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A PRIDDY-TYPE KOSZULNESS CRITERION FOR

NON-LOCALLY FINITE ALGEBRAS

BY

MAURIZIO BRUNETTI and ADRIANA CIAMPELLA (Napoli)

Abstract. A celebrated result by S. Priddy states the Koszulness of any locally
finite homogeneous PBW-algebra, i.e. a homogeneous graded algebra having a Poincaré–
Birkhoff–Witt basis. We find sufficient conditions for a non-locally finite homogeneous
PBW-algebra to be Koszul, which allows us to completely determine the cohomology of
the universal Steenrod algebra at any prime.

Introduction. The notion of Koszul algebra, introduced by S. Priddy
in [15] in particular to construct resolutions for the Steenrod algebra, has led
to remarkable achievements in the study of associative algebras defined by
quadratic relations. The Koszulness condition provides decisive information
to solve several basic problems in that context. [14] gives a beautiful and
comprehensive account of the impact of Koszul algebras in several areas
of mathematics. Such algebras arise in fact in algebraic geometry, repre-
sentation theory, non-commutative geometry, number theory, and obviously
algebraic topology.

In this paper we deal with homogeneous algebras A isomorphic to a
quotient of the form T (V )/J(R), where T (V ) =

⊕

i Ti is the tensor algebra
over a K-vector space V with basis X = {xi | i ∈ I}, I is a (not necessarily
bounded) totally ordered set, and J(R) is the two-sided ideal of relations
generated by some R ⊂ T2 = V ⊗ V .

Note that all the Koszulness criteria listed for example in [9] concerning
the Hilbert series of A become meaningless if I is not finite; even Priddy’s
criterion, i.e. the existence of a Poincaré–Birkhoff–Witt basis [15], only holds
if the algebra has an internal degree induced by a map g :

⋃

In → Z and it is
locally finite with respect to length and g (see [15]). It follows that there are
examples of homogeneous quadratic algebras whose Koszulness cannot be
checked using directly the criteria listed in [9] and [14]: Poisson enveloping
algebras of Poisson algebras with generators indexed by Z and quadratic
brackets (see [11] for the definition), infinite quantum grassmannians (see
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Definition 3.3 and Example 3.4), and the universal Steenrod algebra Q(p) at
the prime p. We introduce a class G of PBW-algebras, and show that all the
algebras in G are Koszul. Proposition 2.5 then gives a sufficient condition
for an algebra A to be in G, which is reasonably easy to check. Our tools
resemble and generalize the methods used in [4] to show that the algebra
Q(2) is Koszul.

The paper is organized as follows. Section 1 contains the definitions of a
Koszul algebra and a PBW-basis; in Section 2 we define the class G and prove
that all the algebras in G are Koszul; in Section 3 we give a list of non-locally
finite algebras in G, and finally in Section 4 we give the solution to a problem
left unsolved in [5] and in [6], which actually motivated this research: the
identification of the target in a certain embedding of the E2-term of the
Adams spectral sequence. The paper ends with a short digression on the
characteristics of this hard-to-find non-Koszul PBW algebra that probably
does not exist.

1. Preliminaries. By a quadratic algebra A we shall always mean what
A. Polishchuk and L. Positselski call a one-generated homogeneous quadratic
associative algebra with unit 1A (see [14, p. 6]). Such an algebra is deter-
mined by a vector space V with basis X = {xi | i ∈ I}, and a subspace
of quadratic relations R ⊆ V ⊗ V . As recalled in the Introduction, A is
isomorphic to a quotient of the free associative algebra T (V ) =

⊕

i Ti. The
kernel of the quotient map p : T (V )→ A is the two-sided ideal J(R) gener-
ated by R. We shall always assume that I is a totally ordered set, without
making any assumption on its boundedness.

A quadratic algebra is naturally augmented by ε : A→ K which maps the
p(xi)’s to zero. The algebra A is then decomposed as K⊕A+, where K is the
line spanned by 1A and A+ is the augmentation ideal Ker ε. Unless otherwise
stated, we always compute TorA(K,K) and ExtA(K,K) with respect to the
augmentation ε. In notations, the first degree of the cohomology algebra

H(A) =
⊕

Exts,tA (K,K)

is the homological degree and the second one denotes the length. The diag-
onal cohomology D(A) =

⊕

Hq,q(A) is in general a subalgebra of H(A).

Definition 1.1. A homogeneous quadratic algebra A is said to be
Koszul if

H(A) = D(A).

This definition can be found in [15] and [14]. The reader should be aware
that the algebras studied in [15] are positively graded with respect to the
internal degree (see the definition below), while the algebras we are going
to introduce do not satisfy this condition.
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Any subset of the free monoid
⋃

Ik is totally ordered by the length first,
and then by the natural lexicographical order. For any multi-indices or labels

I = (i1, . . . , ik) ∈ I
k and J = (j1, . . . , jl) ∈ I

l,

we set xI = xi1 · · ·xik , ℓ(I) = k, and (I, J) = (i1, . . . , ik, j1, . . . , jl). By
convention, the monomial x∅ associated to ∅ ∈ I0 represents 1 in T (V ),
hence p(x∅) = 1A.

Let now B be a basis of monomials for A+. We associate to B the fol-
lowing set of multi-indices:

SB = {I | aI ∈ B},

where aI = p(xI).

Definition 1.2. A basis of monomials B for A+ is a Poincaré–Birkhoff–

Witt (PBW ) basis if the following conditions hold.

1. For any I and J in SB such that aIaJ 6= 0, either aIaJ belongs to
B, or the label of each monomial which appears in the expression of
aIaJ in terms of elements of B is greater than (I, J).

2. For each k > 2, (i1, . . . , ik) ∈ SB if and only if (i1, . . . , ij) and
(ij+1, . . . , ik) are in SB for each j ∈ {1, . . . , k − 1}.

Suppose now that the set R is homogeneous with respect to the internal

degree

deg xi1 · · ·xin := g(i1, . . . , in),

where g :
⋃

Ik → Z denotes a fixed monoid homomorphism. In this way
A becomes a bigraded object. Typically and throughout the paper, when
I ⊆ Z, the internal degree is given by the map (i1, . . . , in) 7→ i1 + · · ·+ in.
We shall say that an algebra A is locally finite if the K-module

At,p = {elements of length t and internal degree p}

is finitely generated for any t ∈ N and p ∈ Z.
We shall also make use of the following filtration for A = T (V )/J(R).

Denote by Ai the subalgebra generated by all the p(xj)’s with j ≤ i. There
are two families of inclusions,

ψk : Ak → A and φi1i2 : Ai1 → Ai2 , ∀i1 ≤ i2.

We have
A ∼= lim−→{A•, φ•}.

Proposition 1.3. The homology of A is isomorphic to

lim−→{TorAi(K,K), (φ•)∗}.

Furthermore if each Ai is locally finite, the cohomology of A is isomorphic

to

(1.1) lim←−{ExtAi
(K,K), φ∗•}.
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Proof. The homology functor commutes with direct limits. The local
finiteness of Ai’s ensures that the inverse limit satisfies the Mittag-Leffler
conditions: in this case the dimension of Exts,t,p

Ai
(K,K) as a K-module is

finite in every fixed homological degree s, length t and internal degree p.
Thus lim←−

1{ExtAi
(K,K), φ∗•} = 0.

Remark 1.4. When I ⊆ Z, the cohomology of A is surely given by (1.1).
In fact the subalgebra Ai is a quotient of T (Span{xj | j ≤ i}) which is locally
finite (see Proposition 3.1 in [5]).

The next proposition states the famous Priddy Koszulness criterion.

Proposition 1.5. Every locally finite PBW-algebra A is a Koszul alge-

bra.

Proof. See Priddy’s original proof in [15, Section 5], and note that the
hypothesis on I to be bounded below (which is tacitly assumed by that
author who usually thinks of I as the positive integers) can be replaced by
local finiteness.

Unfortunately, even when I ⊆ Z Propositions 1.3 and 1.4 are not suf-
ficient alone to prove the Koszulness of a non-locally finite algebra A: in
general the algebras Ai are neither Koszul nor quadratic (see Example 3.5).

We end this section by recalling the notion of reduction introduced
by G. M. Bergman in [3] to state the diamond lemma for associative al-
gebras (see also [2]).

LetM be the set of monomials in T (V ). A reduction system is by defini-
tion a subset S ⊂M×T (V ); we assume here that every monomial appears
at the first place in at most one pair in S, hence it makes sense to denote its
generic element by (xJ , yJ), where yJ is a suitable non-commutative poly-
nomial in T (V ). Every reduction system determines a family of K-linear
endomorphisms in T (V ). Namely, an element σJ = (xJ , yJ) ∈ S determines
the maps

rI′σJI′′ : xI →

{

xI′yJxI′′ if I = (I ′, J, I ′′),

xI otherwise.

Such maps are called simple reductions; any finite composition of simple
reductions is called a (general) reduction. An element on which all reductions
act trivially (i.e. as the identity) is said to be irreducible. Let now A =
T (V )/J(R) be a PBW-algebra, and B a PBW-basis for A. The subspace
R of quadratic relations determines a reduction system SR and a set R of
related reductions in the following way. Surely there exists in R a subset of
independent generators whose elements have the form xi1xi2 − Fi1i2 , where

Fi1i2 =
∑

(j1,j2)∈SB

cj1j2
i1i2

x(j1,j2).
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The elements in SR are precisely the pairs (x(i1,i2), Fi1i2). By definition
p(xI) = p(r(xI)) for any reduction r ∈ R and for any xI ∈M. Since B is a
PBW-basis the reductions satisfy a confluence condition: for any y ∈ T (V )
there exists r ∈ R such that r(y) is irreducible; furthermore if r(y) and r′(y)
are both irreducible, then r(y) = r′(y).

2. A class of PBW-algebras. Let A be a PBW-algebra as above.
Fixing a label I, we consider the subset SI of SR corresponding to all
those reductions r = rk ◦ · · · ◦ r1 such that rs+1 does not act trivially on
rs ◦ · · · ◦ r1(xI). Note that SI is empty if and only if p(xI) ∈ B.

Definition 2.1. We say that an algebra A with a PBW-basis B is good

if the following two conditions hold:

(i) the subalgebra Ai is locally finite for all i ∈ I;
(ii) the map

(2.1) ϑA : I ∈
⋃

In 7→ max({i1, . . . , in} ∪ {indices appearing in SI}) ∈ I

is well defined.

Sometimes we shall write just “ϑ”, omitting the subscript, when it is
clear which algebra we are referring to, and denote by G the class of good
PBW-algebras. To prove the Koszulness of all the algebras in G, we shall
give a refinement of Priddy’s argument in homology. A variant has been
used in [4].

Definition 2.2. Let B∗(A) denote the normalized bar complex of an
algebra A with basis B. The irreducibility index of a generating chain

c = [aI1 | · · · | aIs ]

in Bs(A) = A⊗s
+ is the integer

ai(c) =

{

s if U = ∅,

minU if U 6= ∅,

where U = {h | aIh
· aIh+1

∈ B}.

Lemma 2.3. Both the chains c = [aI1 | · · · | aIs ] ∈ B∗(A) and

∂(c) =
s−1
∑

j=1

(−1)j−1[aI1 | · · · | aIj
aIj+1 | · · · | aIs ] ∈ Bs−1(A)

belong to (ψϑ(I))♯B∗(Aϑ(I)), where I = (I1, . . . , Is).

Proof. The lemma immediately follows from the definition (2.1) of ϑ,
once we note that all the simple reductions needed to express xIj

xIj+1 as a
sum of irreducible elements are in SI .

Theorem 2.4. All the good PBW-algebras are Koszul.
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Proof. Let B be a PBW-basis of an algebra A ∈ G, and consider a
K-linear map Φ : Bs(A)→ Bs+1(A) which acts on the generating chains as
follows. When I1 = (i1, . . . , il1), and ℓ(I1) > 1,

Φ([aI1 | · · · | aIs ]) = [ai1 | ai2 · · · al1 | aI2 | · · · | aIs ].

If, on the other hand, c = [ai1 | · · · | aik | aik+1
· · · aik+r

| · · · | aIs ] with r > 1,
then

Φ(c) =

{

(−1)k[ai1 | · · · | aik | aik+1
| aik+2

· · · aik+r
| · · · | aIs ] if ai(c) > k,

0 if ai(c) ≤ k.

We now filter the reduced bar construction B∗(A) as follows. Let FIBs,t,p(A)
and FI+1Bs,t,p(A) be the submodules of Bs(A) generated by

{

[aI1 | · · · | aIs ] ∈ Bs(A) :
s

∑

j=1

ℓ(Ij) = t,
s

∑

j=1

g(Ij) = p, (I1, . . . , Is) ≥ I
}

and
{

[aI1 | · · · | aIs ] ∈ Bs(A) :
s

∑

j=1

ℓ(Ij) = t,
s

∑

j=1

g(Ij) = p, (I1, . . . , Is) > I
}

respectively. The restriction of the map ∂ respects this decreasing filtration
and induces a map

∂′ :
FIBs(A)

FI+1Bs(A)
→

FIBs−1(A)

FI+1Bs−1(A)
,

which acts on the generators as follows:

∂′ : [aI1 | · · · | aIs ]→
s−1
∑

j=1

(−1)j−1[aI1 | · · · | aIj
aIj+1 | · · · | aIs ].

The summands on the right side which are zero in FIBs−1(A)/FI+1Bs−1(A)
are precisely those such that aIj

aIj+1 6∈ B. The reader can now verify Φ
induces a contracting homotopy

Φ′ :
FIBs,s+r(A)

FI+1Bs,s+r(A)
→

FIBs+1,s+r(A)

FI+1Bs+1,s+r(A)
(r > 0)

by evaluating Φ on a chain c = [aI1 | · · · | aIs ] such that (I1, . . . , Is) = I to
avoid trivial cases. The equality

(∂Φ+ Φ∂)(c) ≡ c mod FI+1Bs,s+r(A)

depends in particular on the fact that max{ℓ(I1), . . . , ℓ(Is)} > 1, and that

[aI1 | · · · | aIj
aIj+1 | · · · | aIs ]

belongs to FI+1Bs−1,s+r(A) when j < ai(c).



A KOSZULNESS CRITERION 185

Suppose now that c =
∑m

h=1[yIh
1
| · · · | yIh

s
] represents a cycle in Bs,t,p(A)

with s 6= t; the index

θ(c) = max{ϑ(Ih
1 , . . . , I

h
s ) | h = 1, . . . ,m}

is well defined since A ∈ G. We also know that Aθ(c) is locally finite.

When Φ(c) is not zero, it involves the same indices of c “split” in a
different way, hence by Lemma 2.3 the element c1 = c−∂Φ(c), and similarly
every

ci+1 = ci − ∂Φ(ci),

lives in (ψθ(c))♯Bs,t,p(Aθ(c)), which is finite-dimensional since A is good. In
particular, once you fix s, t, p and c there are only a finite number of different
submodules (ψθ(c))♯FIBs,t,p(Aθ(c)); it follows that there exists a ct on which
∂Φ+ Φ∂ acts trivially, showing that c is a boundary, i.e.

TorA
s,t(K,K) = 0 for any s 6= t.

Obviously all finitely generated or locally finite PBW-algebras are good.
In the other cases condition (ii) of Definition 2.1 could be difficult to check.
For this reason, at least when the indices are in Z, we give a sufficient
condition for an algebra to be in G. According to the notations introduced
at the end of Section 1, we denote by hi1i2 the maximal index appearing in
the polynomial pi1i2 = xi1xi2 − Fi1i2 .

Proposition 2.5. Let A be a PBW-algebra with I ⊆ Z. If the set

(2.2) Mj = {j} ∪ {hij | i ∈ I, (i, j ) 6∈ SB}

admits a maximum for any j , and the function

ω : j ∈ I 7→ maxMj

is non-decreasing , then A is good.

Proof. By Remark 1.4, we have just to see that ϑA(I) is a well defined
integer for any label I = (i1, . . . , ik). This is in fact true, and depends on
the following inequality:

(2.3) ϑA(I) ≤ Ω(I) := max{i1, . . . , ik, ω(i2), . . . , ω
k−1(ik)}.

If xI is irreducible, i.e. I ∈ SB, we have max{i1, . . . , ik} on both sides of (2.3).
The equality also occurs in (2.3) when I 6∈ SB and Fihih+1

= 0 for all
(ih, ih+1) 6∈ SB.

Suppose now that Jh := (ih, ih+1) 6∈ SB, and Fihih+1
6= 0. We have

(2.4) r(i1,...,ih−1)σJh
(ih+2,...,ik)(xI) = x(i1,...,ih−1) · Fihih+1

· x(ih+2,...,ik)

= x(i1,...,ih−1) ·
∑

(j1,j2)∈SB

c
jhjh+1

ih,ih+1
x(jh,jh+1) · x(ih+2,...,ik).
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First of all we show that if c
jhjh+1

ih,ih+1
6= 0, then

(2.5) Ω(i1, . . . , ih−1, jh, jh+1, ih+2, . . . , ik) ≤ Ω(I).

The two labels just differ for two integers. Note first that

jh, jh+1 ≤ ω(ih+1) (by definition of the map ω),(2.6)

≤ ωh(ih+1) (since ω is non-decreasing),(2.7)

≤ Ω(I) (by definition of the map Ω).(2.8)

Applying ωh−1 to both sides of (2.6) we get in particular ωh−1(jh) ≤
ωh(ih+1). Finally, since jh > ih by condition 1 in Definition 1.2, it follows
that jh+1 < ih+1, and hence ωh(jh+1) ≤ ω

h(ih+1).
From (2.5) we see in particular that no indices in (2.4) are greater than

Ω(I). The inequality (2.5) also provides the inductive argument to show
that for any composition r = rs ◦ · · · ◦ r1 of simple reductions, no indices
appearing in the polynomials ri ◦ · · · ◦ r1(xI) with i = 1, . . . , s are greater
than Ω(I).

The following example shows that the existence of a map like ω in Propo-
sition 2.5 is not necessary for a Z-indexed PBW-algebra to be good.

Example 2.6. Let A be the algebra over a field K with char K 6= 2
generated by {yi | i ∈ Z} subject to the following generating relations:

(2.9) yiyj =

{

0 if i ≤ j and j 6= 3,

i(3− i)y3|i|+1y2−i−3|i| if i ≤ j = 3.

The elements
yi1 · · · yin with i1 > · · · > in

are all distinct and form a PBW-basis B. In fact any dependence relation
among its elements would depend on non-trivial equalities between mono-
mials, which actually do not occur. In fact, a non-zero monomial not in B
contains h > 0 non-consecutive y3’s, and it is equal to exactly one element
in B. The algebra A is good since the map required in Definition 2.1 is

ϑ : (i1, . . . , in) 7→ max{i1, . . . , in, 3
|ih| + 1 | ih+1 = 3},

but the setM3 defined in (2.2) is not upper bounded.

3. Some operations on good PBW-algebras and examples. Let
A′ = T (V ′)/J(R′) and A′′ = T (V ′′)/J(R′′) be two quadratic K-algebras.
For the following definition we adopt notations of [14].

Definition 3.1.

(i) The free product A′⊔A′′ is the algebra freely generated byA′ andA′′,
i.e. T (V ′ ⊕ V ′′) quotiented by J(R′ ⊕ {0′′}+ {0′} ⊕ R′′). We equip
the free product with an internal degree inherited by A′ and A′′.
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(ii) The direct sum A′⊓A′′ is the quotient of A′⊔A′′ obtained by setting

A′
+A

′′
+ = A′′

+A
′
+ = 0.

(iii) The q-tensor product A′⊗qA′′ with q ∈ P
1
K

is the quotient of A′⊔A′′

by the ideal

(3.1) J(Span{a′′a′ − qdeg a′′ deg a′
a′a′′}).

For q =∞, equation (3.1) has to be read a′a′′ = 0.

Proposition 3.2. Let {⋆i}i∈N and {A(i) | i ∈ N} be any sequence of

operators in {⊔,⊓,⊗q} and of good PBW-algebras respectively. The algebras

(3.2)
n
⋆

i=1
A(i)

are all Koszul.

Proof. Since good algebras are Koszul by Theorem 2.4, the statement
essentially follows from [1] where it is proved that the operators ⊔,⊓,⊗q

preserve Koszulness. The assumption on A to be finitely generated is not
really relevant there. A proof of this result is also sketched in [14, p. 58]. A
third proof, when A′ and A′′ are good, could use the arguments given along
the proof of Theorem 2.4, noticing that A′ ⋆ A′′ has a PBW-basis, and can
be filtered by the locally finite algebras A′

i ⋆ A
′′
j . For instance, a PBW-basis

BA′⊔A′′ for A′ ⊔A′′ is given by

{a′Ia
′′
J1
a′I1 · · · a

′
In
a′′J | I ∈ SBA′ ∪ {∅}, Ii ∈ SBA′ , Ji ∈ SBA′′ , J ∈ SBA′′ ∪ {∅}}

where by convention all the indices in A′ are greater than those in A′′.

We now list several types of interesting good PBW-algebras.

Definition 3.3.

(i) An algebra A is said to be monomial if the subspace R of relations
is generated by monomials.

(ii) A skew-polynomial algebra is a quotient T (V )/J(R) where R is gen-
erated by

xixj − qijxjxi (i < j)

with qij ∈ K
∗.

When I ⊆ Z such algebras—and quotients of skew-polynomials algebras
by monomial relations—are all good; in fact the map required in Definition
2.1 is

(3.3) ϑ : I ∈
⋃

In 7→ max{i1, . . . , in} ∈ I

for all of them. The algebra of Example 3.4, whose generators are not indexed
by Z, is related to the coordinate ring of quantum n×n-matrices presented
for instance in [10].



188 M. BRUNETTI AND A. CIAMPELLA

Example 3.4. Let N be a fixed integer. After choosing the lexicograph-
ical order on I = N × {j ∈ Z | j ≤ N} and considering the internal degree
induced by the map g : (i, j) ∈ I 7→ i + j ∈ Z, we consider the graded
algebra A = T (V )/J(R) where R is generated by

xijxil = qxilxij ,

xijxkj = qxkjxij ,

xijxkl = xklxij + (q − q−1)xilxkj

for j < l, i < k and q ∈ K
∗. A PBW-basis is given by the monomials

xi1j1 · · ·xinjn satisfying the following two properties:

• if ih < ih+1 then jh > jh+1;

• if ih = ih+1 then jh ≥ jh+1.

The algebra A is not locally finite since

x10, x2,−1, x3,−2, . . .

are infinite independent monomials of internal degree 1. In any case the
subalgebras Aij are locally finite. In fact, for every

xi1j1xi2j2 · · ·xihjh
∈ T (Vij)

h,t

we have

t− hi ≤ j1 + · · ·+ jh ≤ hN,

hence

t− hi− (h− 1)N ≤ j1, . . . , jh ≤ N.

It follows that

dimK T (Vij)
h,t ≤

(

h(i+ 1)

h

)

(hN + hi− t)h.

Again the map ϑ of (3.3) is suitable to say that A is good.

The Koszulness of the algebras above can also be proved without Theo-
rem 2.5, since the Ai’s are locally finite Koszul algebras and we could just
use Proposition 1.3. This is not the case for the examples below.

Example 3.5. Let A be an algebra generated by {yi | i ∈ Z} subject to
the following generating relations:

(3.4) yiyi+1 = 0 ∀i 6= 0, 1, and y1yi = yi+1y0 ∀i > 1.

A PBW-basis is given by the monomials yi1 · · · yin with ij 6= ij+1 − 1 for all
i 6= 0, 1, and ij+1 ≤ 1 if ij = 1. The independence of such monomials is due
to the following fact: for each I = (i1, . . . , in) only one of

r(i1,...,ij−2)σ(ij−1,ij)(ij+1,...,in) and r(i1,...,ij−1)σ(ij ,ij+1)(ij+2,...,in)



A KOSZULNESS CRITERION 189

can possibly stay inR, hence no monomials are ambiguous in the sense of [2]
and [3].

The algebra A is good since the map

ω : i ∈ Z 7→

{

1, i ≤ 1,

i+ 1, i > 1,

satisfies the conditions of Proposition 2.5. Note also that none of the algebras
Ai with i > 1 is Koszul, in fact yiy1yi gives a non-quadratic relation in Ai

and [yi | y1yi] represents a non-trivial cycle in TorAi

2,3(K,K).

The algebra in Example 3.5 also shows that the inequality (2.3) may
be strict. In fact the monomial x−1x−1x2 belongs to the PBW-basis, hence
ϑ(−1,−1, 2) = 2 while Ω(−1,−1, 2) = 4.

Example 3.6. The (mod 2) universal Steenrod algebra Q(2) is an F2-
algebra with a countable set of generators {yi | i ∈ Z} subject to the so-called
generalized Adem relations:

y2k−1−n yk =
∑

j

(

n− 1− j

j

)

y2k−1−j yk+j−n (k ∈ Z, n ∈ N0).

This algebra is also known as the algebra of all generalized Steenrod opera-

tions (see [13]) or the extended Steenrod algebra (see [7]).

The subset

{yi1 · · · yih | ij ≥ 2ij+1 for each j = 1, . . . , h− 1}

forms a PBW-basis for Q(2) (see [12]). By Proposition 2.5, Q(2) is good.
The required map is

ω : j ∈ Z 7→

{

j for j ≤ 0,

2j − 1 for j ≥ 1.

Our last example is the (modp) universal Steenrod algebra Q(p) at odd
primes. It is generated as an Fp-algebra by

{zε,i | ε ∈ {0, 1}, i ∈ Z} with deg zε,i = 2i(p− 1) + ε,

subject to the following generalized Adem relations:

zε,pk−1−nz0,k =
∑

j

A(n,j)zε,pk−1−jz0,k−n+j,

z1−ε,pk−nz1,k =
∑

j

A(n,j)z1−ε,pk−jz1,k−n+j + ε
∑

j

B(n,j)z1,pk−jz0,k−n+j,

for each (k, n) ∈ Z× N0, where A(n,j) and B(n,j) are respectively equal to

(−1)j+1

(

(p− 1)(n− j)− 1

j

)

and (−1)j

(

(p− 1)(n− j)

j

)

.
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This presentation already appeared in [8]. In Proposition 11.2 of [13], the
author claims that

B = {zε1,i1 · · · zεh,ih | ij ≥ pij+1 + εj+1 for each j = 1, . . . , h− 1}

is a basis, but the argument to show that B is a generating set does not
seem to be complete. Nguyen Sum gives a more detailed proof in [17].

Proposition 3.7. The universal Steenrod algebra Q(p) is good at any

prime.

Proof. The argument for p = 2 has already been given in Example 3.6.
When p is an odd prime, we set I = {2pk+ε | k ∈ Z, ε ∈ {0, 1}}. The algebra
Q(p) is then a quotient of T (V ) where V is generated by {xi | i ∈ I}, the
quotient map being p : x2pk+ε 7→ zε,k. Proposition 3.7 now follows from
Remark 1.4 and Proposition 2.5. The required map is

ω : i ∈ I 7→

{

i for i ≤ 0,

2p(pk − 1 + ε) + 1 for i = 2pk + ε > 0.

4. Final remarks. In [6] for p = 2, and in [5] when p is odd, an algebra
Q(p)′ has been introduced by changing the augmentation in Q(p) as follows:
the elements

yi =

{

yi if i 6= 0,

1 + y0 if i = 0,

for p = 2, and

xε,i =

{

zε,i if (ε, i) 6= (0, 0),

z0,0 − 1 if (ε, i) = (0, 0),

for odd primes became the generators of the new augmentation ideal.

The purpose was to make the epimorphisms

π : yi ∈ Q(2)′ 7→

{

Sqi ∈ A2 if i > 0,

0 if i ≤ 0,

and

π : xε,i ∈ Q(p)′ 7→

{

βεP i ∈ Ap if ε+ i > 0,

0 if ε+ i ≤ 0,
(p odd)

maps of augmented algebras, where Ap denotes the ordinary Steenrod alge-
bra at the prime p. The maps π∗ defined on ExtAp(Fp,Fp) turned out to be
injective in both cases. In any case an explicit description of the target was
still to come. Now we are able to state the following result.

Proposition 4.1. The cohomology of Q(p)′ is isomorphic to

ExtA2(F2,F2)⊗ Λ[α0]
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for p = 2, and

ExtAp(Fp,Fp)⊗ Λ[ξ0,0]

for p odd , where α0 and ξ0,0 are the duals of y0 and x0,0 respectively.

Proof. In Section 3 we have seen that the algebra Q(p) is good, hence it
is Koszul by Theorem 2.4. Use now Proposition 0.2 in [6] when p = 2 and
Proposition 0.2 in [5] when p is odd.

Definition 2.1 suggests that a non-Koszul PBW-algebra should be really
bad! In fact the map ϑA becomes meaningless only if there exist reductions

r = rI′1σJ1
I′′1
◦ · · · ◦ rI′sσJsI′′s

acting non-trivially on a fixed xI with arbitrarily high Ji’s. When A is not
locally finite, the use of moments in the sense of [16] is not necessarily
profitable. In principle, it could happen that a certain r acting non-trivially
on xI with

aI =
∑

J∈SB

cJaJ ,

involves indices which are greater than those appearing in the J ’s such that
cJ 6= 0. In this case all monomials containing such indices would cancel out
in r(xI). In any case the authors have not succeeded in finding any concrete
example of a PBW-algebra not of the form (3.2).
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