VOL. 109

2007

NO. 2

A CONVOLUTION PROPERTY OF SOME MEASURES WITH SELF-SIMILAR FRACTAL SUPPORT

BҮ

DENISE SZECSEI (Daytona Beach, FL)

Abstract. We define a class of measures having the following properties:

- (1) the measures are supported on self-similar fractal subsets of the unit cube $I^M = [0,1)^M$, with 0 and 1 identified as necessary;
- (2) the measures are singular with respect to normalized Lebesgue measure m on I^M ;
- (3) the measures have the convolution property that $\mu * L^p \subseteq L^{p+\varepsilon}$ for some $\varepsilon = \varepsilon(p) > 0$ and all $p \in (1, \infty)$.

We will show that if (1/p, 1/q) lies in the triangle with vertices (0, 0), (1, 1) and (1/2, 1/3), then $\mu * L^p \subseteq L^q$ for any measure μ in our class.

1. Introduction. Let T denote the circle group \mathbb{R}/\mathbb{Z} and, for $1 \leq p < \infty$, let L^p denote the usual Lebesgue space formed with respect to normalized Lebesgue measure m on T. While every complex Borel measure μ on Tacts as a convolution operator on any L^p -space: $\mu * L^p \subseteq L^p$, there are also probability measures μ on T which are singular with respect to m and have the property that for each $p \in (1, \infty)$, $\mu * L^p \subseteq L^{p+\varepsilon}$ for some $\varepsilon = \varepsilon(p) > 0$. An example of such a measure, as well as a discussion of this phenomenon, can be found in [4]. The Cantor–Lebesgue measure is a singular measure on the circle group \mathbb{R}/\mathbb{Z} , and its support is the Cantor set, which is a self-similar fractal subset of \mathbb{R} . Oberlin [3] showed that for each $p \in (1, \infty)$ there is an $\varepsilon > 0$ for which the Cantor–Lebesgue measure has the convolution property that $\|\lambda * f\|_{L^{p+\varepsilon}} \leq \|f\|_{L^p}$. We will generalize this result by defining a class of measures having the following properties:

- (1) the measures are supported on self-similar fractal subsets of the unit cube $I^M = [0, 1)^M$, with 0 and 1 identified as necessary;
- (2) the measures are singular with respect to normalized Lebesgue measure m on I^M ;
- (3) the measures have the convolution property that $\mu * L^p \subseteq L^{p+\varepsilon}$ for some $\varepsilon = \varepsilon(p) > 0$ and all $p \in (1, \infty)$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 43A05; Secondary 43A15. Key words and phrases: singular measures, convolution.

We will show that if (1/p, 1/q) lies in the triangle with vertices (0, 0), (1, 1) and (1/2, 1/3), then $\mu * L^p \subseteq L^q$ for any measure μ in our class.

This paper is organized as follows: $\S2$ introduces our class of sets and measures, while $\S3$ is concerned with their convolution properties.

2. The class \Im of self-similar fractal sets. Let I^M denote the unit cube in \mathbb{R}^M viewed as an abelian group with binary operation componentwise addition modulo 1. Fix 0 < r < 1 and distinct $x_0, x_1, \ldots, x_n \in I^M$, where $\{x_0, x_1, \ldots, x_n\}$ forms a subgroup of I^M . Denote this subgroup G_1 . We will be dealing with certain iterated function systems (f_0, f_1, \ldots, f_n) on I^M where f_i will have the form $f_i = rx + x_i$. A discussion of iterated function systems can be found in [1] and [2]. This type of iterated function system realizes the ratio list (r, \ldots, r) . Because of the identification of the edges of the M-dimensional torus, there may be some confusion regarding the interpretation of "+". If we consider I^M as a subset of \mathbb{R}^M , where "+" denotes addition inherited from \mathbb{R}^M , then each f_i is a similarity, and we can obtain the invariant set for these iterated function systems ([1], [2]). When we generate the invariant set using the sets G_1 and S_1 , as described below, we will identify the edges of the M-dimensional torus, and "+" will denote addition modulo 1, so that we remain in the group G_n .

Let $S_1 = \{x_1, \ldots, x_n\}$ and consider the iterated function system (f_1, \ldots, f_n) realizing the ratio list (r, \ldots, r) . Write S for the invariant set of this iterated function system. We will define two sequences of sets, $\{S_N\}$ and $\{G_N\}$, in similar fashions. Let

$$S_{N} = \bigcup_{k=1}^{n} f_{k}(S_{N-1}) \doteq \bigcup_{k=1}^{n} (rS_{N-1} + x_{k}) = \bigcup_{k=1}^{n} (S_{N-1} + r^{N-1}x_{k}),$$

$$G_{N} = \bigcup_{k=0}^{n} f_{k}(G_{N-1}) \doteq \bigcup_{k=0}^{n} (rG_{N-1} + x_{k}) = \bigcup_{k=0}^{n} (G_{N-1} + r^{N-1}x_{k})$$

for $N \ge 2$. Since S_1 and G_1 are compact sets, the invariant sets S and G for their respective iterated function systems can be generated from S_1 and G_1 .

We will say that $S \in \Im$ if the following three conditions hold:

- $0 \in S_1$.
- There exists a non-empty bounded open set V in I^M such that $f_i(V) \cap f_j(V) = \emptyset$ for $i \neq j$, and $V \supset \bigcup_{i=0}^n f_i(V)$. This condition is referred to as the *open set condition*.
- G_N is the subgroup of I^M generated by S_N , $|S_N| = |S_1|^N$ and $|G_N| = |G_1|^N$.

Examples of fractal sets belonging to \Im include the triadic Cantor set, the Sierpiński gasket and the Sierpiński carpet [2]. For the triadic Cantor $\operatorname{set},$

 $S_1 = \{0, 2/3\}, \quad G_1 = \{0, 1/3, 2/3\}.$

For the Sierpiński gasket,

 $S_1 = \{(0,0), (1/4, 1/2), (3/4, 1/2)\},\$

 $G_1 = \{(0,0), (1/2,0), (1/4,1/2), (3/4,1/2)\}.$

For the Sierpiński carpet,

$$S_{1} = \{(0,0), (1/3,0), (2/3,0), (0,1/3), (2/3,1/3), (0,2/3), (1/3,2/3), (2/3,2/3)\},\$$

$$G_{1} = \{(0,0), (1/3,0), (2/3,0), (0,1/3), (1/3,1/3), (2/3,1/3), (0,2/3), (1/3,2/3), (2/3,2/3)\}.$$

In general, and roughly, to construct self-similar fractal sets in I^M belonging to \Im , begin with a geometric subset of I^M , such as a square, triangle, cube, etc. Divide it evenly into *n* congruent pieces, each of which has the same geometric shape as the original, and remove one of the pieces. Construct the sets S_1 and G_1 from the vertices of the divided geometric shape. Determine the ratio list from the geometry of the setting, and define the iterated function system using the set S_1 and the ratio list.

The open set condition ensures that the components $f_i(S)$ of S do not overlap "too much". Because $0 \in S_1$, we have $S_1 \subset S_2 \subset \cdots$. The third condition ensures that $\{G_N\}$ is a nested sequence of subgroups of I^M , from which it follows that G is a subgroup of I^M .

Since S_1 is compact, $\{S_N\}$ converges to S in the Hausdorff metric, and hence $\bigcup_{N=1}^{\infty} S_N$ is dense in S. Thus the invariant set S for the iterated function system (f_1, \ldots, f_n) satisfies $S = \overline{\bigcup_{N=1}^{\infty} S_N}$. Similarly, $\bigcup_{N=1}^{\infty} G_N$ is dense in G, and the invariant set G for the iterated function system (f_0, f_1, \ldots, f_n) satisfies $G = \overline{\bigcup_{N=1}^{\infty} G_N}$.

Let $L^p(G_N)$ denote the Lebesgue space formed with respect to normalized counting measure (denoted m_N) on G_N , and let m denote the Haar measure on G. Then m is the weak^{*} limit of the probability measures m_N . The norm in $L^p(G_N)$ will be written as $\|\cdot\|_{p,N}$. Denote by C(G) the space of continuous functions on G. Denote by μ_N the normalized counting measure on S_N , i.e. the probability measure uniformly distributed on S_N . Then $\{\mu_N\}$ is a weak^{*}-Cauchy sequence of measures; we will denote its weak^{*} limit by μ .

3. Convolution properties. Suppose S and G are self-similar fractal sets constructed as above, with $S \in \mathfrak{S}$. We will prove the following convolution theorem:

THEOREM 1. Let μ be the measure on S as defined above. For each $p \in (1,\infty)$ there is an $\varepsilon > 0$ such that $\|\mu * f\|_{L^{p+\varepsilon}(G)} \leq \|f\|_{L^{p}(G)}$ for all $f \in L^{p}(G)$.

The proof of this theorem requires two lemmas, the first of which is stated in a more general setting. Suppose G_1 and G_2 are abelian groups satisfying $G_1 \subset G_2$, $|G_1| = n^J$, $|G_2| = n^{J+1}$, and $G_2 = \bigcup_{j=1}^n (x_j + G_1)$. Let S_1 and S_2 be subsets of G_1 and G_2 respectively, satisfying $|S_1| = (n-1)^J$, $|S_2| = (n-1)^{J+1}$, and $S_2 = \bigcup_{j=1}^{n-1} (x_j + S_1)$. Let μ_i denote the normalized counting measure on S_i , and $||g||_{p,i}$ denote the L^p norm with respect to the normalized counting measure on G_i .

LEMMA 1. Suppose that the n-point inequality

(1)
$$\left(\frac{1}{n}\sum_{i=1}^{n}\left(\frac{1}{n-1}\sum_{j\neq i}a_{j}\right)^{q}\right)^{1/q} \le \left(\frac{1}{n}\sum_{i=1}^{n}a_{i}^{p}\right)^{1/p}$$

holds for all positive real numbers $\{a_i\}_{i=1}^n$. If the inequality

(2)
$$\left(\frac{1}{n^J}\sum_{x\in G_1} \left|\frac{1}{(n-1)^J}\sum_{t\in S_1} h(x-t)\right|^q\right)^{1/q} \le \left(\frac{1}{n^J}\sum_{x\in G_1} |h(x)|^p\right)^{1/p}$$

holds for all functions $h \in L^p(G_1)$, then the inequality

(3)
$$\left(\frac{1}{n^{J+1}}\sum_{x\in G_2} \left|\frac{1}{(n-1)^{J+1}}\sum_{t\in S_2} g(x-t)\right|^q\right)^{1/q} \le \left(\frac{1}{n^{J+1}}\sum_{x\in G_2} |g(x)|^p\right)^{1/p}$$

holds for all functions $g \in L^p(G_2)$.

LEMMA 2. Inequality (1) is valid for q = 3 and p = 2.

We observe that (2) is just $\|\mu_1 * h\|_{q,1} \leq \|h\|_{p,1}$, and (3) is just $\|\mu_2 * g\|_{q,2}$ $\leq \|g\|_{p,2}$. Once the two lemmas are proven, an inductive argument will show that $\|\mu_N * ft\|_{L^3(G_N)} \leq \|f\|_{L^2(G_N)}$ for all $f \in L^p(G_N)$ and all N. Then if $f \in C(G)$, it follows that $|\mu_N * f| \to |\mu * f|$ uniformly on G, and we have

$$\int |\mu_N * f|^3 dm_N \to \int |\mu * f|^3 dm.$$

Since

$$\left[\int |\mu_N * f|^3 dm_N\right]^{2/3} \le \int |f|^2 dm_N \quad \text{and} \quad \int |f|^2 dm_N \to \int |f|^2 dm_N$$

we see that

$$\|\mu * f\|_{L^3(G)} \le \|f\|_{L^2(G)}$$

for all non-negative continuous functions f on G. In addition, we know that

 $\|\mu * f\|_{L^1(G)} \le \|f\|_{L^1(G)}$

for $f \in L^1(G)$ and

$$\|\mu * f\|_{L^{\infty}(G)} \le \|f\|_{L^{\infty}(G)}$$

so application of the Riesz–Thorin theorem will complete the proof of Theorem 1. *Proof of Lemma 1.* We begin by using a coset expansion of S_2 and G_2 in terms of S_1 and G_1 to show that

$$\left(\frac{1}{n^{J+1}}\sum_{x\in G_2} \left|\frac{1}{(n-1)^{J+1}}\sum_{t\in S_2} g(x-t)\right|^q\right)^{1/q} = \left(\frac{1}{n}\sum_{i=1}^n \left\|\frac{1}{n-1}\sum_{j=1}^{n-1}\mu_i * g(x+(x_i-x_j))\right\|_{q,1,x}^q\right)^{1/q}.$$

We calculate

$$\begin{split} & \left(\frac{1}{n^{J+1}}\sum_{x\in G_2}\left|\frac{1}{(n-1)^{J+1}}\sum_{t\in S_2}g(x-t)\right|^q\right)^{1/q} \\ &= \left(\frac{1}{n^{J+1}}\sum_{x\in G_2}\left|\frac{1}{(n-1)^{J+1}}\sum_{j=1}^{n-1}\sum_{t\in x_j+S_1}g(x-t)\right|^q\right)^{1/q} \\ &= \left(\frac{1}{n^{J+1}}\sum_{i=1}^n\sum_{x\in x_i+G_1}\left|\frac{1}{(n-1)^{J+1}}\sum_{j=1}^{n-1}\sum_{t\in S_1}g(x-x_j-t)\right|^q\right)^{1/q} \\ &= \left(\frac{1}{n^{J+1}}\sum_{i=1}^n\sum_{x\in G_1}\left|\frac{1}{(n-1)^{J+1}}\sum_{j=1}^{n-1}\sum_{t\in S_1}g(x+x_i-x_j-t)\right|^q\right)^{1/q} \\ &= \left(\frac{1}{n^{J+1}}\sum_{i=1}^n\sum_{x\in G_1}\left|\frac{1}{(n-1)^1}\sum_{j=1}^{n-1}\frac{1}{(n-1)^J}\sum_{t\in S_1}g(x-t+(x_i-x_j))\right|^q\right)^{1/q} \\ &= \left(\frac{1}{n}\sum_{i=1}^n\left[\frac{1}{n^J}\sum_{x\in G_1}\left|\frac{1}{n-1}\sum_{j=1}^{n-1}\mu_1*g(x+(x_i-x_j))\right|^q\right]\right)^{\{1/q\}} \end{split}$$

Using the triangle inequality and the inductive hypothesis $\|\mu_1 * g\|_{q,1} \le \|g\|_{p,1}$, we see that

$$\begin{split} \left[\frac{1}{n}\sum_{i=1}^{n}\left\|\frac{1}{n-1}\sum_{j=1}^{n-1}\mu_{1}*g(x+(x_{i}-x_{j}))\right\|_{q,1,x}^{q}\right]^{1/q} \\ &\leq \left[\frac{1}{n}\sum_{i=1}^{n}\left[\frac{1}{n-1}\sum_{j=1}^{n-1}\left\|\mu_{1}*g(x+(x_{i}-x_{j}))\right\|_{q,1,x}\right]^{q}\right]^{1/q} \\ &= \left[\frac{1}{n}\sum_{i=1}^{n}\frac{1}{n-1}\left[\sum_{j=1}^{n-1}\left\|g\right\|_{p,1,(x_{i}-x_{j})+G_{1}}\right]^{q}\right]^{1/q}. \end{split}$$

Now, for fixed i, $\{(x_i - x_j) + G_1\}_{j=1}^{n-1}$ spans all of the cosets of G_1 in G_2 except $(x_i - x_n) + G_1$. And, for fixed k, $\{(x_i - x_k) + G_1\}_{i=1}^n$ spans all of the cosets of G_1 in G_2 , so by (1),

$$\left[\frac{1}{n}\sum_{i=1}^{n}\frac{1}{n-1}\left[\sum_{j=1}^{n-1}\|g\|_{p,1,(x_{i}-x_{j})+G_{1}}\right]^{q}\right]^{1/q}$$

$$\leq \left[\frac{1}{n}\sum_{i=1}^{n}\|g\|_{p,1,x_{i}+G_{1}}^{p}\right]^{1/p} = \left[\frac{1}{n}\sum_{i=1}^{n}n\|g\|_{p,2,x_{i}+G_{1}}^{p}\right]^{1/p}$$

$$= \left[\sum_{i=1}^{n}\|g\|_{p,2,x_{i}+G_{1}}^{p}\right]^{1/p} = \left[\|g\|_{p,2}^{p}\right]^{1/p} = \|g\|_{p,2}.$$

Proof of Lemma 2. Cubing both sides of

$$\left(\frac{1}{n}\sum_{i=1}^{n}\left(\frac{1}{n-1}\sum_{j\neq i}a_{j}\right)^{3}\right)^{1/3} \le \left(\frac{1}{n}\sum_{i=1}^{n}a_{i}^{2}\right)^{1/2}$$

yields

$$\sum_{i=1}^{n} \left(\sum_{j \neq i} a_j \right)^3 \le (n-1)^3 n^{-1/2} \left(\sum_{i=1}^{n} a_i^2 \right)^{3/2}.$$

Since both sides are homogeneous of degree 3, it is enough to show that the maximum of $\sum_{i=1}^{n} (\sum_{j \neq i} a_j)^3$ subject to the constraint $\sum_{i=1}^{n} a_i^2 = 1$ is $(n-1)^3 n^{-1/2}$. By Lagrange's method, the maximum of $\sum_{i=1}^{n} (\sum_{j \neq i} a_j)^3$ subject to the constraint $\sum_{i=1}^{n} (\sum_{j \neq i} a_j)^3 = 1$ occurs when the a_i 's satisfy the system of equations

(4)
$$\frac{\partial}{\partial a_k} \left(\sum_{i=1}^n \left(\sum_{j \neq i} a_j \right)^3 \right) = 2\lambda a_k \quad \text{for } 1 \le k \le n.$$

Expanding the left-hand side of (4) yields the following system of equations:

(5)
$$\left[a_k^2 + 2\sum_{\substack{j=1\\j\neq k}}^n a_j a_k + (n-2)\sum_{j=1}^n a_j^2 + 2(n-3)\sum_{i=1}^n \sum_{j>i}^n a_i a_j\right] = -2\lambda a_k$$

for $1 \le k \le n$, $n \ge 3$. This system of equations is satisfied only when $a_i = a_j$ for $1 \le i, j \le n$. We can therefore write $a = a_i$, and given that $\sum_{i=1}^n a_i^2 = 1$, we have

$$\sum_{i=1}^{n} \left(\sum_{\substack{j=1\\j\neq i}}^{n} a\right)^3 = (n-1)^3 n^{-1/2}$$

REFERENCES

- [1] G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 1990.
- [2] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, New York, 1990.
- [3] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), 113–117.
- [4] E. Stein, Harmonic analysis on ℝ^N, in: Studies in Harmonic Analysis, MAA Stud. Math. 13, Math. Assoc. Amer., Washington, DC, 1976, 97–135.

Department of Mathematics Stetson University P.O. Box 7532 Daytona Beach, FL 32116, U.S.A. E-mail: szecsei@math.fsu.edu

Received 27 June 2005

(4633)