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ON MINIMAL HOMOTHETICAL HYPERSURFACES

BY

LIN JIU and HUAFEI SUN (Beijing)

Abstract. We give a classification of minimal homothetical hypersurfaces in an
(n + 1)-dimensional Euclidean space. In fact, when n ≥ 3, a minimal homothetical hyper-
surface is a hyperplane, a quadratic cone, a cylinder on a quadratic cone or a cylinder on
a helicoid.

1. Introduction. An n-dimensional hypersurface in Euclidean space
En+1 is called a translation hypersurface if it is the graph of a function
F (x1, x2, . . . , xn) = f1(x1) + f2(x2) + · · · + fn(xn), where f1, f2, . . . , fn are
smooth functions. A hypersurface is said to be minimal if its mean curvature
is zero identically. As is well known, a minimal translation surface in a 3-
dimensional Euclidean space E3 must be a plane or a Scherk surface which
is the graph of the function

F (x1, x2) =
1

a
ln

cos(ax1)

cos(ax2)
,

where a is a non-zero constant. Some general results on translation hyper-
surfaces have been given in [1]–[5].

A hypersurface in an (n + 1)-dimensional Euclidean space is called ho-

mothetical if it is given by

X(x1, . . . , xn) = (x1, . . . , xn, F (x1, . . . , xn)),

where F (x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn) with smooth functions
f1, f2, . . . , fn.

In [6], I. Van de Woestyne classified 2-dimensional minimal homothetical
surfaces, and proved:

Theorem 1. A 2-dimensional minimal homothetical surface in a 3-
dimensional Euclidean space E3 must be a plane or a helicoid.

In the present paper, we study n-dimensional minimal homothetical hy-
persurfaces in an (n+1)-dimensional Euclidean space, and give their classifi-
cation. On the way, when n = 2, we give a new method to prove Theorem 1.
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We obtain the following result:

Theorem 2. Let Mn (n ≥ 3) be an n-dimensional minimal homothetical

hypersurface in an (n + 1)-dimensional Euclidean space En+1. Then the

hypersurface is a hyperplane, a quadratic cone, a cylinder on a quadratic

cone or a cylinder on a helicoid.

2. Preliminaries. Let Mn be a hypersurface in Euclidean space En+1,
given by

X = (x1, . . . , xn, F (x1, . . . , xn)).

So

∂X

∂xi
=

(

0, . . . , 1, . . . , 0,
∂F

∂xi

)

,
∂2X

∂xi∂xi
=

(

0, . . . , 0,
∂2F

∂xj∂xi

)

.

Let Pi = ∂F/∂xi. We have

gij =

〈

∂X

∂xi
,
∂X

∂xj

〉

= δij +
∂F

∂xi

∂F

∂xj
,

so (gij) = I +P T P , where P = (P1, . . . , Pn). The inverse of the matrix (gij)
is given by

(gij) = I − 1

1 + |P |2 PiPj ,

where |P |2 = P T P . Let g = det (gij) = 1 + |P |2, and

W :=
√

g =
√

1 + |P |2.
We have

gij = δij −
1

W 2

∂F

∂xi

∂F

∂xj
.

The unit normal vector is given by

ν =
1

W

(

− ∂F

∂x1

, . . . ,− ∂F

∂xn
, 1

)

.

So the second fundamental form is given by

bij =

〈

∂2X

∂xi∂xj
, ν

〉

=

〈(

0, . . . , 0,
∂2F

∂xi∂xj

)

,
1

W

(

− ∂F

∂x1

, . . . ,− ∂F

∂xn
, 1

)〉

=
1

W

∂2F

∂xi∂xj
.

Then we define the mean curvature by

nH =
∑

i,j

gijbij =
∑

i,j

gij 1

W

∂2F

∂xj∂xi
=

1

W

∑

i,j

(

δij −
1

W 2

)

∂2F

∂xj∂xi
,



HOMOTHETICAL HYPERSURFACES 241

i.e.,

(2.1) nH =
1

W

(

∑

i

∂2F

∂x2
i

− 1

W 2

∑

i,j

∂F

∂xi

∂F

∂xj

∂2F

∂xj∂xi

)

.

We call a hypersurface minimal if H ≡ 0.

3. Proof of Theorem 2. Before the proof, we introduce some notation
to simplify the writing:

F = f1(x1)f2(x2) · · · fn(xn),

F ′ = f ′
1(x1)f

′
2(x2) · · · f ′

n(xn),

Fi = f1(x1)f2(x2) · · · fi−1(xi−1)f
′
i(xi)fi+1(xi+1) · · · fn(xn),

Fi2 = f1(x1)f2(x2) · · · fi−1(xi−1)f
′′
i (xi)fi+1(xi+1) · · · fn(xn),

F (i) = f1(x1)f2(x2) · · · fi−1(xi−1)fi+1(xi+1) · · · fn(xn),

F ′(i) = f ′
1(x1)f

′
2(x2) · · · f ′

i−1(xi−1)f
′
i+1(xi+1) · · · f ′

n(xn),

F (ij) = f1(x1)f2(x2) · · · fi−1(xi−1)fi+1(xi+1)

· · · fj−1(xj−1)fj+1(xj+1) · · · fn(xn),

F ′(ij) = f ′
1(x1)f

′
2(x2) · · · f ′

i−1(xi−1)f
′
i+1(xi+1)

· · · f ′
j−1(xj−1)f

′
j+1(xj+1) · · · f ′

n(xn).

Since H ≡ 0, from (2.1) we get

(3.1) W 2
∑

i

Fi2 −
∑

i,j

FiFjFij = 0,

and so

(3.2)
∑

i

Fi2 +
∑

i,j

(F 2
i Fj2 − FiFjFij) = 0.

Noting that
∑

i,j(F
2
i Fj2 − FiFjFij) = 0, when i = j, from (3.2) we get

(3.3)
∑

i

Fi2 +
∑

i6=j

(F 2
i Fj2 − FiFjFij) = 0,

and so

(3.4)
∑

i

Fi2 +
∑

i6=j

F (FiFij2 − F 2
ij) = 0,

where

Fij2 = f1(x1)f2(x2) · · · fi−1(xi−1)f
′
i(xi)fi+1(xi+1)

· · · fj−1(xj−1)f
′′
j (xj)fj+1(xj+1) · · · fn(xn),

in accordance with the notation introduced above.
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When fi(xi) 6= 0 and f ′
i(xi) 6= 0, from (3.4) we can get

(3.5)
∑

i

f ′′
i

fi
+

∑

i6=j

F (ij)2f ′
i
2
(fjf

′′
j − f ′

j
2
) = 0.

Setting Tij = F 2(ij)f ′
i
2(fjf

′′
j − f ′

j
2), i 6= j, we have

(3.6)
∂Tij

∂xi
= 2F (ij)2f ′

if
′′
i (fjf

′′
j − f ′

j
2
),

and then

(3.7)
∂2Tij

∂xj∂xi
= 2F (ij)2f ′

if
′′
i (fjf

′′′
j − f ′

jf
′′
j ).

From (3.6) and (3.7), we get

(3.8)
∂nTij

∂x1 . . . ∂xn
= 2n−1F (ij)F ′(ij)f ′

if
′′
i (fjf

′′′
j − f ′

jf
′′
j ).

Differentiating (3.5) with respect to x1, . . . , xn yields

(3.9)
∑

i6=j

∂nTij

∂x1 . . . ∂xn
= 0.

From (3.8) and (3.9) we get

(3.10) 2n−1
∑

i6=j

F (ij)F ′(ij)f ′
if

′′
i (fjf

′′′
j − f ′

jf
′′
j ) = 0.

When f ′
i 6= 0 for i = 1, . . . , n, from (3.10) we get

(3.11)
∑

i6=j

f ′′
i

fi

(

f ′′′
j

f ′
j

−
f ′′

j

fj

)

= 0.

When n = 2, we assume that f(x) = f1(x1) and g(y) = f2(x2), so that
(3.11) becomes

(3.12)
f ′′

f

(

g′′′

g′
− g′′

g

)

+
g′′

g

(

f ′′′

f ′ − f ′′

f

)

= 0.

If f ′′g′′ 6= 0, from (3.12) we get

(3.13)
ff ′′′

f ′f ′′ +
gg′′′

g′g′′
= 2.

Set ff ′′′

f ′f ′′ = a and gg′′′

g′g′′
= b, where a + b = 2.

If a 6= −1 and b 6= −1, we easily get

f ′′ = a1f
a,(3.14)

g′′ = b1g
b,(3.15)
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f ′2 =
2a1

a + 1
fa+1 + a2,(3.16)

g′2 =
2b1

b + 1
gb+1 + b2,(3.17)

where a1, a2, b1, b2 are constants. Substituting the four equations above into
(3.1), we have

(3.18) a1f
a−1

(

b2

a − 3

a + 1
f2 + 1

)

+ b1g
b−1

(

a2

b − 3

b + 1
g2 + 1

)

− 2a2b2 = 0.

From (3.18) we get

a1f
a−1

(

b2

a − 3

a + 1
f2 + 1

)

= K = const,

b1g
b−1

(

a2

b − 3

b + 1
g2 + 1

)

= T = const,

where K + T = 2a2b2. Hence a1 = b1 = a2b2 = 0, which implies

f ′′ = g′′ = 0.

When a = −1 or b = −1, taking a = −1 and b = 3 for example, from
(3.14)–(3.17) we get

f ′′ =
a1

f
, f ′2 = 2a1 ln f + 2a2,

g′′ = b1g
3, g′2 =

b1g
4

2
+ 2b2,

where a1, a2, b1 and b2 are constants. Substituting the four equations above
into (3.1), we have

(3.19) b1fg3 +
a1b1fg5

2
− 8a1b2fg ln f +

a1g

f
− 8a2b2fg + 2a1b2fg = 0.

Noting that f 6= const and g 6= const, from (3.19) we obtain
(

b1g
2 +

a1b1

2
g4

)

+

(

a1

f
− 8a1b2 ln f

)

− 8a2b2 + 2a1b2 = 0,

which means that a1 = b1 = a2b2 + a1b2 = 0, i.e. f ′′ = g′′ = 0. This
contradicts the assumption that f ′′g′′ 6= 0. Therefore f ′′g′′ = 0.

When f ′′ = g′′ = 0, we infer from (3.1) that 2ff ′2gg′2 = 0, which means
f = 0, f ′ = 0, g = 0 or g′ = 0, and then f and g must be polynomials of
degree no more than one.

When only one of f ′′ and g′′ is zero, without loss of generality, we set
f ′′ = 0 and g′′ 6= 0. Then we have f(x) = ax+b, where a and b are constant.
Thus from (3.1) we get

(3.20) f(g′′ − 2a2gg′2 + a2g2g′′) = 0.
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Since g′′ 6= 0, from (3.20) we deduce

(3.21)
2gg′2

g′′
− g2 =

1

a2
= const.

Hence

(3.22) g =
1

a
tan

(

c

a
y +

d

a

)

,

where c and d are constants. This completes the proof of Theorem 1.

When n ≥ 3, without loss of generality we assume that f ′′
i /fi 6= const,

i = 1, . . . , r, while f ′′
i /fi = ηi = const, i = r + 1, . . . , n, and we set η =

∑n
k=r+1

ηk.

Case 1: r = 0. In this case, from f ′′
i /fi = ηi, i = r + 1, . . . , n, we get

(3.23) f ′
i
2

= ηif
2
i + η′i,

where η′i is a constant. Then from (3.5), (3.23), we have
∑

i

ηi +
∑

i6=j

F 2(ij)(ηif
2
i + η′i)(−η′j) = 0,

i.e.,

(3.24) F 2
∑

i6=j

(

ηi +
η′i
f2

i

)

η′j
f2

j

=
∑

i

ηi.

Since F 6= 0, from (3.24) we have

(3.25)
∑

i6=j

(

ηi +
η′i
f2

i

)

η′j
f2

j

=

∑

i ηi

F 2
.

For all k = 1, . . . , n, from (3.25) we obtain

(3.26)
η′k
f2

k

∑

i6=k

(

ηi +
2η′i
f2

i

)

+ Ω(x1, . . . , xk−1, xk+1, . . . , xn) =

∑

i ηi

F 2

for some Ω. Differentiating (3.26) with respect to xk, we get

(3.27)
2η′kf

′
k

f3
k

∑

i6=k

(

ηi +
2η′i
f2

i

)

=
2f ′

k

∑

i ηi

F 2fk

.

Since f ′
i 6= 0, from (3.27) we find that

(3.28) η′k
∑

i6=k

(

ηi +
2η′i
f2

i

)

=
f2

k

F 2

∑

i

ηi.

This yields

η′k
∑

i6=k

[(F (k)′xi
)2 + η′i[F (ik)]2] =

∑

i

ηi,
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i.e.,

(3.29) η′k
∑

i6=k

(f ′
i
2
+ η′i)F (ik)2 =

∑

i

ηi.

Since for n ≥ 3, F (ik) is not a constant, from (3.23) we see that f ′
i
2 + η′i 6= 0.

Noting that F (ik) and f ′
i
2 + η′i are functions of different independent vari-

ables, we see that
∑

i6=k

(f ′
i
2
+ η′i)F (ik)2 6= const.

Hence

η′k =
∑

i

ηi = 0.

Thus f ′2
i = ηif

2
i , i = 1, . . . , n, ηi 6= 0. Further, from f ′′

i /fi = ηi we
get fi(xi) = aie

√
ηixi + a′ie

−√
ηixi when ηi > 0, and fi = bi cos

√−ηixi +
b′i sin

√−ηixi when ηi < 0, where ai, a′i, bi and b′i are constants.
Noting that f ′2

i = ηif
2
i , we have aia

′
i = 0, which means fi(xi) = aie

√
ηixi

or fi(xi) = a′ie
−√

ηixi when ηi > 0; and b2
i + b′2i = 0, which means fi(xi) ≡ 0

when ηi < 0.
By the assumption that F 6= 0, we see that ηi > 0 for i = 1, . . . , n, while

∑

i ηi = 0, which is impossible. Thus r 6= 0.

Case 2: 3 ≤ r ≤ n. In this case, from (3.11) we infer that for i = 1, . . . , r,

(3.30)
f ′′

i

fi

n
∑

j 6=i

f ′′′
j

f ′
j

+

(

f ′′′
i

f ′
i

− 2f ′′
i

fi

) n
∑

j 6=i

f ′′
j

fj
+φ(x1, . . . , xi−1, xi+1, . . . , xn) = 0

for some φ. Differentiating this with respect to xi gives

(3.31)

∑n
j 6=i

f ′′′

j

f ′

j

∑n
j 6=i

f ′′

j

fj

= −

(f ′′′

i

f ′

i

− 2f ′′

i

fi

)′

xi
( f ′′

i

fi

)′
xi

= λi,

where λi = const. Then for j 6= i, from (3.31) we get

(3.32)
f ′′′

j

f ′
j

− λi

f ′′
j

fj
= aij = const,

where

(3.33)
n

∑

j 6=i

aij = 0.

From (3.32) we see that for all i 6= k,

(3.34) (λk − λi)
f ′′

j

fj
= akj − aij ,



246 L. JIU AND H. F. SUN

which implies that λk − λi = 0 and akj − aij = 0. Therefore, we assume

λ1 = · · · = λr = λ and akj = aij = aj .

Noting f ′′
j /fj = ηj , j = r + 1, . . . , n, for i = 1, . . . , r from (3.33) we have

(3.35)
n

∑

j=r+1

(λ − 1)ηj +
r

∑

k=1

ak − ai = 0,

which implies a1 = · · · = ar, where ai = f ′′′
j /f ′

j − λf ′′
j /fj .

On the other hand, from (3.31) we get

(3.36)

(f ′′′

i

f ′

i

− 2f ′′

i

fi

)′

xi
(f ′′

i

fi

)′
xi

= λ.

From (3.36) we have

(3.37)
f ′′′

j

f ′
j

= (2 − λ)
f ′′

j

fj
+ bj ,

where bj is a constant.

Comparing (3.32) with (3.37), we get λ = 1 and ai = bi immediately.
Thus (3.35) becomes

r
∑

k=1

ak − ai = 0.

This yields ai = 0, i = 1, . . . , r, and so f ′′
i /fi = ηi = const, i = 1, . . . , n.

This is a contradiction.

Case 3: r = 2. In this case, (3.11) becomes

(3.38)

(

f ′′
1

f1

+ η

)(

f ′′′
2

f ′
2

− f ′′
2

f2

)

+

(

f ′′
2

f2

+ η

)(

f ′′′
1

f ′
1

− f ′′
1

f1

)

= 0,

where η =
∑n

k=3
ηk. Hence

f ′′′

2

f ′

2

− f ′′

2

f2

f ′′

2

f2
+ η

= −
f ′′′

1

f ′

1

− f ′′

1

f1

f ′′

1

f1
+ η

= K = const,

which implies

f ′′′
2

f ′
2

= (K + 1)
f ′′
2

f2

+ ηK,(3.39)

f ′′′
1

f ′
1

= (1 − K)
f ′′
1

f1

− ηK.(3.40)

As mentioned above, for i = 3, . . . , n, f ′′
i = ηif and f ′2

i = ηif
2
i + η′i, and
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from (3.11) we get

(3.41)
f ′′
1

f1

+
f ′′
2

f2

+ f2
1 f2

2

n
∑

i6=j

G(ij)f ′2
i (fjf

′′
j − f ′2

j )

+ (f ′2
1 f2

2 + f2
1 f ′2

2 )
n

∑

i=3

G(j)2(fjf
′′
j − f ′2

j )

+ [f2
1 (f2f

′′
2 − f ′2

2 ) + f2
2 (f1f

′′
1 − f ′2

1 )]
n

∑

i=1

G(i)2f ′2
i

+ [f ′2
1 (f2f

′′
2 − f ′2

2 ) + f ′2
2 (f1f

′′
1 − f ′2

1 )]G = 0,

where G = f3 . . . fn and

G(i) = f3 . . . fi−1fi+1 . . . fn, G(ij) = f3 . . . fi−1fi+1 . . . fj−1fj+1 . . . fn.

Differentiating (3.41) with respect to x1 and x2 and substituting f ′′
i /fi = ηi,

(3.23), (3.39) and (3.40) into (3.11), after simplifying we get

(3.42) (2−K)
f ′′
1

f1

n
∑

i=3

η′i
f2

i

+(2+K)
f ′′
2

f2

n
∑

i=3

η′i
f2

i

+2
n

∑

i,j=3, i6=j

(

ηi+
η′i
f2

i

)

η′j
f2

j

= 0.

Differentiating with respect to x1 and x2, we get respectively

(3.43) (2 − K)

(

f ′′
1

f1

)′

x1

n
∑

i=3

η′i
f2

i

= 0,

and

(3.44) (2 + K)

(

f ′′
2

f3

)′

x1

n
∑

i=3

η′i
f2

i

= 0.

Since 2 + K = 2 − K = 0 is impossible, we see that η′i = 0, i = 3, . . . , n.
Then (3.11) becomes

(3.45) η +
f ′′
1

f1

+
f ′′
2

f2

+ G2(η[f2
1 (f2f

′′
2 − f ′2

2 ) + f2
2 (f1f

′′
1 − f ′2

1 )]

+ [f ′2
1 (f2f

′′
2 − f ′2

2 ) + f ′2
2 (f1f

′′
1 − f ′2

1 )]) = 0.

Since η + f ′′
1 /f1 + f ′′

2 /f2 6= 0, we see that G2 = const, which means that
f ′

i = 0 for i ≥ 3, contrary to assumption. So we get r 6= 2.

Case 4: r = 1. In this case, (3.11) becomes

(3.46) η

(

f ′′′
1

f ′
1

− f ′′
1

f1

)

= 0,

which means η =
∑n

i=2
ηi = 0. Substituting (3.23) into (3.11) and using
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f ′′
i /fi = ηi, after simplifying we get

(3.47)
f ′′
1

f3
1

+ G2

n
∑

i,j=2, i6=j

(

ηi +
η′i
f2

i

)

(−η′j)

f2
j

+

(

f ′′
1

f1

− 2
f ′2
1

f2
1

)

G2

n
∑

i=2

η′i
f2

i

= 0,

where G = f2 . . . fn. Because f ′′
1 /f1 6= const, differentiating (3.47) with

respect to x1, we get

(3.48)

(

f ′′
1

f3
1

)′

x1

+

(

f ′′
1

f1

− 2
f ′2
1

f2
1

)′

x1

G2

n
∑

i=2

η′i
f2

i

= 0.

If η′i/f2
i = 0, we have η′i = 0 (i ≥ 2) and f ′′

1 = 0, which means f ′′
1 /f1 = 0

= const. This is a contradiction.

If (f ′′
i /f3

i )′xi
= 0 and (f ′′

1 /f1 − 2f ′2
1 /f2

1 )′xi
= 0, we set

f ′′
1

f3
1

= K1 = const,(3.49)

f ′′
1

f1

− 2
f ′2
1

f2
1

= K2 = const.(3.50)

Substituting (3.49) into (3.50), we get

(3.51) K1f
4
1 − 2f2

1 = K2f
2
1 .

By differentiating with respect to x1, from (3.51) we have

(3.52) 2K2f
2
1 = 0,

which means K2 ≡ 0. Then (3.47) becomes

(3.53) G2

n
∑

i,j=2, i6=j

(

ηi +
η′i
f2

i

)

η′j
f2

j

= K1.

Similarly to the passage from (3.24) to (3.29) we get

(3.54) η′k
∑

i6=k

G(ik)2(f ′
i
2
+ η′i) = K1.

When n ≥ 4, similarly to (3.29) we have

(3.55)
∑

i6=k

G(ik)2(f ′
i
2
+ η′i) 6= const,

which means η′k = K1 = 0. Thus we have f ′′
1 = 0 and f ′′

1 /f1 = 0 = const,
which is a contradiction.

When n = 3, (3.54) yields

η′2(f
′
3

2
+ η′3) = K1,(3.56)

η′3(f
′
2

2
+ η′2) = K1,(3.57)
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which means that f ′
3 =

√

η′
3

= const and f ′
2 =

√

η′
2

= const. Then from
(3.50), (3.51) and K2 = 0, we get

(3.58) f1(x1) = ± 1
√

K1/2x1 + C1

,

where C1 is a constant. From (3.56) and (3.57) we see that η2 = η3 = 0 and
η′2η

′
3 = K1/2, and further

f2(x2) =
√

η′
2
x2 + C2, f3(x3) =

√

η′
3
x3 + C3,

where C2 and C3 are constants. This shows that the hypersurface is a
quadratic cone.

From the proof above, we see that among the f ′
i(xi), i = 1, . . . , n, no

more than three are non-zero, while others satisfy f ′
i(xi) = 0 so that fi(xi)

= const. Thus we complete the proof of Theorem 2.
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