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Abstract. We characterise the set on which an infinitely differentiable function can
be locally polynomial.

1. Introduction. Donoghue [1] has shown that there exists a smooth
non-polynomial function f : R → R having the property that every inter-
val contains a subinterval upon which f coincides with a polynomial. In
this paper we characterise the sets where a smooth function can be locally
polynomial in this manner. I have written this note so that it may be read
independently of [1] but, as might be expected, the reader who consults that
paper will find substantial overlaps. The reader must decide if the title of
this paper is appropriate.

We make the following definitions.

Definition 1. A function f : R → R is said to be real-analytic at a
point x if we can find a δ > 0 such that f has a power series expansion

f(x + h) =

∞∑

r=0

arh
r

valid for |h| < δ. We say that f is locally polynomial at x if, in addition, we
can find an N such that

f(x + h) =
N∑

r=0

arh
r

for all |h| < δ.

The following result goes back, effectively, to Du Bois-Reymond.

Theorem 2. If E is closed , we can find an infinitely differentiable func-

tion f : R → R such that f is not real-analytic at each point E but is

real-analytic at each point of its complement.

Note that the set of points where a function is real-analytic must be
open. There is a substantial literature dealing with this phenomenon. The
paper [2] provides a particularly deep account.
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The object of this note is to prove the following result.

Theorem 3. Given a closed subset E of R with no isolated points, we

can find an infinitely differentiable function f : R → R which is not real-

analytic at each point of E but is locally polynomial at each point of its

complement.

The following observations explain why Theorem 3 takes the form it
does.

Lemma 4. Suppose that f : R → R is infinitely differentiable. Let E be

the set where f is not locally polynomial. Then:

(i) E is closed.

(ii) E contains no isolated points.

(iii) If x is a frontier point of E (that is to say , x ∈ E∩Cl(R\E)), then

f is not real-analytic at x.

(iv) Suppose that E has empty interior. Then, if x ∈ E, we can find

xj ∈ E and nj → ∞ such that f (nj)(xj) 6= 0 and xj → x as j → ∞.

Proof. (i) Direct from definition.

(ii) Write U = R \ E. Suppose that f(t) = P (t) for some polynomial
P on an open interval I and f(t) = Q(t) for some polynomial Q on an
open interval J . If I ∩ J 6= ∅ then, since I ∩ J is an open interval, P = Q
and f(t) = P (t) on I ∪ J . Thus, by standard arguments, if f(t) = P (t) for
some polynomial P on an open interval I and L is an open interval with
I ⊆ L ⊆ U , we have f(t) = P (t) on L.

Suppose that x does not lie in the closure of E \ {x}. Then we can find
a δ > 0 such that

(x − δ, x), (x, x + δ) ⊆ U

and polynomials P and Q such that f(t) = P (t) for t ∈ (x − δ, x) and
f(t) = Q(t) for t ∈ (x, x + δ). Since f is infinitely differentiable, all its
derivatives are continuous and

P (r)(x) = f (r)(x) = Q(r)(x)

for all r. Thus P = Q and f(t) = P (t) for t ∈ (x − δ, x + δ).
(iii) Suppose that x ∈ Cl U and there exists a δ > 0 such that the power

series
∞∑

r=0

ar(t − x)r

converges to f(t) for all |t − x| < δ. Choose y ∈ U such that |y − x| < δ/2.
We can find an open interval J containing y and a polynomial P such that
f = P on J . By the uniqueness of power series, f = P on (x − δ, x + δ) so
x ∈ U .
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(iv) Suppose that x is such that we cannot find xj ∈ E and nj → ∞ with
f (nj)(xj) 6= 0 and xj → x as j → ∞. Then we can find a δ > 0 and N such
that, if t /∈ E and |t−x| < δ, we have f (n)(t) = 0 for all n ≥ N . Since E has
empty interior, it follows, by continuity, that f (n)(t) = 0 for all n ≥ N and
|t−x| < δ. By repeated use of the mean value theorem, there is a polynomial
P of degree at most N−1 such that f(t) = P (t) for |t−x| < δ and so x /∈ E.

We shall also prove the following result.

Theorem 5. If U is a non-empty open subset of R, we can find an

infinitely differentiable function f : R → R such that f(x) = 0 for x /∈ U
and a set H ⊂ U with the following properties:

(i) U \ H has Lebesgue measure zero.

(ii) If x ∈ H, then we can find an integer N(x) with f (n)(x) = 0 for all

n ≥ N(x).
(iii) f is not locally polynomial at any point of U .

This gives another proof of Theorem 2.
In order to make the proof of Theorem 5 as different as possible from the

usual proof, we avoid the use of functions like exp(−1/x2) and use instead
a “stitching method” based on Lemma 7.

2. Main proof. In this section we prove the following version of Theo-
rem 3. We use the notation g|A to mean the restriction of the function g to
a set A.

Theorem 6. Given a non-trivial closed subset E of [0, 1] with no isolated

points and empty interior , we can find an infinitely differentiable function

f : R → R, with f(x) = 0 for x /∈ [0, 1], which is not real-analytic at each

point of E but is locally polynomial at each point of its complement.

The main point of difference between Theorem 3 and Theorem 6 is that,
in Theorem 6, we suppose that E has empty interior. However, this is the
interesting case and it should be fairly clear that there must be a number of
ad hoc ways of getting from Theorem 6 to Theorem 3. We shall sketch one
of them in the final section.

We need the following lemma which the reader may quite properly dis-
miss as trivial.

Lemma 7.

(i) Given an integer n ≥ 0 and an interval [a, b], we can find a constant

K with the following property : Given αj , βj ∈ R with |αj|, |βj| ≤ 1,
we can find a real-polynomial P of degree at most 2n + 1 such that

P (j)(a) = αj , P (j)(b) = βj and |P (j)(t)| ≤ K

for all t ∈ [a, b] and 0 ≤ j ≤ n.
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(ii) Given an integer n ≥ 0, η > 0, an interval [a, b] and α, β ∈ R, we

can find a real polynomial Q such that

Q(n)(a) = α, Q(n)(b) = β

but

Q(j)(a) = Q(j)(b) = 0 and |Q(j)(t)| ≤ η

for all t ∈ [a, b] and 0 ≤ j ≤ n − 1.
(iii) Given an integer n ≥ 0, η > 0, and an interval [a, b] we can find a

real polynomial R of degree exactly 2n + 2 such that

R(j)(a) = R(j)(b) = 0 and |R(j)(t)| ≤ η

for all t ∈ [a, b] and 0 ≤ j ≤ n.

Proof. By translation and rescaling we may take a = 0 and b = 1.

(i) It is sufficient to prove the result (with a different value of K) when
βj = 0 for all 0 ≤ j ≤ n. Set Pr(x) = xr(1 − x)n+1 for 0 ≤ r ≤ n and

observe that the matrix (P
(s)
r (0))0≤s≤n

0≤r≤n is triangular with non-zero diagonal

elements. It follows that there exists a K̃ such that, if |αj| ≤ 1 for 0 ≤ j ≤ n,

we can find Aj with |Aj | ≤ K̃ and

n∑

r=0

ArP
(s)
r (0) = αs

for 0 ≤ s ≤ n. Setting P =
∑n

r=0 ArPr we see that

P (j)(0) = αj , P (j)(1) = 0

and

|P (j)(t)| ≤ (n + 1)K̃ sup
0≤r≤n

sup
x∈[0,1]

|P (j)
r (x)|

for all t ∈ [0, 1] and all 0 ≤ j ≤ n.

(ii) Let N be a large integer to be chosen later. Let h(x) = sin(Nx−nπ/2)
and set g(x) = N−nα(1 − x)n+1h(x). Then

g(n)(0) = α, g(j)(1) = 0 for 0 ≤ j ≤ n

and there is a constant A independent of N such that

|g(j)(0)| ≤ AN−1 for 0 ≤ j ≤ n − 1.

By considering the Taylor expansion of g we know that there is a polynomial
G such that

|g(j)(t) − G(j)(t)| ≤ AN−1

for all t ∈ [0, 1] and all 0 ≤ j ≤ n.
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Thus
|G(n)(0) − α| ≤ AN−1,

|G(j)(0)| ≤ 2AN−1 for 0 ≤ j ≤ n − 1,

|G(j)(1)| ≤ AN−1 for 0 ≤ j ≤ n.

By part (i) we can find a polynomial P with

Q(n)(0) = G(n)(0) − α,

P (j)(0) = G(j)(0) for 0 ≤ j ≤ n − 1,

Q(j)(1) = G(j)(1) for 0 ≤ j ≤ n

and

|P (j)(t)| ≤ 2KAN−1

for all t ∈ [0, 1] and all 0 ≤ j ≤ n. If we set Q = G − P and take N large
enough, the required result follows.

(iii) Just set R(t) = εtn+1(1 − t)n+1 with ε sufficiently small but non-
zero.

Proof of Theorem 6. By rescaling, we may suppose 0, 1 ∈ E. Standard
results on topology show that [0, 1] \ E is the countable union U of disjoint
open intervals U1, U2, . . . . Since E has no isolated points and empty interior,
the Ur cannot share endpoints and cannot have 0 or 1 as endpoints. Thus

[0, 1] \
n⋃

r=1

Ur =
n⋃

r=0

Jn,r

where Jn,r = [an,r, bn,r] and

0 = an,0 < bn,0 < an,1 < bn,1 < an,2 < · · · < bn,n−1 < an,n < bn,n = 1.

We take f0 = 0 and J0,0 = [0, 1]. We construct inductively functions
fn : R → R such that

(i)n fn|Ur is a polynomial for all 1 ≤ r ≤ n, fn|Jn,r is a polynomial for
all 0 ≤ r ≤ n and f(x) = 0 for all x /∈ [0, 1],

(ii)n fn has a continuous nth derivative.

Suppose fn has been constructed. Using Lemma 7 applied to the various
intervals Ur and Jn+1,s we can find a function fn+1 : R → R such that

(i)n+1 fn+1|Ur is a polynomial for all 1 ≤ r ≤ n+1, f |Jn,r is a polynomial
for all 0 ≤ r ≤ n + 1 and fn+1(x) = 0 for all x /∈ [0, 1],

(ii)n fn+1 has a continuous (n + 1)st derivative,

and, in addition,

(iii)n+1 fn+1|Ur = fn|Ur for 1 ≤ r ≤ n,
(iv)n+1 fn+1|Un+1 is a polynomial of degree at least n + 1,
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whilst

(v)n+1 |f
(r)
n+1(x) − f

(r)
n (x)| ≤ 2−n for all x ∈ R, 0 ≤ r ≤ n.

Now condition (v)n tells us that f
(r)
n converges uniformly for each r and

so fn converges to an infinitely differentiable function f . Condition (iii)r

combined with condition (iii)n tells us that f |Ur is a polynomial of degree
at least r.

If x ∈ E, then, since E has no interior and no isolated points, it follows
that given any δ > 0 and N we can find an n ≥ N and a Un ⊆ (x− δ, x+ δ).
Since F |Un is a polynomial of degree at least n, our standard arguments
show that f cannot be real-analytic at x.

3. Final remarks. We note an immediate consequence of Theorem 3.

Lemma 8. Given a ∈ R, N ≥ 0 and δ > 0 we can find an infinitely

differentiable function g : R → R and a set E of Lebesgue measure 0 with

the following properties:

(i) g(x) = 0 whenever |x − a| ≥ δ.
(ii) If x /∈ E, then there exists an M(x) such that g(m)(x) = 0 for all

m ≥ M(x).
(iii) There exists an m ≥ N such that g(m)(a) 6= 0.

Proof. Choose a non-empty closed set Ẽ of Lebesgue measure zero (so,
automatically, with empty interior) with no isolated points lying in [0, 1].
By Theorem 6, we can find an infinitely differentiable function g̃ with the
following properties:

(i) g̃(x) = 0 for x /∈ [0, 1].

(ii) If x /∈ Ẽ then g̃ is locally polynomial at x and so in particular there
exists an M(x) such that g(m)(x) = 0 for all m ≥ M(x).

Since Ẽ is non-empty, Lemma 4(iv) tells us that there exists a b ∈ [0, 1] and
an m ≥ N such that g̃(m)(b) 6= 0. The required result follows by translation
and dilation.

We can now prove Theorem 5.

Proof of Theorem 5. Choose a countable dense subset q1, q2, . . . of U
(without repeating points). Choose δj > 0 so that qk /∈ (qj − 2δj , qj − 2δj)
for 1 ≤ k ≤ j − 1, (qj − 2δj , qj − 2δj) ⊆ U and δj < 2−j . We now take f0 = 0

and define fj inductively as follows: If f
(mj)
j−1 (qj) 6= 0 for some mj ≥ j set

fj = fj−1. If f
(m)
j−1(qj) = 0 for all m ≥ j then, by Lemma 8, we can find a

smooth function gj : R → R and a set Ej of Lebesgue measure 0 such that:
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(i) g(x) = 0 whenever |x − qj | ≥ δj.
(ii) If x /∈ E then there exists an M(x) such that g(m)(x) = 0 for all

m ≥ M(x).
(iii) There exists an mj ≥ j such that g(mj)(qj) 6= 0.

Now choose an εj > 0 with

εj |g
(k)
j (t)| ≤ 2−j

for all t ∈ R and all 0 ≤ k ≤ j and set fj = fj−1 + εjgj .

By the general principle of uniform convergence, all the derivatives of fj

converge uniformly and fj converges uniformly to an infinitely differentiable
function f . We note that fj(x) = 0 and so f(x) = 0 for all x /∈ U . Since

f
(mj)
k (qj) = f

(mj)
j (qj) 6= 0

for all k ≥ j, we have f (mj)(qj) 6= 0. Since the qj are dense and mj → ∞,
f cannot be locally polynomial at any point of U .

Suppose now that x is a point such that there does not exist an M such
that g(m)(x) = 0 for all m ≥ M . If x /∈

⋃∞
j=1 Ej = E, say, then we know

that for each j there exists an N(j) such that f
(m)
j (x) = 0 for all m ≥ N(j).

Thus x ∈ supp(fj − fj−1) for infinitely many j and so

x ∈
∞⋂

r=1

∞⋃

s=r

[qs − δs, qs + δs] = F,

say. Elementary measure theory tells us that E and F have measure zero,
so we are done.

Theorem 3 can be proved in a similar manner:

Sketch proof of Theorem 3. If E is a closed set without isolated points
we can write E = E0 ∪ U where U is open and E0 is a closed set without
isolated points and with empty interior. (Note that E0 may not be disjoint
from U .) By Theorem 6 we can find an infinitely differentiable function f
which is locally polynomial at each x /∈ E0 and is not locally polynomial
at each x ∈ E0. An inductive construction along the lines of the proof of
Theorem 5 followed by a limiting argument produces a function f with the
required properties.

Our results generalise to higher dimensions though the proofs now seem
to require the use of smooth partitions of unity.

Lemma 9. Suppose that E is a closed subset of R
m whose complement

has connected open components U1, U2, . . . with the property that

Cl(Uj) ∩ Cl(Uk) = ∅
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for j 6= k. Then we can find an infinitely differentiable function f : R
m → R

such that f |Uj = Pj |Uj for some multinomial Pj [j ≥ 1] and Pj 6= Pk when

j 6= k.

I should like to thank David Renfro for his rapid and helpful reply to my
queries and for telling me of Donoghue’s paper.
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