GALOIS COVERINGS AND THE CLEBSCH-GORDAN PROBLEM FOR QUIVER REPRESENTATIONS

BY
MARTIN HERSCHEND (Uppsala)

Abstract

We study the Clebsch-Gordan problem for quiver representations, i.e. the problem of decomposing the point-wise tensor product of any two representations of a quiver into its indecomposable direct summands. For this purpose we develop results describing the behaviour of the point-wise tensor product under Galois coverings. These are applied to solve the Clebsch-Gordan problem for the double loop quivers with relations $\alpha \beta=\beta \alpha=\alpha^{n}=\beta^{n}=0$. These quivers were originally studied by I. M. Gelfand and V. A. Ponomarev in their investigation of representations of the Lorentz group. We also solve the Clebsch-Gordan problem for all quivers of type $\widetilde{\mathbb{A}}_{n}$.

1. Introduction. Given any Krull-Schmidt category equipped with a tensor product, one can pose the Clebsch-Gordan problem, i.e. the problem of decomposing the tensor product of any two objects into a direct sum of indecomposables. This problem originates from representation theory of groups. Here we consider it for quiver representations where the tensor product is defined point-wise and arrow-wise.

In this form it arises naturally in the investigation of lattices over curve singularities [3]. For the loop quiver $\widetilde{\mathbb{A}}_{0}$ it has been studied by Huppert [11] and independently by Martsinkovsky and Vlassov [12]. Previous results by the author deal with the Kronecker quiver [8] and extended Dynkin quivers of type $\widetilde{\mathbb{A}}_{n}$ (see [10]).

One of the most fundamental problems in representation theory is the classification problem for the indecomposable objects of a Krull-Schmidt category. By solving it we mean finding a list of indecomposable objects such that each isomorphism class of indecomposables is represented exactly once. Assuming that the classification problem is solved one can present a solution to the Clebsch-Gordan problem in the following way: for any pair of elements from the classifying list provide a formula for their decomposition into a direct sum of indecomposables from the classifying list.

[^0]The concept of coverings comes from topology and was introduced in representation theory by P. Gabriel [5], [1]. In some cases it can be used as a tool to solve the classification problem (cf. e.g. [4]).

In the present article we investigate the relationship between Galois coverings and the tensor product of quiver representations. Our main results (Theorem 2 and Corollary 2) allow the reduction of parts of the ClebschGordan problem for the base quiver to the Clebsch-Gordan problem for the covering quiver, provided that a classification of indecomposables is given in terms of the covering.

We apply these results to solve the Clebsch-Gordan problem for the double loop quivers with relations $\alpha \beta=\beta \alpha=\alpha^{n}=\beta^{n}=0$ and quivers of type $\widetilde{\mathbb{A}}_{n}$.
2. Preliminaries. We recall a few of the basic notions associated with linear categories and quivers, some of which can be found in [6]. Let \mathbb{k} be a field. A category \mathcal{C} is called linear if all its morphism sets are endowed with a \mathbb{k}-linear structure and all its composition maps are \mathbb{k}-bilinear. For linear categories \mathcal{A} and \mathcal{B} a functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is called linear if the maps $\mathcal{A}(x, y) \rightarrow \mathcal{B}(F(x), F(y)), \alpha \mapsto F(\alpha)$, are \mathbb{k}-linear.

An ideal \mathcal{I} of a linear category \mathcal{C} is a family of subspaces $\mathcal{I}(x, y) \subset$ $\mathcal{C}(x, y)$ such that $\beta \mathcal{I}(x, y) \alpha \subset \mathcal{I}(w, z)$ for all $\beta \in \mathcal{C}(y, z)$ and $\alpha \in \mathcal{C}(w, x)$. For an ideal \mathcal{I} of a category \mathcal{C} we define the quotient category $\mathcal{C} / \mathcal{I}$ by $\operatorname{Ob}(\mathcal{C} / \mathcal{I})=\operatorname{Ob} \mathcal{C}$ and $(\mathcal{C} / \mathcal{I})(x, y)=\mathcal{C}(x, y) / \mathcal{I}(x, y)$. The composition of morphisms in $\mathcal{C} / \mathcal{I}$ is the residue class of the composition of chosen representatives in \mathcal{C}.

A quiver Q is a quadruple $\left(Q_{0}, Q_{1}, t, h\right)$, where Q_{0} is the set of vertices and Q_{1} the set of arrows. The maps $t, h: Q_{1} \rightarrow Q_{0}$ map an arrow α to its tail $t \alpha$ and head $h \alpha$ respectively. We write $x \xrightarrow{\alpha} y$ to state that $t \alpha=x$ and $h \alpha=y$. A path from $x \in Q_{0}$ to $y \in Q_{0}$ of length $d \geq 1$ is a sequence of arrows $\alpha_{d} \ldots \alpha_{1}$ such that $t \alpha_{1}=x, h \alpha_{i}=t \alpha_{i+1}$ for all $i=1, \ldots, d-1$ and $h \alpha_{d}=y$. For each vertex $x \in Q_{0}$ there is moreover a path e_{x} of length zero from x to x. With each quiver Q we associate its path category \widehat{Q} whose set of objects is Q_{0} and whose morphism sets $\widehat{Q}(x, y)$ consist of all paths from x to y. Composition of paths is given by concatenation. We also consider the linearized path category $\mathbb{k} Q$, which has the same objects as \widehat{Q} and whose morphism sets $\mathbb{k} Q(x, y)$ are the vector spaces having $\widehat{Q}(x, y)$ as basis. The composition maps in this category are the bilinear extensions of the composition maps in \widehat{Q}.

A subquiver of a quiver Q is a quiver $Q^{\prime}=\left(Q_{0}^{\prime}, Q_{1}^{\prime}, t^{\prime}, h^{\prime}\right)$ such that $Q_{0}^{\prime} \subset Q_{0}, Q_{1}^{\prime} \subset Q_{1}$ and $t^{\prime}(\alpha)=t(\alpha), h^{\prime}(\alpha)=h(\alpha)$ for all $\alpha \in Q_{1}^{\prime}$. Let Q^{\prime} and $Q^{\prime \prime}$ be subquivers of Q. Their union $Q^{\prime} \cup Q^{\prime \prime}$ and intersection $Q^{\prime} \cap Q^{\prime \prime}$
respectively are the subquivers of Q determined by

$$
\begin{array}{ll}
\left(Q^{\prime} \cup Q^{\prime \prime}\right)_{i}=Q_{i}^{\prime} \cup Q_{i}^{\prime \prime} & \text { for } i \in\{0,1\} \\
\left(Q^{\prime} \cap Q^{\prime \prime}\right)_{i}=Q_{i}^{\prime} \cap Q_{i}^{\prime \prime} \quad \text { for } i \in\{0,1\}
\end{array}
$$

We say that Q^{\prime} and $Q^{\prime \prime}$ are disjoint if $\left(Q^{\prime} \cap Q^{\prime \prime}\right)_{0}$ is empty. In that case we write $Q^{\prime} \dot{\cup} Q^{\prime \prime}$ for the union of Q^{\prime} and $Q^{\prime \prime}$.

Let Q be a quiver. An ideal \mathcal{I} of $\mathbb{k} Q$ is called semimonomial if it is generated by elements of the form α or $\alpha-\beta$, where $\alpha, \beta \in \widehat{Q}(x, y)$.

Let Γ be a small linear category. A Γ-module is a linear functor

$$
m: \Gamma \rightarrow \operatorname{Mod} \mathbb{k}
$$

where $\operatorname{Mod} \mathbb{k}$ denotes the category of all \mathbb{k}-linear spaces. A morphism from a Γ-module m to a Γ-module n is defined to be a natural transformation

$$
\phi: m \rightarrow n
$$

We denote by $\operatorname{Mod} \Gamma$ the category of all Γ-modules and by $\bmod \Gamma$ the full subcategory formed by all finite-dimensional modules, i.e. modules m such that $\bigoplus_{x \in \Gamma} m(x)$ is finite-dimensional.

If $\Gamma=\mathbb{k} Q$ for some quiver Q, then a Γ-module m is uniquely determined by the choice of vector spaces $m(x)$ for all $x \in Q_{0}$ and linear maps $m(\alpha)$ for all $\alpha \in Q_{1}$. The collection of vector spaces $m(x)$ and linear maps $m(\alpha)$ is called a representation of Q. If \mathcal{I} is an ideal of $\mathbb{k} Q$, then the category $\bmod (\mathbb{k} Q / \mathcal{I})$ is identified with the full subcategory of $\bmod \mathbb{k} Q$ formed by all modules m satisfying $m(\alpha)=0$ for each $\alpha \in \mathcal{I}$.

For any two modules $m, n \in \operatorname{Mod} \Gamma$ we define their direct sum $m \oplus n$ by

$$
\begin{array}{ll}
(m \oplus n)(x)=m(x) \oplus n(x) & \text { for each } x \in \mathrm{Ob} \Gamma \\
(m \oplus n)(\alpha)=m(\alpha) \oplus n(\alpha) & \text { for each } \alpha \in \Gamma(x, y)
\end{array}
$$

A module $m \in \operatorname{Mod} \Gamma$ is called indecomposable if $m \xrightarrow{\sim} m^{\prime} \oplus m^{\prime \prime}$ implies $m^{\prime}=0$ or $m^{\prime \prime}=0$ but not both. The full subcategories of $\operatorname{Mod} \Gamma$ and $\bmod \Gamma$ formed by all indecomposable modules are denoted by Ind Γ and ind Γ respectively.

For any linear functor $F: \Gamma \rightarrow \Lambda$ of small linear categories, we define the associated pull-up functor

$$
F^{*}: \operatorname{Mod} \Lambda \rightarrow \operatorname{Mod} \Gamma
$$

by $F^{*} m=m \circ F$ for each Λ-module m and $\left(F^{*}(\phi)\right)_{x}=\phi_{F(x)}$ for each morphism ϕ of Λ-modules.

For $\Gamma=\mathbb{k} Q / \mathcal{I}$, where Q is a quiver and \mathcal{I} a semimonomial ideal, we define the tensor product $m \otimes n$ of Γ-modules by

$$
\begin{array}{ll}
(m \otimes n)(x)=m(x) \otimes n(x) & \text { for each } x \in \mathrm{Ob} \Gamma \\
(m \otimes n)(\alpha)=m(\alpha) \otimes n(\alpha) & \text { for each } \alpha \in Q_{1}
\end{array}
$$

Since the tensor product of linear maps respects compositions we see that $(m \otimes n)(\alpha)=m(\alpha) \otimes n(\alpha)$ for every path α in Q. Moreover, the tensor product respects the zero morphism in the sense that $(m \otimes n)(0)=0=$ $m(0) \otimes n(0)$. It follows that if α, α^{\prime} are paths in Q or zero morphisms such that $m(\alpha)=m\left(\alpha^{\prime}\right)$ and $n(\alpha)=n\left(\alpha^{\prime}\right)$, then $(m \otimes n)(\alpha)=(m \otimes n)\left(\alpha^{\prime}\right)$. Since the ideal \mathcal{I} is semimonomial we deduce that $m \otimes n$ is a well-defined Γ-module. The canonical isomorphism $m(x) \otimes n(x) \xrightarrow{\sim} n(x) \otimes m(x)$ defines an isomorphism of Γ-modules $m \otimes n \xrightarrow{\sim} n \otimes m$.

The Clebsch-Gordan problem for $\bmod \Gamma$ is the problem of decomposing $m \otimes n$ into a direct sum of indecomposable modules, for all $m, n \in \bmod \Gamma$. Since the tensor product commutes with direct sums, we may assume without loss of generality that $m, n \in$ ind Γ.

We recall from [9] the notion of characteristic representations. Let Q^{\prime} be a subquiver of a quiver Q. The characteristic representation associated with Q^{\prime} is the $\mathbb{k} Q$-module $\chi_{Q^{\prime}}$ defined by

$$
\chi_{Q^{\prime}}(x)=\left\{\begin{array}{ll}
\mathbb{k} & \text { if } x \in Q_{0}^{\prime}, \\
0 & \text { if } x \notin Q_{0}^{\prime},
\end{array} \quad \chi_{Q^{\prime}}(\alpha)= \begin{cases}1_{\mathbb{k}} & \text { if } \alpha \in Q_{1}^{\prime} \\
0 & \text { if } \alpha \notin Q_{1}^{\prime}\end{cases}\right.
$$

The canonical vector space isomorphism $\mathbb{k} \otimes \mathbb{k} \xrightarrow{\sim} \mathbb{k}$ gives rise to the isomorphism of representations

$$
\begin{equation*}
\chi_{Q^{\prime}} \otimes \chi_{Q^{\prime \prime}} \xrightarrow{\sim} \chi_{Q^{\prime} \cap Q^{\prime \prime}} \tag{1}
\end{equation*}
$$

3. Galois coverings

3.1. Generalities. Let us briefly recall some basic facts about the concept of Galois coverings, as presented in [5] and [1]. A linear functor $F: \Gamma \rightarrow \Lambda$ between linear categories is called a covering functor if the induced linear maps

$$
\bigoplus_{y^{\prime} \in F^{-1}(b)} \Gamma\left(x, y^{\prime}\right) \rightarrow \Lambda(a, b) \quad \text { and } \quad \bigoplus_{x^{\prime} \in F^{-1}(a)} \Gamma\left(x^{\prime}, y\right) \rightarrow \Lambda(a, b)
$$

are bijective for all $a, b \in \operatorname{Ob} \Lambda$ and $x \in F^{-1}(a), y \in F^{-1}(b)$.
Let G be a group and Γ a small linear category. A G-action on Γ is a group morphism $G \rightarrow$ Aut $\Gamma, g \mapsto F_{g}$, such that all F_{g} are linear. It defines a G-action on $\mathrm{Ob} \Gamma$ by $g x=F_{g}(x)$ for all $x \in \mathrm{Ob} \Gamma$. It is called free if the stabilizer G_{x} is trivial for all $x \in \mathrm{Ob} \Gamma$, and locally bounded if for all $x, y \in \mathrm{Ob} \Gamma$ the identities $\Gamma(g x, y)=\Gamma(x, g y)=0$ hold for all but finitely many $g \in G$. For any $m \in \bmod \Gamma$ and $g \in G$ we denote by ${ }^{g} m$ the translated module $m \circ F_{g^{-1}}$. To simplify notation we identify F_{g} with g. If Λ is a linear subcategory of Γ, then $g \Lambda$ is the subcategory of Γ defined by $\operatorname{Ob}(g \Lambda)=g(\operatorname{Ob} \Lambda)$ and $(g \Lambda)(x, y)=g(\Lambda(x, y))$ for all $g \in G$.

Following [6, p. 9], a spectroid is a small linear category Γ with the following properties: all endomorphism algebras are local, different objects are non-isomorphic and all morphism spaces are finite-dimensional.

Let G be a group acting on a spectroid Γ. We assume that this action is free and locally bounded. Then the quotient category Γ / G is defined as follows. The objects of Γ / G are the G-orbits of objects of Γ. A morphism $\alpha \in(\Gamma / G)(a, b)$ is a double sequence $\alpha=\left(\alpha_{y x}\right) \in \prod_{x \in a, y \in b} \Gamma(x, y)$ such that $g\left(\alpha_{y x}\right)=\alpha_{g y, g x}$ for all $g \in G, x \in a$ and $y \in b$. If $\alpha \in(\Gamma / G)(a, b)$ and $\beta \in$ $(\Gamma / G)(b, c)$, then the composition $\beta \alpha$ is defined by $(\beta \alpha)_{z x}=\sum_{y \in b} \beta_{z y} \alpha_{y x}$. All but finitely many terms in the sum are zero since the G-action is locally bounded. The linear projection functor

$$
F: \Gamma \rightarrow \Gamma / G
$$

sends an object x to its orbit and a morphism $\alpha \in \Gamma(x, y)$ to the double sequence $F(\alpha)$ defined by

$$
F(\alpha)_{h y, g x}= \begin{cases}g \alpha & \text { if } g=h, \\ 0 & \text { if } g \neq h\end{cases}
$$

It is shown in [5] that F is a covering functor such that $F g=F$ for all $g \in G$. Moreover, it has the universal property that if Λ is a spectroid and a linear functor $E: \Gamma \rightarrow \Lambda$ satisfies $E g=E$ for all $g \in G$, then there is a unique linear functor $H: \Gamma / G \rightarrow \Lambda$ such that the diagram

commutes. If in addition E is a covering functor, surjective on the objects of Λ and such that G acts transitively on $E^{-1}(x)$ for all $x \in \mathrm{Ob} \Lambda$, then H is an isomorphism. In this case E is called a Galois covering.

If a group G acts on a small linear category Γ we say that an ideal \mathcal{I} of Γ is G-invariant if $g \mathcal{I}(x, y) \subset \mathcal{I}(g x, g y)$ for all $g \in G$ and all $x, y \in \mathrm{Ob} \Gamma$. In this case we get an induced G-action on Γ / \mathcal{I} defined by $g(\alpha+\mathcal{I}(x, y))=$ $g \alpha+\mathcal{I}(g x, g y)$. We proceed by investigating the case $\Gamma=\mathbb{k} Q / \mathcal{I}$ in more detail. Our goal is to find a canonical Galois covering $\Gamma \rightarrow \Lambda$ where Λ is the linear path category of a quiver modulo some ideal.

We say that a group G acts on a quiver Q if it acts on Q_{0} and on Q_{1} in such a way that $t(g \alpha)=g t(\alpha)$ and $h(g \alpha)=g h(\alpha)$ for all $g \in G$ and $\alpha \in Q_{1}$. If Q^{\prime} is a subquiver of Q, then $g Q^{\prime}$ denotes the subquiver determined by $(g Q)_{i}=g\left(Q_{i}\right)$ for $i \in\{0,1\}$. The orbit quiver Q / G is defined by $(Q / G)_{0}=Q_{0} / G,(Q / G)_{1}=Q_{1} / G, t(G \alpha)=G(t \alpha)$ and $h(G \alpha)=G(h \alpha)$.

Let P be the linear functor

$$
P: \mathbb{k} Q \rightarrow \mathbb{k}(Q / G)
$$

which sends vertices and arrows to their respective orbits. For any ideal \mathcal{I} of $\mathbb{k} Q$ we define the ideal \mathcal{I} / G of $\mathbb{k}(Q / G)$ by

$$
(\mathcal{I} / G)(X, Y)=\sum_{(x, y) \in X \times Y} P(\mathcal{I}(x, y))
$$

Let \bar{P} be the functor

$$
\bar{P}: \mathbb{k} Q / \mathcal{I} \rightarrow \mathbb{k}(Q / G) /(\mathcal{I} / G)
$$

induced by P. If \mathcal{I} is semimonomial then so is \mathcal{I} / G.
If a group G acts on a quiver Q, then it induces a G-action on $\mathbb{k} Q$ by $g(\beta \alpha)=(g \beta)(g \alpha)$ for all paths α, β. We observe that $P g=P$ since $(P g)(x)=G x=P(x)$ for each vertex $x \in Q_{0}$, and $(P g)(\alpha)=G \alpha=P(\alpha)$ for each arrow $\alpha \in Q_{1}$. If \mathcal{I} is a G-invariant ideal of $\mathbb{k} Q$, then $\bar{P} g=\bar{P}$. We proceed to show that, under suitable assumptions, \bar{P} is a covering functor.

Lemma 1. Let Q be a quiver and G a group acting on Q. For all $x, y \in$ Q_{0} and $\xi \in(\widehat{Q / G})(G x, G y)$, there are $g \in G$ and $\alpha \in \widehat{Q}(x, g y)$ such that $P(\alpha)=\xi$.

Proof. The proof proceeds by induction on d, the length of ξ. If $d=0$ then $\xi=e_{G x}$ and $G x=G y$. Choose $g \in G$ such that $g y=x$ and $\alpha=e_{x} \in$ $\widehat{Q}(x, x)=\widehat{Q}(x, g y)$. Assume that $d>0$. Then $\xi=G \beta \xi^{\prime}$ for some arrow $z \xrightarrow{\beta} g_{1} y$ in Q and some path $\xi^{\prime} \in(\widehat{Q / G})(G x, G z)$. By induction hypothesis there are $g_{2} \in G$ and $\alpha^{\prime} \in \widehat{Q}\left(x, g_{2} z\right)$ such that $P\left(\alpha^{\prime}\right)=\xi^{\prime}$. Choose $g=g_{2} g_{1}$ and $\alpha=\left(g_{2} \beta\right) \alpha^{\prime}$. Then $P(\alpha)=G \beta P\left(\alpha^{\prime}\right)=\xi$.

Lemma 2. Let Q be a quiver and G a group acting freely on Q. Let $x, y \in Q_{0}$ and $g \in G$. Then $P(\alpha)=P(\beta)$ implies $\alpha=\beta$ for all $\alpha \in \widehat{Q}(x, y)$, $\beta \in \widehat{Q}(x, g y)$.

Proof. Since the functor P sends arrows to arrows, it sends paths of length d to paths of length d for all $d \in \mathbb{N}$. We show that if $P(\alpha)=P(\beta)$ then $\alpha=\beta$ by induction on d, the length of α, which coincides with the length of β. If $d=0$ then $\alpha=e_{x}=\beta$. Assume that $d>0$. Then $\alpha=\alpha^{\prime} \alpha_{1}$ for some arrow α_{1} from x to z and some path $\alpha^{\prime} \in \widehat{Q}(z, y)$. Similarly, $\beta=\beta^{\prime} \beta_{1}$ for some arrow β_{1} from x to z^{\prime} and some path $\beta^{\prime} \in \widehat{Q}\left(z^{\prime}, g y\right)$. Since $P(\alpha)=P(\beta)$ we have $P\left(\alpha_{1}\right)=P\left(\beta_{1}\right)$ and $P\left(\alpha^{\prime}\right)=P\left(\beta^{\prime}\right)$. Hence there is $h \in G$ such that $h \alpha_{1}=\beta_{1}$ and thus $h x=x$. Since the G-action is free, $h=1$ and $\alpha_{1}=\beta_{1}$. It follows that $z=z^{\prime}$, and by induction that $\alpha^{\prime}=\beta^{\prime}$. Hence $\alpha=\alpha^{\prime} \alpha_{1}=\beta^{\prime} \beta_{1}=\beta$.

Theorem 1. Let Q be a quiver and G a group acting freely on Q. Let \mathcal{I} be a G-invariant ideal of $\mathbb{k} Q$. Then

$$
\bar{P}: \mathbb{k} Q / \mathcal{I} \rightarrow \mathbb{k}(Q / G) /(\mathcal{I} / G)
$$

is a covering functor.
Proof. Let $X, Y \in(Q / G)_{0}$ and $x \in X, y \in Y$. Then $\bar{P}^{-1}(X)=G x$ and $\bar{P}^{-1}(Y)=G y$. Since the action of G is free we obtain

$$
\bigoplus_{y^{\prime} \in \overline{P^{-1}(Y)}} \mathbb{k} Q\left(x, y^{\prime}\right)=\bigoplus_{g \in G} \mathbb{k} Q(x, g y), \quad \bigoplus_{x^{\prime} \in \bar{P}^{-1}(X)} \mathbb{k} Q\left(x^{\prime}, y\right)=\bigoplus_{g \in G} \mathbb{k} Q(g x, y)
$$

Our aim is to show that the linear maps

$$
\bar{P}_{x Y}: \bigoplus_{g \in G}(\mathbb{k} Q / \mathcal{I})(x, g y) \rightarrow(\mathbb{k}(Q / G) /(\mathcal{I} / G))(X, Y)
$$

and

$$
\bar{P}_{X y}: \bigoplus_{g \in G}(\mathbb{k} Q / \mathcal{I})(g x, y) \rightarrow(\mathbb{k}(Q / G) /(\mathcal{I} / G))(X, Y)
$$

induced by \bar{P} are bijective.
The functor P induces a map

$$
\bigcup_{g \in G} \widehat{Q}(x, g y) \rightarrow(\widehat{Q / G})(X, Y)
$$

which according to Lemmas 1 and 2 is a bijection. Since $\widehat{Q}(x, g y)$ and $(\widehat{Q / G})(X, Y)$ are bases of $\mathbb{k} Q(x, g y)$ and $\mathbb{k}(Q / G)(X, Y)$ respectively, the linear map

$$
P_{x Y}: \bigoplus_{g \in G} \mathbb{k} Q(x, g y) \rightarrow \mathbb{k}(Q / G)(X, Y)
$$

defined by $P_{x Y}(\alpha)=P(\alpha)$ for all $\alpha \in \mathbb{k} Q(x, g y)$ is bijective. Using the fact that \mathcal{I} is G-invariant we obtain

$$
\begin{aligned}
(\mathcal{I} / G)(X, Y) & =\sum_{g, h \in G} P(\mathcal{I}(g x, h y))=\sum_{g, h \in G} P g\left(\mathcal{I}\left(x, g^{-1} h y\right)\right) \\
& =\sum_{g, h \in G} P\left(\mathcal{I}\left(x, g^{-1} h y\right)\right)=\sum_{g \in G} P(\mathcal{I}(x, g y))
\end{aligned}
$$

Hence $P_{x Y}$ induces an isomorphism

$$
\widetilde{P}_{x Y}: \bigoplus_{g \in G} \mathcal{I}(x, g y) \rightarrow(\mathcal{I} / G)(X, Y)
$$

Consider the following commutative diagram of linear maps; note that the columns are short exact sequences:

$$
\begin{aligned}
& \bigoplus_{g \in G}(\mathbb{k} Q / \mathcal{I})(x, g y) \xrightarrow{\bar{P}_{x Y}}(\mathbb{k}(Q / G) /(\mathcal{I} / G))(X, Y) \\
& \bigoplus_{g \in G} \mathbb{k} Q(x, g y) \xrightarrow{P_{x Y}} \mathbb{k}(Q / G)(X, Y) \\
& \bigoplus_{g \in G} \mathcal{I}(x, g y) \xrightarrow{\widetilde{P}_{x Y}}(\mathcal{I} / G)(X, Y)
\end{aligned}
$$

Since both $P_{x Y}$ and $\widetilde{P}_{x Y}$ are bijective so is $\bar{P}_{x Y}$.
Define the linear map

$$
\phi: \bigoplus_{g \in G}(\mathbb{k} Q / \mathcal{I})(g x, y) \rightarrow \bigoplus_{g \in G}(\mathbb{k} Q / \mathcal{I})(x, g y)
$$

by $\phi(\alpha)=g^{-1} \alpha$ for all $\alpha \in(\mathbb{k} Q / \mathcal{I})(g x, y)$. It is an isomorphism. The composition

$$
\bar{P}_{x Y} \phi: \bigoplus_{g \in G}(\mathbb{k} Q / \mathcal{I})(g x, y) \rightarrow(\mathbb{k}(Q / G) /(\mathcal{I} / G))(a, b)
$$

sends α to $\bar{P} g^{-1} \alpha=\bar{P} \alpha$ for all $\alpha \in(\mathbb{k} Q / \mathcal{I})(g x, y)$. Therefore it coincides with $\bar{P}_{X y}$, which is therefore bijective.

Corollary 1. If in addition to the assumptions of Theorem $1, \mathbb{k} Q / \mathcal{I}$ is a spectroid and the G-action on $\mathbb{k} Q / \mathcal{I}$ is locally bounded, then \bar{P} is a Galois covering.

Proof. We have already seen that $\bar{P} g=\bar{P}$ for all $g \in G$. Observe that each $a \in \operatorname{Ob}(\mathbb{k}(Q / G) /(\mathcal{I} / G))$ is of the form $a=G x$. Therefore $\bar{P}^{-1}(a)=$ $G x \neq \emptyset$. So \bar{P} is surjective on the objects. Since G acts transitively on $G x$ we conclude that \bar{P} is a Galois covering.

From now on we write P instead of \bar{P} to simplify the notation.
Throughout the remainder of this section we make the following assumptions. Let Q be a quiver and G a group acting freely on Q. Let \mathcal{I} be a G-invariant semimonomial ideal of $\mathbb{k} Q$. Set $\Gamma=\mathbb{k} Q / \mathcal{I}, \Lambda=\mathbb{k}(Q / G) /(\mathcal{I} / G)$ and let

$$
P: \Gamma \rightarrow \Lambda
$$

be the covering functor defined above. Identifying $\bmod \Gamma$ with a full subcategory of $\bmod \mathbb{k} Q$ and $\bmod \Lambda$ with a full subcategory of $\bmod \mathbb{k}(Q / G)$, as explained in Section 2, for all $m \in \bmod \Gamma$ and $n \in \bmod \Lambda$ we write

$$
m(\alpha)=m(\alpha+\mathcal{I}(x, y)), \quad n(G \alpha)=n(G \alpha+(\mathcal{I} / G)(G x, G y))
$$

whenever $x \xrightarrow{\alpha} y$ is an arrow in Q.

Denote by

$$
P_{*}: \bmod \Gamma \rightarrow \bmod \Lambda
$$

the push-down functor induced by P, i.e. the left adjoint of the pull-up functor $P^{*}: \bmod \Lambda \rightarrow \bmod \Gamma$ associated with P.

Since P is a covering functor we have, according to [1],

$$
\begin{equation*}
\left(P_{*} m\right)(G x)=\bigoplus_{x^{\prime} \in P^{-1}(G x)} m\left(x^{\prime}\right)=\bigoplus_{g \in G} m(g x) \tag{2}
\end{equation*}
$$

Furthermore, for each arrow $x \xrightarrow{\alpha} y$ in Q and each $h \in G$ the diagram

commutes. Hence

$$
\begin{equation*}
\left(P_{*} m\right)(G \alpha)=\bigoplus_{g \in G} m(g \alpha): \bigoplus_{g \in G} m(g x) \rightarrow \bigoplus_{g \in G} m(g y) \tag{3}
\end{equation*}
$$

For the pull-up functor we have

$$
\begin{equation*}
\left(P^{*} n\right)(x)=n(G x), \quad\left(P^{*} n\right)(\alpha)=n(G \alpha) \tag{4}
\end{equation*}
$$

So we see that

$$
\left(P^{*} P_{*} m\right)(x)=\bigoplus_{g \in G} m(g x), \quad\left(P^{*} P_{*} m\right)(\alpha)=\bigoplus_{g \in G} m(g \alpha)
$$

that is,

$$
P^{*} P_{*} m=\bigoplus_{g \in G} g^{-1} m=\bigoplus_{g \in G}{ }^{g} m
$$

This latter result can be found as a lemma in [5].
A Λ-module n is said to be of the first kind if $n \xrightarrow{\sim} P_{*} m$ for some m in $\bmod \Gamma$. It is said to be of the second kind if it contains no direct summand of the first kind. We denote by $\bmod _{1} \Lambda$ and $\bmod _{2} \Lambda$ the full subcategories of $\bmod \Lambda$ formed by all modules of the first and second kind respectively. Further we denote by $\operatorname{ind}_{1} \Lambda$ and $\operatorname{ind}_{2} \Lambda$ the full subcategories of $\bmod _{1} \Lambda$ and $\bmod _{2} \Lambda$ respectively formed by all indecomposable modules.
3.2. Example. We illustrate the concept of Galois coverings with a concrete example, which can be found in [4]. Let Q be the quiver

i.e. $Q_{0}=\mathbb{Z}^{2}$ and $Q_{1}=\left\{\alpha_{z}, \beta_{z} \mid z \in \mathbb{Z}^{2}\right\}$. The group $G=\mathbb{Z}^{2}$ acts freely on Q by translation. Let $n \geq 2$ and \mathcal{I}_{n} be the ideal of $\mathbb{k} Q$ generated by all morphisms $\beta_{i j} \alpha_{i+1, j}, \alpha_{i, j+1} \beta_{i j}, \alpha_{i+1, j} \ldots \alpha_{i+n, j}$ and $\beta_{i, j+n} \ldots \beta_{i, j+1}$. It is a $G-$ invariant ideal and hence Theorem 1 yields the covering functor $P: \Gamma \rightarrow \Lambda$, where $\Gamma=\mathbb{k} Q / \mathcal{I}_{n}$ and $\Lambda=\mathbb{k}(Q / G) /\left(\mathcal{I}_{n} / G\right)$. Furthermore Q / G is the quiver

$$
\alpha Q^{2} \circlearrowleft \beta
$$

where $a=G(0,0), \alpha=G \alpha_{00}$ and $\beta=G \beta_{00}$. The ideal \mathcal{I}_{n} / G is generated by the morphisms $\beta \alpha, \alpha \beta, \alpha^{n}$ and β^{n}. This quiver with relations appears in [7], where the authors investigate representations of the Lorentz group.

A line of Γ is a subquiver of Q of type $\mathbb{A}_{\infty}, \mathbb{A}_{\infty}^{\infty}$ or \mathbb{A}_{m} for some m such that $\mathbb{k} L$ forms a subcategory of Γ. According to [4] the category ind Γ is classified up to isomorphism by the characteristic representations χ_{L}, where L runs through all finite lines of Γ. Hence every indecomposable Λ-module of the first kind is isomorphic to $P_{*}\left(\chi_{L}\right)$ for some finite line L.
3.3. Coverings and tensor product. In this section we investigate the relationship between coverings and the tensor product. The following result provides a means of computing the tensor product of a Λ-module of the first kind and any other Λ-module.

Theorem 2. For all $m \in \bmod \Gamma$ and $n \in \bmod \Lambda$ there is an isomorphism

$$
\left(P_{*} m\right) \otimes n \xrightarrow{\sim} P_{*}\left(m \otimes\left(P^{*} n\right)\right) .
$$

Proof. We compute the right hand side at $G x \in \mathrm{Ob} \Lambda$ and $G \alpha \in(Q / G)_{1}$ using the identities (2), (3) and (4):

$$
\begin{aligned}
& P_{*}\left(m \otimes\left(P^{*} n\right)\right)(G x)=\bigoplus_{g \in G}\left(m(g x) \otimes\left(P^{*} n\right)(g x)\right)=\bigoplus_{g \in G}(m(g x) \otimes n(G x)), \\
& P_{*}\left(m \otimes\left(P^{*} n\right)\right)(G \alpha)=\bigoplus_{g \in G}\left(m(g \alpha) \otimes\left(P^{*} n\right)(g \alpha)\right)=\bigoplus_{g \in G}(m(g \alpha) \otimes n(G \alpha)) .
\end{aligned}
$$

On the other hand, the equalities (2) and (3) give

$$
\begin{aligned}
& \left(\left(P_{*} m\right) \otimes n\right)(G x)=\left(\bigoplus_{g \in G} m(g x)\right) \otimes n(G x), \\
& \left(\left(P_{*} m\right) \otimes n\right)(G \alpha)=\left(\bigoplus_{g \in G} m(g \alpha)\right) \otimes n(G \alpha) .
\end{aligned}
$$

Now the identification

$$
\left(\bigoplus_{g \in G} m(g x)\right) \otimes n(G x) \xrightarrow{\sim} \bigoplus_{g \in G}(m(g x) \otimes n(G x))
$$

constitutes the claimed isomorphism.
Corollary 2. For all $m, n \in \bmod (\Gamma)$ there is an isomorphism

$$
\left.\left(P_{*} m\right) \otimes\left(P_{*} n\right) \xrightarrow{\sim} \bigoplus_{g \in G} P_{*}\left(m \otimes{ }^{g} n\right)\right) .
$$

Proof. We have seen that

$$
P^{*} P_{*} n=\bigoplus_{g \in G}^{g} n
$$

According to Theorem 2 we obtain

$$
\left(P_{*} m\right) \otimes\left(P_{*} n\right) \xrightarrow{\sim} P_{*}\left(m \otimes \bigoplus_{g \in G}^{g} n\right) \xrightarrow{\sim} \bigoplus_{g \in G} P_{*}\left(m \otimes \otimes^{g} n\right),
$$

since P_{*} commutes with direct sums.
If Q^{\prime} and $Q^{\prime \prime}$ are subquivers of Q, then combining Corollary 2 with formula (1) yields

$$
\begin{equation*}
\left(P_{*} \chi_{Q^{\prime}}\right) \otimes\left(P_{*} \chi_{Q^{\prime \prime}}\right) \xrightarrow{\sim} \bigoplus_{g \in G} P_{*}\left(\chi_{Q^{\prime} \cap g Q^{\prime \prime}}\right), \tag{5}
\end{equation*}
$$

upon noting that ${ }^{g} \chi_{Q^{\prime \prime}}=\chi_{g Q^{\prime \prime}}$.
It has been shown in [5] that if Γ is a spectroid, the G-action on Γ is locally bounded and the G-action on ind $\Gamma / \leftrightharpoons$ is free, then P_{*} preserves indecomposability. In this case Corollary 2 yields the Clebsch-Gordan formulae for Λ-modules of the first kind, provided that the Clebsch-Gordan problem is solved for $\bmod \Gamma$.
3.4. Example revisited. To illustrate the usefulness of the results from the previous section we return to the example of Section 3.2 and present a solution the Clebsch-Gordan problem in that case. Let Γ and Λ be as in Section 3.2.

We already have a description of the indecomposable Λ-modules of the first kind as $P_{*}\left(\chi_{L}\right)$, where L runs through all finite lines of Γ. The following proposition provides the Clebsch-Gordan formula for these modules.

Proposition 1. Let L and L^{\prime} be finite lines of Γ and $L \cap g L^{\prime}=\bigcup_{i \in I_{g}} L^{i}$ a decomposition of $L \cap g L^{\prime}$ into finite lines for all $g \in G$. Then

$$
\left(P_{*} \chi_{L}\right) \otimes\left(P_{*} \chi_{L^{\prime}}\right) \xrightarrow{\sim} \bigoplus_{g \in G} \bigoplus_{i \in I_{g}} P_{*}\left(\chi_{L^{i}}\right)
$$

Proof. Formula (5) gives

$$
\left(P_{*} \chi_{L}\right) \otimes\left(P_{*} \chi_{L^{\prime}}\right) \xrightarrow{\sim} \bigoplus_{g \in G} P_{*}\left(\chi_{L \cap g L^{\prime}}\right) .
$$

Since P_{*} commutes with direct sums the proposition follows from the fact that

$$
\chi_{L \cap g L^{\prime}}=\chi_{\dot{U}_{i \in I_{g}} L^{i}}=\bigoplus_{i \in I_{g}} \chi_{L^{i}}
$$

Proposition 1 reduces the Clebsch-Gordan problem for $\bmod _{1} \Lambda$ to the simple combinatorial task of determining the decomposition $L \cap g L^{\prime}=$ $\bigcup_{i \in I_{g}} L^{i}$ for all finite lines L and L^{\prime}, and $g \in G$.

We proceed to describe the modules of the second kind, based on the description in [4], but adapted to our setting. The original classification however is due to [7]. See also [2].

Let L be a G-periodic line in Γ, i.e. a line with non-trivial stabilizer G_{L}, and such that $(0,0) \in L_{0}$. Then G_{L} acts as a group of automorphisms on L. Since G_{L} is non-trivial we obtain $G_{L} \xrightarrow{\sim} \mathbb{Z}$ as L is of type $\mathbb{A}_{\infty}^{\infty}$. For all $z \in L_{0}$ set $\bar{z}=z+G_{L} \in G / G_{L}$.

For any indecomposable linear automorphism $\phi: V \rightarrow V$ of a finitedimensional \mathbb{k}-linear space V let $B_{\phi}(L)$ be the Λ-module defined as follows. Let U_{L} be the \mathbb{k}-linear space having

$$
\left\{u_{\bar{z}} \mid \bar{z} \in L_{0} / G_{L}\right\}
$$

as basis. Set

$$
B_{\phi}(L)(a)=U_{L} \otimes V
$$

The linear maps $A=\left(B_{\phi}(L)\right)(\alpha)$ and $B=\left(B_{\phi}(L)\right)(\beta)$ are determined by

$$
\begin{aligned}
& A\left(u_{\bar{z}} \otimes v\right)= \begin{cases}u_{\overline{z-(1,0)}} \otimes v & \text { if } \bar{z} \neq \overline{(1,0)} \text { and } \alpha_{z} \in L_{1} \\
u_{\overline{z-(1,0)}} \otimes \phi^{-1} v & \text { if } \bar{z}=\overline{(1,0)} \text { and } \alpha_{z} \in L_{1} \\
0 & \text { otherwise }\end{cases} \\
& B\left(u_{\bar{z}} \otimes v\right)= \begin{cases}u_{\overline{z+(0,1)}} \otimes v & \text { if } \bar{z} \neq \overline{(0,0)} \text { and } \beta_{z} \in L_{1} \\
u_{\overline{z+(0,1)}} \otimes \phi v & \text { if } \bar{z}=\overline{(0,0)} \text { and } \beta_{z} \in L_{1} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Since $\mathbb{k} L$ is a subcategory of $\Gamma, B_{\phi}(L)$ is well-defined. The Λ-modules $B_{\phi}(L)$ are called band modules. Moreover, every indecomposable Λ-module of the second kind is isomorphic to $B_{\phi}(L)$ for some ϕ and L. Two band modules
$B_{\phi}(L)$ and $B_{\psi}\left(L^{\prime}\right)$ are isomorphic precisely when ϕ and ψ are conjugate, and $L=g L^{\prime}$ for some $g \in G$ (cf. [4] and [2]).

In order to apply Theorem 2 we must determine $P^{*}\left(B_{\phi}(L)\right)$. For this purpose let $C_{\phi}(L)$ be the Γ-module defined by

$$
\left(C_{\phi}(L)\right)(z)=\left(\chi_{L}(z)\right) \otimes_{\mathbb{k}} V
$$

and

$$
\begin{aligned}
& \left(C_{\phi}(L)\right)\left(\alpha_{z}\right)= \begin{cases}\chi_{L}\left(\alpha_{z}\right) \otimes \mathbb{I}_{V} & \text { if } \bar{z} \neq \overline{(1,0)} \\
\chi_{L}\left(\alpha_{z}\right) \otimes \phi^{-1} & \text { if } \bar{z}=\overline{(1,0)},\end{cases} \\
& \left(C_{\phi}(L)\right)\left(\beta_{z}\right)= \begin{cases}\chi_{L}\left(\beta_{z}\right) \otimes \mathbb{I}_{V} & \text { if } \bar{z} \neq \overline{(0,0)} \\
\chi_{L}\left(\beta_{z}\right) \otimes \phi & \text { if } \bar{z}=\overline{(0,0)}\end{cases}
\end{aligned}
$$

It follows from this definition that ${ }^{g} C_{\phi}(L)=C_{\phi}(L)$ for all $g \in G_{L}$. For each $h \in G / G_{L}$ set ${ }^{h} C_{\phi}(L)={ }^{g} C_{\phi}(L)$, where $g \in G$ is a representative of h.

Lemma 3. For all G-periodic lines L of Γ containing $(0,0)$ and all linear automorphisms $\phi: V \rightarrow V$ there is an isomorphism

$$
P^{*}\left(B_{\phi}(L)\right) \xrightarrow{\sim} \bigoplus_{h \in G / G_{L}}{ }^{h} C_{\phi}(L)
$$

of Γ-modules.
Proof. We construct the claimed isomorphism

$$
\psi: P^{*}\left(B_{\phi}(L)\right) \rightarrow \bigoplus_{h \in G / G_{L}}{ }^{h} C_{\phi}(L)
$$

Let x be a point in Q. Observe that

$$
\left(P^{*}\left(B_{\phi}(L)\right)\right)(x)=\left(B_{\phi}(L)\right)(a)=U_{L} \otimes_{\mathbb{k}} V
$$

Let $z \in L_{0}, g_{0}=x-z$ and $h_{0}=g_{0}+G_{L}$. Then

$$
{ }^{h_{0}} C_{\phi}(L)(x)=\left(\chi_{g_{0} L}(x)\right) \otimes_{\mathbb{k}} V=\left(\chi_{L}(z)\right) \otimes_{\mathbb{k}} V=\mathbb{k} \otimes_{\mathbb{k}} V
$$

since $z \in L_{0}$.
We let

$$
\iota:{ }^{h_{0}} C_{\phi}(L)(x) \rightarrow \bigoplus_{h \in G / G_{L}}{ }^{h} C_{\phi}(L)(x)
$$

be the inclusion and set

$$
\psi_{x}\left(u_{\bar{z}} \otimes v\right)=\iota(1 \otimes v)
$$

Let $h \in G / G_{L}$ be represented by some $g \in G$ and such that ${ }^{h} C_{\phi}(L)(x) \neq 0$. Then $x \in g L_{0}$ and there is $z \in L_{0}$ such that $g+z=x$.

Hence $\psi_{x}\left(u_{\bar{z}} \otimes V\right)={ }^{h} C_{\phi}(L)(x)$. Moreover, \bar{z} is uniquely determined by $x-z+G_{L}=h$ and thus ψ_{x} is a bijection.

We proceed to show that $\psi=\left(\psi_{x}\right)_{x \in Q_{0}}$ is a Γ-module morphism, and hence an isomorphism. Let $x \xrightarrow{\mu} y$ be an arrow in Q. Moreover, let $u_{\bar{z}} \in U_{L}$ and $h=g+G_{L} \in G / G_{L}$ be such that $x=g+z$. Then $t\left(g^{-1} \mu\right)=z$, and $g^{-1} \mu=\alpha_{z}$ or $g^{-1} \mu=\beta_{z}$. Assume that $g^{-1} \mu=\alpha_{z}$. Then

$$
\left(P^{*}\left(B_{\phi}(L)\right)(\mu)\right)\left(u_{\bar{z}} \otimes v\right)=A\left(u_{\bar{z}} \otimes v\right) \in U_{L} \otimes V=P^{*}\left(B_{\phi}(L)\right)(y)
$$

and

$$
{ }^{h} C_{\phi}(L)(\mu)= \begin{cases}\chi_{L}\left(\alpha_{z}\right) \otimes \mathbb{I}_{V} & \text { if } z \neq(1,0) \\ \chi_{L}\left(\alpha_{z}\right) \otimes \phi^{-1} & \text { if } z=(1,0)\end{cases}
$$

If $\alpha_{z} \notin L_{1}$, then

$$
\psi_{y}\left(A\left(u_{\bar{z}} \otimes v\right)\right)=0=\left({ }^{h} C_{\phi}(L)(\mu)\right)\left(\psi_{x}\left(u_{\bar{z}} \otimes v\right)\right)
$$

Now assume that $\alpha_{z} \in L_{1}$. If $\bar{z} \neq \overline{(1,0)}$, then

$$
\psi_{y}\left(A\left(u_{\bar{z}} \otimes v\right)\right)=\psi_{y}\left(u_{\overline{z-(1,0)}} \otimes v\right)=\left({ }^{h} C_{\phi}(L)(\mu)\right)\left(\psi_{x}\left(u_{\bar{z}} \otimes v\right)\right)
$$

If $\bar{z}=\overline{(1,0)}$, then

$$
\psi_{y}\left(A\left(u_{\bar{z}} \otimes v\right)\right)=\psi_{y}\left(u_{\overline{z-(1,0)}} \otimes \phi^{-1} v\right)=\left({ }^{h} C_{\phi}(L)(\mu)\right)\left(\psi_{x}\left(u_{\bar{z}} \otimes v\right)\right)
$$

The case $g^{-1} \mu=\beta_{z}$ is treated analogously.
For any G-periodic line L of Γ and $h=g+G_{L} \in G / G_{L}$, set $h L=g L$.
Proposition 2. Let L and L^{\prime} be lines in Γ such that L is G-periodic and contains $(0,0)$, and L^{\prime} is finite. Moreover, let $L^{\prime} \cap h L=\dot{\bigcup}_{i \in I_{h}} L^{i}$ be a decomposition of $L^{\prime} \cap h L$ into finite lines for all $h \in G / G_{L}$. Then there is an isomorphism

$$
\left(P_{*} \chi_{L^{\prime}}\right) \otimes\left(B_{\phi}(L)\right) \xrightarrow{\sim} \operatorname{dim} V \bigoplus_{h \in G / G_{L}} \bigoplus_{i \in I_{h}} P_{*} \chi_{L^{i}} .
$$

Proof. Theorem 2 yields

$$
\left(P_{*} \chi_{L^{\prime}}\right) \otimes\left(B_{\phi}(L)\right) \xrightarrow{\sim} P_{*}\left(\chi_{L^{\prime}} \otimes\left(P^{*}\left(B_{\phi}(L)\right)\right)\right) \xrightarrow{\sim} P_{*}\left(\bigoplus_{h \in G / G_{L}} \chi_{L^{\prime}} \otimes{ }^{h} C_{\phi}(L)\right)
$$

by Lemma 3. Observe that $\left(\chi_{L^{\prime}} \otimes{ }^{h} C_{\phi}(L)\right)(z) \neq 0$ if and only if $z \in S=$ $\dot{U}_{i \in I_{h}} L^{i}$. Furthermore, $\operatorname{dim}\left(\chi_{L^{\prime}} \otimes{ }^{h} C_{\phi}(L)\right)(z)=\operatorname{dim} V$ for all $z \in S$, and all arrows in S act as isomorphisms in $\chi_{L^{\prime}} \otimes{ }^{h} C_{\phi}(L)$. Due to the classification of all indecomposable Γ-modules the only possible decomposition of $\chi_{L^{\prime}} \otimes$ ${ }^{h} C_{\phi}(L)$ is

$$
\chi_{L^{\prime}} \otimes{ }^{h} C_{\phi}(L) \xrightarrow{\sim} \operatorname{dim} V \bigoplus_{i \in I_{h}} \chi_{L^{i}} .
$$

Hence

$$
\left(P_{*} \chi_{L^{\prime}}\right) \otimes\left(B_{\phi}(L)\right) \stackrel{\sim}{\rightarrow} P_{*}\left(\operatorname{dim} V \bigoplus_{h \in G / G_{L}} \bigoplus_{i \in I_{h}} \chi_{L^{i}}\right) \stackrel{\sim}{\rightarrow} \operatorname{dim} V \bigoplus_{h \in G / G_{L}} \bigoplus_{i \in I_{h}} P_{*} \chi_{L^{i}}
$$

The last step is valid since all but finitely many summands are zero.

To complete the solution of the Clebsch-Gordan problem for Λ it remains to find a formula for the decomposition of $\left(B_{\phi}(L)\right) \otimes\left(B_{\psi}\left(L^{\prime}\right)\right)$. In this situation we cannot apply our results on coverings. Instead we will use elementary methods to obtain the desired result.

Let L, L^{\prime} be G-periodic lines in Γ containing the point $(0,0)$. Let X be a cross-section of $G /\left(G_{L}+G_{L^{\prime}}\right)$ such that $0 \in X$.

Let $L \cap g L^{\prime}=\dot{\bigcup}_{i \in J_{g}} L^{i}$ be a decomposition of $L \cap g L^{\prime}$ into lines for all $g \in G$. Choose $I_{g} \subset J_{g}$ such that $\left\{L^{i} \mid i \in I_{g}\right\}$ forms a cross-section for the $G_{L} \cap G_{L^{\prime}}$-action on $\left\{L^{i} \mid i \in J_{g}\right\}$.

Define the linear map

$$
T: \bigoplus_{x \in X} \bigoplus_{i \in I_{x}} \mathbb{k} L_{0}^{i} \rightarrow U_{L} \otimes U_{L^{\prime}}
$$

by $T(z)=u_{\bar{z}} \otimes u_{\overline{z-x}}$ for all $z \in L_{0}^{i}, i \in I_{x}$ and $x \in X$. Here $\mathbb{k} L_{0}^{i}$ denotes the vector space having L_{0}^{i} as basis. To see that T is well-defined note that if $z \in L_{0}^{i}$ then $z \in L_{0}$ and $z \in x L_{0}^{\prime}$. Hence $z-x \in L_{0}^{\prime}$ and $u_{\bar{z}} \otimes u_{\overline{z-x}} \in U_{L} \otimes U_{L^{\prime}}$.

Since $B_{\phi}(L) \xrightarrow{\sim} B_{\phi}(g L)$ for all $g \in G$ we can cover all interesting cases by only considering the cases $L \neq g L^{\prime}$ for all $g \in G$, and $L=L^{\prime}$.

Lemma 4. If $L \neq g L^{\prime}$ for all $g \in G$, then T is an isomorphism. If $L=L^{\prime}$, then T induces a linear isomorphism

$$
\tilde{T}: \bigoplus_{x \in X \backslash\{0\}} \bigoplus_{i \in I_{x}} \mathbb{k} L_{0}^{i} \rightarrow U
$$

where $U \subset U_{L} \otimes U_{L}$ is spanned by

$$
\left\{u_{\bar{z}} \otimes u_{\overline{z^{\prime}}} \mid \bar{z} \neq \overline{z^{\prime}}\right\}
$$

Proof. Note that \widetilde{T} is well-defined in case $L=L^{\prime}$, since if $0 \neq x \in X$, then $\bar{z} \neq \overline{z-x}$.

Let $z \in L_{0}$ and $z^{\prime} \in L_{0}^{\prime}$. Write $z^{\prime}=z+f-x+h$ for some $f \in G_{L}$, $x \in X$ and $h \in G_{L^{\prime}}$. Then $z+f-x \in L_{0}^{\prime}$ and $z+f \in x L_{0}^{\prime}$. Hence $z+f \in$ $L_{0} \cap x L_{0}^{\prime}=\dot{\bigcup}_{i \in J_{x}} L^{i}$. Let $y \in G_{L} \cap G_{L^{\prime}}$ be such that $z_{0}=z+f+y \in L_{0}^{i}$ for some $i \in I_{x}$. Then

$$
u_{\bar{z}} \otimes u_{\overline{z^{\prime}}}=u_{\overline{z+y}} \otimes u_{\overline{z^{\prime}+y}}=u_{\overline{z+f+y}} \otimes u_{\overline{z+f-x+y}}=u_{\overline{z_{0}}} \otimes u_{\overline{z_{0}-x}}=T\left(z_{0}\right)
$$

Hence T is an epimorphism. If $L=L^{\prime}$ and $\bar{z} \neq \overline{z^{\prime}}$ then $x \neq 0$ and thus \widetilde{T} is also an epimorphism.

Assume that $u_{\bar{z}} \otimes u_{\overline{z-x}}=u_{\overline{z^{\prime}}} \otimes u_{\overline{z^{\prime}-x^{\prime}}}$ for some $z \in L_{0}^{i}, i \in I_{x}, z^{\prime} \in L_{0}^{i^{\prime}}$, $i^{\prime} \in I_{x^{\prime}}$. Then

$$
z \equiv z \bmod G_{L}, \quad z-x \equiv z^{\prime}-x^{\prime} \bmod G_{L^{\prime}}
$$

In particular $x \equiv x^{\prime} \bmod G_{L}+G_{L^{\prime}}$ and thus $x=x^{\prime}$. We obtain

$$
z \equiv z^{\prime} \bmod G_{L} \cap G_{L^{\prime}}
$$

Hence there is some $g \in G_{L} \cap G_{L^{\prime}}$ such that $z^{\prime}=z+g$. In particular

$$
z^{\prime} \in g L_{0}^{i} \cap L_{0}^{i^{\prime}}
$$

and thus $L^{i^{\prime}}=g L^{i}$. We obtain $i^{\prime}=i$, since $\left\{L^{i} \mid i \in I_{g}\right\}$ forms a cross-section for the $G_{L} \cap G_{L^{\prime}}$-action on $\left\{L^{i} \mid i \in J_{g}\right\}$. Hence

$$
L^{i}=g L^{i} .
$$

If $g \neq 0$, then $L^{i} \subset L \cap x L^{\prime}$ is G-periodic and $L=L^{i}=x L^{\prime}$. Thus, if $L \notin G L^{\prime}$, then $g=0$ and $z=z^{\prime}$. Hence T is a monomorphism and thus an isomorphism in that case. If $L=L^{\prime}$ and $g \neq 0$, then $x \in G_{L}$ and thus $x=0$. This is a contradiction if $u_{\bar{z}} \otimes u_{\overline{z-x}} \in U$. Again $g=0$ and \widetilde{T} is an isomorphism.

We now present the Clebsch-Gordan formula for band modules and thus complete our solution to the Clebsch-Gordan problem for Λ.

Theorem 3. Let L, L^{\prime} be periodic lines in Q containing the point $(0,0)$ and $\phi: V \rightarrow V, \psi: W \rightarrow W$ be linear automorphisms. Let X be a crosssection of $G /\left(G_{L}+G_{L^{\prime}}\right)$ such that $0 \in X$. Let $L \cap g L^{\prime}=\dot{U}_{i \in J_{g}} L^{i}$ be a decomposition of $L \cap g L^{\prime}$ into lines for all $g \in G$. Let $I_{g} \subset J_{g}$ be such that $\left\{L^{i} \mid i \in I_{g}\right\}$ forms a cross-section for the $G_{L} \cap G_{L^{\prime}}$ action on $\left\{L^{i} \mid i \in J_{g}\right\}$.

If $L \neq g L^{\prime}$ for all $g \in G$, then

$$
B_{\phi}(L) \otimes B_{\psi}\left(L^{\prime}\right) \xrightarrow{\sim} \operatorname{dim} V \operatorname{dim} W \bigoplus_{x \in X} \bigoplus_{i \in I_{x}} P_{*} \chi_{L^{i}} .
$$

If $L=L^{\prime}$, then

$$
B_{\phi}(L) \otimes B_{\psi}\left(L^{\prime}\right) \xrightarrow{\sim}\left(\operatorname{dim} V \operatorname{dim} W \underset{x \in X \backslash\{0\}}{\bigoplus} \bigoplus_{i \in I_{x}} P_{*} \chi_{L^{i}}\right) \oplus\left(\bigoplus_{j} B_{\phi_{j}}(L)\right),
$$

where

$$
\phi \otimes \psi \stackrel{\sim}{\sim} \bigoplus_{j} \phi_{j}
$$

is a decomposition of $\phi \otimes \psi$ into indecomposable automorphisms.
The case $B_{\phi}(L) \otimes B_{\psi}\left(L^{\prime}\right)$ is now reduced to the simple task of determining the set $\left\{L^{i} \mid i \in I_{g}\right\}$ given L and L^{\prime}, and the more complicated problem of finding

$$
\phi \otimes \psi \stackrel{\sim}{\rightarrow} \bigoplus_{j} \phi_{j}
$$

for all linear automorphisms ϕ and ψ. This is equivalent to solving the Clebsch-Gordan problem for the loop quiver $\widetilde{\mathbb{A}}_{0}$. In case the ground field \mathbb{k} is algebraically closed and of characteristic 0 , it has been solved by Huppert [11] and independently by Martsinkovsky and Vlassov [12]. In other cases the solution is still unknown.

Proof of Theorem 3. Assume that $L \neq g L^{\prime}$ for all $g \in G$. From Lemma 4 we obtain a linear isomorphism

$$
S:\left(B_{\phi}(L) \otimes B_{\psi}(L)\right)(a)=U_{L} \otimes V \otimes U_{L^{\prime}} \otimes W \xrightarrow{\sim} \bigoplus_{x \in X} \bigoplus_{i \in I_{x}}\left(\mathbb{k} L_{0}^{i} \otimes V \otimes W\right)
$$

defined by

$$
S\left(u_{\bar{z}} \otimes v \otimes u_{\overline{z^{\prime}}} \otimes w\right)=T^{-1}\left(u_{\bar{z}} \otimes u_{\overline{z^{\prime}}}\right) \otimes v \otimes w .
$$

We define a Λ-module structure on

$$
\bigoplus_{x \in X} \bigoplus_{i \in I_{x}}\left(\mathbb{k} L_{0}^{i} \otimes V \otimes W\right)
$$

via S, and denote this Λ-module by M.
Let $z \in L_{0}^{i}$ for some $i \in I_{x}, v \in V$ and $w \in W$. Then

$$
S\left(u_{\bar{z}} \otimes v \otimes u_{\overline{z-x}} \otimes w\right)=z \otimes v \otimes w .
$$

Let $A=\left(B_{\phi}(L) \otimes B_{\psi}(L)\right)(\alpha)$. If $\alpha_{z} \in L_{1}$ and $\alpha_{z-x} \in L_{1}^{\prime}$, then

$$
A\left(u_{\bar{z}} \otimes v \otimes u_{\overline{z-x}} \otimes w\right)=u_{\overline{z-(1,0)}} \otimes \phi^{m_{z}}(v) \otimes u_{\overline{z-x-(1,0)}} \otimes \psi^{n_{z}}(w)
$$

for some integers m_{z} and n_{z}. Otherwise

$$
A\left(u_{\bar{z}} \otimes u_{\overline{z-x}}\right)=0 .
$$

If $\alpha_{z} \in L_{1}$ and $\alpha_{z} \in x L_{1}^{\prime}$, then $z-(1,0) \in L_{0}^{i}$ and
$S\left(u_{\overline{z-(1,0)}} \otimes \phi^{m_{z}}(v) \otimes u_{\overline{z-(1,0)-x}} \otimes \psi^{n_{z}}(w)\right)=(z-(1,0)) \otimes \phi^{m_{z}}(v) \otimes \psi^{n_{z}}(w)$.
Hence

$$
\begin{aligned}
M(\alpha)(z \otimes v \otimes w)
\end{aligned} \quad \begin{array}{ll}
(z-(1,0)) \otimes \phi^{m_{z}}(v) \otimes \psi^{n_{z}}(w) & \text { if } \alpha_{z} \in L_{1}, \alpha_{z} \in x L_{1}^{\prime} \\
0 & \text { otherwise }
\end{array} .
$$

A similar calculation shows that
$M(\beta)(z \otimes v \otimes w)= \begin{cases}(z+(0,1)) \otimes \phi^{m_{z}^{\prime}}(v) \otimes \psi^{n_{z}^{\prime}}(w) & \text { if } \beta_{z} \in L_{1}, \beta_{z} \in x L_{1}^{\prime}, \\ 0 & \text { otherwise, }\end{cases}$
for some integers m_{z}^{\prime} and n_{z}^{\prime}.
As has been noted earlier, $\alpha_{z} \in L_{1}$ and $\alpha_{z} \in x L_{1}^{\prime}$ implies $z-(1,0) \in L_{0}^{i}$. Similarly, $\beta_{z} \in L_{1}$ and $\beta_{z} \in x L_{1}^{\prime}$ implies $z+(0,1) \in L_{0}^{i}$. Hence

$$
M=\bigoplus_{x \in X} \bigoplus_{i \in I_{x}} M_{i},
$$

where M_{i} is the submodule of M corresponding to $\mathbb{k} L_{0}^{i} \otimes V \otimes W$.
For each $x \in X$ and $i \in I_{x}$ we define the Γ-module N_{i} by

$$
N_{i}(z)=\chi_{L^{i}}(z) \otimes V \otimes W,
$$

and

$$
\begin{aligned}
& N_{i}\left(\alpha_{z}\right)= \begin{cases}1 \otimes \phi^{m_{z}} \otimes \psi^{n_{z}} & \text { if } \alpha_{z} \in L_{1}^{i} \\
0 & \text { otherwise }\end{cases} \\
& N_{i}\left(\beta_{z}\right)= \begin{cases}1 \otimes \phi^{m_{z}^{\prime}} \otimes \psi^{n_{z}^{\prime}} & \text { if } \beta_{z} \in L_{1}^{i} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then

$$
M_{i} \xrightarrow{\sim} P_{*} N_{i} .
$$

On the other hand, since $N_{i}(\mu)$ is an isomorphism for each $\mu \in L_{1}^{i}$,

$$
N_{i} \xrightarrow{\sim} \operatorname{dim} V \operatorname{dim} W\left(P_{*} \chi_{L^{i}}\right) .
$$

Hence

$$
B_{\phi}(L) \otimes B_{\psi}\left(L^{\prime}\right) \xrightarrow{\sim} M \xrightarrow{\sim} \operatorname{dim} V \operatorname{dim} W \bigoplus_{x \in X} \bigoplus_{i \in I_{x}} P_{*} \chi_{L^{i}}
$$

Now assume $L=L^{\prime}$. Then $\left(B_{\phi}(L) \otimes B_{\psi}\left(L^{\prime}\right)\right)(a)=U_{L} \otimes V \otimes U_{L} \otimes W$ and from Lemma 4 we obtain a linear isomorphism

$$
\widetilde{S}:\left(B_{\phi}(L) \otimes B_{\psi}\left(L^{\prime}\right)\right)(a) \xrightarrow{\sim}\left(\left(\bigoplus_{x \in X \backslash\{0\}} \bigoplus_{i \in I_{x}} \mathbb{k} L_{0}^{i}\right) \oplus D\right) \otimes V \otimes W,
$$

where $D \subset U_{L} \otimes U_{L}$ is the subspace spanned by all vectors $u_{\bar{z}} \otimes u_{\bar{z}}$, as in the previous case. We define a Λ-module structure on

$$
\left(\left(\bigoplus_{x \in X \backslash\{0\}} \bigoplus_{i \in I_{x}} \mathbb{k} L_{0}^{i}\right) \oplus D\right) \otimes V \otimes W
$$

via \widetilde{S}, and denote this Λ-module by M.
Let $A=\left(B_{\phi}(L) \otimes B_{\psi}(L)\right)(\alpha)$ and $B=\left(B_{\phi}(L) \otimes B_{\psi}(L)\right)(\beta)$. Let $z \in L_{0}$. If $\alpha_{z} \in L_{1}$, then

$$
A\left(u_{\bar{z}} \otimes v \otimes u_{\bar{z}} \otimes w\right)= \begin{cases}u_{\overline{z-(1,0)}} \otimes v \otimes u_{\overline{z-(1,0)}} \otimes w & \text { if } \bar{z} \neq \overline{(1,0)} \\ u_{\overline{z-(1,0)}} \otimes \phi^{-1} v \otimes u_{z-(1,0)} \otimes \psi^{-1} v & \text { if } \bar{z}=\overline{(1,0)}\end{cases}
$$

Otherwise

$$
A\left(u_{\bar{z}} \otimes v \otimes u_{\bar{z}} \otimes w\right)=0
$$

If $\beta_{z} \in L_{1}$, then

$$
B\left(u_{\bar{z}} \otimes v \otimes u_{\bar{z}} \otimes w\right)= \begin{cases}u_{\overline{z+(0,1)}} \otimes v \otimes u_{\overline{z+(0,1)}} \otimes w & \text { if } \bar{z} \neq \overline{(1,0)} \\ u_{\overline{z+(0,1)}}^{\overline{(1,0)}} \phi v \otimes u_{\overline{z+(0,1)}} \otimes \psi v & \text { if } \bar{z}=\overline{(1,0}\end{cases}
$$

Otherwise

$$
B\left(u_{\bar{z}} \otimes v \otimes u_{\bar{z}} \otimes w\right)=0
$$

We obtain a submodule N of M determined by

$$
N(a)=D \otimes V \otimes W
$$

Furthermore, we get the isomorphism

$$
B_{\phi \otimes \psi}(L) \xrightarrow{\sim} N
$$

determined by $u_{\bar{z}} \otimes v \otimes w \mapsto u_{\bar{z}} \otimes u_{\bar{z}} \otimes v \otimes w$.
Let $\tau: V \otimes W \xrightarrow{\sim} V \otimes W$ be a linear automorphism such that

$$
\tau(\phi \otimes \psi) \tau^{-1}=\bigoplus_{j} \phi_{j}
$$

Then τ yields the isomorphism

$$
\theta: B_{\phi \otimes \psi}(L) \xrightarrow{\sim} B_{\bigoplus_{j} \phi_{j}}(L)=\bigoplus_{j} B_{\phi_{j}}(L)
$$

determined by

$$
\theta_{a}:\left(B_{\phi \otimes \psi}(L)\right)(a) \xrightarrow{\sim}\left(B_{\oplus_{j} \phi_{j}}(L)\right)(a), \quad u_{\bar{z}} \otimes v \otimes w \mapsto u_{\bar{z}} \otimes \tau(v \otimes w) .
$$

By arguments analogous to those in the previous case one shows that \widetilde{S} induces a Λ-module structure on $\left(\bigoplus_{x \in X \backslash\{0\}} \bigoplus_{i \in I_{x}} \mathbb{k} L_{0}^{i}\right) \otimes V \otimes W$ which is isomorphic to

$$
\operatorname{dim} V \operatorname{dim} W \bigoplus_{x \in X \backslash\{0\}} \bigoplus_{i \in I_{x}} P_{*} \chi_{L^{i}}
$$

Hence

$$
B_{\phi}(L) \otimes B_{\psi}\left(L^{\prime}\right) \xrightarrow{\sim}\left(\operatorname{dim} V \operatorname{dim} W \underset{x \in X \backslash\{0\}}{\bigoplus} \bigoplus_{i \in I_{x}} P_{*} \chi_{L^{i}}\right) \oplus\left(\bigoplus_{j} B_{\phi_{j}}(L)\right)
$$

4. Quivers of type $\widetilde{\mathbb{A}}_{n}$. In this section we revisit the Clebsch-Gordan problem for quivers of type $\widetilde{\mathbb{A}}_{n}$, i.e. quivers whose underlying graph is

for some $n \in \mathbb{N}$. We assume that \mathbb{k} is algebraically closed. This problem has originally been solved in [10], by means of explicit computations. Here we present a more streamlined approach, using the results on coverings and characteristic representations developed above. For the reader's convenience we include those computations from [10] which are indispensable even in the present approach (cf. proof of Theorem 5(iii)).
4.1. Indecomposable modules. Let $n \in \mathbb{N}$ and Q be a quiver of type $\mathbb{A}_{\infty}^{\infty}$, i.e. a quiver with underlying graph

$$
\cdots \frac{\alpha_{-1}}{-} a_{0} \stackrel{\alpha_{0}}{-} a_{1} \stackrel{\alpha_{1}}{ }
$$

Assume that the orientation of Q is periodic in the sense that $a_{i} \xrightarrow{\alpha_{i}} a_{i+1}$ implies $a_{i+n+1} \xrightarrow{\alpha_{i+n+1}} a_{i+n+2}$ and $a_{i} \stackrel{\alpha_{i}}{\leftarrow} a_{i+1}$ implies $a_{i+n+1} \stackrel{\alpha_{i+n+1}}{\leftrightarrows} a_{i+n+2}$ for all $i \in \mathbb{Z}$. Then \mathbb{Z} acts freely on Q by

$$
k a_{i}=a_{i+k(n+1)}, \quad k \alpha_{i}=\alpha_{i+k(n+1)}
$$

for all $k \in \mathbb{Z}$. The quotient quiver Q / \mathbb{Z} is of type $\widetilde{\mathbb{A}}_{n}$. Moreover, every quiver of type $\widetilde{\mathbb{A}}_{n}$ arises in this way. Theorem 1 yields a covering functor

$$
P: \mathbb{k} Q \rightarrow \mathbb{k}(Q / \mathbb{Z})
$$

together with the associated push-down functor

$$
P_{*}: \bmod \mathbb{k} Q \rightarrow \bmod \mathbb{k}(Q / \mathbb{Z})
$$

We interpret the classification of ind $\mathbb{k} Q$ found in [6] in terms of coverings. For all integers i, j such that $i \leq j$ let $X_{i j}=\chi_{Q^{i j}} \in \bmod \mathbb{k} Q$, where $Q^{i j}$ is the subquiver of Q with underlying graph

$$
a_{i} \stackrel{\alpha_{i}}{ } \cdots \underline{\alpha_{j-1}} a_{j} .
$$

Set

$$
S(i, j)=P_{*}\left(X_{i j}\right)
$$

The modules $S(i, j)$ are modules of the first kind and are called strings.
For each positive integer m and scalar $\lambda \in \mathbb{k} \backslash\{0\}$ let $B_{\lambda}(m)$ be the $\mathbb{k}(Q / \mathbb{Z})$-module defined by

$$
B_{\lambda}(m)\left(a_{i}\right)=\mathbb{k}^{m}, \quad B_{\lambda}(m)\left(\alpha_{i}\right)= \begin{cases}\mathbb{I}_{m} & \text { if } i \neq n \\ J_{\lambda}(m) & \text { if } i=n\end{cases}
$$

where \mathbb{I}_{m} is the identity matrix of size m and $J_{\lambda}(m)$ is the Jordan block of size m with eigenvalue λ. The modules $B_{\lambda}(m)$ are called bands and are modules of the second kind.

Theorem 4 ([6, p. 121]). The set

$$
\{S(i, j) \mid 0 \leq i \leq n, i \leq j\} \cup\left\{B_{\lambda}(m) \mid \lambda \in \mathbb{k} \backslash\{0\}, m \in \mathbb{N} \backslash\{0\}\right\}
$$

classifies ind $\mathbb{k}(Q / \mathbb{Z})$, up to isomorphism.
4.2. Clebsch-Gordan formulae. Let $i \wedge j=\min \{i, j\}$ and $i \vee j=\max \{i, j\}$ for all integers i, j. The following result provides the Clebsch-Gordan formulae for $\widetilde{\mathbb{A}}_{n}$ in terms of strings and bands.

Theorem 5. Assume that $\operatorname{char}(\mathbb{k})=0$. For all integers $i, i^{\prime}, j, j^{\prime}$ such that $0 \leq i \leq i^{\prime} \leq n, i \leq j$ and $i^{\prime} \leq j^{\prime}$, scalars $\lambda, \mu \in \mathbb{k} \backslash\{0\}$ and $l, m \in \mathbb{N} \backslash\{0\}$ the following formulae hold:
(i) $S(i, j) \otimes S\left(i^{\prime}, j^{\prime}\right) \xrightarrow{\sim} \bigoplus_{k=0}^{\left[\left(j^{\prime}-i\right) /(n+1)\right]} S\left(i, j \wedge\left(j^{\prime}-k(n+1)\right)\right)$

$$
\oplus \bigoplus_{k=1}^{\left[\left(j-i^{\prime}\right) /(n+1)\right]} S\left(i^{\prime}, j^{\prime} \wedge(j-k(n+1))\right)
$$

(ii) $S(i, j) \otimes B_{\mu}(m) \xrightarrow{\sim} m S(i, j)$,

$$
(l \wedge m)-1
$$

(iii) $B_{\lambda}(l) \otimes B_{\mu}(m) \xrightarrow{\sim} \bigoplus_{k=0} B_{\lambda \mu}(l+m-2 k-1)$.

Here $[x]$ denotes the integer part of x for all $x \in \mathbb{Q}$. The restriction $i \leq i^{\prime}$ does not affect the generality of formula (i), as the tensor product is commutative.

Proof. (i) We extend the notation by letting $S(i, j)$ and $X_{i j}$ be zero whenever $i>j$. Formula (5) yields

$$
\begin{aligned}
S(i, j) \otimes & S\left(i^{\prime}, j^{\prime}\right)=\left(P_{*} X_{i j}\right) \otimes\left(P_{*} X_{i^{\prime} j^{\prime}}\right) \\
& \xrightarrow{\sim} \bigoplus_{k \in \mathbb{Z}} P_{*}\left(\chi_{Q^{i j} \cap k Q^{i^{\prime} j^{\prime}}}\right)=\bigoplus_{k \in \mathbb{Z}} P_{*}\left(X_{i \vee\left(i^{\prime}+k(n+1)\right), j \wedge\left(j^{\prime}+k(n+1)\right)}\right) .
\end{aligned}
$$

From the inequality $i \geq i^{\prime}$ we obtain

$$
\begin{aligned}
S(i, j) & \otimes S\left(i^{\prime}, j^{\prime}\right) \\
& \xrightarrow{\sim} \bigoplus_{k \leq 0} P_{*}\left(X_{i, j \wedge\left(j^{\prime}+k(n+1)\right)}\right) \oplus \bigoplus_{k>0} P_{*}\left(X_{i^{\prime}+k(n+1), j \wedge\left(j^{\prime}+k(n+1)\right)}\right) \\
& =\bigoplus_{k \geq 0} S\left(i, j \wedge\left(j^{\prime}-k(n+1)\right)\right) \oplus \bigoplus_{k>0} S\left(i^{\prime},(j-k(n+1)) \wedge j^{\prime}\right)
\end{aligned}
$$

using the equality $P_{*}\left({ }^{k} X\right)=P_{*}(X)$ for all $k \in \mathbb{Z}$ and $X \in \bmod \mathbb{k} Q$. The limits $k \leq\left[\left(j^{\prime}-i\right) /(n+1)\right]$ and $k \leq\left[\left(j-i^{\prime}\right) /(n+1)\right]$ arise from the fact that $S\left(i, j \wedge\left(j^{\prime}-k(n+1)\right)\right)$ and $S\left(i^{\prime},(j-k(n+1)) \wedge j^{\prime}\right)$ are zero when $(n+1) k>j^{\prime}-i$ and $(n+1) k>j-i^{\prime}$ respectively.
(ii) From Theorem 2 we obtain

$$
S(i, j) \otimes B_{\lambda}(m)=\left(P_{*} X_{i j}\right) \otimes B_{\lambda}(m) \xrightarrow{\sim} P_{*}\left(X_{i j} \otimes\left(P^{*} B_{\lambda}(m)\right)\right) .
$$

Since $\left(X_{i j} \otimes\left(P^{*} B_{\lambda}(m)\right)\right)\left(a_{k}\right)$ is of dimension m for all $i \leq k \leq j$ and zero otherwise, and $\left(X_{i j} \otimes\left(P^{*} B_{\lambda}(m)\right)\right)\left(\alpha_{k}\right)$ is an isomorphism for all $i \leq k<j$, it follows that

$$
X_{i j} \otimes\left(P^{*} B_{\lambda}(m)\right) \xrightarrow{\sim} m X_{i j} .
$$

Hence

$$
S(i, j) \otimes B_{\lambda}(m) \xrightarrow{\sim} P_{*}\left(m X_{i j}\right) \xrightarrow{\sim} m P_{*}\left(X_{i j}\right)=m S(i, j)
$$

since P_{*} commutes with direct sums.
(iii) Let $l, m \in \mathbb{N} \backslash\{0\}$ and $\lambda, \mu \in \mathbb{k} \backslash\{0\}$. Set $A=B_{\lambda}(l), B=B_{\mu}(m)$ and $T=J_{\lambda}(l) \otimes J_{\mu}(m)$, the Kronecker product of the Jordan blocks. By definition we have

$$
(A \otimes B)\left(a_{k}\right)=\mathbb{k}^{l} \otimes \mathbb{k}^{m} \xrightarrow{\sim} \mathbb{k}^{l m} .
$$

In the standard basis $\left(e_{i} \otimes e_{j}\right)_{(i, j) \in \underline{l} \times \underline{m}}$ the linear map $(A \otimes B)\left(\alpha_{k}\right)$ is given by the identity matrix $\mathbb{I}_{l m}$ if $k \neq n$ whereas $(A \otimes B)\left(\alpha_{n}\right)$ is given by T.

Any $C \in \mathrm{GL}_{l_{m}}(\mathbb{k})$ determines a new representation $(A \otimes B)^{C}$ given by $(A \otimes B)^{C}\left(a_{k}\right)=\mathbb{k}^{l m}$ for all $k \in\{0, \ldots, n\},(A \otimes B)^{C}\left(\alpha_{k}\right)=\mathbb{I}_{l m}$ if $k<n$ and $(A \otimes B)^{C}\left(\alpha_{n}\right)=C T C^{-1}$, together with an isomorphism

$$
C ?: A \otimes B \rightarrow(A \otimes B)^{C}
$$

given by $(A \otimes B)\left(a_{k}\right) \rightarrow(A \otimes B)^{C}\left(a_{k}\right), x \mapsto C x$, for all $k \in\{0, \ldots, n\}$. Since $\operatorname{char}(\mathbb{k})=0$ we know from [11, p. 51] that there exists a $C \in \mathrm{GL}_{l m}(\mathbb{k})$ such that $C T C^{-1}=\bigoplus_{k=0}^{(l \vee m)-1} J_{\lambda \mu}(l+m-2 k-1)$. Accordingly, $(A \otimes B)^{C}=$ $\oplus_{k=0}^{(l \vee m)-1} B_{\lambda \mu}(l+m-2 k-1)$. We conclude that

$$
A \otimes B \xrightarrow{\sim} \bigoplus_{k=0}^{(l \vee m)-1} B_{\lambda \mu}(l+m-2 k-1) .
$$

Note that the assumption char $(\mathbb{k})=0$ only enters in the proof of part (iii), namely in order to ensure that the matrix T has the Jordan decomposition $\bigoplus_{k=0}^{(l \vee m)-1} J_{\lambda \mu}(l+m-2 k-1)$. The case char $(\mathbb{k})=p$ can be treated similarly as soon as the Jordan decomposition of $J_{\lambda}(l) \otimes J_{\mu}(m)$ is provided. However, at present I do not know any general formula for this decomposition.

REFERENCES

[1] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1981/82), 331-378.
[2] M. C. R. Butler and M. Shahzamanian, The construction of almost split sequences. III. Modules over two classes of tame local algebras, Math. Ann. 247 (1980), 111-122.
[3] E. Dieterich, Lattices over curve singularities with large conductor, Invent. Math. 114 (1993), 399-433.
[4] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 (1987), 311-337.
[5] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras (Puebla, 1980), Lecture Notes in Math. 903, Springer, 1981, 68-105.
[6] P. Gabriel and A. V. Roĭter, Representations of finite-dimensional algebras, with a chapter by B. Keller, in: Algebra, VIII, Encyclopaedia Math. Sci. 73, Springer, 1992, 1-177.
[7] I. M. Gel'fand and V. A. Ponomarev, Indecomposable representations of the Lorentz group, Uspekhi Mat. Nauk 23 (1968), no. 2 (140), 3-60 (in Russian); English transl.: Russian Math. Surveys 23 (1968), no. 2, 1-58.
[8] M. Herschend, Solution to the Clebsch-Gordan problem for Kronecker representations, U.U.D.M. Project Report 2003:P1, Uppsala Univ., 2003.
[9] -, On the Clebsch-Gordan problem for quiver representations, U.U.D.M. Report 2005:43, Uppsala Univ., 2005.
[10] -, Solution to the Clebsch-Gordan problem for representations of quivers of type $\widetilde{\mathbb{A}}_{n}$, J. Algebra Appl. 4 (2005), 481-488.
[11] B. Huppert, Angewandte lineare Algebra, de Gruyter, 1990.
[12] A. Martsinkovsky and A. Vlassov, The representation rings of $k[x]$, preprint.
Department of Mathematics
Uppsala University, Box 480
SE-751 06 Uppsala, Sweden
E-mail: martin.herschend@math.uu.se

[^0]: 2000 Mathematics Subject Classification: 16G20, 47A80.
 Key words and phrases: quiver representation, tensor product, Clebsch-Gordan problem, Galois covering.

