
COLLOQU IUM MATHEMAT I CUMVOL. 109 2007 NO. 2

GALOIS COVERINGS AND THE CLEBSCH�GORDANPROBLEM FOR QUIVER REPRESENTATIONSBYMARTIN HERSCHEND (Uppsala)Abstrat. We study the Clebsh�Gordan problem for quiver representations, i.e.the problem of deomposing the point-wise tensor produt of any two representations ofa quiver into its indeomposable diret summands. For this purpose we develop resultsdesribing the behaviour of the point-wise tensor produt under Galois overings. Theseare applied to solve the Clebsh�Gordan problem for the double loop quivers with rela-tions αβ = βα = αn = βn = 0. These quivers were originally studied by I. M. Gelfandand V. A. Ponomarev in their investigation of representations of the Lorentz group. Wealso solve the Clebsh�Gordan problem for all quivers of type Ãn.1. Introdution. Given any Krull�Shmidt ategory equipped with atensor produt, one an pose the Clebsh�Gordan problem, i.e. the prob-lem of deomposing the tensor produt of any two objets into a diret sumof indeomposables. This problem originates from representation theory ofgroups. Here we onsider it for quiver representations where the tensor prod-ut is de�ned point-wise and arrow-wise.In this form it arises naturally in the investigation of latties over urvesingularities [3℄. For the loop quiver Ã0 it has been studied by Huppert [11℄and independently by Martsinkovsky and Vlassov [12℄. Previous results bythe author deal with the Kroneker quiver [8℄ and extended Dynkin quiversof type Ãn (see [10℄).One of the most fundamental problems in representation theory is thelassi�ation problem for the indeomposable objets of a Krull�Shmidtategory. By solving it we mean �nding a list of indeomposable objetssuh that eah isomorphism lass of indeomposables is represented exatlyone. Assuming that the lassi�ation problem is solved one an present asolution to the Clebsh�Gordan problem in the following way: for any pair ofelements from the lassifying list provide a formula for their deompositioninto a diret sum of indeomposables from the lassifying list.
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194 M. HERSCHENDThe onept of overings omes from topology and was introdued inrepresentation theory by P. Gabriel [5℄, [1℄. In some ases it an be used asa tool to solve the lassi�ation problem (f. e.g. [4℄).In the present artile we investigate the relationship between Galois ov-erings and the tensor produt of quiver representations. Our main results(Theorem 2 and Corollary 2) allow the redution of parts of the Clebsh�Gordan problem for the base quiver to the Clebsh�Gordan problem for theovering quiver, provided that a lassi�ation of indeomposables is given interms of the overing.We apply these results to solve the Clebsh�Gordan problem for thedouble loop quivers with relations αβ = βα = αn = βn = 0 and quivers oftype Ãn.2. Preliminaries. We reall a few of the basi notions assoiated withlinear ategories and quivers, some of whih an be found in [6℄. Let k bea �eld. A ategory C is alled linear if all its morphism sets are endowedwith a k-linear struture and all its omposition maps are k-bilinear. Forlinear ategories A and B a funtor F : A → B is alled linear if the maps
A(x, y)→ B(F (x), F (y)), α 7→ F (α), are k-linear.An ideal I of a linear ategory C is a family of subspaes I(x, y) ⊂
C(x, y) suh that βI(x, y)α ⊂ I(w, z) for all β ∈ C(y, z) and α ∈ C(w, x).For an ideal I of a ategory C we de�ne the quotient ategory C/I by
Ob(C/I) = Ob C and (C/I)(x, y) = C(x, y)/I(x, y). The omposition ofmorphisms in C/I is the residue lass of the omposition of hosen represen-tatives in C.A quiverQ is a quadruple (Q0, Q1, t, h), whereQ0 is the set of verties and
Q1 the set of arrows. The maps t, h : Q1 → Q0 map an arrow α to its tail tαand head hα respetively. We write x α

→ y to state that tα = x and hα = y.A path from x ∈ Q0 to y ∈ Q0 of length d ≥ 1 is a sequene of arrows αd . . . α1suh that tα1 = x, hαi = tαi+1 for all i = 1, . . . , d−1 and hαd = y. For eahvertex x ∈ Q0 there is moreover a path ex of length zero from x to x. Witheah quiver Q we assoiate its path ategory Q̂ whose set of objets is Q0 andwhose morphism sets Q̂(x, y) onsist of all paths from x to y. Compositionof paths is given by onatenation. We also onsider the linearized pathategory kQ, whih has the same objets as Q̂ and whose morphism sets
kQ(x, y) are the vetor spaes having Q̂(x, y) as basis. The ompositionmaps in this ategory are the bilinear extensions of the omposition mapsin Q̂.A subquiver of a quiver Q is a quiver Q′ = (Q′

0, Q
′
1, t

′, h′) suh that
Q′

0 ⊂ Q0, Q′
1 ⊂ Q1 and t′(α) = t(α), h′(α) = h(α) for all α ∈ Q′

1. Let Q′and Q′′ be subquivers of Q. Their union Q′ ∪ Q′′ and intersetion Q′ ∩ Q′′



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 195respetively are the subquivers of Q determined by
(Q′ ∪Q′′)i = Q′

i ∪Q
′′
i for i ∈ {0, 1},

(Q′ ∩Q′′)i = Q′
i ∩Q

′′
i for i ∈ {0, 1}.We say that Q′ and Q′′ are disjoint if (Q′ ∩ Q′′)0 is empty. In that ase wewrite Q′ ∪̇Q′′ for the union of Q′ and Q′′.Let Q be a quiver. An ideal I of kQ is alled semimonomial if it isgenerated by elements of the form α or α− β, where α, β ∈ Q̂(x, y).Let Γ be a small linear ategory. A Γ -module is a linear funtor

m : Γ → Mod kwhere Mod k denotes the ategory of all k-linear spaes. A morphism froma Γ -module m to a Γ -module n is de�ned to be a natural transformation
φ : m→ n.We denote by ModΓ the ategory of all Γ -modules and by modΓ the fullsubategory formed by all �nite-dimensional modules, i.e. modules m suhthat ⊕

x∈Γ m(x) is �nite-dimensional.If Γ = kQ for some quiver Q, then a Γ -module m is uniquely determinedby the hoie of vetor spaes m(x) for all x ∈ Q0 and linear maps m(α)for all α ∈ Q1. The olletion of vetor spaes m(x) and linear maps m(α)is alled a representation of Q. If I is an ideal of kQ, then the ategory
mod(kQ/I) is identi�ed with the full subategory of mod kQ formed by allmodules m satisfying m(α) = 0 for eah α ∈ I.For any two modules m,n ∈ ModΓ we de�ne their diret sum m⊕ n by

(m⊕ n)(x) = m(x)⊕ n(x) for eah x ∈ ObΓ,

(m⊕ n)(α) = m(α)⊕ n(α) for eah α ∈ Γ (x, y).Amodulem ∈ModΓ is alled indeomposable ifm ∼
→m′⊕m′′ impliesm′ = 0or m′′ = 0 but not both. The full subategories of ModΓ and modΓ formedby all indeomposable modules are denoted by IndΓ and indΓ respetively.For any linear funtor F : Γ → Λ of small linear ategories, we de�nethe assoiated pull-up funtor

F ∗ : ModΛ→ ModΓby F ∗m = m ◦ F for eah Λ-module m and (F ∗(φ))x = φF (x) for eahmorphism φ of Λ-modules.For Γ = kQ/I, where Q is a quiver and I a semimonomial ideal, wede�ne the tensor produt m⊗ n of Γ -modules by
(m⊗ n)(x) = m(x)⊗ n(x) for eah x ∈ ObΓ,

(m⊗ n)(α) = m(α)⊗ n(α) for eah α ∈ Q1.



196 M. HERSCHENDSine the tensor produt of linear maps respets ompositions we see that
(m ⊗ n)(α) = m(α) ⊗ n(α) for every path α in Q. Moreover, the tensorprodut respets the zero morphism in the sense that (m ⊗ n)(0) = 0 =
m(0)⊗ n(0). It follows that if α, α′ are paths in Q or zero morphisms suhthat m(α) = m(α′) and n(α) = n(α′), then (m ⊗ n)(α) = (m ⊗ n)(α′).Sine the ideal I is semimonomial we dedue that m ⊗ n is a well-de�ned
Γ -module. The anonial isomorphism m(x) ⊗ n(x)

∼
→n(x) ⊗m(x) de�nesan isomorphism of Γ -modules m⊗ n ∼

→n⊗m.The Clebsh�Gordan problem for modΓ is the problem of deomposing
m ⊗ n into a diret sum of indeomposable modules, for all m,n ∈ modΓ .Sine the tensor produt ommutes with diret sums, we may assume withoutloss of generality that m,n ∈ indΓ .We reall from [9℄ the notion of harateristi representations. Let Q′ bea subquiver of a quiver Q. The harateristi representation assoiated with
Q′ is the kQ-module χQ′ de�ned by

χQ′(x) =

{
k if x ∈ Q′

0,
0 if x 6∈ Q′

0,
χQ′(α) =

{
1k if α ∈ Q′

1,
0 if α 6∈ Q′

1.The anonial vetor spae isomorphism k⊗ k
∼
→k gives rise to the isomor-phism of representations(1) χQ′ ⊗ χQ′′

∼
→χQ′∩Q′′ .3. Galois overings3.1. Generalities. Let us brie�y reall some basi fats about the oneptof Galois overings, as presented in [5℄ and [1℄. A linear funtor F : Γ → Λbetween linear ategories is alled a overing funtor if the indued linearmaps

⊕

y′∈F−1(b)

Γ (x, y′)→ Λ(a, b) and ⊕

x′∈F−1(a)

Γ (x′, y)→ Λ(a, b)

are bijetive for all a, b ∈ ObΛ and x ∈ F−1(a), y ∈ F−1(b).Let G be a group and Γ a small linear ategory. A G-ation on Γ isa group morphism G → AutΓ , g 7→ Fg, suh that all Fg are linear. Itde�nes a G-ation on ObΓ by gx = Fg(x) for all x ∈ ObΓ . It is alledfree if the stabilizer Gx is trivial for all x ∈ ObΓ , and loally boundedif for all x, y ∈ ObΓ the identities Γ (gx, y) = Γ (x, gy) = 0 hold for allbut �nitely many g ∈ G. For any m ∈ modΓ and g ∈ G we denoteby gm the translated module m ◦ Fg−1 . To simplify notation we identify
Fg with g. If Λ is a linear subategory of Γ , then gΛ is the subategoryof Γ de�ned by Ob(gΛ) = g(ObΛ) and (gΛ)(x, y) = g(Λ(x, y)) for all
g ∈ G.



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 197Following [6, p. 9℄, a spetroid is a small linear ategory Γ with thefollowing properties: all endomorphism algebras are loal, di�erent objetsare non-isomorphi and all morphism spaes are �nite-dimensional.Let G be a group ating on a spetroid Γ . We assume that this ationis free and loally bounded. Then the quotient ategory Γ/G is de�ned asfollows. The objets of Γ/G are the G-orbits of objets of Γ . A morphism
α ∈ (Γ/G)(a, b) is a double sequene α = (αyx) ∈

∏
x∈a,y∈b Γ (x, y) suh that

g(αyx) = αgy,gx for all g ∈ G, x ∈ a and y ∈ b. If α ∈ (Γ/G)(a, b) and β ∈
(Γ/G)(b, c), then the omposition βα is de�ned by (βα)zx =

∑
y∈b βzyαyx.All but �nitely many terms in the sum are zero sine the G-ation is loallybounded. The linear projetion funtor

F : Γ → Γ/Gsends an objet x to its orbit and a morphism α ∈ Γ (x, y) to the doublesequene F (α) de�ned by
F (α)hy,gx =

{
gα if g = h,
0 if g 6= h.It is shown in [5℄ that F is a overing funtor suh that Fg = F for all g ∈ G.Moreover, it has the universal property that if Λ is a spetroid and a linearfuntor E : Γ → Λ satis�es Eg = E for all g ∈ G, then there is a uniquelinear funtor H : Γ/G→ Λ suh that the diagram

Γ

F
��

E

!!C
CC

CC
CC

CC

Γ/G
H

// Λommutes. If in addition E is a overing funtor, surjetive on the objetsof Λ and suh that G ats transitively on E−1(x) for all x ∈ ObΛ, then His an isomorphism. In this ase E is alled a Galois overing.If a group G ats on a small linear ategory Γ we say that an ideal I of
Γ is G-invariant if gI(x, y) ⊂ I(gx, gy) for all g ∈ G and all x, y ∈ ObΓ .In this ase we get an indued G-ation on Γ/I de�ned by g(α+ I(x, y)) =
gα + I(gx, gy). We proeed by investigating the ase Γ = kQ/I in moredetail. Our goal is to �nd a anonial Galois overing Γ → Λ where Λ is thelinear path ategory of a quiver modulo some ideal.We say that a group G ats on a quiver Q if it ats on Q0 and on
Q1 in suh a way that t(gα) = gt(α) and h(gα) = gh(α) for all g ∈ Gand α ∈ Q1. If Q′ is a subquiver of Q, then gQ′ denotes the subquiverdetermined by (gQ)i = g(Qi) for i ∈ {0, 1}. The orbit quiver Q/G is de�nedby (Q/G)0 = Q0/G, (Q/G)1 = Q1/G, t(Gα) = G(tα) and h(Gα) = G(hα).



198 M. HERSCHENDLet P be the linear funtor
P : kQ→ k(Q/G)whih sends verties and arrows to their respetive orbits. For any ideal Iof kQ we de�ne the ideal I/G of k(Q/G) by

(I/G)(X,Y ) =
∑

(x,y)∈X×Y

P (I(x, y)).

Let P be the funtor
P : kQ/I → k(Q/G)/(I/G)indued by P . If I is semimonomial then so is I/G.If a group G ats on a quiver Q, then it indues a G-ation on kQby g(βα) = (gβ)(gα) for all paths α, β. We observe that Pg = P sine

(Pg)(x) = Gx = P (x) for eah vertex x ∈ Q0, and (Pg)(α) = Gα = P (α)for eah arrow α ∈ Q1. If I is a G-invariant ideal of kQ, then Pg = P . Weproeed to show that, under suitable assumptions, P is a overing funtor.Lemma 1. Let Q be a quiver and G a group ating on Q. For all x, y ∈
Q0 and ξ ∈ (Q̂/G)(Gx,Gy), there are g ∈ G and α ∈ Q̂(x, gy) suh that
P (α) = ξ.Proof. The proof proeeds by indution on d, the length of ξ. If d = 0then ξ = eGx and Gx = Gy. Choose g ∈ G suh that gy = x and α = ex ∈
Q̂(x, x) = Q̂(x, gy). Assume that d > 0. Then ξ = Gβξ′ for some arrow
z

β
→ g1y in Q and some path ξ′ ∈ (Q̂/G)(Gx,Gz). By indution hypothesisthere are g2 ∈ G and α′ ∈ Q̂(x, g2z) suh that P (α′) = ξ′. Choose g = g2g1and α = (g2β)α′. Then P (α) = GβP (α′) = ξ.Lemma 2. Let Q be a quiver and G a group ating freely on Q. Let

x, y ∈ Q0 and g ∈ G. Then P (α) = P (β) implies α = β for all α ∈ Q̂(x, y),
β ∈ Q̂(x, gy).Proof. Sine the funtor P sends arrows to arrows, it sends paths oflength d to paths of length d for all d ∈ N. We show that if P (α) = P (β)then α = β by indution on d, the length of α, whih oinides with the lengthof β. If d = 0 then α = ex = β. Assume that d > 0. Then α = α′α1 for somearrow α1 from x to z and some path α′ ∈ Q̂(z, y). Similarly, β = β′β1 forsome arrow β1 from x to z′ and some path β′ ∈ Q̂(z′, gy). Sine P (α) = P (β)we have P (α1) = P (β1) and P (α′) = P (β′). Hene there is h ∈ G suhthat hα1 = β1 and thus hx = x. Sine the G-ation is free, h = 1 and
α1 = β1. It follows that z = z′, and by indution that α′ = β′. Hene
α = α′α1 = β′β1 = β.



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 199Theorem 1. Let Q be a quiver and G a group ating freely on Q. Let Ibe a G-invariant ideal of kQ. Then
P : kQ/I → k(Q/G)/(I/G)is a overing funtor.Proof. Let X,Y ∈ (Q/G)0 and x ∈ X, y ∈ Y . Then P−1(X) = Gx and

P−1(Y ) = Gy. Sine the ation of G is free we obtain
⊕

y′∈P−1(Y )

kQ(x, y′) =
⊕

g∈G

kQ(x, gy),
⊕

x′∈P−1(X)

kQ(x′, y) =
⊕

g∈G

kQ(gx, y).

Our aim is to show that the linear maps
P xY :

⊕

g∈G

(kQ/I)(x, gy)→ (k(Q/G)/(I/G))(X,Y )

and
PXy :

⊕

g∈G

(kQ/I)(gx, y)→ (k(Q/G)/(I/G))(X,Y )

indued by P are bijetive.The funtor P indues a map
⋃

g∈G

Q̂(x, gy)→ (Q̂/G)(X,Y ),

whih aording to Lemmas 1 and 2 is a bijetion. Sine Q̂(x, gy) and
(Q̂/G)(X,Y ) are bases of kQ(x, gy) and k(Q/G)(X,Y ) respetively, thelinear map

PxY :
⊕

g∈G

kQ(x, gy)→ k(Q/G)(X,Y )

de�ned by PxY (α) = P (α) for all α ∈ kQ(x, gy) is bijetive. Using the fatthat I is G-invariant we obtain
(I/G)(X,Y ) =

∑

g,h∈G

P (I(gx, hy)) =
∑

g,h∈G

Pg(I(x, g−1hy))

=
∑

g,h∈G

P (I(x, g−1hy)) =
∑

g∈G

P (I(x, gy)).

Hene PxY indues an isomorphism
P̃xY :

⊕

g∈G

I(x, gy)→ (I/G)(X,Y ).

Consider the following ommutative diagram of linear maps; note thatthe olumns are short exat sequenes:
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⊕

g∈G(kQ/I)(x, gy)
PxY // (k(Q/G)/(I/G))(X,Y )

⊕
g∈G kQ(x, gy)

OO

PxY // k(Q/G)(X,Y )

OO

⊕
g∈G I(x, gy)

OO

P̃xY // (I/G)(X,Y )

OO

Sine both PxY and P̃xY are bijetive so is P xY .De�ne the linear map
φ :

⊕

g∈G

(kQ/I)(gx, y)→
⊕

g∈G

(kQ/I)(x, gy)

by φ(α) = g−1α for all α ∈ (kQ/I)(gx, y). It is an isomorphism. The om-position
P xY φ :

⊕

g∈G

(kQ/I)(gx, y)→ (k(Q/G)/(I/G))(a, b)

sends α to Pg−1α = Pα for all α ∈ (kQ/I)(gx, y). Therefore it oinideswith PXy, whih is therefore bijetive.Corollary 1. If in addition to the assumptions of Theorem 1, kQ/I isa spetroid and the G-ation on kQ/I is loally bounded , then P is a Galoisovering.Proof. We have already seen that Pg = P for all g ∈ G. Observe thateah a ∈ Ob(k(Q/G)/(I/G)) is of the form a = Gx. Therefore P−1(a) =
Gx 6= ∅. So P is surjetive on the objets. Sine G ats transitively on Gxwe onlude that P is a Galois overing.From now on we write P instead of P to simplify the notation.Throughout the remainder of this setion we make the following assump-tions. Let Q be a quiver and G a group ating freely on Q. Let I be a
G-invariant semimonomial ideal of kQ. Set Γ = kQ/I, Λ = k(Q/G)/(I/G)and let

P : Γ → Λbe the overing funtor de�ned above. Identifying modΓ with a full sub-ategory of mod kQ and modΛ with a full subategory of mod k(Q/G), asexplained in Setion 2, for all m ∈ modΓ and n ∈ modΛ we write
m(α) = m(α+ I(x, y)), n(Gα) = n(Gα+ (I/G)(Gx,Gy))whenever x α

→ y is an arrow in Q.



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 201Denote by
P∗ : modΓ → modΛthe push-down funtor indued by P , i.e. the left adjoint of the pull-upfuntor P ∗ : modΛ→ modΓ assoiated with P .Sine P is a overing funtor we have, aording to [1℄,(2) (P∗m)(Gx) =

⊕

x′∈P−1(Gx)

m(x′) =
⊕

g∈G

m(gx).

Furthermore, for eah arrow x
α
→ y in Q and eah h ∈ G the diagram

m(hx)

incl
��

m(hα) // m(hy)

incl
��⊕

g∈Gm(gx)
(P∗m)(Gα) //

⊕
g∈Gm(gy)ommutes. Hene(3) (P∗m)(Gα) =

⊕

g∈G

m(gα) :
⊕

g∈G

m(gx)→
⊕

g∈G

m(gy).

For the pull-up funtor we have(4) (P ∗n)(x) = n(Gx), (P ∗n)(α) = n(Gα).So we see that
(P ∗P∗m)(x) =

⊕

g∈G

m(gx), (P ∗P∗m)(α) =
⊕

g∈G

m(gα),

that is,
P ∗P∗m =

⊕

g∈G

g−1

m =
⊕

g∈G

gm.

This latter result an be found as a lemma in [5℄.A Λ-module n is said to be of the �rst kind if n ∼
→P∗m for some m in

modΓ . It is said to be of the seond kind if it ontains no diret summandof the �rst kind. We denote by mod1 Λ and mod2 Λ the full subategoriesof modΛ formed by all modules of the �rst and seond kind respetively.Further we denote by ind1 Λ and ind2 Λ the full subategories of mod1 Λ and
mod2 Λ respetively formed by all indeomposable modules.3.2. Example. We illustrate the onept of Galois overings with a on-rete example, whih an be found in [4℄. Let Q be the quiver



202 M. HERSCHEND... ...
· · · (0, 1)

α01oo

β01

OO

(1, 1)
α11oo

β11

OO

· · ·
α21oo

· · · (0, 0)
α00oo

β00

OO

(1, 0)
α10oo

β10

OO

· · ·
α20oo

...β0−1

OO

...β1−1

OO

i.e. Q0 = Z2 and Q1 = {αz, βz | z ∈ Z2}. The group G = Z2 ats freelyon Q by translation. Let n ≥ 2 and In be the ideal of kQ generated by allmorphisms βijαi+1,j , αi,j+1βij , αi+1,j . . . αi+n,j and βi,j+n . . . βi,j+1. It is aG-invariant ideal and hene Theorem 1 yields the overing funtor P : Γ → Λ,where Γ = kQ/In and Λ = k(Q/G)/(In/G). Furthermore Q/G is the quiver
aα

%%
β

yywhere a = G(0, 0), α = Gα00 and β = Gβ00. The ideal In/G is generated bythe morphisms βα, αβ, αn and βn. This quiver with relations appears in [7℄,where the authors investigate representations of the Lorentz group.A line of Γ is a subquiver of Q of type A∞, A∞
∞ or Am for some m suhthat kL forms a subategory of Γ . Aording to [4℄ the ategory indΓ islassi�ed up to isomorphism by the harateristi representations χL, where

L runs through all �nite lines of Γ . Hene every indeomposable Λ-moduleof the �rst kind is isomorphi to P∗(χL) for some �nite line L.3.3. Coverings and tensor produt. In this setion we investigate therelationship between overings and the tensor produt. The following resultprovides a means of omputing the tensor produt of a Λ-module of the �rstkind and any other Λ-module.Theorem 2. For all m ∈ modΓ and n ∈ modΛ there is an isomorphism
(P∗m)⊗ n

∼
→P∗(m⊗ (P ∗n)).Proof. We ompute the right hand side at Gx ∈ ObΛ and Gα ∈ (Q/G)1using the identities (2), (3) and (4):

P∗(m⊗ (P ∗n))(Gx) =
⊕

g∈G

(m(gx)⊗ (P ∗n)(gx)) =
⊕

g∈G

(m(gx)⊗ n(Gx)),

P∗(m⊗ (P ∗n))(Gα) =
⊕

g∈G

(m(gα)⊗ (P ∗n)(gα)) =
⊕

g∈G

(m(gα)⊗ n(Gα)).



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 203On the other hand, the equalities (2) and (3) give
((P∗m)⊗ n)(Gx) =

( ⊕

g∈G

m(gx)
)
⊗ n(Gx),

((P∗m)⊗ n)(Gα) =
( ⊕

g∈G

m(gα)
)
⊗ n(Gα).Now the identi�ation( ⊕

g∈G

m(gx)
)
⊗ n(Gx)

∼
→

⊕

g∈G

(m(gx)⊗ n(Gx))onstitutes the laimed isomorphism.Corollary 2. For all m,n ∈ mod(Γ ) there is an isomorphism
(P∗m)⊗ (P∗n)

∼
→

⊕

g∈G

P∗(m⊗
gn)).Proof. We have seen that

P ∗P∗n =
⊕

g∈G

gn.Aording to Theorem 2 we obtain
(P∗m)⊗ (P∗n)

∼
→P∗

(
m⊗

⊕

g∈G

gn
)

∼
→

⊕

g∈G

P∗(m⊗
gn),sine P∗ ommutes with diret sums.If Q′ and Q′′ are subquivers of Q, then ombining Corollary 2 with for-mula (1) yields(5) (P∗χQ′)⊗ (P∗χQ′′)

∼
→

⊕

g∈G

P∗(χQ′∩gQ′′),upon noting that gχQ′′ = χgQ′′ .It has been shown in [5℄ that if Γ is a spetroid, the G-ation on Γ isloally bounded and the G-ation on indΓ/→̃ is free, then P∗ preserves inde-omposability. In this ase Corollary 2 yields the Clebsh�Gordan formulaefor Λ-modules of the �rst kind, provided that the Clebsh�Gordan problemis solved for modΓ .3.4. Example revisited. To illustrate the usefulness of the results fromthe previous setion we return to the example of Setion 3.2 and present asolution the Clebsh�Gordan problem in that ase. Let Γ and Λ be as inSetion 3.2.We already have a desription of the indeomposable Λ-modules of the�rst kind as P∗(χL), where L runs through all �nite lines of Γ . The followingproposition provides the Clebsh�Gordan formula for these modules.
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Proposition 1. Let L and L′ be �nite lines of Γ and L∩gL′ =

⋃̇
i∈Ig

Lia deomposition of L ∩ gL′ into �nite lines for all g ∈ G. Then
(P∗χL)⊗ (P∗χL′)

∼
→

⊕

g∈G

⊕

i∈Ig

P∗(χLi).

Proof. Formula (5) gives
(P∗χL)⊗ (P∗χL′)

∼
→

⊕

g∈G

P∗(χL∩gL′).Sine P∗ ommutes with diret sums the proposition follows from the fatthat
χL∩gL′ = χ⋃̇

i∈Ig
Li =

⊕

i∈Ig

χLi .Proposition 1 redues the Clebsh�Gordan problem for mod1 Λ to thesimple ombinatorial task of determining the deomposition L ∩ gL′ =⋃
i∈Ig

Li for all �nite lines L and L′, and g ∈ G.We proeed to desribe the modules of the seond kind, based on thedesription in [4℄, but adapted to our setting. The original lassi�ationhowever is due to [7℄. See also [2℄.Let L be a G-periodi line in Γ , i.e. a line with non-trivial stabilizer GL,and suh that (0, 0) ∈ L0. Then GL ats as a group of automorphisms on L.Sine GL is non-trivial we obtain GL ∼
→Z as L is of type A∞

∞. For all z ∈ L0set z = z +GL ∈ G/GL.For any indeomposable linear automorphism φ : V → V of a �nite-dimensional k-linear spae V let Bφ(L) be the Λ-module de�ned as follows.Let UL be the k-linear spae having
{uz | z ∈ L0/GL}as basis. Set
Bφ(L)(a) = UL ⊗ V.The linear maps A = (Bφ(L))(α) and B = (Bφ(L))(β) are determined by

A(uz ⊗ v) =





u
z−(1,0)

⊗ v if z 6= (1, 0) and αz ∈ L1,
u
z−(1,0)

⊗ φ−1v if z = (1, 0) and αz ∈ L1,
0 otherwise,

B(uz ⊗ v) =





uz+(0,1) ⊗ v if z 6= (0, 0) and βz ∈ L1,
u
z+(0,1)

⊗ φv if z = (0, 0) and βz ∈ L1,
0 otherwise.Sine kL is a subategory of Γ , Bφ(L) is well-de�ned. The Λ-modules Bφ(L)are alled band modules. Moreover, every indeomposable Λ-module of theseond kind is isomorphi to Bφ(L) for some φ and L. Two band modules
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Bφ(L) and Bψ(L′) are isomorphi preisely when φ and ψ are onjugate, and
L = gL′ for some g ∈ G (f. [4℄ and [2℄).In order to apply Theorem 2 we must determine P ∗(Bφ(L)). For thispurpose let Cφ(L) be the Γ -module de�ned by

(Cφ(L))(z) = (χL(z))⊗k Vand
(Cφ(L))(αz) =

{
χL(αz)⊗ IV if z 6= (1, 0),
χL(αz)⊗ φ

−1 if z = (1, 0),

(Cφ(L))(βz) =

{
χL(βz)⊗ IV if z 6= (0, 0),
χL(βz)⊗ φ if z = (0, 0).It follows from this de�nition that gCφ(L) = Cφ(L) for all g ∈ GL. For eah

h ∈ G/GL set hCφ(L) = gCφ(L), where g ∈ G is a representative of h.Lemma 3. For all G-periodi lines L of Γ ontaining (0, 0) and all linearautomorphisms φ : V → V there is an isomorphism
P ∗(Bφ(L))

∼
→

⊕

h∈G/GL

hCφ(L)

of Γ -modules.Proof. We onstrut the laimed isomorphism
ψ : P ∗(Bφ(L))→

⊕

h∈G/GL

hCφ(L).

Let x be a point in Q. Observe that
(P ∗(Bφ(L)))(x) = (Bφ(L))(a) = UL ⊗k V.Let z ∈ L0, g0 = x− z and h0 = g0 +GL. Then

h0Cφ(L)(x) = (χg0L(x))⊗k V = (χL(z))⊗k V = k⊗k Vsine z ∈ L0.We let
ι : h0Cφ(L)(x)→

⊕

h∈G/GL

hCφ(L)(x)

be the inlusion and set
ψx(uz ⊗ v) = ι(1⊗ v).Let h ∈ G/GL be represented by some g ∈ G and suh that hCφ(L)(x) 6= 0.Then x ∈ gL0 and there is z ∈ L0 suh that g + z = x.Hene ψx(uz ⊗ V ) = hCφ(L)(x). Moreover, z is uniquely determined by

x− z +GL = h and thus ψx is a bijetion.
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is a Γ -module morphism, andhene an isomorphism. Let x µ

→ y be an arrow in Q. Moreover, let uz ∈ ULand h = g + GL ∈ G/GL be suh that x = g + z. Then t(g−1µ) = z, and
g−1µ = αz or g−1µ = βz. Assume that g−1µ = αz. Then

(P ∗(Bφ(L))(µ))(uz ⊗ v) = A(uz ⊗ v) ∈ UL ⊗ V = P ∗(Bφ(L))(y)and
hCφ(L)(µ) =

{
χL(αz)⊗ IV if z 6= (1, 0),
χL(αz)⊗ φ

−1 if z = (1, 0).If αz 6∈ L1, then
ψy(A(uz ⊗ v)) = 0 = (hCφ(L)(µ))(ψx(uz ⊗ v)).Now assume that αz ∈ L1. If z 6= (1, 0), then

ψy(A(uz ⊗ v)) = ψy(uz−(1,0)
⊗ v) = (hCφ(L)(µ))(ψx(uz ⊗ v)).If z = (1, 0), then

ψy(A(uz ⊗ v)) = ψy(uz−(1,0)
⊗ φ−1v) = (hCφ(L)(µ))(ψx(uz ⊗ v)).The ase g−1µ = βz is treated analogously.For any G-periodi line L of Γ and h = g +GL ∈ G/GL, set hL = gL.Proposition 2. Let L and L′ be lines in Γ suh that L is G-periodiand ontains (0, 0), and L′ is �nite. Moreover , let L′ ∩ hL =

⋃̇
i∈Ih

Li be adeomposition of L′ ∩ hL into �nite lines for all h ∈ G/GL. Then there isan isomorphism
(P∗χL′)⊗ (Bφ(L))

∼
→dimV

⊕

h∈G/GL

⊕

i∈Ih

P∗χLi .Proof. Theorem 2 yields
(P∗χL′)⊗ (Bφ(L))

∼
→P∗(χL′ ⊗ (P ∗(Bφ(L))))

∼
→P∗

( ⊕

h∈G/GL

χL′ ⊗ hCφ(L)
)

by Lemma 3. Observe that (χL′ ⊗ hCφ(L))(z) 6= 0 if and only if z ∈ S =⋃̇
i∈Ih

Li. Furthermore, dim(χL′ ⊗ hCφ(L))(z) = dimV for all z ∈ S, and allarrows in S at as isomorphisms in χL′ ⊗ hCφ(L). Due to the lassi�ationof all indeomposable Γ -modules the only possible deomposition of χL′ ⊗
hCφ(L) is

χL′ ⊗ hCφ(L)
∼
→dimV

⊕

i∈Ih

χLi .Hene
(P∗χL′)⊗ (Bφ(L))

∼
→P∗

(
dimV

⊕

h∈G/GL

⊕

i∈Ih

χLi

)
∼
→dimV

⊕

h∈G/GL

⊕

i∈Ih

P∗χLi .The last step is valid sine all but �nitely many summands are zero.



GALOIS COVERINGS AND CLEBSCH�GORDAN PROBLEM 207To omplete the solution of the Clebsh�Gordan problem for Λ it remainsto �nd a formula for the deomposition of (Bφ(L))⊗ (Bψ(L′)). In this situa-tion we annot apply our results on overings. Instead we will use elementarymethods to obtain the desired result.Let L,L′ be G-periodi lines in Γ ontaining the point (0, 0). Let X bea ross-setion of G/(GL +GL′) suh that 0 ∈ X.Let L ∩ gL′ =
⋃̇
i∈Jg

Li be a deomposition of L ∩ gL′ into lines for all
g ∈ G. Choose Ig ⊂ Jg suh that {Li | i ∈ Ig} forms a ross-setion for the
GL ∩GL′-ation on {Li | i ∈ Jg}.De�ne the linear map

T :
⊕

x∈X

⊕

i∈Ix

kLi0 → UL ⊗ UL′

by T (z) = uz ⊗ uz−x for all z ∈ Li0, i ∈ Ix and x ∈ X. Here kLi0 denotes thevetor spae having Li0 as basis. To see that T is well-de�ned note that if
z ∈ Li0 then z ∈ L0 and z ∈ xL′

0. Hene z−x ∈ L′
0 and uz⊗uz−x ∈ UL⊗UL′ .Sine Bφ(L)

∼
→Bφ(gL) for all g ∈ G we an over all interesting ases byonly onsidering the ases L 6= gL′ for all g ∈ G, and L = L′.Lemma 4. If L 6= gL′ for all g ∈ G, then T is an isomorphism. If L = L′,then T indues a linear isomorphism

T̃ :
⊕

x∈X\{0}

⊕

i∈Ix

kLi0 → Uwhere U ⊂ UL ⊗ UL is spanned by
{uz ⊗ uz′ | z 6= z′}.Proof. Note that T̃ is well-de�ned in ase L = L′, sine if 0 6= x ∈ X,then z 6= z − x.Let z ∈ L0 and z′ ∈ L′

0. Write z′ = z + f − x + h for some f ∈ GL,
x ∈ X and h ∈ GL′ . Then z + f − x ∈ L′

0 and z + f ∈ xL′
0. Hene z + f ∈

L0 ∩ xL
′
0 =

⋃̇
i∈Jx

Li. Let y ∈ GL ∩GL′ be suh that z0 = z+ f + y ∈ Li0 forsome i ∈ Ix. Then
uz ⊗ uz′ = uz+y ⊗ uz′+y = uz+f+y ⊗ uz+f−x+y = uz0 ⊗ uz0−x = T (z0).Hene T is an epimorphism. If L = L′ and z 6= z′ then x 6= 0 and thus T̃ isalso an epimorphism.Assume that uz ⊗ uz−x = uz′ ⊗ uz′−x′ for some z ∈ Li0, i ∈ Ix, z′ ∈ Li′0 ,

i′ ∈ Ix′ . Then
z ≡ z mod GL, z − x ≡ z′ − x′ mod GL′ .In partiular x ≡ x′ mod GL +GL′ and thus x = x′. We obtain

z ≡ z′ mod GL ∩GL′ .
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z′ ∈ gLi0 ∩ L

i′
0and thus Li′ = gLi. We obtain i′ = i, sine {Li | i ∈ Ig} forms a ross-setionfor the GL ∩GL′-ation on {Li | i ∈ Jg}. Hene

Li = gLi.If g 6= 0, then Li ⊂ L ∩ xL′ is G-periodi and L = Li = xL′. Thus, if
L 6∈ GL′, then g = 0 and z = z′. Hene T is a monomorphism and thusan isomorphism in that ase. If L = L′ and g 6= 0, then x ∈ GL and thus
x = 0. This is a ontradition if uz ⊗ uz−x ∈ U . Again g = 0 and T̃ is anisomorphism.We now present the Clebsh�Gordan formula for band modules and thusomplete our solution to the Clebsh�Gordan problem for Λ.Theorem 3. Let L,L′ be periodi lines in Q ontaining the point (0, 0)and φ : V → V , ψ : W → W be linear automorphisms. Let X be a ross-setion of G/(GL + GL′) suh that 0 ∈ X. Let L ∩ gL′ =

⋃̇
i∈Jg

Li be adeomposition of L ∩ gL′ into lines for all g ∈ G. Let Ig ⊂ Jg be suh that
{Li | i ∈ Ig} forms a ross-setion for the GL ∩GL′-ation on {Li | i ∈ Jg}.If L 6= gL′ for all g ∈ G, then

Bφ(L)⊗Bψ(L′)
∼
→dimV dimW

⊕

x∈X

⊕

i∈Ix

P∗χLi .If L = L′, then
Bφ(L)⊗Bψ(L′)

∼
→

(
dimV dimW

⊕

x∈X\{0}

⊕

i∈Ix

P∗χLi

)
⊕

( ⊕

j

Bφj
(L)

)
,

where
φ⊗ ψ

∼
→

⊕

j

φjis a deomposition of φ⊗ ψ into indeomposable automorphisms.The ase Bφ(L)⊗Bψ(L′) is now redued to the simple task of determiningthe set {Li | i ∈ Ig} given L and L′, and the more ompliated problem of�nding
φ⊗ ψ

∼
→

⊕

j

φjfor all linear automorphisms φ and ψ. This is equivalent to solving theClebsh�Gordan problem for the loop quiver Ã0. In ase the ground �eld
k is algebraially losed and of harateristi 0, it has been solved by Hup-pert [11℄ and independently by Martsinkovsky and Vlassov [12℄. In otherases the solution is still unknown.
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S : (Bφ(L)⊗Bψ(L))(a) = UL ⊗ V ⊗ UL′ ⊗W

∼
→

⊕

x∈X

⊕

i∈Ix

(kLi0 ⊗ V ⊗W )de�ned by
S(uz ⊗ v ⊗ uz′ ⊗ w) = T−1(uz ⊗ uz′)⊗ v ⊗ w.We de�ne a Λ-module struture on

⊕

x∈X

⊕

i∈Ix

(kLi0 ⊗ V ⊗W )via S, and denote this Λ-module by M .Let z ∈ Li0 for some i ∈ Ix, v ∈ V and w ∈W . Then
S(uz ⊗ v ⊗ uz−x ⊗ w) = z ⊗ v ⊗ w.Let A = (Bφ(L)⊗Bψ(L))(α). If αz ∈ L1 and αz−x ∈ L′

1, then
A(uz ⊗ v ⊗ uz−x ⊗ w) = u

z−(1,0)
⊗ φmz(v)⊗ u

z−x−(1,0)
⊗ ψnz(w)for some integers mz and nz. Otherwise

A(uz ⊗ uz−x) = 0.If αz ∈ L1 and αz ∈ xL′
1, then z − (1, 0) ∈ Li0 and

S(u
z−(1,0)

⊗φmz (v)⊗u
z−(1,0)−x

⊗ψnz(w)) = (z− (1, 0))⊗φmz(v)⊗ψnz(w).Hene
M(α)(z ⊗ v ⊗ w)

=

{
(z − (1, 0))⊗ φmz(v)⊗ ψnz(w) if αz ∈ L1, αz ∈ xL

′
1,

0 otherwise.A similar alulation shows that
M(β)(z⊗v⊗w) =

{
(z + (0, 1))⊗ φm

′
z(v)⊗ ψn

′
z(w) if βz ∈ L1, βz ∈ xL

′
1,

0 otherwise,for some integers m′
z and n′z.As has been noted earlier, αz ∈ L1 and αz ∈ xL′

1 implies z− (1, 0) ∈ Li0.Similarly, βz ∈ L1 and βz ∈ xL′
1 implies z + (0, 1) ∈ Li0. Hene

M =
⊕

x∈X

⊕

i∈Ix

Mi,where Mi is the submodule of M orresponding to kLi0 ⊗ V ⊗W .For eah x ∈ X and i ∈ Ix we de�ne the Γ -module Ni by
Ni(z) = χLi(z)⊗ V ⊗W,
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Ni(αz) =

{
1⊗ φmz ⊗ ψnz if αz ∈ Li1,
0 otherwise,

Ni(βz) =

{
1⊗ φm

′
z ⊗ ψn

′
z if βz ∈ Li1,

0 otherwise.Then
Mi

∼
→P∗Ni.On the other hand, sine Ni(µ) is an isomorphism for eah µ ∈ Li1,

Ni
∼
→dimV dimW (P∗χLi).Hene

Bφ(L)⊗Bψ(L′)
∼
→M

∼
→dimV dimW

⊕

x∈X

⊕

i∈Ix

P∗χLi .

Now assume L = L′. Then (Bφ(L) ⊗ Bψ(L′))(a) = UL ⊗ V ⊗ UL ⊗Wand from Lemma 4 we obtain a linear isomorphism
S̃ : (Bφ(L)⊗Bψ(L′))(a)

∼
→

(( ⊕

x∈X\{0}

⊕

i∈Ix

kLi0

)
⊕D

)
⊗ V ⊗W,

where D ⊂ UL ⊗ UL is the subspae spanned by all vetors uz ⊗ uz, as inthe previous ase. We de�ne a Λ-module struture on
(( ⊕

x∈X\{0}

⊕

i∈Ix

kLi0

)
⊕D

)
⊗ V ⊗W.

via S̃, and denote this Λ-module by M .Let A = (Bφ(L)⊗Bψ(L))(α) and B = (Bφ(L)⊗Bψ(L))(β). Let z ∈ L0.If αz ∈ L1, then
A(uz ⊗ v ⊗ uz ⊗ w) =

{
u
z−(1,0)

⊗ v ⊗ u
z−(1,0)

⊗ w if z 6= (1, 0),
u
z−(1,0)

⊗ φ−1v ⊗ u
z−(1,0)

⊗ ψ−1v if z = (1, 0).Otherwise
A(uz ⊗ v ⊗ uz ⊗ w) = 0.If βz ∈ L1, then

B(uz ⊗ v ⊗ uz ⊗ w) =

{
u
z+(0,1)

⊗ v ⊗ u
z+(0,1)

⊗ w if z 6= (1, 0),
u
z+(0,1)

⊗ φv ⊗ u
z+(0,1)

⊗ ψv if z = (1, 0).Otherwise
B(uz ⊗ v ⊗ uz ⊗ w) = 0.We obtain a submodule N of M determined by
N(a) = D ⊗ V ⊗W.
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Bφ⊗ψ(L)

∼
→Ndetermined by uz ⊗ v ⊗ w 7→ uz ⊗ uz ⊗ v ⊗ w.Let τ : V ⊗W

∼
→V ⊗W be a linear automorphism suh that

τ(φ⊗ ψ)τ−1 =
⊕

j

φj .Then τ yields the isomorphism
θ : Bφ⊗ψ(L)

∼
→B⊕

j φj
(L) =

⊕

j

Bφj
(L)determined by

θa : (Bφ⊗ψ(L))(a)
∼
→(B⊕

j φj
(L))(a), uz ⊗ v ⊗ w 7→ uz ⊗ τ(v ⊗ w).By arguments analogous to those in the previous ase one shows that S̃indues a Λ-module struture on (

⊕
x∈X\{0}

⊕
i∈Ix

kLi0) ⊗ V ⊗W whih isisomorphi to
dimV dimW

⊕

x∈X\{0}

⊕

i∈Ix

P∗χLi .

Hene
Bφ(L)⊗Bψ(L′)

∼
→

(
dimV dimW

⊕

x∈X\{0}

⊕

i∈Ix

P∗χLi

)
⊕

( ⊕

j

Bφj
(L)

)
.

4. Quivers of type Ãn. In this setion we revisit the Clebsh�Gordanproblem for quivers of type Ãn, i.e. quivers whose underlying graph is
a0

α0

{{
{{

{{
{{

a1 α1
· · ·

αn−1
an

αn

CCCCCCCC

for some n ∈ N. We assume that k is algebraially losed. This problemhas originally been solved in [10℄, by means of expliit omputations. Herewe present a more streamlined approah, using the results on overings andharateristi representations developed above. For the reader's onvenienewe inlude those omputations from [10℄ whih are indispensable even in thepresent approah (f. proof of Theorem 5(iii)).4.1. Indeomposable modules. Let n ∈ N and Q be a quiver of type A∞
∞,i.e. a quiver with underlying graph

· · ·
α−1 a0

α0 a1
α1 · · · .
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Assume that the orientation of Q is periodi in the sense that ai αi→ ai+1implies ai+n+1

αi+n+1

−−−−→ ai+n+2 and ai αi← ai+1 implies ai+n+1
αi+n+1

←−−−− ai+n+2for all i ∈ Z. Then Z ats freely on Q by
kai = ai+k(n+1), kαi = αi+k(n+1)for all k ∈ Z. The quotient quiver Q/Z is of type Ãn. Moreover, every quiverof type Ãn arises in this way. Theorem 1 yields a overing funtor

P : kQ→ k(Q/Z)together with the assoiated push-down funtor
P∗ : mod kQ→ mod k(Q/Z).We interpret the lassi�ation of ind kQ found in [6℄ in terms of overings.For all integers i, j suh that i ≤ j let Xij = χQij ∈ mod kQ, where Qij isthe subquiver of Q with underlying graph

ai
αi · · ·

αj−1 aj.Set
S(i, j) = P∗(Xij).The modules S(i, j) are modules of the �rst kind and are alled strings.For eah positive integer m and salar λ ∈ k \ {0} let Bλ(m) be the

k(Q/Z)-module de�ned by
Bλ(m)(ai) = km, Bλ(m)(αi) =

{
Im if i 6= n,
Jλ(m) if i = n,where Im is the identity matrix of size m and Jλ(m) is the Jordan blokof size m with eigenvalue λ. The modules Bλ(m) are alled bands and aremodules of the seond kind.Theorem 4 ([6, p. 121℄). The set

{S(i, j) | 0 ≤ i ≤ n, i ≤ j} ∪ {Bλ(m) | λ ∈ k \ {0}, m ∈ N \ {0}}lassi�es ind k(Q/Z), up to isomorphism.4.2. Clebsh�Gordan formulae. Let i∧j = min{i, j} and i∨j = max{i, j}for all integers i, j. The following result provides the Clebsh�Gordan for-mulae for Ãn in terms of strings and bands.Theorem 5. Assume that char(k) = 0. For all integers i, i′, j, j′ suhthat 0 ≤ i ≤ i′ ≤ n, i ≤ j and i′ ≤ j′, salars λ, µ ∈ k\{0} and l,m ∈ N\{0}the following formulae hold :
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(i) S(i, j)⊗ S(i′, j′)
∼
→

[(j′−i)/(n+1)]⊕

k=0

S(i, j ∧ (j′ − k(n+ 1)))

⊕

[(j−i′)/(n+1)]⊕

k=1

S(i′, j′ ∧ (j − k(n+ 1))),

(ii) S(i, j)⊗Bµ(m)
∼
→mS(i, j),(iii) Bλ(l)⊗Bµ(m)
∼
→

(l∧m)−1⊕

k=0

Bλµ(l +m− 2k − 1).Here [x] denotes the integer part of x for all x ∈ Q. The restrition
i ≤ i′ does not a�et the generality of formula (i), as the tensor produt isommutative.Proof. (i) We extend the notation by letting S(i, j) and Xij be zerowhenever i > j. Formula (5) yields

S(i, j)⊗ S(i′, j′) = (P∗Xij)⊗ (P∗Xi′j′)
∼
→

⊕

k∈Z

P∗(χQij∩kQi′j′ ) =
⊕

k∈Z

P∗(Xi∨(i′+k(n+1)),j∧(j′+k(n+1))).From the inequality i ≥ i′ we obtain
S(i, j)⊗ S(i′, j′)

∼
→

⊕

k≤0

P∗(Xi,j∧(j′+k(n+1)))⊕
⊕

k>0

P∗(Xi′+k(n+1),j∧(j′+k(n+1)))

=
⊕

k≥0

S(i, j ∧ (j′ − k(n+ 1)))⊕
⊕

k>0

S(i′, (j − k(n+ 1)) ∧ j′)

using the equality P∗(
kX) = P∗(X) for all k ∈ Z and X ∈ mod kQ. Thelimits k ≤ [(j′ − i)/(n+ 1)] and k ≤ [(j − i′)/(n+ 1)] arise from the fatthat S(i, j ∧ (j′ − k(n + 1))) and S(i′, (j − k(n + 1)) ∧ j′) are zero when

(n+ 1)k > j′ − i and (n+ 1)k > j − i′ respetively.(ii) From Theorem 2 we obtain
S(i, j)⊗Bλ(m) = (P∗Xij)⊗Bλ(m)

∼
→P∗(Xij ⊗ (P ∗Bλ(m))).Sine (Xij ⊗ (P ∗Bλ(m)))(ak) is of dimension m for all i ≤ k ≤ j and zerootherwise, and (Xij ⊗ (P ∗Bλ(m)))(αk) is an isomorphism for all i ≤ k < j,it follows that

Xij ⊗ (P ∗Bλ(m))
∼
→mXij.Hene

S(i, j)⊗Bλ(m)
∼
→P∗(mXij)

∼
→mP∗(Xij) = mS(i, j)sine P∗ ommutes with diret sums.



214 M. HERSCHEND(iii) Let l,m ∈ N \ {0} and λ, µ ∈ k \ {0}. Set A = Bλ(l), B = Bµ(m)and T = Jλ(l) ⊗ Jµ(m), the Kroneker produt of the Jordan bloks. Byde�nition we have
(A⊗B)(ak) = kl ⊗ km

∼
→klm.In the standard basis (ei ⊗ ej)(i,j)∈l×m the linear map (A⊗B)(αk) is givenby the identity matrix Ilm if k 6= n whereas (A⊗B)(αn) is given by T .Any C ∈ GLlm(k) determines a new representation (A ⊗ B)C given by

(A⊗B)C(ak) = klm for all k ∈ {0, . . . , n}, (A⊗B)C(αk) = Ilm if k < n and
(A⊗B)C(αn) = CTC−1, together with an isomorphism

C? : A⊗B → (A⊗B)Cgiven by (A⊗B)(ak)→ (A⊗B)C(ak), x 7→ Cx, for all k ∈ {0, . . . , n}. Sine
char(k) = 0 we know from [11, p. 51℄ that there exists a C ∈ GLlm(k) suhthat CTC−1 =

⊕(l∨m)−1
k=0 Jλµ(l + m − 2k − 1). Aordingly, (A ⊗ B)C =⊕(l∨m)−1

k=0 Bλµ(l +m− 2k − 1). We onlude that
A⊗B

∼
→

(l∨m)−1⊕

k=0

Bλµ(l +m− 2k − 1).

Note that the assumption char(k) = 0 only enters in the proof of part (iii),namely in order to ensure that the matrix T has the Jordan deomposition⊕(l∨m)−1
k=0 Jλµ(l+m−2k−1). The ase char(k) = p an be treated similarlyas soon as the Jordan deomposition of Jλ(l)⊗ Jµ(m) is provided. However,at present I do not know any general formula for this deomposition.
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