COLLOQUIUM MATHEMATICUM

A PRIDDY-TYPE KOSZULNESS CRITERION FOR NON-LOCALLY FINITE ALGEBRAS

BY
MAURIZIO BRUNETTI and ADRIANA CIAMPELLA (Napoli)

Abstract

A celebrated result by S. Priddy states the Koszulness of any locally finite homogeneous PBW-algebra, i.e. a homogeneous graded algebra having a Poincaré-Birkhoff-Witt basis. We find sufficient conditions for a non-locally finite homogeneous PBW-algebra to be Koszul, which allows us to completely determine the cohomology of the universal Steenrod algebra at any prime.

Introduction. The notion of Koszul algebra, introduced by S. Priddy in [15] in particular to construct resolutions for the Steenrod algebra, has led to remarkable achievements in the study of associative algebras defined by quadratic relations. The Koszulness condition provides decisive information to solve several basic problems in that context. [14] gives a beautiful and comprehensive account of the impact of Koszul algebras in several areas of mathematics. Such algebras arise in fact in algebraic geometry, representation theory, non-commutative geometry, number theory, and obviously algebraic topology.

In this paper we deal with homogeneous algebras A isomorphic to a quotient of the form $T(V) / J(R)$, where $T(V)=\bigoplus_{i} T_{i}$ is the tensor algebra over a \mathbb{K}-vector space V with basis $X=\left\{x_{i} \mid i \in \mathcal{I}\right\}, \mathcal{I}$ is a (not necessarily bounded) totally ordered set, and $J(R)$ is the two-sided ideal of relations generated by some $R \subset T_{2}=V \otimes V$.

Note that all the Koszulness criteria listed for example in [9] concerning the Hilbert series of A become meaningless if \mathcal{I} is not finite; even Priddy's criterion, i.e. the existence of a Poincaré-Birkhoff-Witt basis [15], only holds if the algebra has an internal degree induced by a map $g: \bigcup \mathcal{I}^{n} \rightarrow \mathbb{Z}$ and it is locally finite with respect to length and g (see [15]). It follows that there are examples of homogeneous quadratic algebras whose Koszulness cannot be checked using directly the criteria listed in [9] and [14]: Poisson enveloping algebras of Poisson algebras with generators indexed by \mathbb{Z} and quadratic brackets (see [11] for the definition), infinite quantum grassmannians (see

Definition 3.3 and Example 3.4), and the universal Steenrod algebra $Q(p)$ at the prime p. We introduce a class \mathcal{G} of PBW-algebras, and show that all the algebras in \mathcal{G} are Koszul. Proposition 2.5 then gives a sufficient condition for an algebra A to be in \mathcal{G}, which is reasonably easy to check. Our tools resemble and generalize the methods used in [4] to show that the algebra $Q(2)$ is Koszul.

The paper is organized as follows. Section 1 contains the definitions of a Koszul algebra and a PBW-basis; in Section 2 we define the class \mathcal{G} and prove that all the algebras in \mathcal{G} are Koszul; in Section 3 we give a list of non-locally finite algebras in \mathcal{G}, and finally in Section 4 we give the solution to a problem left unsolved in [5] and in [6], which actually motivated this research: the identification of the target in a certain embedding of the E_{2}-term of the Adams spectral sequence. The paper ends with a short digression on the characteristics of this hard-to-find non-Koszul PBW algebra that probably does not exist.

1. Preliminaries. By a quadratic algebra A we shall always mean what A. Polishchuk and L. Positselski call a one-generated homogeneous quadratic associative algebra with unit 1_{A} (see $[14$, p. 6]). Such an algebra is determined by a vector space V with basis $X=\left\{x_{i} \mid i \in \mathcal{I}\right\}$, and a subspace of quadratic relations $R \subseteq V \otimes V$. As recalled in the Introduction, A is isomorphic to a quotient of the free associative algebra $T(V)=\bigoplus_{i} T_{i}$. The kernel of the quotient map $p: T(V) \rightarrow A$ is the two-sided ideal $J(R)$ generated by R. We shall always assume that \mathcal{I} is a totally ordered set, without making any assumption on its boundedness.

A quadratic algebra is naturally augmented by $\varepsilon: A \rightarrow \mathbb{K}$ which maps the $p\left(x_{i}\right)$'s to zero. The algebra A is then decomposed as $\mathbb{K} \oplus A_{+}$, where \mathbb{K} is the line spanned by 1_{A} and A_{+}is the augmentation ideal $\operatorname{Ker} \varepsilon$. Unless otherwise stated, we always compute $\operatorname{Tor}^{A}(\mathbb{K}, \mathbb{K})$ and $\operatorname{Ext}_{A}(\mathbb{K}, \mathbb{K})$ with respect to the augmentation ε. In notations, the first degree of the cohomology algebra

$$
H(A)=\bigoplus \operatorname{Ext}_{A}^{s, t}(\mathbb{K}, \mathbb{K})
$$

is the homological degree and the second one denotes the length. The diagonal cohomology $D(A)=\bigoplus H^{q, q}(A)$ is in general a subalgebra of $H(A)$.

Definition 1.1. A homogeneous quadratic algebra A is said to be Koszul if

$$
H(A)=D(A)
$$

This definition can be found in [15] and [14]. The reader should be aware that the algebras studied in [15] are positively graded with respect to the internal degree (see the definition below), while the algebras we are going to introduce do not satisfy this condition.

Any subset of the free monoid $\bigcup \mathcal{I}^{k}$ is totally ordered by the length first, and then by the natural lexicographical order. For any multi-indices or labels

$$
I=\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}^{k} \quad \text { and } \quad J=\left(j_{1}, \ldots, j_{l}\right) \in \mathcal{I}^{l}
$$

we set $x_{I}=x_{i_{1}} \cdots x_{i_{k}}, \ell(I)=k$, and $(I, J)=\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{l}\right)$. By convention, the monomial x_{\emptyset} associated to $\emptyset \in \mathcal{I}^{0}$ represents 1 in $T(V)$, hence $p\left(x_{\emptyset}\right)=1_{A}$.

Let now \mathcal{B} be a basis of monomials for A_{+}. We associate to \mathcal{B} the following set of multi-indices:

$$
S_{\mathcal{B}}=\left\{I \mid a_{I} \in \mathcal{B}\right\}
$$

where $a_{I}=p\left(x_{I}\right)$.
Definition 1.2. A basis of monomials \mathcal{B} for A_{+}is a Poincaré-BirkhoffWitt $(P B W)$ basis if the following conditions hold.

1. For any I and J in $S_{\mathcal{B}}$ such that $a_{I} a_{J} \neq 0$, either $a_{I} a_{J}$ belongs to \mathcal{B}, or the label of each monomial which appears in the expression of $a_{I} a_{J}$ in terms of elements of \mathcal{B} is greater than (I, J).
2. For each $k>2,\left(i_{1}, \ldots, i_{k}\right) \in S_{\mathcal{B}}$ if and only if $\left(i_{1}, \ldots, i_{j}\right)$ and $\left(i_{j+1}, \ldots, i_{k}\right)$ are in $S_{\mathcal{B}}$ for each $j \in\{1, \ldots, k-1\}$.
Suppose now that the set R is homogeneous with respect to the internal degree

$$
\operatorname{deg} x_{i_{1}} \cdots x_{i_{n}}:=g\left(i_{1}, \ldots, i_{n}\right)
$$

where $g: \bigcup \mathcal{I}^{k} \rightarrow \mathbb{Z}$ denotes a fixed monoid homomorphism. In this way A becomes a bigraded object. Typically and throughout the paper, when $\mathcal{I} \subseteq \mathbb{Z}$, the internal degree is given by the map $\left(i_{1}, \ldots, i_{n}\right) \mapsto i_{1}+\cdots+i_{n}$. We shall say that an algebra A is locally finite if the \mathbb{K}-module

$$
A^{t, p}=\{\text { elements of length } t \text { and internal degree } p\}
$$

is finitely generated for any $t \in \mathbb{N}$ and $p \in \mathbb{Z}$.
We shall also make use of the following filtration for $A=T(V) / J(R)$. Denote by A_{i} the subalgebra generated by all the $p\left(x_{j}\right)$'s with $j \leq i$. There are two families of inclusions,

$$
\psi_{k}: A_{k} \rightarrow A \quad \text { and } \quad \phi_{i_{1} i_{2}}: A_{i_{1}} \rightarrow A_{i_{2}}, \quad \forall i_{1} \leq i_{2}
$$

We have

$$
A \cong \underline{\lim _{\longrightarrow}}\left\{A_{\bullet}, \phi_{\bullet}\right\}
$$

Proposition 1.3. The homology of A is isomorphic to

Furthermore if each A_{i} is locally finite, the cohomology of A is isomorphic to

$$
\begin{equation*}
\lim _{\rightleftarrows}\left\{\operatorname{Ext}_{A_{i}}(\mathbb{K}, \mathbb{K}), \phi_{\bullet}^{*}\right\} \tag{1.1}
\end{equation*}
$$

Proof. The homology functor commutes with direct limits. The local finiteness of A_{i} 's ensures that the inverse limit satisfies the Mittag-Leffler conditions: in this case the dimension of $\operatorname{Ext}_{A_{i}}^{s, t, p}(\mathbb{K}, \mathbb{K})$ as a \mathbb{K}-module is finite in every fixed homological degree s, length t and internal degree p. Thus $\lim ^{1}\left\{\operatorname{Ext}_{A_{i}}(\mathbb{K}, \mathbb{K}), \phi_{\bullet}^{*}\right\}=0$.

Remark 1.4. When $\mathcal{I} \subseteq \mathbb{Z}$, the cohomology of A is surely given by (1.1). In fact the subalgebra A_{i} is a quotient of $T\left(\operatorname{Span}\left\{x_{j} \mid j \leq i\right\}\right)$ which is locally finite (see Proposition 3.1 in [5]).

The next proposition states the famous Priddy Koszulness criterion.
Proposition 1.5. Every locally finite PBW-algebra A is a Koszul algebra.

Proof. See Priddy's original proof in [15, Section 5], and note that the hypothesis on \mathcal{I} to be bounded below (which is tacitly assumed by that author who usually thinks of \mathcal{I} as the positive integers) can be replaced by local finiteness.

Unfortunately, even when $\mathcal{I} \subseteq \mathbb{Z}$ Propositions 1.3 and 1.4 are not sufficient alone to prove the Koszulness of a non-locally finite algebra A : in general the algebras A_{i} are neither Koszul nor quadratic (see Example 3.5).

We end this section by recalling the notion of reduction introduced by G. M. Bergman in [3] to state the diamond lemma for associative algebras (see also [2]).

Let \mathcal{M} be the set of monomials in $T(V)$. A reduction system is by definition a subset $\mathcal{S} \subset \mathcal{M} \times T(V)$; we assume here that every monomial appears at the first place in at most one pair in \mathcal{S}, hence it makes sense to denote its generic element by $\left(x_{J}, y_{J}\right)$, where y_{J} is a suitable non-commutative polynomial in $T(V)$. Every reduction system determines a family of \mathbb{K}-linear endomorphisms in $T(V)$. Namely, an element $\sigma_{J}=\left(x_{J}, y_{J}\right) \in \mathcal{S}$ determines the maps

$$
r_{I^{\prime} \sigma_{J} I^{\prime \prime}}: x_{I} \rightarrow \begin{cases}x_{I^{\prime}} y_{J} x_{I^{\prime \prime}} & \text { if } I=\left(I^{\prime}, J, I^{\prime \prime}\right) \\ x_{I} & \text { otherwise }\end{cases}
$$

Such maps are called simple reductions; any finite composition of simple reductions is called a (general) reduction. An element on which all reductions act trivially (i.e. as the identity) is said to be irreducible. Let now $A=$ $T(V) / J(R)$ be a PBW-algebra, and \mathcal{B} a PBW-basis for A. The subspace R of quadratic relations determines a reduction system S_{R} and a set \mathcal{R} of related reductions in the following way. Surely there exists in R a subset of independent generators whose elements have the form $x_{i_{1}} x_{i_{2}}-F_{i_{1} i_{2}}$, where

$$
F_{i_{1} i_{2}}=\sum_{\left(j_{1}, j_{2}\right) \in S_{\mathcal{B}}} c_{i_{1} i_{2}}^{j_{1} j_{2}} x_{\left(j_{1}, j_{2}\right)}
$$

The elements in S_{R} are precisely the pairs $\left(x_{\left(i_{1}, i_{2}\right)}, F_{i_{1} i_{2}}\right)$. By definition $p\left(x_{I}\right)=p\left(r\left(x_{I}\right)\right)$ for any reduction $r \in \mathcal{R}$ and for any $x_{I} \in \mathcal{M}$. Since \mathcal{B} is a PBW-basis the reductions satisfy a confluence condition: for any $y \in T(V)$ there exists $r \in \mathcal{R}$ such that $r(y)$ is irreducible; furthermore if $r(y)$ and $r^{\prime}(y)$ are both irreducible, then $r(y)=r^{\prime}(y)$.
2. A class of PBW-algebras. Let A be a PBW-algebra as above. Fixing a label I, we consider the subset S_{I} of S_{R} corresponding to all those reductions $r=r_{k} \circ \cdots \circ r_{1}$ such that r_{s+1} does not act trivially on $r_{s} \circ \cdots \circ r_{1}\left(x_{I}\right)$. Note that S_{I} is empty if and only if $p\left(x_{I}\right) \in \mathcal{B}$.

Definition 2.1. We say that an algebra A with a PBW-basis \mathcal{B} is good if the following two conditions hold:
(i) the subalgebra A_{i} is locally finite for all $i \in \mathcal{I}$;
(ii) the map $\vartheta_{A}: I \in \bigcup \mathcal{I}^{n} \mapsto \max \left(\left\{i_{1}, \ldots, i_{n}\right\} \cup\left\{\right.\right.$ indices appearing in $\left.\left.S_{I}\right\}\right) \in \mathcal{I}$ is well defined.

Sometimes we shall write just " V ", omitting the subscript, when it is clear which algebra we are referring to, and denote by \mathcal{G} the class of good PBW-algebras. To prove the Koszulness of all the algebras in \mathcal{G}, we shall give a refinement of Priddy's argument in homology. A variant has been used in [4].

Definition 2.2. Let $B_{*}(A)$ denote the normalized bar complex of an algebra A with basis \mathcal{B}. The irreducibility index of a generating chain

$$
c=\left[a_{I_{1}}|\cdots| a_{I_{s}}\right]
$$

in $B_{s}(A)=A_{+}^{\otimes s}$ is the integer

$$
\operatorname{ai}(c)= \begin{cases}s & \text { if } \mathcal{U}=\emptyset, \\ \min \mathcal{U} & \text { if } \mathcal{U} \neq \emptyset,\end{cases}
$$

where $\mathcal{U}=\left\{h \mid a_{I_{h}} \cdot a_{I_{h+1}} \in \mathcal{B}\right\}$.
Lemma 2.3. Both the chains $c=\left[a_{I_{1}}|\cdots| a_{I_{s}}\right] \in B_{*}(A)$ and

$$
\partial(c)=\sum_{j=1}^{s-1}(-1)^{j-1}\left[a_{I_{1}}|\cdots| a_{I_{j}} a_{I_{j+1}}|\cdots| a_{I_{s}}\right] \in B_{s-1}(A)
$$

belong to $\left(\psi_{\vartheta(I)}\right)_{\sharp} B_{*}\left(A_{\vartheta(I)}\right)$, where $I=\left(I_{1}, \ldots, I_{s}\right)$.
Proof. The lemma immediately follows from the definition (2.1) of ϑ, once we note that all the simple reductions needed to express $x_{I_{j}} x_{I_{j+1}}$ as a sum of irreducible elements are in S_{I}.

Theorem 2.4. All the good PBW-algebras are Koszul.

Proof. Let \mathcal{B} be a PBW-basis of an algebra $A \in \mathcal{G}$, and consider a \mathbb{K}-linear map $\Phi: B_{s}(A) \rightarrow B_{s+1}(A)$ which acts on the generating chains as follows. When $I_{1}=\left(i_{1}, \ldots, i_{l_{1}}\right)$, and $\ell\left(I_{1}\right)>1$,

$$
\Phi\left(\left[a_{I_{1}}|\cdots| a_{I_{s}}\right]\right)=\left[a_{i_{1}}\left|a_{i_{2}} \cdots a_{l_{1}}\right| a_{I_{2}}|\cdots| a_{I_{s}}\right] .
$$

If, on the other hand, $c=\left[a_{i_{1}}|\cdots| a_{i_{k}}\left|a_{i_{k+1}} \cdots a_{i_{k+r}}\right| \cdots \mid a_{I_{s}}\right]$ with $r>1$, then

$$
\Phi(c)= \begin{cases}(-1)^{k}\left[a_{i_{1}}|\cdots| a_{i_{k}}\left|a_{i_{k+1}}\right| a_{i_{k+2}} \cdots a_{i_{k+r}}|\cdots| a_{I_{s}}\right] & \text { if ai }(c)>k \\ 0 & \text { if ai }(c) \leq k\end{cases}
$$

We now filter the reduced bar construction $B_{*}(A)$ as follows. Let $F_{I} B_{s, t, p}(A)$ and $F_{I+1} B_{s, t, p}(A)$ be the submodules of $B_{s}(A)$ generated by

$$
\left\{\left[a_{I_{1}}|\cdots| a_{I_{s}}\right] \in B_{s}(A): \sum_{j=1}^{s} \ell\left(I_{j}\right)=t, \sum_{j=1}^{s} g\left(I_{j}\right)=p,\left(I_{1}, \ldots, I_{s}\right) \geq I\right\}
$$

and

$$
\left\{\left[a_{I_{1}}|\cdots| a_{I_{s}}\right] \in B_{s}(A): \sum_{j=1}^{s} \ell\left(I_{j}\right)=t, \sum_{j=1}^{s} g\left(I_{j}\right)=p,\left(I_{1}, \ldots, I_{s}\right)>I\right\}
$$

respectively. The restriction of the map ∂ respects this decreasing filtration and induces a map

$$
\partial^{\prime}: \frac{F_{I} B_{s}(A)}{F_{I+1} B_{s}(A)} \rightarrow \frac{F_{I} B_{s-1}(A)}{F_{I+1} B_{s-1}(A)}
$$

which acts on the generators as follows:

$$
\partial^{\prime}:\left[a_{I_{1}}|\cdots| a_{I_{s}}\right] \rightarrow \sum_{j=1}^{s-1}(-1)^{j-1}\left[a_{I_{1}}|\cdots| a_{I_{j}} a_{I_{j+1}}|\cdots| a_{I_{s}}\right]
$$

The summands on the right side which are zero in $F_{I} B_{s-1}(A) / F_{I+1} B_{s-1}(A)$ are precisely those such that $a_{I_{j}} a_{I_{j+1}} \notin \mathcal{B}$. The reader can now verify Φ induces a contracting homotopy

$$
\Phi^{\prime}: \frac{F_{I} B_{s, s+r}(A)}{F_{I+1} B_{s, s+r}(A)} \rightarrow \frac{F_{I} B_{s+1, s+r}(A)}{F_{I+1} B_{s+1, s+r}(A)} \quad(r>0)
$$

by evaluating Φ on a chain $c=\left[a_{I_{1}}|\cdots| a_{I_{s}}\right]$ such that $\left(I_{1}, \ldots, I_{s}\right)=I$ to avoid trivial cases. The equality

$$
(\partial \Phi+\Phi \partial)(c) \equiv c \bmod F_{I+1} B_{s, s+r}(A)
$$

depends in particular on the fact that $\max \left\{\ell\left(I_{1}\right), \ldots, \ell\left(I_{s}\right)\right\}>1$, and that

$$
\left[a_{I_{1}}|\cdots| a_{I_{j}} a_{I_{j+1}}|\cdots| a_{I_{s}}\right]
$$

belongs to $F_{I+1} B_{s-1, s+r}(A)$ when $j<\operatorname{ai}(c)$.

Suppose now that $c=\sum_{h=1}^{m}\left[y_{I_{1}^{h}}|\cdots| y_{I_{s}^{h}}\right]$ represents a cycle in $B_{s, t, p}(A)$ with $s \neq t$; the index

$$
\theta(c)=\max \left\{\vartheta\left(I_{1}^{h}, \ldots, I_{s}^{h}\right) \mid h=1, \ldots, m\right\}
$$

is well defined since $A \in \mathcal{G}$. We also know that $A_{\theta(c)}$ is locally finite.
When $\Phi(c)$ is not zero, it involves the same indices of c "split" in a different way, hence by Lemma 2.3 the element $c_{1}=c-\partial \Phi(c)$, and similarly every

$$
c_{i+1}=c_{i}-\partial \Phi\left(c_{i}\right),
$$

lives in $\left(\psi_{\theta(c)}\right)_{\sharp} B_{s, t, p}\left(A_{\theta(c)}\right)$, which is finite-dimensional since A is good. In particular, once you fix s, t, p and c there are only a finite number of different submodules $\left(\psi_{\theta(c)}\right) \not{ }_{\sharp} F_{I} B_{s, t, p}\left(A_{\theta(c)}\right)$; it follows that there exists a c_{t} on which $\partial \Phi+\Phi \partial$ acts trivially, showing that c is a boundary, i.e.

$$
\operatorname{Tor}_{s, t}^{A}(\mathbb{K}, \mathbb{K})=0 \quad \text { for any } s \neq t
$$

Obviously all finitely generated or locally finite PBW-algebras are good. In the other cases condition (ii) of Definition 2.1 could be difficult to check. For this reason, at least when the indices are in \mathbb{Z}, we give a sufficient condition for an algebra to be in \mathcal{G}. According to the notations introduced at the end of Section 1, we denote by $h_{i_{1} i_{2}}$ the maximal index appearing in the polynomial $p_{i_{1} i_{2}}=x_{i_{1}} x_{i_{2}}-F_{i_{1} i_{2}}$.

Proposition 2.5. Let A be a $P B W$-algebra with $\mathcal{I} \subseteq \mathbb{Z}$. If the set

$$
\begin{equation*}
\mathcal{M}_{\bar{j}}=\{\bar{j}\} \cup\left\{h_{i \bar{j}} \mid i \in \mathcal{I},(i, \bar{j}) \notin S_{\mathcal{B}}\right\} \tag{2.2}
\end{equation*}
$$

admits a maximum for any \bar{j}, and the function

$$
\omega: j \in \mathcal{I} \mapsto \max \mathcal{M}_{j}
$$

is non-decreasing, then A is good.
Proof. By Remark 1.4, we have just to see that $\vartheta_{A}(I)$ is a well defined integer for any label $I=\left(i_{1}, \ldots, i_{k}\right)$. This is in fact true, and depends on the following inequality:

$$
\begin{equation*}
\vartheta_{A}(I) \leq \Omega(I):=\max \left\{i_{1}, \ldots, i_{k}, \omega\left(i_{2}\right), \ldots, \omega^{k-1}\left(i_{k}\right)\right\} . \tag{2.3}
\end{equation*}
$$

If x_{I} is irreducible, i.e. $I \in S_{\mathcal{B}}$, we have $\max \left\{i_{1}, \ldots, i_{k}\right\}$ on both sides of (2.3). The equality also occurs in (2.3) when $I \notin S_{\mathcal{B}}$ and $F_{i_{h} i_{h+1}}=0$ for all $\left(i_{h}, i_{h+1}\right) \notin S_{\mathcal{B}}$.

Suppose now that $J_{h}:=\left(i_{h}, i_{h+1}\right) \notin S_{\mathcal{B}}$, and $F_{i_{h} i_{h+1}} \neq 0$. We have

$$
\begin{align*}
r_{\left(i_{1}, \ldots, i_{h-1}\right) \sigma_{J_{h}}\left(i_{h+2}, \ldots, i_{k}\right)}\left(x_{I}\right)= & x_{\left(i_{1}, \ldots, i_{h-1}\right)} \cdot F_{i_{h} i_{h+1}} \cdot x_{\left(i_{h+2}, \ldots, i_{k}\right)} \tag{2.4}\\
& =x_{\left(i_{1}, \ldots, i_{h-1}\right)} \cdot \sum_{\left(j_{1}, j_{2}\right) \in S_{\mathcal{B}}} c_{i_{h}, i_{h+1}}^{j_{h} j_{h+1}} x_{\left(j_{h}, j_{h+1}\right)} \cdot x_{\left(i_{h+2}, \ldots, i_{k}\right)} .
\end{align*}
$$

First of all we show that if $c_{i_{h}, i_{h+1}}^{j_{h} j_{h+1}} \neq 0$, then

$$
\begin{equation*}
\Omega\left(i_{1}, \ldots, i_{h-1}, j_{h}, j_{h+1}, i_{h+2}, \ldots, i_{k}\right) \leq \Omega(I) \tag{2.5}
\end{equation*}
$$

The two labels just differ for two integers. Note first that

$$
\begin{align*}
j_{h}, j_{h+1} & \leq \omega\left(i_{h+1}\right) \quad \tag{2.6}\\
& \leq \omega^{h}\left(i_{h+1}\right) \quad \tag{2.7}\\
& \quad(\text { by defince } \omega \text { is non-decreasing }), \tag{2.8}\\
& \Omega(I) \quad(\text { by definition of the map } \Omega) .
\end{align*}
$$

Applying ω^{h-1} to both sides of (2.6) we get in particular $\omega^{h-1}\left(j_{h}\right) \leq$ $\omega^{h}\left(i_{h+1}\right)$. Finally, since $j_{h}>i_{h}$ by condition 1 in Definition 1.2 , it follows that $j_{h+1}<i_{h+1}$, and hence $\omega^{h}\left(j_{h+1}\right) \leq \omega^{h}\left(i_{h+1}\right)$.

From (2.5) we see in particular that no indices in (2.4) are greater than $\Omega(I)$. The inequality (2.5) also provides the inductive argument to show that for any composition $r=r_{s} \circ \cdots \circ r_{1}$ of simple reductions, no indices appearing in the polynomials $r_{i} \circ \cdots \circ r_{1}\left(x_{I}\right)$ with $i=1, \ldots, s$ are greater than $\Omega(I)$.

The following example shows that the existence of a map like ω in Proposition 2.5 is not necessary for a \mathbb{Z}-indexed PBW-algebra to be good.

Example 2.6. Let A be the algebra over a field \mathbb{K} with char $\mathbb{K} \neq 2$ generated by $\left\{y_{i} \mid i \in \mathbb{Z}\right\}$ subject to the following generating relations:

$$
y_{i} y_{j}= \begin{cases}0 & \text { if } i \leq j \text { and } j \neq 3 \tag{2.9}\\ i(3-i) y_{3^{|i|}+1} y_{2-i-\left.3\right|^{|i|}} & \text { if } i \leq j=3\end{cases}
$$

The elements

$$
y_{i_{1}} \cdots y_{i_{n}} \quad \text { with } \quad i_{1}>\cdots>i_{n}
$$

are all distinct and form a PBW-basis \mathcal{B}. In fact any dependence relation among its elements would depend on non-trivial equalities between monomials, which actually do not occur. In fact, a non-zero monomial not in \mathcal{B} contains $h>0$ non-consecutive y_{3} 's, and it is equal to exactly one element in \mathcal{B}. The algebra A is good since the map required in Definition 2.1 is

$$
\vartheta:\left(i_{1}, \ldots, i_{n}\right) \mapsto \max \left\{i_{1}, \ldots, i_{n}, 3^{\left|i_{h}\right|}+1 \mid i_{h+1}=3\right\}
$$

but the set \mathcal{M}_{3} defined in (2.2) is not upper bounded.
3. Some operations on good PBW-algebras and examples. Let $A^{\prime}=T\left(V^{\prime}\right) / J\left(R^{\prime}\right)$ and $A^{\prime \prime}=T\left(V^{\prime \prime}\right) / J\left(R^{\prime \prime}\right)$ be two quadratic \mathbb{K}-algebras. For the following definition we adopt notations of [14].

Definition 3.1.
(i) The free product $A^{\prime} \sqcup A^{\prime \prime}$ is the algebra freely generated by A^{\prime} and $A^{\prime \prime}$, i.e. $T\left(V^{\prime} \oplus V^{\prime \prime}\right)$ quotiented by $J\left(R^{\prime} \oplus\left\{\underline{0}^{\prime \prime}\right\}+\left\{\underline{0}^{\prime}\right\} \oplus R^{\prime \prime}\right)$. We equip the free product with an internal degree inherited by A^{\prime} and $A^{\prime \prime}$.
(ii) The direct sum $A^{\prime} \sqcap A^{\prime \prime}$ is the quotient of $A^{\prime} \sqcup A^{\prime \prime}$ obtained by setting

$$
A_{+}^{\prime} A_{+}^{\prime \prime}=A_{+}^{\prime \prime} A_{+}^{\prime}=0
$$

(iii) The q-tensor product $A^{\prime} \otimes^{q} A^{\prime \prime}$ with $q \in \mathbb{P}_{\mathbb{K}}^{1}$ is the quotient of $A^{\prime} \sqcup A^{\prime \prime}$ by the ideal

$$
J\left(\operatorname{Span}\left\{a^{\prime \prime} a^{\prime}-q^{\operatorname{deg} a^{\prime \prime} \operatorname{deg} a^{\prime}} a^{\prime} a^{\prime \prime}\right\}\right)
$$

For $q=\infty$, equation (3.1) has to be read $a^{\prime} a^{\prime \prime}=0$.
Proposition 3.2. Let $\left\{\star_{i}\right\}_{i \in \mathbb{N}}$ and $\{A(i) \mid i \in \mathbb{N}\}$ be any sequence of operators in $\left\{\sqcup, \sqcap, \otimes^{q}\right\}$ and of good $P B W$-algebras respectively. The algebras

$$
\begin{equation*}
\stackrel{n}{\stackrel{n}{\star}} A(i) \tag{3.2}
\end{equation*}
$$

are all Koszul.
Proof. Since good algebras are Koszul by Theorem 2.4, the statement essentially follows from [1] where it is proved that the operators $\sqcup, \sqcap, \otimes^{q}$ preserve Koszulness. The assumption on A to be finitely generated is not really relevant there. A proof of this result is also sketched in [14, p. 58]. A third proof, when A^{\prime} and $A^{\prime \prime}$ are good, could use the arguments given along the proof of Theorem 2.4, noticing that $A^{\prime} \star A^{\prime \prime}$ has a PBW-basis, and can be filtered by the locally finite algebras $A_{i}^{\prime} \star A_{j}^{\prime \prime}$. For instance, a PBW-basis $\mathcal{B}_{A^{\prime} \sqcup A^{\prime \prime}}$ for $A^{\prime} \sqcup A^{\prime \prime}$ is given by $\left\{a_{I}^{\prime} a_{J_{1}}^{\prime \prime} a_{I_{1}}^{\prime} \cdots a_{I_{n}}^{\prime} a_{J}^{\prime \prime} \mid I \in S_{\mathcal{B}_{A^{\prime}}} \cup\{\emptyset\}, I_{i} \in S_{\mathcal{B}_{A^{\prime}}}, J_{i} \in S_{\mathcal{B}_{A^{\prime \prime}}}, J \in S_{\mathcal{B}_{A^{\prime \prime}}} \cup\{\emptyset\}\right\}$ where by convention all the indices in A^{\prime} are greater than those in $A^{\prime \prime}$.

We now list several types of interesting good PBW-algebras.
Definition 3.3.
(i) An algebra A is said to be monomial if the subspace R of relations is generated by monomials.
(ii) A skew-polynomial algebra is a quotient $T(V) / J(R)$ where R is generated by

$$
x_{i} x_{j}-q_{i j} x_{j} x_{i} \quad(i<j)
$$

with $q_{i j} \in \mathbb{K}^{*}$.
When $\mathcal{I} \subseteq \mathbb{Z}$ such algebras-and quotients of skew-polynomials algebras by monomial relations - are all good; in fact the map required in Definition 2.1 is

$$
\begin{equation*}
\vartheta: I \in \bigcup \mathcal{I}^{n} \mapsto \max \left\{i_{1}, \ldots, i_{n}\right\} \in \mathcal{I} \tag{3.3}
\end{equation*}
$$

for all of them. The algebra of Example 3.4, whose generators are not indexed by \mathbb{Z}, is related to the coordinate ring of quantum $n \times n$-matrices presented for instance in [10].

Example 3.4. Let N be a fixed integer. After choosing the lexicographical order on $\mathcal{I}=\mathbb{N} \times\{j \in \mathbb{Z} \mid j \leq N\}$ and considering the internal degree induced by the map $g:(i, j) \in \mathcal{I} \mapsto i+j \in \mathbb{Z}$, we consider the graded algebra $A=T(V) / J(R)$ where R is generated by

$$
\begin{aligned}
x_{i j} x_{i l} & =q x_{i l} x_{i j}, \\
x_{i j} x_{k j} & =q x_{k j} x_{i j}, \\
x_{i j} x_{k l} & =x_{k l} x_{i j}+\left(q-q^{-1}\right) x_{i l} x_{k j}
\end{aligned}
$$

for $j<l, i<k$ and $q \in \mathbb{K}^{*}$. A PBW-basis is given by the monomials $x_{i_{1} j_{1}} \cdots x_{i_{n} j_{n}}$ satisfying the following two properties:

- if $i_{h}<i_{h+1}$ then $j_{h}>j_{h+1}$;
- if $i_{h}=i_{h+1}$ then $j_{h} \geq j_{h+1}$.

The algebra A is not locally finite since

$$
x_{10}, x_{2,-1}, x_{3,-2}, \ldots
$$

are infinite independent monomials of internal degree 1 . In any case the subalgebras $A_{i j}$ are locally finite. In fact, for every

$$
x_{i_{1} j_{1}} x_{i_{2} j_{2}} \cdots x_{i_{h} j_{h}} \in T\left(V_{i j}\right)^{h, t}
$$

we have

$$
t-h i \leq j_{1}+\cdots+j_{h} \leq h N
$$

hence

$$
t-h i-(h-1) N \leq j_{1}, \ldots, j_{h} \leq N
$$

It follows that

$$
\operatorname{dim}_{K} T\left(V_{i j}\right)^{h, t} \leq\binom{ h(i+1)}{h}(h N+h i-t)^{h}
$$

Again the map ϑ of (3.3) is suitable to say that A is good.
The Koszulness of the algebras above can also be proved without Theorem 2.5 , since the A_{i} 's are locally finite Koszul algebras and we could just use Proposition 1.3. This is not the case for the examples below.

Example 3.5. Let A be an algebra generated by $\left\{y_{i} \mid i \in \mathbb{Z}\right\}$ subject to the following generating relations:

$$
\begin{equation*}
y_{i} y_{i+1}=0 \quad \forall i \neq 0,1, \quad \text { and } \quad y_{1} y_{i}=y_{i+1} y_{0} \quad \forall i>1 \tag{3.4}
\end{equation*}
$$

A PBW-basis is given by the monomials $y_{i_{1}} \cdots y_{i_{n}}$ with $i_{j} \neq i_{j+1}-1$ for all $i \neq 0,1$, and $i_{j+1} \leq 1$ if $i_{j}=1$. The independence of such monomials is due to the following fact: for each $I=\left(i_{1}, \ldots, i_{n}\right)$ only one of

$$
r_{\left(i_{1}, \ldots, i_{j-2}\right) \sigma_{\left(i_{j-1}, i_{j}\right)}}\left(i_{j+1}, \ldots, i_{n}\right) \quad \text { and } \quad r_{\left(i_{1}, \ldots, i_{j-1}\right) \sigma_{\left(i_{j}, i_{j+1}\right)}\left(i_{j+2}, \ldots, i_{n}\right)}
$$

can possibly stay in \mathcal{R}, hence no monomials are ambiguous in the sense of [2] and [3].

The algebra A is good since the map

$$
\omega: i \in \mathbb{Z} \mapsto \begin{cases}1, & i \leq 1 \\ i+1, & i>1\end{cases}
$$

satisfies the conditions of Proposition 2.5. Note also that none of the algebras A_{i} with $i>1$ is Koszul, in fact $y_{i} y_{1} y_{i}$ gives a non-quadratic relation in A_{i} and $\left[y_{i} \mid y_{1} y_{i}\right]$ represents a non-trivial cycle in $\operatorname{Tor}_{2,3}^{A_{i}}(\mathbb{K}, \mathbb{K})$.

The algebra in Example 3.5 also shows that the inequality (2.3) may be strict. In fact the monomial $x_{-1} x_{-1} x_{2}$ belongs to the PBW-basis, hence $\vartheta(-1,-1,2)=2$ while $\Omega(-1,-1,2)=4$.

Example 3.6. The $(\bmod 2)$ universal Steenrod algebra $Q(2)$ is an $\mathbb{F}_{2^{-}}$ algebra with a countable set of generators $\left\{y_{i} \mid i \in \mathbb{Z}\right\}$ subject to the so-called generalized Adem relations:

$$
y_{2 k-1-n} y_{k}=\sum_{j}\binom{n-1-j}{j} y_{2 k-1-j} y_{k+j-n} \quad\left(k \in \mathbb{Z}, n \in \mathbb{N}_{0}\right)
$$

This algebra is also known as the algebra of all generalized Steenrod operations (see [13]) or the extended Steenrod algebra (see [7]).

The subset

$$
\left\{y_{i_{1}} \cdots y_{i_{h}} \mid i_{j} \geq 2 i_{j+1} \text { for each } j=1, \ldots, h-1\right\}
$$

forms a PBW-basis for $Q(2)$ (see [12]). By Proposition 2.5, $Q(2)$ is good. The required map is

$$
\omega: j \in \mathbb{Z} \mapsto \begin{cases}j & \text { for } j \leq 0 \\ 2 j-1 & \text { for } j \geq 1\end{cases}
$$

Our last example is the $(\bmod p)$ universal Steenrod algebra $Q(p)$ at odd primes. It is generated as an \mathbb{F}_{p}-algebra by

$$
\left\{z_{\varepsilon, i} \mid \varepsilon \in\{0,1\}, i \in \mathbb{Z}\right\} \quad \text { with } \quad \operatorname{deg} z_{\varepsilon, i}=2 i(p-1)+\varepsilon
$$

subject to the following generalized Adem relations:

$$
\begin{gathered}
z_{\varepsilon, p k-1-n} z_{0, k}=\sum_{j} A_{(n, j)} z_{\varepsilon, p k-1-j} z_{0, k-n+j} \\
z_{1-\varepsilon, p k-n} z_{1, k}=\sum_{j} A_{(n, j)} z_{1-\varepsilon, p k-j} z_{1, k-n+j}+\varepsilon \sum_{j} B_{(n, j)} z_{1, p k-j} z_{0, k-n+j}
\end{gathered}
$$

for each $(k, n) \in \mathbb{Z} \times \mathbb{N}_{0}$, where $A_{(n, j)}$ and $B_{(n, j)}$ are respectively equal to

$$
(-1)^{j+1}\binom{(p-1)(n-j)-1}{j} \quad \text { and } \quad(-1)^{j}\binom{(p-1)(n-j)}{j}
$$

This presentation already appeared in [8]. In Proposition 11.2 of [13], the author claims that

$$
\mathcal{B}=\left\{z_{\varepsilon_{1}, i_{1}} \cdots z_{\varepsilon_{h}, i_{h}} \mid i_{j} \geq p i_{j+1}+\varepsilon_{j+1} \text { for each } j=1, \ldots, h-1\right\}
$$

is a basis, but the argument to show that \mathcal{B} is a generating set does not seem to be complete. Nguyen Sum gives a more detailed proof in [17].

Proposition 3.7. The universal Steenrod algebra $Q(p)$ is good at any prime.

Proof. The argument for $p=2$ has already been given in Example 3.6. When p is an odd prime, we set $\mathcal{I}=\{2 p k+\varepsilon \mid k \in \mathbb{Z}, \varepsilon \in\{0,1\}\}$. The algebra $Q(p)$ is then a quotient of $T(V)$ where V is generated by $\left\{x_{i} \mid i \in \mathcal{I}\right\}$, the quotient map being $p: x_{2 p k+\varepsilon} \mapsto z_{\varepsilon, k}$. Proposition 3.7 now follows from Remark 1.4 and Proposition 2.5. The required map is

$$
\omega: i \in \mathcal{I} \mapsto \begin{cases}i & \text { for } i \leq 0 \\ 2 p(p k-1+\varepsilon)+1 & \text { for } i=2 p k+\varepsilon>0\end{cases}
$$

4. Final remarks. In [6] for $p=2$, and in [5] when p is odd, an algebra $Q(p)^{\prime}$ has been introduced by changing the augmentation in $Q(p)$ as follows: the elements

$$
\bar{y}_{i}= \begin{cases}y_{i} & \text { if } i \neq 0 \\ 1+y_{0} & \text { if } i=0\end{cases}
$$

for $p=2$, and

$$
x_{\varepsilon, i}= \begin{cases}z_{\varepsilon, i} & \text { if }(\varepsilon, i) \neq(0,0) \\ z_{0,0}-1 & \text { if }(\varepsilon, i)=(0,0)\end{cases}
$$

for odd primes became the generators of the new augmentation ideal.
The purpose was to make the epimorphisms

$$
\bar{\pi}: \bar{y}_{i} \in Q(2)^{\prime} \mapsto \begin{cases}\mathrm{Sq}^{i} \in \mathcal{A}_{2} & \text { if } i>0 \\ 0 & \text { if } i \leq 0\end{cases}
$$

and

$$
\bar{\pi}: x_{\varepsilon, i} \in Q(p)^{\prime} \mapsto\left\{\begin{array}{ll}
\beta^{\varepsilon} P^{i} \in \mathcal{A}_{p} & \text { if } \varepsilon+i>0, \\
0 & \text { if } \varepsilon+i \leq 0,
\end{array} \quad(p \text { odd })\right.
$$

maps of augmented algebras, where \mathcal{A}_{p} denotes the ordinary Steenrod algebra at the prime p. The maps $\bar{\pi}^{*}$ defined on $\operatorname{Ext}_{\mathcal{A}_{p}}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right)$ turned out to be injective in both cases. In any case an explicit description of the target was still to come. Now we are able to state the following result.

Proposition 4.1. The cohomology of $Q(p)^{\prime}$ is isomorphic to

$$
\operatorname{Ext}_{\mathcal{A}_{2}}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \otimes \Lambda\left[\alpha_{0}\right]
$$

for $p=2$, and

$$
\operatorname{Ext}_{\mathcal{A}_{p}}\left(\mathbb{F}_{p}, \mathbb{F}_{p}\right) \otimes \Lambda\left[\xi_{0,0}\right]
$$

for p odd, where α_{0} and $\xi_{0,0}$ are the duals of \bar{y}_{0} and $x_{0,0}$ respectively.
Proof. In Section 3 we have seen that the algebra $Q(p)$ is good, hence it is Koszul by Theorem 2.4. Use now Proposition 0.2 in [6] when $p=2$ and Proposition 0.2 in [5] when p is odd.

Definition 2.1 suggests that a non-Koszul PBW-algebra should be really bad! In fact the map ϑ_{A} becomes meaningless only if there exist reductions

$$
r=r_{I_{1}^{\prime} \sigma_{J_{1}} I_{1}^{\prime \prime} \circ \cdots \circ r_{I_{s}^{\prime} \sigma_{J_{s}}} I_{s}^{\prime \prime}}
$$

acting non-trivially on a fixed x_{I} with arbitrarily high J_{i} 's. When A is not locally finite, the use of moments in the sense of [16] is not necessarily profitable. In principle, it could happen that a certain r acting non-trivially on x_{I} with

$$
a_{I}=\sum_{J \in S_{\mathcal{B}}} c_{J} a_{J}
$$

involves indices which are greater than those appearing in the J 's such that $c_{J} \neq 0$. In this case all monomials containing such indices would cancel out in $r\left(x_{I}\right)$. In any case the authors have not succeeded in finding any concrete example of a PBW-algebra not of the form (3.2).

Acknowledgements. The authors are especially indebted to Luciano A. Lomonaco for his useful remarks and for pointing out the importance of the universal Steenrod algebra and its cohomology in algebraic topology.

REFERENCES

[1] J. Backelin and R. Fröberg, Koszul algebras, Veronese subrings and rings with linear resolutions, Rev. Roumaine Math. Pures Appl. 30 (1985), 85-97.
[2] R. Berger, Confluence and Koszulity, J. Algebra 201 (1998), 243-283.
[3] G. M. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218.
[4] M. Brunetti, A. Ciampella and L. A. Lomonaco, The cohomology of the universal Steenrod algebra, Manuscripta Math. 118 (2005), 271-282.
[5] —, 一, 一, An embedding for the E_{2}-term of the Adams spectral sequence at odd primes, Acta Math. Sinica 22 (2006), 1657-1666.
[6] M. Brunetti M. and L. A. Lomonaco, An embedding for the E_{2}-term of the Adams spectral sequence, Ricerche Mat. 54 (2005), 185-200.
[7] D. Chataur and M. Livernet, Adem-Cartan operads, Comm. Algebra 33 (2005), 4337-4360.
[8] A. Ciampella and L. A. Lomonaco, The universal Steenrod algebra at odd primes, ibid. 32 (2004), 2589-2607.
[9] R. Fröberg, Koszul algebras, in: Advances in Commutative Ring Theory (Fez, 1997), Lecture Notes in Pure Appl. Math. 205, Dekker, New York, 1999, 337-350.
[10] A. C. Kelly, T. H. Lenagan and L. Rigal, Ring theoretic properties of quantum Grassmannians, J. Algebra Appl. 3 (2004), 9-30.
[11] S.-Q. Oh, C.-G. Park and Y.-Y. Shin., A Poincaré-Birkhoff-Witt theorem for Poisson enveloping algebras, Comm. Algebra 30 (2002), 4867-4887.
[12] L. A. Lomonaco, A basis of admissible monomials for the universal Steenrod algebra, Ricerche Mat. 40 (1991), 137-147.
[13] M. A. Mandell, E_{∞} algebras and p-adic homotopy theory, Topology 40 (2001), 43-94.
[14] A. Polishchuk and L. Positselski, Quadratic Algebras, Univ. Lecture Ser. 37, Amer. Math. Soc., Providence, RI, 2005.
[15] S. B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60.
[16] N. E. Steenrod, Cohomology Operations, lectures written and revised by D. B. A. Epstein, Ann. of Math. Stud. 50, Princeton Univ. Press, Princeton, NJ, 1962.
[17] N. Sum, On an invariant-theoretic description of the lambda algebra, Vietnam J. Math. 33 (2005), 19-32.

Dipartimento di Matematica e Applicazioni
Università di Napoli"Federico II"
Via Claudio 21
I-80125 Napoli, Italy
E-mail: mbrunett@unina.it
ciampell@unina.it

