COLLOQUIUM MATHEMATICUM

ON MINIMAL HOMOTHETICAL HYPERSURFACES

BY
LIN JIU and HUAFEI SUN (Beijing)

Abstract

We give a classification of minimal homothetical hypersurfaces in an $(n+1)$-dimensional Euclidean space. In fact, when $n \geq 3$, a minimal homothetical hypersurface is a hyperplane, a quadratic cone, a cylinder on a quadratic cone or a cylinder on a helicoid.

1. Introduction. An n-dimensional hypersurface in Euclidean space E^{n+1} is called a translation hypersurface if it is the graph of a function $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right)$, where $f_{1}, f_{2}, \ldots, f_{n}$ are smooth functions. A hypersurface is said to be minimal if its mean curvature is zero identically. As is well known, a minimal translation surface in a 3 dimensional Euclidean space E^{3} must be a plane or a Scherk surface which is the graph of the function

$$
F\left(x_{1}, x_{2}\right)=\frac{1}{a} \ln \frac{\cos \left(a x_{1}\right)}{\cos \left(a x_{2}\right)},
$$

where a is a non-zero constant. Some general results on translation hypersurfaces have been given in [1]-[5].

A hypersurface in an $(n+1)$-dimensional Euclidean space is called homothetical if it is given by

$$
X\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, F\left(x_{1}, \ldots, x_{n}\right)\right),
$$

where $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right)$ with smooth functions $f_{1}, f_{2}, \ldots, f_{n}$.

In [6], I. Van de Woestyne classified 2-dimensional minimal homothetical surfaces, and proved:

Theorem 1. A 2-dimensional minimal homothetical surface in a 3dimensional Euclidean space E^{3} must be a plane or a helicoid.

In the present paper, we study n-dimensional minimal homothetical hypersurfaces in an $(n+1)$-dimensional Euclidean space, and give their classification. On the way, when $n=2$, we give a new method to prove Theorem 1 .

2000 Mathematics Subject Classification: 53A15, 53C42.
Key words and phrases: mean curvature, homothetical hypersurface.
Research partially supported by the foundation of China Education Ministry.

We obtain the following result:
ThEOREM 2. Let $M^{n}(n \geq 3)$ be an n-dimensional minimal homothetical hypersurface in an $(n+1)$-dimensional Euclidean space E^{n+1}. Then the hypersurface is a hyperplane, a quadratic cone, a cylinder on a quadratic cone or a cylinder on a helicoid.
2. Preliminaries. Let M^{n} be a hypersurface in Euclidean space E^{n+1}, given by

$$
X=\left(x_{1}, \ldots, x_{n}, F\left(x_{1}, \ldots, x_{n}\right)\right)
$$

So

$$
\frac{\partial X}{\partial x_{i}}=\left(0, \ldots, 1, \ldots, 0, \frac{\partial F}{\partial x_{i}}\right), \quad \frac{\partial^{2} X}{\partial x_{i} \partial x_{i}}=\left(0, \ldots, 0, \frac{\partial^{2} F}{\partial x_{j} \partial x_{i}}\right)
$$

Let $P_{i}=\partial F / \partial x_{i}$. We have

$$
g_{i j}=\left\langle\frac{\partial X}{\partial x_{i}}, \frac{\partial X}{\partial x_{j}}\right\rangle=\delta_{i j}+\frac{\partial F}{\partial x_{i}} \frac{\partial F}{\partial x_{j}}
$$

so $\left(g_{i j}\right)=I+P^{T} P$, where $P=\left(P_{1}, \ldots, P_{n}\right)$. The inverse of the matrix $\left(g_{i j}\right)$ is given by

$$
\left(g^{i j}\right)=I-\frac{1}{1+|P|^{2}} P_{i} P_{j}
$$

where $|P|^{2}=P^{T} P$. Let $g=\operatorname{det}\left(g_{i j}\right)=1+|P|^{2}$, and

$$
W:=\sqrt{g}=\sqrt{1+|P|^{2}} .
$$

We have

$$
g^{i j}=\delta_{i j}-\frac{1}{W^{2}} \frac{\partial F}{\partial x_{i}} \frac{\partial F}{\partial x_{j}}
$$

The unit normal vector is given by

$$
\nu=\frac{1}{W}\left(-\frac{\partial F}{\partial x_{1}}, \ldots,-\frac{\partial F}{\partial x_{n}}, 1\right) .
$$

So the second fundamental form is given by

$$
\begin{aligned}
b_{i j} & =\left\langle\frac{\partial^{2} X}{\partial x_{i} \partial x_{j}}, \nu\right\rangle=\left\langle\left(0, \ldots, 0, \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}\right), \frac{1}{W}\left(-\frac{\partial F}{\partial x_{1}}, \ldots,-\frac{\partial F}{\partial x_{n}}, 1\right)\right\rangle \\
& =\frac{1}{W} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}
\end{aligned}
$$

Then we define the mean curvature by

$$
n H=\sum_{i, j} g^{i j} b_{i j}=\sum_{i, j} g^{i j} \frac{1}{W} \frac{\partial^{2} F}{\partial x_{j} \partial x_{i}}=\frac{1}{W} \sum_{i, j}\left(\delta_{i j}-\frac{1}{W^{2}}\right) \frac{\partial^{2} F}{\partial x_{j} \partial x_{i}}
$$

i.e.,

$$
\begin{equation*}
n H=\frac{1}{W}\left(\sum_{i} \frac{\partial^{2} F}{\partial x_{i}^{2}}-\frac{1}{W^{2}} \sum_{i, j} \frac{\partial F}{\partial x_{i}} \frac{\partial F}{\partial x_{j}} \frac{\partial^{2} F}{\partial x_{j} \partial x_{i}}\right) \tag{2.1}
\end{equation*}
$$

We call a hypersurface minimal if $H \equiv 0$.
3. Proof of Theorem 2. Before the proof, we introduce some notation to simplify the writing:

$$
\begin{aligned}
F= & f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right) \\
F^{\prime}= & f_{1}^{\prime}\left(x_{1}\right) f_{2}^{\prime}\left(x_{2}\right) \cdots f_{n}^{\prime}\left(x_{n}\right) \\
F_{i}= & f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{i-1}\left(x_{i-1}\right) f_{i}^{\prime}\left(x_{i}\right) f_{i+1}\left(x_{i+1}\right) \cdots f_{n}\left(x_{n}\right), \\
F_{i^{2}}= & f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{i-1}\left(x_{i-1}\right) f_{i}^{\prime \prime}\left(x_{i}\right) f_{i+1}\left(x_{i+1}\right) \cdots f_{n}\left(x_{n}\right), \\
F(i)= & f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{i-1}\left(x_{i-1}\right) f_{i+1}\left(x_{i+1}\right) \cdots f_{n}\left(x_{n}\right), \\
F^{\prime}(i)= & f_{1}^{\prime}\left(x_{1}\right) f_{2}^{\prime}\left(x_{2}\right) \cdots f_{i-1}^{\prime}\left(x_{i-1}\right) f_{i+1}^{\prime}\left(x_{i+1}\right) \cdots f_{n}^{\prime}\left(x_{n}\right), \\
F(i j)= & f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{i-1}\left(x_{i-1}\right) f_{i+1}\left(x_{i+1}\right) \\
& \cdots f_{j-1}\left(x_{j-1}\right) f_{j+1}\left(x_{j+1}\right) \cdots f_{n}\left(x_{n}\right) \\
F^{\prime}(i j)= & f_{1}^{\prime}\left(x_{1}\right) f_{2}^{\prime}\left(x_{2}\right) \cdots f_{i-1}^{\prime}\left(x_{i-1}\right) f_{i+1}^{\prime}\left(x_{i+1}\right) \\
& \cdots f_{j-1}^{\prime}\left(x_{j-1}\right) f_{j+1}^{\prime}\left(x_{j+1}\right) \cdots f_{n}^{\prime}\left(x_{n}\right) .
\end{aligned}
$$

Since $H \equiv 0$, from (2.1) we get

$$
\begin{equation*}
W^{2} \sum_{i} F_{i^{2}}-\sum_{i, j} F_{i} F_{j} F_{i j}=0 \tag{3.1}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sum_{i} F_{i^{2}}+\sum_{i, j}\left(F_{i}^{2} F_{j^{2}}-F_{i} F_{j} F_{i j}\right)=0 \tag{3.2}
\end{equation*}
$$

Noting that $\sum_{i, j}\left(F_{i}^{2} F_{j^{2}}-F_{i} F_{j} F_{i j}\right)=0$, when $i=j$, from (3.2) we get

$$
\begin{equation*}
\sum_{i} F_{i^{2}}+\sum_{i \neq j}\left(F_{i}^{2} F_{j^{2}}-F_{i} F_{j} F_{i j}\right)=0 \tag{3.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sum_{i} F_{i^{2}}+\sum_{i \neq j} F\left(F_{i} F_{i j^{2}}-F_{i j}^{2}\right)=0 \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
F_{i j^{2}}=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{i-1} & \left(x_{i-1}\right) f_{i}^{\prime}\left(x_{i}\right) f_{i+1}\left(x_{i+1}\right) \\
& \cdots f_{j-1}\left(x_{j-1}\right) f_{j}^{\prime \prime}\left(x_{j}\right) f_{j+1}\left(x_{j+1}\right) \cdots f_{n}\left(x_{n}\right)
\end{aligned}
$$

in accordance with the notation introduced above.

When $f_{i}\left(x_{i}\right) \neq 0$ and $f_{i}^{\prime}\left(x_{i}\right) \neq 0$, from (3.4) we can get

$$
\begin{equation*}
\sum_{i} \frac{f_{i}^{\prime \prime}}{f_{i}}+\sum_{i \neq j} F(i j)^{2}{f_{i}^{\prime 2}}^{2}\left(f_{j} f_{j}^{\prime \prime}-{f_{j}^{\prime 2}}^{2}\right)=0 \tag{3.5}
\end{equation*}
$$

Setting $T_{i j}=F^{2}(i j) f_{i}^{\prime 2}\left(f_{j} f_{j}^{\prime \prime}-{f_{j}^{\prime 2}}^{2}\right), i \neq j$, we have

$$
\begin{equation*}
\frac{\partial T_{i j}}{\partial x_{i}}=2 F(i j)^{2} f_{i}^{\prime} f_{i}^{\prime \prime}\left(f_{j} f_{j}^{\prime \prime}-f_{j}^{\prime 2}\right) \tag{3.6}
\end{equation*}
$$

and then

$$
\begin{equation*}
\frac{\partial^{2} T_{i j}}{\partial x_{j} \partial x_{i}}=2 F(i j)^{2} f_{i}^{\prime} f_{i}^{\prime \prime}\left(f_{j} f_{j}^{\prime \prime \prime}-f_{j}^{\prime} f_{j}^{\prime \prime}\right) \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we get

$$
\begin{equation*}
\frac{\partial^{n} T_{i j}}{\partial x_{1} \ldots \partial x_{n}}=2^{n-1} F(i j) F^{\prime}(i j) f_{i}^{\prime} f_{i}^{\prime \prime}\left(f_{j} f_{j}^{\prime \prime \prime}-f_{j}^{\prime} f_{j}^{\prime \prime}\right) \tag{3.8}
\end{equation*}
$$

Differentiating (3.5) with respect to x_{1}, \ldots, x_{n} yields

$$
\begin{equation*}
\sum_{i \neq j} \frac{\partial^{n} T_{i j}}{\partial x_{1} \ldots \partial x_{n}}=0 \tag{3.9}
\end{equation*}
$$

From (3.8) and (3.9) we get

$$
\begin{equation*}
2^{n-1} \sum_{i \neq j} F(i j) F^{\prime}(i j) f_{i}^{\prime} f_{i}^{\prime \prime}\left(f_{j} f_{j}^{\prime \prime \prime}-f_{j}^{\prime} f_{j}^{\prime \prime}\right)=0 \tag{3.10}
\end{equation*}
$$

When $f_{i}^{\prime} \neq 0$ for $i=1, \ldots, n$, from (3.10) we get

$$
\begin{equation*}
\sum_{i \neq j} \frac{f_{i}^{\prime \prime}}{f_{i}}\left(\frac{f_{j}^{\prime \prime \prime}}{f_{j}^{\prime}}-\frac{f_{j}^{\prime \prime}}{f_{j}}\right)=0 \tag{3.11}
\end{equation*}
$$

When $n=2$, we assume that $f(x)=f_{1}\left(x_{1}\right)$ and $g(y)=f_{2}\left(x_{2}\right)$, so that (3.11) becomes

$$
\begin{equation*}
\frac{f^{\prime \prime}}{f}\left(\frac{g^{\prime \prime \prime}}{g^{\prime}}-\frac{g^{\prime \prime}}{g}\right)+\frac{g^{\prime \prime}}{g}\left(\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{f^{\prime \prime}}{f}\right)=0 \tag{3.12}
\end{equation*}
$$

If $f^{\prime \prime} g^{\prime \prime} \neq 0$, from (3.12) we get

$$
\begin{equation*}
\frac{f f^{\prime \prime \prime}}{f^{\prime} f^{\prime \prime}}+\frac{g g^{\prime \prime \prime}}{g^{\prime} g^{\prime \prime}}=2 \tag{3.13}
\end{equation*}
$$

Set $\frac{f f^{\prime \prime \prime}}{f^{\prime} f^{\prime \prime}}=a$ and $\frac{g g^{\prime \prime \prime}}{g^{\prime} g^{\prime \prime}}=b$, where $a+b=2$.
If $a \neq-1$ and $b \neq-1$, we easily get

$$
\begin{align*}
f^{\prime \prime} & =a_{1} f^{a} \tag{3.14}\\
g^{\prime \prime} & =b_{1} g^{b} \tag{3.15}
\end{align*}
$$

$$
\begin{align*}
f^{\prime 2} & =\frac{2 a_{1}}{a+1} f^{a+1}+a_{2} \tag{3.16}\\
g^{\prime 2} & =\frac{2 b_{1}}{b+1} g^{b+1}+b_{2} \tag{3.17}
\end{align*}
$$

where $a_{1}, a_{2}, b_{1}, b_{2}$ are constants. Substituting the four equations above into (3.1), we have

$$
\begin{equation*}
a_{1} f^{a-1}\left(b_{2} \frac{a-3}{a+1} f^{2}+1\right)+b_{1} g^{b-1}\left(a_{2} \frac{b-3}{b+1} g^{2}+1\right)-2 a_{2} b_{2}=0 \tag{3.18}
\end{equation*}
$$

From (3.18) we get

$$
\begin{aligned}
a_{1} f^{a-1}\left(b_{2} \frac{a-3}{a+1} f^{2}+1\right) & =K=\mathrm{const} \\
b_{1} g^{b-1}\left(a_{2} \frac{b-3}{b+1} g^{2}+1\right) & =T=\mathrm{const}
\end{aligned}
$$

where $K+T=2 a_{2} b_{2}$. Hence $a_{1}=b_{1}=a_{2} b_{2}=0$, which implies

$$
f^{\prime \prime}=g^{\prime \prime}=0
$$

When $a=-1$ or $b=-1$, taking $a=-1$ and $b=3$ for example, from (3.14)-(3.17) we get

$$
\begin{aligned}
& f^{\prime \prime}=\frac{a_{1}}{f}, \quad f^{\prime 2}=2 a_{1} \ln f+2 a_{2} \\
& g^{\prime \prime}=b_{1} g^{3}, \quad g^{\prime 2}=\frac{b_{1} g^{4}}{2}+2 b_{2}
\end{aligned}
$$

where a_{1}, a_{2}, b_{1} and b_{2} are constants. Substituting the four equations above into (3.1), we have

$$
\begin{equation*}
b_{1} f g^{3}+\frac{a_{1} b_{1} f g^{5}}{2}-8 a_{1} b_{2} f g \ln f+\frac{a_{1} g}{f}-8 a_{2} b_{2} f g+2 a_{1} b_{2} f g=0 \tag{3.19}
\end{equation*}
$$

Noting that $f \neq$ const and $g \neq$ const, from (3.19) we obtain

$$
\left(b_{1} g^{2}+\frac{a_{1} b_{1}}{2} g^{4}\right)+\left(\frac{a_{1}}{f}-8 a_{1} b_{2} \ln f\right)-8 a_{2} b_{2}+2 a_{1} b_{2}=0
$$

which means that $a_{1}=b_{1}=a_{2} b_{2}+a_{1} b_{2}=0$, i.e. $f^{\prime \prime}=g^{\prime \prime}=0$. This contradicts the assumption that $f^{\prime \prime} g^{\prime \prime} \neq 0$. Therefore $f^{\prime \prime} g^{\prime \prime}=0$.
 $f=0, f^{\prime}=0, g=0$ or $g^{\prime}=0$, and then f and g must be polynomials of degree no more than one.

When only one of $f^{\prime \prime}$ and $g^{\prime \prime}$ is zero, without loss of generality, we set $f^{\prime \prime}=0$ and $g^{\prime \prime} \neq 0$. Then we have $f(x)=a x+b$, where a and b are constant. Thus from (3.1) we get

$$
\begin{equation*}
f\left(g^{\prime \prime}-2 a^{2} g g^{2}+a^{2} g^{2} g^{\prime \prime}\right)=0 \tag{3.20}
\end{equation*}
$$

Since $g^{\prime \prime} \neq 0$, from (3.20) we deduce

$$
\begin{equation*}
\frac{2 g g^{2}}{g^{\prime \prime}}-g^{2}=\frac{1}{a^{2}}=\text { const. } \tag{3.21}
\end{equation*}
$$

Hence

$$
\begin{equation*}
g=\frac{1}{a} \tan \left(\frac{c}{a} y+\frac{d}{a}\right) \tag{3.22}
\end{equation*}
$$

where c and d are constants. This completes the proof of Theorem 1.
When $n \geq 3$, without loss of generality we assume that $f_{i}^{\prime \prime} / f_{i} \neq$ const, $i=1, \ldots, r$, while $f_{i}^{\prime \prime} / f_{i}=\eta_{i}=$ const, $i=r+1, \ldots, n$, and we set $\eta=$ $\sum_{k=r+1}^{n} \eta_{k}$.

CASE 1: $r=0$. In this case, from $f_{i}^{\prime \prime} / f_{i}=\eta_{i}, i=r+1, \ldots, n$, we get

$$
\begin{equation*}
f_{i}^{\prime 2}=\eta_{i} f_{i}^{2}+\eta_{i}^{\prime} \tag{3.23}
\end{equation*}
$$

where η_{i}^{\prime} is a constant. Then from (3.5), (3.23), we have

$$
\sum_{i} \eta_{i}+\sum_{i \neq j} F^{2}(i j)\left(\eta_{i} f_{i}^{2}+\eta_{i}^{\prime}\right)\left(-\eta_{j}^{\prime}\right)=0
$$

i.e.,

$$
\begin{equation*}
F^{2} \sum_{i \neq j}\left(\eta_{i}+\frac{\eta_{i}^{\prime}}{f_{i}^{2}}\right) \frac{\eta_{j}^{\prime}}{f_{j}^{2}}=\sum_{i} \eta_{i} \tag{3.24}
\end{equation*}
$$

Since $F \neq 0$, from (3.24) we have

$$
\begin{equation*}
\sum_{i \neq j}\left(\eta_{i}+\frac{\eta_{i}^{\prime}}{f_{i}^{2}}\right) \frac{\eta_{j}^{\prime}}{f_{j}^{2}}=\frac{\sum_{i} \eta_{i}}{F^{2}} \tag{3.25}
\end{equation*}
$$

For all $k=1, \ldots, n$, from (3.25) we obtain

$$
\begin{equation*}
\frac{\eta_{k}^{\prime}}{f_{k}^{2}} \sum_{i \neq k}\left(\eta_{i}+\frac{2 \eta_{i}^{\prime}}{f_{i}^{2}}\right)+\Omega\left(x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right)=\frac{\sum_{i} \eta_{i}}{F^{2}} \tag{3.26}
\end{equation*}
$$

for some Ω. Differentiating (3.26) with respect to x_{k}, we get

$$
\begin{equation*}
\frac{2 \eta_{k}^{\prime} f_{k}^{\prime}}{f_{k}^{3}} \sum_{i \neq k}\left(\eta_{i}+\frac{2 \eta_{i}^{\prime}}{f_{i}^{2}}\right)=\frac{2 f_{k}^{\prime} \sum_{i} \eta_{i}}{F^{2} f_{k}} \tag{3.27}
\end{equation*}
$$

Since $f_{i}^{\prime} \neq 0$, from (3.27) we find that

$$
\begin{equation*}
\eta_{k}^{\prime} \sum_{i \neq k}\left(\eta_{i}+\frac{2 \eta_{i}^{\prime}}{f_{i}^{2}}\right)=\frac{f_{k}^{2}}{F^{2}} \sum_{i} \eta_{i} \tag{3.28}
\end{equation*}
$$

This yields

$$
\eta_{k}^{\prime} \sum_{i \neq k}\left[\left(F(k)_{x_{i}}^{\prime}\right)^{2}+\eta_{i}^{\prime}[F(i k)]^{2}\right]=\sum_{i} \eta_{i}
$$

i.e.,

$$
\begin{equation*}
\eta_{k}^{\prime} \sum_{i \neq k}\left(f_{i}^{\prime 2}+\eta_{i}^{\prime}\right) F(i k)^{2}=\sum_{i} \eta_{i} \tag{3.29}
\end{equation*}
$$

Since for $n \geq 3, F(i k)$ is not a constant, from (3.23) we see that ${f_{i}^{\prime 2}}^{2}+\eta_{i}^{\prime} \neq 0$. Noting that $F(i k)$ and $f_{i}^{\prime 2}+\eta_{i}^{\prime}$ are functions of different independent variables, we see that

$$
\sum_{i \neq k}\left(f_{i}^{\prime 2}+\eta_{i}^{\prime}\right) F(i k)^{2} \neq \text { const. }
$$

Hence

$$
\eta_{k}^{\prime}=\sum_{i} \eta_{i}=0
$$

Thus $f_{i}^{\prime 2}=\eta_{i} f_{i}^{2}, i=1, \ldots, n, \eta_{i} \neq 0$. Further, from $f_{i}^{\prime \prime} / f_{i}=\eta_{i}$ we get $f_{i}\left(x_{i}\right)=a_{i} e^{\sqrt{\eta_{i}} x_{i}}+a_{i}^{\prime} e^{-\sqrt{\eta_{i}} x_{i}}$ when $\eta_{i}>0$, and $f_{i}=b_{i} \cos \sqrt{-\eta_{i}} x_{i}+$ $b_{i}^{\prime} \sin \sqrt{-\eta_{i}} x_{i}$ when $\eta_{i}<0$, where $a_{i}, a_{i}^{\prime}, b_{i}$ and b_{i}^{\prime} are constants.

Noting that $f_{i}^{\prime 2}=\eta_{i} f_{i}^{2}$, we have $a_{i} a_{i}^{\prime}=0$, which means $f_{i}\left(x_{i}\right)=a_{i} e^{\sqrt{\eta_{i}} x_{i}}$ or $f_{i}\left(x_{i}\right)=a_{i}^{\prime} e^{-\sqrt{\eta_{i}} x_{i}}$ when $\eta_{i}>0$; and $b_{i}^{2}+b_{i}^{\prime 2}=0$, which means $f_{i}\left(x_{i}\right) \equiv 0$ when $\eta_{i}<0$.

By the assumption that $F \neq 0$, we see that $\eta_{i}>0$ for $i=1, \ldots, n$, while $\sum_{i} \eta_{i}=0$, which is impossible. Thus $r \neq 0$.

CASE 2: $3 \leq r \leq n$. In this case, from (3.11) we infer that for $i=1, \ldots, r$,

$$
\begin{equation*}
\frac{f_{i}^{\prime \prime}}{f_{i}} \sum_{j \neq i}^{n} \frac{f_{j}^{\prime \prime \prime}}{f_{j}^{\prime}}+\left(\frac{f_{i}^{\prime \prime \prime}}{f_{i}^{\prime}}-\frac{2 f_{i}^{\prime \prime}}{f_{i}}\right) \sum_{j \neq i}^{n} \frac{f_{j}^{\prime \prime}}{f_{j}}+\phi\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=0 \tag{3.30}
\end{equation*}
$$

for some ϕ. Differentiating this with respect to x_{i} gives

$$
\begin{equation*}
\frac{\sum_{j \neq i}^{n} \frac{f_{j}^{\prime \prime \prime}}{f_{j}^{\prime}}}{\sum_{j \neq i}^{n} \frac{f_{j}^{\prime \prime}}{f_{j}}}=-\frac{\left(\frac{f_{i}^{\prime \prime \prime}}{f_{i}^{\prime}}-\frac{2 f_{i}^{\prime \prime}}{f_{i}}\right)_{x_{i}}^{\prime}}{\left(\frac{f_{i}^{\prime \prime}}{f_{i}}\right)_{x_{i}}^{\prime}}=\lambda_{i} \tag{3.31}
\end{equation*}
$$

where $\lambda_{i}=$ const. Then for $j \neq i$, from (3.31) we get

$$
\begin{equation*}
\frac{f_{j}^{\prime \prime \prime}}{f_{j}^{\prime}}-\lambda_{i} \frac{f_{j}^{\prime \prime}}{f_{j}}=a_{i j}=\mathrm{const} \tag{3.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{j \neq i}^{n} a_{i j}=0 \tag{3.33}
\end{equation*}
$$

From (3.32) we see that for all $i \neq k$,

$$
\begin{equation*}
\left(\lambda_{k}-\lambda_{i}\right) \frac{f_{j}^{\prime \prime}}{f_{j}}=a_{k j}-a_{i j} \tag{3.34}
\end{equation*}
$$

which implies that $\lambda_{k}-\lambda_{i}=0$ and $a_{k j}-a_{i j}=0$. Therefore, we assume

$$
\lambda_{1}=\cdots=\lambda_{r}=\lambda \quad \text { and } \quad a_{k j}=a_{i j}=a_{j}
$$

Noting $f_{j}^{\prime \prime} / f_{j}=\eta_{j}, j=r+1, \ldots, n$, for $i=1, \ldots, r$ from (3.33) we have

$$
\begin{equation*}
\sum_{j=r+1}^{n}(\lambda-1) \eta_{j}+\sum_{k=1}^{r} a_{k}-a_{i}=0 \tag{3.35}
\end{equation*}
$$

which implies $a_{1}=\cdots=a_{r}$, where $a_{i}=f_{j}^{\prime \prime \prime} / f_{j}^{\prime}-\lambda f_{j}^{\prime \prime} / f_{j}$.
On the other hand, from (3.31) we get

$$
\begin{equation*}
\frac{\left(\frac{f_{i}^{\prime \prime \prime}}{f_{i}^{\prime \prime}}-\frac{2 f_{i}^{\prime \prime}}{f_{i}}\right)_{x_{i}}^{\prime}}{\left(\frac{f_{i}^{\prime \prime}}{f_{i}}\right)_{x_{i}}^{\prime}}=\lambda \tag{3.36}
\end{equation*}
$$

From (3.36) we have

$$
\begin{equation*}
\frac{f_{j}^{\prime \prime \prime}}{f_{j}^{\prime}}=(2-\lambda) \frac{f_{j}^{\prime \prime}}{f_{j}}+b_{j} \tag{3.37}
\end{equation*}
$$

where b_{j} is a constant.
Comparing (3.32) with (3.37), we get $\lambda=1$ and $a_{i}=b_{i}$ immediately. Thus (3.35) becomes

$$
\sum_{k=1}^{r} a_{k}-a_{i}=0
$$

This yields $a_{i}=0, i=1, \ldots, r$, and so $f_{i}^{\prime \prime} / f_{i}=\eta_{i}=$ const, $i=1, \ldots, n$. This is a contradiction.

Case 3: $r=2$. In this case, (3.11) becomes

$$
\begin{equation*}
\left(\frac{f_{1}^{\prime \prime}}{f_{1}}+\eta\right)\left(\frac{f_{2}^{\prime \prime \prime}}{f_{2}^{\prime}}-\frac{f_{2}^{\prime \prime}}{f_{2}}\right)+\left(\frac{f_{2}^{\prime \prime}}{f_{2}}+\eta\right)\left(\frac{f_{1}^{\prime \prime \prime}}{f_{1}^{\prime}}-\frac{f_{1}^{\prime \prime}}{f_{1}}\right)=0 \tag{3.38}
\end{equation*}
$$

where $\eta=\sum_{k=3}^{n} \eta_{k}$. Hence

$$
\frac{\frac{f_{2}^{\prime \prime \prime}}{f_{2}^{\prime}}-\frac{f_{2}^{\prime \prime}}{f_{2}}}{\frac{f_{2}^{\prime \prime}}{f_{2}}+\eta}=-\frac{\frac{f_{1}^{\prime \prime \prime}}{f_{1}^{\prime}}-\frac{f_{1}^{\prime \prime}}{f_{1}}}{\frac{f_{1}^{\prime \prime}}{f_{1}}+\eta}=K=\mathrm{const}
$$

which implies

$$
\begin{align*}
& \frac{f_{2}^{\prime \prime \prime}}{f_{2}^{\prime}}=(K+1) \frac{f_{2}^{\prime \prime}}{f_{2}}+\eta K \tag{3.39}\\
& \frac{f_{1}^{\prime \prime \prime}}{f_{1}^{\prime}}=(1-K) \frac{f_{1}^{\prime \prime}}{f_{1}}-\eta K \tag{3.40}
\end{align*}
$$

As mentioned above, for $i=3, \ldots, n, f_{i}^{\prime \prime}=\eta_{i} f$ and $f_{i}^{\prime 2}=\eta_{i} f_{i}^{2}+\eta_{i}^{\prime}$, and
from (3.11) we get

$$
\begin{align*}
\frac{f_{1}^{\prime \prime}}{f_{1}}+\frac{f_{2}^{\prime \prime}}{f_{2}}+f_{1}^{2} f_{2}^{2} & \sum_{i \neq j}^{n} G(i j) f_{i}^{\prime 2}\left(f_{j} f_{j}^{\prime \prime}-f_{j}^{\prime 2}\right) \tag{3.41}\\
& +\left(f_{1}^{\prime 2} f_{2}^{2}+f_{1}^{2} f_{2}^{\prime 2}\right) \sum_{i=3}^{n} G(j)^{2}\left(f_{j} f_{j}^{\prime \prime}-f_{j}^{\prime 2}\right) \\
& +\left[f_{1}^{2}\left(f_{2} f_{2}^{\prime \prime}-f_{2}^{\prime 2}\right)+f_{2}^{2}\left(f_{1} f_{1}^{\prime \prime}-f_{1}^{\prime 2}\right)\right] \sum_{i=1}^{n} G(i)^{2} f_{i}^{\prime 2} \\
& +\left[f_{1}^{\prime 2}\left(f_{2} f_{2}^{\prime \prime}-f_{2}^{\prime 2}\right)+f_{2}^{\prime 2}\left(f_{1} f_{1}^{\prime \prime}-f_{1}^{\prime 2}\right)\right] G=0
\end{align*}
$$

where $G=f_{3} \ldots f_{n}$ and

$$
G(i)=f_{3} \ldots f_{i-1} f_{i+1} \ldots f_{n}, \quad G(i j)=f_{3} \ldots f_{i-1} f_{i+1} \ldots f_{j-1} f_{j+1} \ldots f_{n}
$$

Differentiating (3.41) with respect to x_{1} and x_{2} and substituting $f_{i}^{\prime \prime} / f_{i}=\eta_{i}$, (3.23), (3.39) and (3.40) into (3.11), after simplifying we get

$$
\begin{equation*}
(2-K) \frac{f_{1}^{\prime \prime}}{f_{1}} \sum_{i=3}^{n} \frac{\eta_{i}^{\prime}}{f_{i}^{2}}+(2+K) \frac{f_{2}^{\prime \prime}}{f_{2}} \sum_{i=3}^{n} \frac{\eta_{i}^{\prime}}{f_{i}^{2}}+2 \sum_{i, j=3, i \neq j}^{n}\left(\eta_{i}+\frac{\eta_{i}^{\prime}}{f_{i}^{2}}\right) \frac{\eta_{j}^{\prime}}{f_{j}^{2}}=0 \tag{3.42}
\end{equation*}
$$

Differentiating with respect to x_{1} and x_{2}, we get respectively

$$
\begin{equation*}
(2-K)\left(\frac{f_{1}^{\prime \prime}}{f_{1}}\right)_{x_{1}}^{\prime} \sum_{i=3}^{n} \frac{\eta_{i}^{\prime}}{f_{i}^{2}}=0 \tag{3.43}
\end{equation*}
$$

and

$$
\begin{equation*}
(2+K)\left(\frac{f_{2}^{\prime \prime}}{f_{3}}\right)_{x_{1}}^{\prime} \sum_{i=3}^{n} \frac{\eta_{i}^{\prime}}{f_{i}^{2}}=0 \tag{3.44}
\end{equation*}
$$

Since $2+K=2-K=0$ is impossible, we see that $\eta_{i}^{\prime}=0, i=3, \ldots, n$. Then (3.11) becomes

$$
\begin{align*}
\eta+\frac{f_{1}^{\prime \prime}}{f_{1}}+\frac{f_{2}^{\prime \prime}}{f_{2}}+G^{2}(\eta & {\left[f_{1}^{2}\left(f_{2} f_{2}^{\prime \prime}-f_{2}^{\prime 2}\right)+f_{2}^{2}\left(f_{1} f_{1}^{\prime \prime}-f_{1}^{\prime 2}\right)\right] } \tag{3.45}\\
& \left.+\left[f_{1}^{\prime 2}\left(f_{2} f_{2}^{\prime \prime}-f_{2}^{\prime 2}\right)+f_{2}^{\prime 2}\left(f_{1} f_{1}^{\prime \prime}-f_{1}^{\prime 2}\right)\right]\right)=0
\end{align*}
$$

Since $\eta+f_{1}^{\prime \prime} / f_{1}+f_{2}^{\prime \prime} / f_{2} \neq 0$, we see that $G^{2}=$ const, which means that $f_{i}^{\prime}=0$ for $i \geq 3$, contrary to assumption. So we get $r \neq 2$.

Case 4: $r=1$. In this case, (3.11) becomes

$$
\begin{equation*}
\eta\left(\frac{f_{1}^{\prime \prime \prime}}{f_{1}^{\prime}}-\frac{f_{1}^{\prime \prime}}{f_{1}}\right)=0 \tag{3.46}
\end{equation*}
$$

which means $\eta=\sum_{i=2}^{n} \eta_{i}=0$. Substituting (3.23) into (3.11) and using
$f_{i}^{\prime \prime} / f_{i}=\eta_{i}$, after simplifying we get

$$
\begin{equation*}
\frac{f_{1}^{\prime \prime}}{f_{1}^{3}}+\bar{G}^{2} \sum_{i, j=2, i \neq j}^{n}\left(\eta_{i}+\frac{\eta_{i}^{\prime}}{f_{i}^{2}}\right) \frac{\left(-\eta_{j}^{\prime}\right)}{f_{j}^{2}}+\left(\frac{f_{1}^{\prime \prime}}{f_{1}}-2 \frac{f_{1}^{\prime 2}}{f_{1}^{2}}\right) \bar{G}^{2} \sum_{i=2}^{n} \frac{\eta_{i}^{\prime}}{f_{i}^{2}}=0 \tag{3.47}
\end{equation*}
$$

where $\bar{G}=f_{2} \ldots f_{n}$. Because $f_{1}^{\prime \prime} / f_{1} \neq$ const, differentiating (3.47) with respect to x_{1}, we get

$$
\begin{equation*}
\left(\frac{f_{1}^{\prime \prime}}{f_{1}^{3}}\right)_{x_{1}}^{\prime}+\left(\frac{f_{1}^{\prime \prime}}{f_{1}}-2 \frac{f_{1}^{\prime 2}}{f_{1}^{2}}\right)_{x_{1}}^{\prime} \bar{G}^{2} \sum_{i=2}^{n} \frac{\eta_{i}^{\prime}}{f_{i}^{2}}=0 \tag{3.48}
\end{equation*}
$$

If $\eta_{i}^{\prime} / f_{i}^{2}=0$, we have $\eta_{i}^{\prime}=0(i \geq 2)$ and $f_{1}^{\prime \prime}=0$, which means $f_{1}^{\prime \prime} / f_{1}=0$ $=$ const. This is a contradiction.

If $\left(f_{i}^{\prime \prime} / f_{i}^{3}\right)_{x_{i}}^{\prime}=0$ and $\left(f_{1}^{\prime \prime} / f_{1}-2 f_{1}^{\prime 2} / f_{1}^{2}\right)_{x_{i}}^{\prime}=0$, we set

$$
\begin{align*}
& \frac{f_{1}^{\prime \prime}}{f_{1}^{3}}=K_{1}=\text { const }, \tag{3.49}\\
& \frac{f_{1}^{\prime \prime}}{f_{1}}-2 \frac{f_{1}^{\prime 2}}{f_{1}^{2}}=K_{2}=\text { const. } \tag{3.50}
\end{align*}
$$

Substituting (3.49) into (3.50), we get

$$
\begin{equation*}
K_{1} f_{1}^{4}-2 f_{1}^{2}=K_{2} f_{1}^{2} \tag{3.51}
\end{equation*}
$$

By differentiating with respect to x_{1}, from (3.51) we have

$$
\begin{equation*}
2 K_{2} f_{1}^{2}=0 \tag{3.52}
\end{equation*}
$$

which means $K_{2} \equiv 0$. Then (3.47) becomes

$$
\begin{equation*}
\bar{G}^{2} \sum_{i, j=2, i \neq j}^{n}\left(\eta_{i}+\frac{\eta_{i}^{\prime}}{f_{i}^{2}}\right) \frac{\eta_{j}^{\prime}}{f_{j}^{2}}=K_{1} \tag{3.53}
\end{equation*}
$$

Similarly to the passage from (3.24) to (3.29) we get

$$
\begin{equation*}
\eta_{k}^{\prime} \sum_{i \neq k} G(i k)^{2}\left(f_{i}^{\prime 2}+\eta_{i}^{\prime}\right)=K_{1} \tag{3.54}
\end{equation*}
$$

When $n \geq 4$, similarly to (3.29) we have

$$
\begin{equation*}
\sum_{i \neq k} G(i k)^{2}\left(f_{i}^{\prime 2}+\eta_{i}^{\prime}\right) \neq \text { const } \tag{3.55}
\end{equation*}
$$

which means $\eta_{k}^{\prime}=K_{1}=0$. Thus we have $f_{1}^{\prime \prime}=0$ and $f_{1}^{\prime \prime} / f_{1}=0=$ const, which is a contradiction.

When $n=3$, (3.54) yields

$$
\begin{align*}
& \eta_{2}^{\prime}\left(f_{3}^{\prime 2}+\eta_{3}^{\prime}\right)=K_{1} \tag{3.56}\\
& \eta_{3}^{\prime}\left(f_{2}^{\prime 2}+\eta_{2}^{\prime}\right)=K_{1} \tag{3.57}
\end{align*}
$$

which means that $f_{3}^{\prime}=\sqrt{\eta_{3}^{\prime}}=$ const and $f_{2}^{\prime}=\sqrt{\eta_{2}^{\prime}}=$ const. Then from (3.50), (3.51) and $K_{2}=0$, we get

$$
\begin{equation*}
f_{1}\left(x_{1}\right)= \pm \frac{1}{\sqrt{K_{1} / 2} x_{1}+C_{1}} \tag{3.58}
\end{equation*}
$$

where C_{1} is a constant. From (3.56) and (3.57) we see that $\eta_{2}=\eta_{3}=0$ and $\eta_{2}^{\prime} \eta_{3}^{\prime}=K_{1} / 2$, and further

$$
f_{2}\left(x_{2}\right)=\sqrt{\eta_{2}^{\prime}} x_{2}+C_{2}, \quad f_{3}\left(x_{3}\right)=\sqrt{\eta_{3}^{\prime}} x_{3}+C_{3}
$$

where C_{2} and C_{3} are constants. This shows that the hypersurface is a quadratic cone.

From the proof above, we see that among the $f_{i}^{\prime}\left(x_{i}\right), i=1, \ldots, n$, no more than three are non-zero, while others satisfy $f_{i}^{\prime}\left(x_{i}\right)=0$ so that $f_{i}\left(x_{i}\right)$ $=$ const. Thus we complete the proof of Theorem 2 .

Acknowledgements. The authors would like to express their thanks to the referees for their valuable suggestions. We could not have prepared the present version of this paper without the referees' help.

REFERENCES

[1] F. Dillen, A. Martinez, F. Milan, F. G. Santos and L. Vrancken, On the Pick invariant, the affine mean curvature and the Gauss curvature of affine surfaces, Results Math. 20 (1991), 622-642.
[2] H. L. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), 141-149.
[3] M. A. Magid, Timelike Thomsen surfaces, Results Math. 20 (1991), 691-697.
[4] F. Manhart, Die Affinminimalrückungsflächen, Arch. Math. (Basel) 44 (1985), 547-556.
[5] H. F. Sun and C. Chen, On affine translation hypersurfaces of constant mean curvature, Publ. Math. Debrecen 63 (2004), 381-390.
[6] I. Van de Woestyne, A new characterization of the helicoids, in: Geometry and Topology of Submanifolds, V, World Sci., Singapore, 1993, 267-273.

Department of Mathematics
Beijing Institute of Technology
Beijing, 100081 China
E-mail: xinjilonely@tom.com sunhuafei@263.net

