractal sets belonging to \Im include the triadic Cantor set, the Sierpiński gasket and the Sierpiński carpet [2]. For the triadic Cantor
set,

$$
S_{1}=\{0,2 / 3\}, \quad G_{1}=\{0,1 / 3,2 / 3\} .
$$

For the Sierpiński gasket,

$$
\begin{aligned}
S_{1} & =\{(0,0),(1 / 4,1 / 2),(3 / 4,1 / 2)\}, \\
G_{1} & =\{(0,0),(1 / 2,0),(1 / 4,1 / 2),(3 / 4,1 / 2)\} .
\end{aligned}
$$

For the Sierpiński carpet,

$$
\begin{gathered}
S_{1}=\{(0,0),(1 / 3,0),(2 / 3,0),(0,1 / 3),(2 / 3,1 / 3), \\
(0,2 / 3),(1 / 3,2 / 3),(2 / 3,2 / 3)\}, \\
G_{1}=\{(0,0),(1 / 3,0),(2 / 3,0),(0,1 / 3),(1 / 3,1 / 3),(2 / 3,1 / 3) \\
(0,2 / 3),(1 / 3,2 / 3),(2 / 3,2 / 3)\} .
\end{gathered}
$$

In general, and roughly, to construct self-similar fractal sets in I^{M} belonging to \Im, begin with a geometric subset of I^{M}, such as a square, triangle, cube, etc. Divide it evenly into n congruent pieces, each of which has the same geometric shape as the original, and remove one of the pieces. Construct the sets S_{1} and G_{1} from the vertices of the divided geometric shape. Determine the ratio list from the geometry of the setting, and define the iterated function system using the set S_{1} and the ratio list.

The open set condition ensures that the components $f_{i}(S)$ of S do not overlap "too much". Because $0 \in S_{1}$, we have $S_{1} \subset S_{2} \subset \cdots$. The third condition ensures that $\left\{G_{N}\right\}$ is a nested sequence of subgroups of I^{M}, from which it follows that G is a subgroup of I^{M}.

Since S_{1} is compact, $\left\{S_{N}\right\}$ converges to S in the Hausdorff metric, and hence $\bigcup_{N=1}^{\infty} S_{N}$ is dense in S. Thus the invariant set S for the iterated function system $\left(f_{1}, \ldots, f_{n}\right)$ satisfies $S=\overline{\bigcup_{N=1}^{\infty} S_{N}}$. Similarly, $\bigcup_{N=1}^{\infty} G_{N}$ is dense in G, and the invariant set G for the iterated function system $\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ satisfies $G=\overline{\bigcup_{N=1}^{\infty} G_{N}}$.

Let $L^{p}\left(G_{N}\right)$ denote the Lebesgue space formed with respect to normalized counting measure (denoted m_{N}) on G_{N}, and let m denote the Haar measure on G. Then m is the weak ${ }^{*}$ limit of the probability measures m_{N}. The norm in $L^{p}\left(G_{N}\right)$ will be written as $\|\cdot\|_{p, N}$. Denote by $C(G)$ the space of continuous functions on G. Denote by μ_{N} the normalized counting measure on S_{N}, i.e. the probability measure uniformly distributed on S_{N}. Then $\left\{\mu_{N}\right\}$ is a weak*-Cauchy sequence of measures; we will denote its weak* limit by μ.
3. Convolution properties. Suppose S and G are self-similar fractal sets constructed as above, with $S \in \Im$. We will prove the following convolution theorem:

Theorem 1. Let μ be the measure on S as defined above. For each $p \in(1, \infty)$ there is an $\varepsilon>0$ such that $\|\mu * f\|_{L^{p+\varepsilon}(G)} \leq\|f\|_{L^{p}(G)}$ for all $f \in L^{p}(G)$.

The proof of this theorem requires two lemmas, the first of which is stated in a more general setting. Suppose G_{1} and G_{2} are abelian groups satisfying $G_{1} \subset G_{2},\left|G_{1}\right|=n^{J},\left|G_{2}\right|=n^{J+1}$, and $G_{2}=\bigcup_{j=1}^{n}\left(x_{j}+G_{1}\right)$. Let S_{1} and S_{2} be subsets of G_{1} and G_{2} respectively, satisfying $\left|S_{1}\right|=(n-1)^{J}$, $\left|S_{2}\right|=(n-1)^{J+1}$, and $S_{2}=\bigcup_{j=1}^{n-1}\left(x_{j}+S_{1}\right)$. Let μ_{i} denote the normalized counting measure on S_{i}, and $\|g\|_{p, i}$ denote the L^{p} norm with respect to the normalized counting measure on G_{i}.

Lemma 1. Suppose that the n-point inequality

$$
\begin{equation*}
\left(\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{n-1} \sum_{j \neq i} a_{j}\right)^{q}\right)^{1 / q} \leq\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p} \tag{1}
\end{equation*}
$$

holds for all positive real numbers $\left\{a_{i}\right\}_{i=1}^{n}$. If the inequality

$$
\begin{equation*}
\left(\frac{1}{n^{J}} \sum_{x \in G_{1}}\left|\frac{1}{(n-1)^{J}} \sum_{t \in S_{1}} h(x-t)\right|^{q}\right)^{1 / q} \leq\left(\frac{1}{n^{J}} \sum_{x \in G_{1}}|h(x)|^{p}\right)^{1 / p} \tag{2}
\end{equation*}
$$

holds for all functions $h \in L^{p}\left(G_{1}\right)$, then the inequality

$$
\begin{equation*}
\left(\frac{1}{n^{J+1}} \sum_{x \in G_{2}}\left|\frac{1}{(n-1)^{J+1}} \sum_{t \in S_{2}} g(x-t)\right|^{q}\right)^{1 / q} \leq\left(\frac{1}{n^{J+1}} \sum_{x \in G_{2}}|g(x)|^{p}\right)^{1 / p} \tag{3}
\end{equation*}
$$

holds for all functions $g \in L^{p}\left(G_{2}\right)$.
Lemma 2. Inequality (1) is valid for $q=3$ and $p=2$.
We observe that (2) is just $\left\|\mu_{1} * h\right\|_{q, 1} \leq\|h\|_{p, 1}$, and (3) is just $\left\|\mu_{2} * g\right\|_{q, 2}$ $\leq\|g\|_{p, 2}$. Once the two lemmas are proven, an inductive argument will show that $\left\|\mu_{N} * f t\right\|_{L^{3}\left(G_{N}\right)} \leq\|f\|_{L^{2}\left(G_{N}\right)}$ for all $f \in L^{p}\left(G_{N}\right)$ and all N. Then if $f \in C(G)$, it follows that $\left|\mu_{N} * f\right| \rightarrow|\mu * f|$ uniformly on G, and we have

$$
\int\left|\mu_{N} * f\right|^{3} d m_{N} \rightarrow \int|\mu * f|^{3} d m
$$

Since

$$
\left[\int\left|\mu_{N} * f\right|^{3} d m_{N}\right]^{2 / 3} \leq \int|f|^{2} d m_{N} \quad \text { and } \quad \int|f|^{2} d m_{N} \rightarrow \int|f|^{2} d m
$$

we see that

$$
\|\mu * f\|_{L^{3}(G)} \leq\|f\|_{L^{2}(G)}
$$

for all non-negative continuous functions f on G. In addition, we know that

$$
\|\mu * f\|_{L^{1}(G)} \leq\|f\|_{L^{1}(G)}
$$

for $f \in L^{1}(G)$ and

$$
\|\mu * f\|_{L^{\infty}(G)} \leq\|f\|_{L^{\infty}(G)}
$$

so application of the Riesz-Thorin theorem will complete the proof of Theorem 1.

Proof of Lemma 1. We begin by using a coset expansion of S_{2} and G_{2} in terms of S_{1} and G_{1} to show that

$$
\begin{aligned}
&\left(\frac{1}{n^{J+1}} \sum_{x \in G_{2}}\left|\frac{1}{(n-1)^{J+1}} \sum_{t \in S_{2}} g(x-t)\right|^{q}\right)^{1 / q} \\
&=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|\frac{1}{n-1} \sum_{j=1}^{n-1} \mu_{i} * g\left(x+\left(x_{i}-x_{j}\right)\right)\right\|_{q, 1, x}^{q}\right)^{1 / q}
\end{aligned}
$$

We calculate

$$
\begin{aligned}
& \left(\frac{1}{n^{J+1}} \sum_{x \in G_{2}}\left|\frac{1}{(n-1)^{J+1}} \sum_{t \in S_{2}} g(x-t)\right|^{q}\right)^{1 / q} \\
& =\left(\frac{1}{n^{J+1}} \sum_{x \in G_{2}}\left|\frac{1}{(n-1)^{J+1}} \sum_{j=1}^{n-1} \sum_{t \in x_{j}+S_{1}} g(x-t)\right|^{q}\right)^{1 / q} \\
& =\left(\frac{1}{n^{J+1}} \sum_{i=1}^{n} \sum_{x \in x_{i}+G_{1}}\left|\frac{1}{(n-1)^{J+1}} \sum_{j=1}^{n-1} \sum_{t \in S_{1}} g\left(x-x_{j}-t\right)\right|^{q}\right)^{1 / q} \\
& =\left(\frac{1}{n^{J+1}} \sum_{i=1}^{n} \sum_{x \in G_{1}}\left|\frac{1}{(n-1)^{J+1}} \sum_{j=1}^{n-1} \sum_{t \in S_{1}} g\left(x+x_{i}-x_{j}-t\right)\right|^{q}\right)^{1 / q} \\
& =\left(\frac{1}{n^{J+1}} \sum_{i=1}^{n} \sum_{x \in G_{1}}\left|\frac{1}{(n-1)^{1}} \sum_{j=1}^{n-1} \frac{1}{(n-1)^{J}} \sum_{t \in S_{1}} g\left(x-t+\left(x_{i}-x_{j}\right)\right)\right|^{q}\right)^{1 / q} \\
& =\left(\frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{n^{J}} \sum_{x \in G_{1}}\left|\frac{1}{n-1} \sum_{j=1}^{n-1} \mu_{1} * g\left(x+\left(x_{i}-x_{j}\right)\right)\right|^{q}\right]\right)^{\{1 / q} \\
& =\left[\frac{1}{n} \sum_{i=1}^{n}\left\|\frac{1}{n-1} \sum_{j=1}^{n-1} \mu_{1} * g\left(x+\left(x_{i}-x_{j}\right)\right)\right\|_{q, 1, x}^{q}\right]^{1 / q} \cdot
\end{aligned}
$$

Using the triangle inequality and the inductive hypothesis $\left\|\mu_{1} * g\right\|_{q, 1} \leq$ $\|g\|_{p, 1}$, we see that

$$
\begin{aligned}
{\left[\frac{1}{n} \sum_{i=1}^{n} \| \frac{1}{n-1}\right.} & \left.\sum_{j=1}^{n-1} \mu_{1} * g\left(x+\left(x_{i}-x_{j}\right)\right) \|_{q, 1, x}^{q}\right]^{1 / q} \\
& \leq\left[\frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{n-1} \sum_{j=1}^{n-1}\left\|\mu_{1} * g\left(x+\left(x_{i}-x_{j}\right)\right)\right\|_{q, 1, x}\right]^{q}\right]^{1 / q} \\
& =\left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n-1}\left[\sum_{j=1}^{n-1}\|g\|_{p, 1,\left(x_{i}-x_{j}\right)+G_{1}}\right]^{q}\right]^{1 / q}
\end{aligned}
$$

Now, for fixed $i,\left\{\left(x_{i}-x_{j}\right)+G_{1}\right\}_{j=1}^{n-1}$ spans all of the cosets of G_{1} in G_{2} except $\left(x_{i}-x_{n}\right)+G_{1}$. And, for fixed $k,\left\{\left(x_{i}-x_{k}\right)+G_{1}\right\}_{i=1}^{n}$ spans all of the cosets of G_{1} in G_{2}, so by (1),

$$
\begin{aligned}
& {\left[\frac{1}{n} \sum_{i=1}^{n} \frac{1}{n-1}\left[\sum_{j=1}^{n-1}\|g\|_{p, 1,\left(x_{i}-x_{j}\right)+G_{1}}\right]^{q}\right]^{1 / q} } \\
& \leq\left[\frac{1}{n} \sum_{i=1}^{n}\|g\|_{p, 1, x_{i}+G_{1}}^{p}\right]^{1 / p}=\left[\frac{1}{n} \sum_{i=1}^{n} n\|g\|_{p, 2, x_{i}+G_{1}}^{p}\right]^{1 / p} \\
&=\left[\sum_{i=1}^{n}\|g\|_{p, 2, x_{i}+G_{1}}^{p}\right]^{1 / p}=\left[\|g\|_{p, 2}^{p}\right]^{1 / p}=\|g\|_{p, 2}
\end{aligned}
$$

Proof of Lemma 2. Cubing both sides of

$$
\left(\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{n-1} \sum_{j \neq i} a_{j}\right)^{3}\right)^{1 / 3} \leq\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}
$$

yields

$$
\sum_{i=1}^{n}\left(\sum_{j \neq i} a_{j}\right)^{3} \leq(n-1)^{3} n^{-1 / 2}\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{3 / 2}
$$

Since both sides are homogeneous of degree 3, it is enough to show that the maximum of $\sum_{i=1}^{n}\left(\sum_{j \neq i} a_{j}\right)^{3}$ subject to the constraint $\sum_{i=1}^{n} a_{i}^{2}=1$ is $(n-1)^{3} n^{-1 / 2}$. By Lagrange's method, the maximum of $\sum_{i=1}^{n}\left(\sum_{j \neq i} a_{j}\right)^{3}$ subject to the constraint $\sum_{i=1}^{n}\left(\sum_{j \neq i} a_{j}\right)^{3}=1$ occurs when the a_{i} 's satisfy the system of equations

$$
\begin{equation*}
\frac{\partial}{\partial a_{k}}\left(\sum_{i=1}^{n}\left(\sum_{j \neq i} a_{j}\right)^{3}\right)=2 \lambda a_{k} \quad \text { for } 1 \leq k \leq n \tag{4}
\end{equation*}
$$

Expanding the left-hand side of (4) yields the following system of equations:

$$
\begin{equation*}
\left[a_{k}^{2}+2 \sum_{\substack{j=1 \\ j \neq k}}^{n} a_{j} a_{k}+(n-2) \sum_{j=1}^{n} a_{j}^{2}+2(n-3) \sum_{i=1}^{n} \sum_{j>i}^{n} a_{i} a_{j}\right]=-2 \lambda a_{k} \tag{5}
\end{equation*}
$$

for $1 \leq k \leq n, n \geq 3$. This system of equations is satisfied only when $a_{i}=a_{j}$ for $1 \leq i, j \leq n$. We can therefore write $a=a_{i}$, and given that $\sum_{i=1}^{n} a_{i}^{2}=1$, we have

$$
\sum_{i=1}^{n}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} a\right)^{3}=(n-1)^{3} n^{-1 / 2}
$$

REFERENCES

[1] G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 1990.
[2] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, New York, 1990.
[3] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), 113-117.
[4] E. Stein, Harmonic analysis on \mathbb{R}^{N}, in: Studies in Harmonic Analysis, MAA Stud. Math. 13, Math. Assoc. Amer., Washington, DC, 1976, 97-135.

Department of Mathematics
Stetson University
P.O. Box 7532

Daytona Beach, FL 32116, U.S.A.
E-mail: szecsei@math.fsu.edu

