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CALABI-YAU STABLE MODULE CATEGORIES OF FINITE TYPE

BY

JERZY BIALKOWSKI and ANDRZEJ SKOWRONSKI (Torur)

Abstract. We describe the stable module categories of the self-injective finite-dimen-
sional algebras of finite representation type over an algebraically closed field which are
Calabi-Yau (in the sense of Kontsevich).

Introduction. Throughout the paper, by an algebra we mean a finite-
dimensional associative K-algebra with an identity over a fixed algebraically
closed field K. For an algebra A, we denote by mod A the category of
finite-dimensional (over K') right A-modules and by D the standard duality
Homp (—, K) on mod A. An algebra A is said to be of finite type if mod A
admits only finitely many isomorphism classes of indecomposable modules.
Further, an algebra A is called self-injective if A 4 is injective, or equivalently
the projective A-modules are injective. An important class of self-injective
algebras is formed by the symmetric algebras A for which A and D(A) are
isomorphic as A- A-bimodules.

Following Bondal and Kapranov [7], a triangulated K-linear category A is
said to have a Serre duality if there is a triangle autoequivalence S : A — A,
called a Serre functor, such that there are natural K-linear automorphisms
Hom 4 (A, B) = DHom (B, S(A)) for all objects A and B in A, where D =
Hompg (—, K). Moreover, if S and S’ are two Serre functors of A, then they
are naturally isomorphic (see [7], [20]). Further, following Kontsevich [19]
(see also [18]), a triangulated K-linear category .4, with shift functor T, is
said to be Calabi—Yau if an iterated shift functor 7™ is a Serre duality of A
for some integer m > 0.

An important class of triangulated K-linear categories of algebraic nature
is formed by the stable module categories mod A of self-injective algebras A,
where the shift 7" is given by the inverse QZI of Heller’s syzygy functor (see
[16]). Recall that the objects of mod A are the objects of mod A without
projective direct summands, and for any two objects M and N of mod A the
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space of morphisms from M to N in mod A is the quotient Hom 4 (M, N) =
Homu(M,N)/P(M,N), where P(M,N) is the subspace of Hom4 (M, N)
consisting of all A-homomorphisms which factorize through projective A-
modules. Then we have two mutually inverse Heller’s syzygy functors {24,
_(221 : mod A = mod A which assign to an object M of mod A respectively
the kernel 24(M) of its projective cover P4(M) — M and the cokernel
Q2,1 (M) of its injective envelope M — I,(M) in mod A. Further, denote
by v4 : mod A = mod A the Nakayama functor D Hom(—, A). By general
theory, the Auslander—Reiten translation T4 = D Tr is equivalent to (21241/14 =
1/,4(2124. In particular, 74 = !2124 if A is symmetric. Two self-injective algebras
A and A are called stably equivalent if the stable module categories mod A
and mod A are equivalent.

It is known that S = 24v4 is a Serre duality of mod A (see [12, (1.2)]).
Therefore, the stable module category mod A of a self-injective algebra A is
Calabi-Yau if and only if v4 2 2, (equivalently, 74 = 2, 1) for some
integer m > 0. In that case, the smallest integer m > 0 with the property
va =2 2, is called the stable Calabi-Yau dimension of A (see [12]). It is
shown in [12, Propositions 2.1 and 2.2] that a connected self-injective algebra
A is of stable Calabi-Yau dimension 0 (respectively, 1) if and only if A is
Morita equivalent to a Nakayama algebra of Loewy length at most 2 (respec-
tively, a local Nakayama algebra of Loewy length at least 3). In particular,
every self-injective algebra A of stable Calabi—Yau dimension at most 1 is
of finite representation type. Further, it follows from [6, Theorem 1.2] that
every connected self-injective algebra A of stable Calabi—Yau dimension 2 is
Morita equivalent to a deformed preprojective algebra of generalized Dynkin
type. We mention that, with the exception of a few cases of small dimension,
the deformed preprojective algebras of generalized Dynkin type are of wild
representation type (see [12, Theorem 3.7]). Finally, we denote by I'} the
stable Auslander—Reiten quiver of A, obtained from its Auslander—Reiten
quiver I'4 by removing the projective-injective vertices and the arrows at-
tached to them. Then we also get the induced automorphisms {24, _QAfl, TA,
Tgl, va, I/Zl of I'}.

It has been proved in [11] and [12] that the class of all connected sym-
metric algebras of tame representation type and with the Calabi—Yau stable
module categories coincides with the class of algebras which are Morita
equivalent to the algebras of the following three types: socle deformations of
the symmetric algebras of Dynkin type, socle deformations of the symmetric
algebras of tubular type, and algebras of quaternion type. We would like to
mention that there are also wild self-injective algebras with the Calabi—Yau
stable module categories: for example, most of the preprojective algebras of
Dynkin type have this property (see [4], [6], [13]). Further, in [12, (4.5)],
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a class of self-injective algebras of finite representation type whose stable
module categories are not Calabi—Yau is exhibited. We also refer to [1] for
the structure of triangulated categories with finitely many indecomposable
objects.

The aim of this note is to describe the Morita equivalence classes of all
connected self-injective algebras of finite type whose stable module categories
are Calabi—Yau.

From now on we use the term algebra for a basic, connected algebra
over K. By a Dynkin graph we mean a graph of one of the Dynkin types:
A, (n>1),D, (n >4), E¢, E7, Eg. For a Dynkin graph A, denote by ha
the Cozeter number of A. Recall that hx is the order of the Coxeter element
of the Coxeter (Weyl) group of A, so that

hy =n+1, h]D)n =2n — 2, h]Eg =12, hE7 =18, hEg = 30.

n

Moreover, we define h¥ to be ha/2 if A = Ay_3 (I > 1), D, (n even), E,
Esg, and ha for the remaining Dynkin graphs A .

Let A be a non-simple self-injective algebra of finite type. By general
theory, we may associate to A three combinatorial invariants: a Dynkin graph
A(A) and integers s(A) > 1 and t(A) € {1,2,3} (see Section 1 for the
details).

The following theorem is the main result of the paper.

THEOREM. Let A be a non-simple self-injective algebra of finite type.
Then mod A is Calabi—Yau if and only if the following conditions are satis-

fied:

(1) ged(s(4), By p) = 1.
(2) t(A) <2.
(3) s(A) and t(A) have the same parity if A(A) = Ay_3 for somel > 2.

It would be interesting to determine the stable Calabi-Yau dimension
of self-injective algebras of finite representation type. For the symmetric
algebras of finite representation type it is given in [12, Theorem 4.3].

For basic background on the representation theory applied here we refer
to [3], [5], [23], [24], [25], [26], [29].

1. Self-injective algebras of finite type. By general theory (see [10],
[17], [21], [22], [26], [27], |28]), the class of self-injective algebras of finite type
may be divided into two disjoint classes: the standard algebras which admit
simply connected Galois coverings, and the remaining non-standard algebras.
The non-standard self-injective algebras of finite type occur only in charac-
teristic 2 and are symmetric (see [22], [27], [28]), and consequently their
stable module categories are Calabi—Yau. Therefore, in order to describe the
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Calabi—Yau stable module categories of finite type, we may restrict ourselves
to the standard self-injective algebras of finite type. We will now present a
suitable description of these algebras and relevant facts.

An important class of self-injective algebras is formed by the orbit al-
gebras B/G, where B is the repetitive algebra of the algebra B (see [17]),
and G is an admissible group of automorphisms of B. Recall that

B =P(Br® D(B)y)

with By = B and D(B)j, = D(B) for all k € Z, and the multiplication in B
is defined by

(ag, fr) - (b, gx) = (arbr, axgr + frbrs1)k

for ag,br € B, fx, 9k € D(B)g. For a fixed set £ = {e; | 1 < i < n} of
orthogonal primitive idempotents of B with 15 = e; + --- + e,, consider
the canonical set & = {ejrx | 1 <5 < n, k€ Z} of orthogonal primitive
1demp0tents of B such that 1 B, = €1k + - —|— enk- By an automorphism
of B we mean a K- algebra automorphlsm of B which fixes the chosen set
g of orthogonal primitive idempotents of B. A group G of automorphisms
of B is said to be admissible if the induced action of G on & is free and
has finitely many orbits. Then the orbit algebra B/G (see [15]) is a self-
injective algebra and the G-orbits in & form a canonical set of orthogonal
primitive idempotents of B/G whose sum is the identity of B/G. We denote
by vy the Nakayama automorphism of B whose restriction to each copy
By, @ D(B)y, is the identity map By ® D(B)x — Bg+1 @ D(B)gy1. Then the
infinite cyclic group (vg) generated by v is admissible and B/ (vg) is the
trivial extension T(B) = B x D(B) of B by D(B), and it is a symmetric
algebra. An automorphism ¢ of B is said to be positive (respectively, rigid)
if p(By) C > ,>x(Bi) (respectively, ¢(By) = By) for any k € Z. Moreover,
¢ is said to be strictly positive if o is positive but not rigid.

Let A be a Dynkin graph A, (n > 1), D, (n > 4), E, (n =6,7,8). B
a tilted algebra of Dynkin type A we mean an algebra B = Endy(T') where
H is the path algebra K A of a quiver A with the underlying graph A and
T is a multiplicity-free tilting H-module (see [3], [16], [23]).

The following theorem gives a description of the non-simple standard
self-injective algebras of finite type (see [10], [21], [22], [28], and [26, Theo-
rem 3.5]).

THEOREM 1.1. Let A be a non-simple standard self-injective algebra. The
following conditions are equivalent:

(i) A is of finite type.
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(ii)) A = E/(Ggps), where B is a tilted algebra of Dynkin type A, ¢ is
a strictly positive primitive root of the Nakayama automorphism vg
and o is a rigid automorphism of B of finite order.

Therefore, we may associate to any non-simple standard self-injective
algebra A = B/(0p®) of finite type the numerical data: the Dynkin type
A(A) = A(B) of the tilted algebra B, the degree e(A) of the primitive root
¢ of vg, the (torsion) order t(A) of the automorphism o, and the power
s(A) = s of ¢. We also note that f(A) = s(A)/e(A) is the frequency of A
and typ(A) = (A(A), f(A),t(A)) is the type of A, defined in [2, (2.1)].

The following theorem proved by Asashiba [2, Theorem 2.2] describes
the stable equivalence classes of all non-simple, basic, connected, standard,
self-injective algebras of finite type.

THEOREM 1.2. Let A and A’ be two non-simple, standard, self-injective
algebras of finite type. Then the following conditions are equivalent:

(i) A and A’ are stably equivalent.
(i) typ(4) = typ(A").
Further, we have the following proposition.

PROPOSITION 1.3. The set of types of non-simple standard self-injective
algebras of finite type is the disjoint union of the following sets:

{(Ay,s/n,1) | n,s € N}; {(Dy,s,2) | n,s € N, n > 4};
{(Agpy1,5,2) | p,s € NE; {(Dy,5,3) | s € N};

{(Dy,s,1) | n,s € N, n >4}, {(En,s,1) | n=06,7,8, s € N};
{(D3p,s/3,1) | m,s € N, m >2,3ts};  {(Eg,s,2) | s €N}

For a Dynkin graph A, we put ma = ha — 1.
The following proposition describes the action of the syzygy functors (25

on the stable module categories mod B of the repetitive algebras B of tilted
algebras B of Dynkin types (see [9], [12, Proposition 4.2] and [14, Section 6]).

PROPOSITION 1.4. Let B be a tilted algebra of Dynkin type A. Then we
have equivalences of functors on the category mod B:

(i) 25 = TgA/2 for A=Ay, D, (n even), E7, Eg.

(ii) 25 = O'TgA/Q for A = A, (n > 3 odd), D, (n odd), E¢ and an

automorphism o of order 2, commuting with 7.
(iii) 25 = QTglA/Q for A = A, (n even) and an automorphism o with
2 _
- =Tz

. . R
In particular, in all cases, we have Q% = TEA.
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The following proposition (see [10], [17]) describes the induced action of
the Nakayama automorphism vz on the stable module category mod B of
the repetitive algebra B of a tilted algebra B of Dynkin type.

PROPOSITION 1.5. Let B be a tilted algebra of Dynkin type A. Then

vy =2 7.4 as endofunctors on mod B.
B

Let B be a tilted algebra of Dynkin type and G an admissible infinite
cyclic group of automorphlsms of B. Then there are a canonical Galois cov-
ering F : B — B/G with Galois group G (see [15, (3.1)]) and the associated

push-down functor
F) :mod B — B/G.

Moreover, Bis locally representation-finite, by [17]. Therefore, applying [8,
Section 3] and [15, Section 3|, we obtain the following proposition.

PROPOSITION 1.6. Let B be a tilted algebra of Dynkin type, G an admis-
sible infinite cyclic group of automorphisms of B and A = B/G. Then the
following statements hold:

(i) Fy : mod B — mod A is eract, dense, and induces a bijection be-
tween the G-orbits of isomorphism classes of indecomposable finite-
dimensional B-modules and the isomorphism classes of indecompos-
able finite-dimensional A-modules.

(ii) F/\Qé = OAF.

(iil) Fn1s = 1A F).

It is known (see |26, Theorem 3.10]) that, if A is a non-simple standard
self-injective algebra of finite type and e(A) > 2, then one of the following
cases holds:

(1) A(A) = A, and e(A) = n for some n > 2,
(2) A(A) = D3y, and e(A) = 3 for some m > 2
see also Proposition 1.3). Moreover, may, = n and mp, = 2(3m)—3 =
n 3m

3(2m—1). Therefore, we may assign to any non-simple standard self-injective
algebra A the natural number

r(A) = s(A)t(A)ma(a)/e(A).
We have the following consequence of Theorem 1.1 and Propositions 1.5 and
1.6 (see also [15, Theorem 3.6]).

COROLLARY 1.7. Let A be a non-simple standard self-injective algebra of
finite type. Then r(A) is the order of the Auslander—Reiten translation T4.

We end this section with a description of non-standard self-injective al-
gebras of finite type. Recall that two self-injective algebras A and A are called
socle equivalent if the factor algebras A/soc A and A/soc A are isomorphic.
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Then we have the following version of a result from [22], [27], [28] (see [26,
Theorem 3.8 and Proposition 3.9]).

THEOREM 1.8. Let A be a self-injective algebra. Then A is non-standard
of finite type if and only if char K = 2 and A is socle equivalent to a standard
algebra A’ of the form E/(gp), where B is a tilted algebra of Dynkin type D3,
and ¢ 1s a strictly positive 3-root of vg.

For a non-standard self-injective algebra A of finite type, the standard
algebra A’ socle equivalent to A is uniquely determined (up to isomorphism)
by A, and is called the standard form of A. Moreover, the stable Auslander—
Reiten quivers I} and I, are isomorphic as translation quivers. Therefore,
we may associate to A the numerical data A(A) = A(A") = Dsyp, e(A4) =
e(A)=3,t(A)=t(A") =1, s(A) =s(A)=1,and r(A) =r(A) =2m — 1.

2. Proof of the Theorem. Let A be a non-simple self-injective algebra
of finite type. Assume first that A is non-standard. Then A(A) = Ds,y,
s(A) =1, t(A) = 1 satisfy conditions (1)—(3) of the theorem. Moreover, A is a
symmetric algebra (see [22], [27], [28]) with mod A Calabi—Yau, because v4 &
Lmod 4 and 2™ 22 1,04 4 for some m > 0 (see also [12, Theorem 4.3)).

From now on we assume that A is a non-simple standard self-injective
algebra of finite type. Then A has a canonical presentation A = B/(o¢®)
given by Theorem 1.2. We abbreviate below the associated numerical data:
A=A(A),e=¢e(A), t =t(A), s=s(A), and r = r(A). We divide the proof
into several steps.

PROPOSITION 2.1. Assume t(A) =1 and A(A) # Ay 3 for 1 > 2. Then
mod A is Calabi—Yau if and only if ged(s(A), h*A(A)) =1.

Proof. We know that mod A is Calabi—Yau if and only if Tgl =~ 4 for
some integer d > —1. Moreover, by Corollary 1.7, r = stma/e = sma/e
is the order of 74. According to Proposition 1.4, we have three cases to
consider.

(a) Assume A = Ay, D, (n even), E7, or Eg. Then h¥y = ha/2. Applying
Proposition 1.6, we conclude that 24 =2 TZA. Suppose mod A is Calabi—Yau,
and Tgl > Qi for some d > —1. Then we obtain the equivalences of functors

dh*+1 * - N
Th 2 = (1) A =2 Q2%7a = Tinoa 4,
and consequently, passing to the stable Auslander—Reiten quiver I, we

. . _dhi+1
obtain the equality 7, at

=1 rs- Hence

dh’y +1=0 (modr).

Since r = sma /e, this immediately implies the required condition ged(s, k%)
= 1. Conversely, assume that gcd(s, h%) = 1. Since ged(ma, ha) = 1 forces
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ged(ma/e, h?y) = 1, we then obtain ged(r,h%) = 1. But then A% + rZ

generates the cyclic group Z/rZ, and consequently there exists d > 1 such

that d(h* 4+ rZ) = (r — 1) + rZ, or equivalently dh*y +1 =0 (modr). Thus
2h7a = (1424 = 742 2 Lpoa .

Hence, Tgl = _Qf;l‘, and so mod A is Calabi—Yau.

(b) Assume A = A,, (n > 3 odd), D,, (n odd), or Eg. Then h¥ = ha,
because A 7é Ay 3 for [ > 1. Applying Propositions 1.4 and 1.6, we conclude
that 24 = A/ for an automorphism ¢ of mod A of order 2, commuting
with 74. Suppose mod A is Calabi-—Yau, and TAl =~ _Qd for some d > —1.
Then we obtain

d_dha/2+1 ha/2\d
o'Ty )

d
= (074 TA = 02374 = Inod A

Hence d is even and passing to I"} we conclude that o j}m/ 241 _ 1ps. Thus

the order r = sma /e of 74 divides dha/2+ 1, or equivalently dhA/2 +1=0
(modr). Let d = 2d;. Then djha+1 = 0 (modr), and hence ged(s, ha) = 1.
Conversely, assume that ged(s,ha) = 1. Then, as in (a), we infer that there
is an integer d; > 1 such that diha + 1 =0 (modr). Then, for d = 2d;, we
have dha/2+ 1 =0 (modr). Hence,

~ ha/2 dha/2+1 dha /241 ~,
%7y = (O’TAA/ )ity = o?h7 Al _ Ty A/ o Imod A-
Thus, Tgl > fo‘, and consequently mod A is Calabi—Yau.

(c) Assume A = A, (n even). Then h¥, = ha. Applying Propositions
1.4 and 1.6, we conclude that 24 = QTZZA/ % for an automorphism o of
mod A with o> = 74. Suppose mod A is Calabi-Yau, and Tgl ~ fol for some
d > —1. Then we obtain

d_dma/2+1 ma/2\d d
0Ty = (QTA ) TA S (2 ATA = 1modAv

and hence d = 2d; for some d; > 0. Then

diha+1 di _dima+1 d_dma/2+1 ~
Ty AT =TT AT = 00y = lmod 4,

and consequently passing to I} we infer that lehAH 1ps, and hence

r = sma/e divides diha+1. In particular, we obtaln ged(s, h¥y) = 1, because
= ha. Conversely, assume that ged(s, h¥) = 1. Since gcd(ma/e, ha) =1,

we have ged(r, ha) = 1, and so ha+77Z generates the group Z/rZ. Therefore,

there exists an integer d; > 1 such that djha+1 =0 (modr). Then, taking

d = 2d;, we obtain

TA =0

2
a/ ) 2dy d1mA+1 zhhAJrl -SRI

0% GTA (QTA

Thus, 24 =Ty A , and hence mod A is Calabi-Yau. =
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LEMMA 2.2. Assume t(A) =1 and A(A) = Ay _3 for some l > 2. Then
mod A is Calabi-Yau if and only if ged(s(A), h*A(A)) =1 and s(A) is odd.

Proof. We have h*y = ha/2 = 2l — 1. Further, since 4/ — 3 is odd and

greater than 1, applying Propositions 1.4 and 1.6, we have (24 = O’TZ*A for an
automorphism o of mod A of order 2, commuting with 74. We also note that
ged(s,ha) = 1 if and only if s is odd and ged(s, h¥) = 1. Then the lemma
follows by the argument applied in part (b) of the proof of Proposition 2.1. m

LEMMA 2.3. Assume t(A) = 3. Then mod A is not Calabi-Yau.

Proof. Since t = t(A) = 3, it follows from Proposition 1.3 that A = Dy,
and so ha = 6, h’y = 3, ma = 5. Applying Proposition 1.4, we conclude that
24 = Tz. Suppose mod A is Calabi—Yau, and Tgl i Qi for some d > —1.
Then we obtain

3 = (1) 74 2 %74 2 1ied -
But then passing to I} we conclude that Tid+1 = 1py, and so the order

r = stma = 15s of 74 divides 3d 4+ 1, a contradiction. Therefore, mod A is
not Calabi-Yau. =

We will now analyse the case when ¢t = t(A) = 2. Observe that, by
Proposition 1.3, t(A) = 2 forces A = A(A) to be one of the graphs: A,
(n > 3 odd), Dy, or Eg.

PROPOSITION 2.4. Assume t(A) = 2 and A(A) = Dy, with n even. Then
mod A is Calabi—Yau if and only if ged(s(A), h*A(A)) =1.

Proof. Observe first that h¥, = ha/2 = n—11is odd, and hence gcd(s, h¥)
= 1 is equivalent to gecd(st, h¥y) = 1. Since ged(ma/e, h’y) = 1, the latter
is also equivalent to ged(r, hYy) = ged(stma/e, h¥y) = 1. Further, it follows
from Propositions 1.4 and 1.6 that 2,4 = TZA = Tz_l. Assume mod A is
Calabi—Yau, and Tgl — Qi for some d > —1. Then we have

dh*+1 h*
TA av - (TAA)dTA = QiTA = 1m_oclAa

and consequently passing to I} we infer that Tjhz—'—l = 1pg, and hence
r = stma/e divides dh*y+1. Then ged(r, h%y) = 1, and hence ged(s, h¥) = 1.
Conversely, if ged(s, h*,) = 1 then ged(r, hY,) = 1 and there is d > 1 such
that dh* +1 =0 (modr). Hence,

byt

~ h7 ~

Thus, Tgl = Ql‘f‘ and mod A is Calabi-Yau. =
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PROPOSITION 2.5. Assume t(A) = 2 and A(A) is one of the graphs D,
(n odd), Eg, or A, (n > 3 odd but not of the form 4l — 3 for some | > 2).
Then mod A is Calabi—Yau if and only if ged(s(A), h*A(A)) =1.

Proof. Observe that, in the cases considered, h¥, = ha and ha/2 are
even. Since A = B/ (au%) for a rigid automorphism o of B of order 2,

invoking Propositions 1.5 and 1.6 we conclude that 734 = o for the induced

automorphism o of mod A of order 2. Hence, TismA = Ilmod 4 implies that

TA = UTZmAH. Further, applying Propositions 1.4 and 1.6, we obtain 24 =

O'TZA/ % for the same automorphism o of mod A. Assume mod A is Calabi-
Yau, and let TA_l =~ _Qfl for some d > —1. Then we have

d+1_dha/24+sma+1 ha/2\d sma+1y ~ Hd ~
J+TA / :(O'TA/)(O’TAA ) =2 02974 = Imod A-

Then
2(dha/24+sma+1) d+1_dha/2+sma+1\2 ~
TA = (0""'7y )" = lhnod 4,

and consequently passing to I'§ we conclude that Ti(dhA/ Zhsmatl) _ rs

and so the order r = 2smp of 74 divides 2(dha/2 + sma + 1). Hence sma
divides dha/2 + 1 and we have ged(s,ha/2) = 1. Since ha/2 is even, s is
odd, and therefore we conclude that ged(s, hYy) = ged(s, ha) = 1.
Conversely, assume that gcd(s,ha) = 1. Then s is odd and ged(ma, ha)
=1 forces gcd(sma, ha) = 1. Hence there is an integer d; > 1 such that

diha+ (ha/2+1) =0 (modsma),
or equivalently
diha+ha/2+ 1+ sma =0 (modsmap).
On the other hand, smx is odd, and so 1+ sm is even. Since ha and ha/2
are also even, we then conclude that
diha 4+ ha/2 4+ sma+1=0 (mod2smp).
Taking d = 2d; + 1, we obtain

dh /2 1 dih ha/2 1
fo‘TA gad—i-lTA A/24+sma+l _ TAI Atha/24+smatl o Linod A.

Hence, Qi = Tgl, and consequently mod A is Calabi-Yau.
The following proposition completes the proof of the theorem.

PROPOSITION 2.6. Assume t(A) =2 and A(A) = Ay_3 for some | > 2.
Then mod A is Calabi-Yau if and only if s(A) is even and ged(s(A), h*A(A))
=1.

Proof. Observe first that h*, = ha/2 = 20 — 1 is odd. As in Propo-

. ~ _ _ha/2
sition 2.5, we have 73" = o0, T4 = aTZmAH and 2, = O'TAA/ for an



CALABI-YAU STABLE MODULE CATEGORIES 267

automorphism o of mod A of order 2. Assume that mod A is Calabi—Yau,
and let Tgl i fol for some d > —1. Then we conclude as above that

d+1_dhi+sma+1
o T, > 1lmod A-

. dh*\+sma+1
Hence, passing to I} we conclude that ottlr e AT =1 ry- Then r =

2smp divides 2(dh* +sma+1), and so smp divides dh* + 1. In particular,
we get ged(s,hly) = 1. We claim that s is even. Suppose s is odd. Since
* = ha/2 is odd, we obtain

0Ny = (O’TZA)d = (ah*ATZA)d = Udh*ATZhA.
Observe that dh* = p+asma for some p € {1,...,sma — 1} and an integer

a > 0. Further, since sma — 1 is even, we have

— osmﬂ*ngl(oijAH) o TngA = 1rod A-

sm
omaryta

Therefore we obtain

* dh*
0% =2 gIaria = gPrasmarhtasma — Gprh(Gsmapsnaye o gPrh,
Hence
O'pTA = 2%74 = 1poda and un = (O'pTA ) = lmod A-

Then, passing to I} we deduce that Ti(p D ry, and hence the order

r = 2sma of 74 divides 2(p + 1), and so sma divides p + 1. Therefore, by
our assumption 0 < p < sma, we conclude that p = sma — 1, and hence p
is even. Finally, we obtain

~ _SMA ~v p+1N
O':TA :O'pTA :1m_odA7

a contradiction. Therefore, s is even.

Conversely, assume that s is even and ged(s, k%) = 1. Since ged(ma, h%)
=1 and A% is odd, we then have gcd(2sma, h¥,) = 1. Therefore, there exists
an integer d > 1 such that

dh’y + (sma +1) =0 (mod2smp).

Observe that d is odd, because h’, is odd and s is even. Then we conclude

that ) h )
d ~ _d+1_dha/24+sma+1 Atsma+ ~
QATA:O'+TA :TAA >~ 1od A-

Hence, Qi = 7';1, and consequently mod A is Calabi-Yau.
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