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CALABI�YAU STABLE MODULE CATEGORIES OF FINITE TYPEBYJERZY BIA�KOWSKI and ANDRZEJ SKOWRO�SKI (Toru«)Abstrat. We desribe the stable module ategories of the self-injetive �nite-dimen-sional algebras of �nite representation type over an algebraially losed �eld whih areCalabi�Yau (in the sense of Kontsevih).Introdution. Throughout the paper, by an algebra we mean a �nite-dimensional assoiative K-algebra with an identity over a �xed algebraiallylosed �eld K. For an algebra A, we denote by modA the ategory of�nite-dimensional (over K) right A-modules and by D the standard duality
HomK(−, K) on modA. An algebra A is said to be of �nite type if modAadmits only �nitely many isomorphism lasses of indeomposable modules.Further, an algebra A is alled self-injetive if AA is injetive, or equivalentlythe projetive A-modules are injetive. An important lass of self-injetivealgebras is formed by the symmetri algebras A for whih A and D(A) areisomorphi as A-A-bimodules.Following Bondal and Kapranov [7℄, a triangulated K-linear ategory A issaid to have a Serre duality if there is a triangle autoequivalene S : A → A,alled a Serre funtor, suh that there are natural K-linear automorphisms
HomA(A, B) ∼= D HomA(B, S(A)) for all objets A and B in A, where D =
HomK(−, K). Moreover, if S and S′ are two Serre funtors of A, then theyare naturally isomorphi (see [7℄, [20℄). Further, following Kontsevih [19℄(see also [18℄), a triangulated K-linear ategory A, with shift funtor T , issaid to be Calabi�Yau if an iterated shift funtor Tm is a Serre duality of Afor some integer m ≥ 0.An important lass of triangulated K-linear ategories of algebrai natureis formed by the stable module ategories modA of self-injetive algebras A,where the shift T is given by the inverse Ω−1

A of Heller's syzygy funtor (see[16℄). Reall that the objets of modA are the objets of modA withoutprojetive diret summands, and for any two objets M and N of modA the2000 Mathematis Subjet Classi�ation: Primary 16D50, 16G60, 18G10.Key words and phrases: self-injetive algebra, stable module ategory, Calabi�Yauategory, Coxeter number.Supported by the Polish Sienti� Grant KBN no. 1 P03A 018 27.[257℄ © Instytut Matematyzny PAN, 2007
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spae of morphisms from M to N in modA is the quotient HomA(M, N) =
HomA(M, N)/P (M, N), where P (M, N) is the subspae of HomA(M, N)onsisting of all A-homomorphisms whih fatorize through projetive A-modules. Then we have two mutually inverse Heller's syzygy funtors ΩA,
Ω−1

A : modA
∼
→ modA whih assign to an objet M of modA respetivelythe kernel ΩA(M) of its projetive over PA(M) → M and the okernel

Ω−1
A (M) of its injetive envelope M → IA(M) in modA. Further, denoteby νA : modA

∼
→ modA the Nakayama funtor D HomA(−, A). By generaltheory, the Auslander�Reiten translation τA = D Tr is equivalent to Ω2

AνA =
νAΩ2

A. In partiular, τA = Ω2
A if A is symmetri. Two self-injetive algebras

A and Λ are alled stably equivalent if the stable module ategories modAand modΛ are equivalent.It is known that S = ΩAνA is a Serre duality of modA (see [12, (1.2)℄).Therefore, the stable module ategory modA of a self-injetive algebra A isCalabi�Yau if and only if νA
∼= Ω−m−1

A (equivalently, τA
∼= Ω−m+1

A ) for someinteger m ≥ 0. In that ase, the smallest integer m ≥ 0 with the property
νA

∼= Ω−m+1
A is alled the stable Calabi�Yau dimension of A (see [12℄). It isshown in [12, Propositions 2.1 and 2.2℄ that a onneted self-injetive algebra

A is of stable Calabi�Yau dimension 0 (respetively, 1) if and only if A isMorita equivalent to a Nakayama algebra of Loewy length at most 2 (respe-tively, a loal Nakayama algebra of Loewy length at least 3). In partiular,every self-injetive algebra A of stable Calabi�Yau dimension at most 1 isof �nite representation type. Further, it follows from [6, Theorem 1.2℄ thatevery onneted self-injetive algebra A of stable Calabi�Yau dimension 2 isMorita equivalent to a deformed preprojetive algebra of generalized Dynkintype. We mention that, with the exeption of a few ases of small dimension,the deformed preprojetive algebras of generalized Dynkin type are of wildrepresentation type (see [12, Theorem 3.7℄). Finally, we denote by Γ s
A thestable Auslander�Reiten quiver of A, obtained from its Auslander�Reitenquiver ΓA by removing the projetive-injetive verties and the arrows at-tahed to them. Then we also get the indued automorphisms ΩA, Ω−1

A , τA,
τ−1
A , νA, ν−1

A of Γ s
A.It has been proved in [11℄ and [12℄ that the lass of all onneted sym-metri algebras of tame representation type and with the Calabi�Yau stablemodule ategories oinides with the lass of algebras whih are Moritaequivalent to the algebras of the following three types: sole deformations ofthe symmetri algebras of Dynkin type, sole deformations of the symmetrialgebras of tubular type, and algebras of quaternion type. We would like tomention that there are also wild self-injetive algebras with the Calabi�Yaustable module ategories: for example, most of the preprojetive algebras ofDynkin type have this property (see [4℄, [6℄, [13℄). Further, in [12, (4.5)℄,
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a lass of self-injetive algebras of �nite representation type whose stablemodule ategories are not Calabi�Yau is exhibited. We also refer to [1℄ forthe struture of triangulated ategories with �nitely many indeomposableobjets.The aim of this note is to desribe the Morita equivalene lasses of allonneted self-injetive algebras of �nite type whose stable module ategoriesare Calabi�Yau.From now on we use the term algebra for a basi, onneted algebraover K. By a Dynkin graph we mean a graph of one of the Dynkin types:
An (n ≥ 1), Dn (n ≥ 4), E6, E7, E8. For a Dynkin graph ∆, denote by h∆the Coxeter number of ∆. Reall that h∆ is the order of the Coxeter elementof the Coxeter (Weyl) group of ∆, so that

hAn
= n + 1, hDn

= 2n − 2, hE6
= 12, hE7

= 18, hE8
= 30.Moreover, we de�ne h∗

∆ to be h∆/2 if ∆ = A4l−3 (l ≥ 1), Dn (n even), E7,
E8, and h∆ for the remaining Dynkin graphs ∆ .Let A be a non-simple self-injetive algebra of �nite type. By generaltheory, we may assoiate to A three ombinatorial invariants: a Dynkin graph
∆(A) and integers s(A) ≥ 1 and t(A) ∈ {1, 2, 3} (see Setion 1 for thedetails).The following theorem is the main result of the paper.Theorem. Let A be a non-simple self-injetive algebra of �nite type.Then modA is Calabi�Yau if and only if the following onditions are satis-�ed :(1) gcd(s(A), h∗

∆(A)) = 1.(2) t(A) ≤ 2.(3) s(A) and t(A) have the same parity if ∆(A) = A4l−3 for some l ≥ 2.It would be interesting to determine the stable Calabi�Yau dimensionof self-injetive algebras of �nite representation type. For the symmetrialgebras of �nite representation type it is given in [12, Theorem 4.3℄.For basi bakground on the representation theory applied here we referto [3℄, [5℄, [23℄, [24℄, [25℄, [26℄, [29℄.1. Self-injetive algebras of �nite type. By general theory (see [10℄,[17℄, [21℄, [22℄, [26℄, [27℄, [28℄), the lass of self-injetive algebras of �nite typemay be divided into two disjoint lasses: the standard algebras whih admitsimply onneted Galois overings, and the remaining non-standard algebras.The non-standard self-injetive algebras of �nite type our only in hara-teristi 2 and are symmetri (see [22℄, [27℄, [28℄), and onsequently theirstable module ategories are Calabi�Yau. Therefore, in order to desribe the
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Calabi�Yau stable module ategories of �nite type, we may restrit ourselvesto the standard self-injetive algebras of �nite type. We will now present asuitable desription of these algebras and relevant fats.An important lass of self-injetive algebras is formed by the orbit al-gebras B̂/G, where B̂ is the repetitive algebra of the algebra B (see [17℄),and G is an admissible group of automorphisms of B̂. Reall that

B̂ =
⊕

k∈Z

(Bk ⊕ D(B)k)

with Bk = B and D(B)k = D(B) for all k ∈ Z, and the multipliation in B̂is de�ned by
(ak, fk) · (bk, gk) = (akbk, akgk + fkbk+1)kfor ak, bk ∈ Bk, fk, gk ∈ D(B)k. For a �xed set E = {ei | 1 ≤ i ≤ n} oforthogonal primitive idempotents of B with 1B = e1 + · · · + en, onsiderthe anonial set Ê = {ej,k | 1 ≤ j ≤ n, k ∈ Z} of orthogonal primitiveidempotents of B̂ suh that 1Bk

= e1,k + · · · + en,k. By an automorphismof B̂ we mean a K-algebra automorphism of B̂ whih �xes the hosen set
Ê of orthogonal primitive idempotents of B̂. A group G of automorphismsof B̂ is said to be admissible if the indued ation of G on Ê is free andhas �nitely many orbits. Then the orbit algebra B̂/G (see [15℄) is a self-injetive algebra and the G-orbits in Ê form a anonial set of orthogonalprimitive idempotents of B̂/G whose sum is the identity of B̂/G. We denoteby ν

B̂
the Nakayama automorphism of B̂ whose restrition to eah opy

Bk ⊕D(B)k is the identity map Bk ⊕D(B)k → Bk+1 ⊕D(B)k+1. Then thein�nite yli group (ν
B̂
) generated by ν

B̂
is admissible and B̂/(ν

B̂
) is thetrivial extension T(B) = B ⋉ D(B) of B by D(B), and it is a symmetrialgebra. An automorphism ϕ of B̂ is said to be positive (respetively, rigid)if ϕ(Bk) ⊆

∑
i≥k(Bi) (respetively, ϕ(Bk) = Bk) for any k ∈ Z. Moreover,

ϕ is said to be stritly positive if ϕ is positive but not rigid.Let ∆ be a Dynkin graph An (n ≥ 1), Dn (n ≥ 4), En (n = 6, 7, 8). Bya tilted algebra of Dynkin type ∆ we mean an algebra B = EndH(T ) where
H is the path algebra K ~∆ of a quiver ~∆ with the underlying graph ∆ and
T is a multipliity-free tilting H-module (see [3℄, [16℄, [23℄).The following theorem gives a desription of the non-simple standardself-injetive algebras of �nite type (see [10℄, [21℄, [22℄, [28℄, and [26, Theo-rem 3.5℄).Theorem 1.1. Let A be a non-simple standard self-injetive algebra. Thefollowing onditions are equivalent :(i) A is of �nite type.
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(ii) A ∼= B̂/(σϕs), where B is a tilted algebra of Dynkin type ∆, ϕ isa stritly positive primitive root of the Nakayama automorphism ν
B̂and σ is a rigid automorphism of B̂ of �nite order.Therefore, we may assoiate to any non-simple standard self-injetivealgebra A = B̂/(σϕs) of �nite type the numerial data: the Dynkin type

∆(A) = ∆(B) of the tilted algebra B, the degree e(A) of the primitive root
ϕ of ν

B̂
, the (torsion) order t(A) of the automorphism σ, and the power

s(A) = s of ϕ. We also note that f(A) = s(A)/e(A) is the frequeny of Aand typ(A) = (∆(A), f(A), t(A)) is the type of A, de�ned in [2, (2.1)℄.The following theorem proved by Asashiba [2, Theorem 2.2℄ desribesthe stable equivalene lasses of all non-simple, basi, onneted, standard,self-injetive algebras of �nite type.Theorem 1.2. Let A and A′ be two non-simple, standard , self-injetivealgebras of �nite type. Then the following onditions are equivalent :(i) A and A′ are stably equivalent.(ii) typ(A) = typ(A′).Further, we have the following proposition.Proposition 1.3. The set of types of non-simple standard self-injetivealgebras of �nite type is the disjoint union of the following sets :
{(An, s/n, 1) | n, s ∈ N};

{(A2p+1, s, 2) | p, s ∈ N};

{(Dn, s, 1) | n, s ∈ N, n ≥ 4};

{(D3m, s/3, 1) | m, s ∈ N, m ≥ 2, 3 ∤ s};

{(Dn, s, 2) | n, s ∈ N, n ≥ 4};

{(D4, s, 3) | s ∈ N};

{(En, s, 1) | n = 6, 7, 8, s ∈ N};

{(E6, s, 2) | s ∈ N}.For a Dynkin graph ∆, we put m∆ = h∆ − 1.The following proposition desribes the ation of the syzygy funtors Ω
B̂on the stable module ategories mod B̂ of the repetitive algebras B̂ of tiltedalgebras B of Dynkin types (see [9℄, [12, Proposition 4.2℄ and [14, Setion 6℄).Proposition 1.4. Let B be a tilted algebra of Dynkin type ∆. Then wehave equivalenes of funtors on the ategory mod B̂:(i) Ω

B̂
∼= τ

h∆/2

B̂
for ∆ = A1, Dn (n even), E7, E8.(ii) ΩB̂

∼= στ
h∆/2

B̂
for ∆ = An (n ≥ 3 odd), Dn (n odd), E6 and anautomorphism σ of order 2, ommuting with τ

B̂
.(iii) Ω

B̂
∼= ̺τ

m∆/2

B̂
for ∆ = An (n even) and an automorphism ̺ with

̺2 = τ
B̂
.In partiular , in all ases , we have Ω2

B̂
∼= τh∆

B̂
.
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The following proposition (see [10℄, [17℄) desribes the indued ation ofthe Nakayama automorphism ν

B̂
on the stable module ategory mod B̂ ofthe repetitive algebra B̂ of a tilted algebra B of Dynkin type.Proposition 1.5. Let B be a tilted algebra of Dynkin type ∆. Then

ν
B̂
∼= τ−m∆

B̂
as endofuntors on mod B̂.Let B be a tilted algebra of Dynkin type and G an admissible in�niteyli group of automorphisms of B̂. Then there are a anonial Galois ov-ering F : B̂ → B̂/G with Galois group G (see [15, (3.1)℄) and the assoiatedpush-down funtor

Fλ : mod B̂ → B̂/G.Moreover, B̂ is loally representation-�nite, by [17℄. Therefore, applying [8,Setion 3℄ and [15, Setion 3℄, we obtain the following proposition.Proposition 1.6. Let B be a tilted algebra of Dynkin type, G an admis-sible in�nite yli group of automorphisms of B̂ and A = B̂/G. Then thefollowing statements hold :(i) Fλ : mod B̂ → modA is exat , dense, and indues a bijetion be-tween the G-orbits of isomorphism lasses of indeomposable �nite-dimensional B̂-modules and the isomorphism lasses of indeompos-able �nite-dimensional A-modules.(ii) FλΩ
B̂
∼= ΩAFλ.(iii) Fλτ

B̂
∼= τAFλ.It is known (see [26, Theorem 3.10℄) that, if A is a non-simple standardself-injetive algebra of �nite type and e(A) ≥ 2, then one of the followingases holds:(1) ∆(A) = An and e(A) = n for some n ≥ 2,(2) ∆(A) = D3m and e(A) = 3 for some m ≥ 2(see also Proposition 1.3). Moreover, mAn

= n and mD3m
= 2(3m) − 3 =

3(2m−1). Therefore, we may assign to any non-simple standard self-injetivealgebra A the natural number
r(A) = s(A)t(A)m∆(A)/e(A).We have the following onsequene of Theorem 1.1 and Propositions 1.5 and1.6 (see also [15, Theorem 3.6℄).Corollary 1.7. Let A be a non-simple standard self-injetive algebra of�nite type. Then r(A) is the order of the Auslander�Reiten translation τA.We end this setion with a desription of non-standard self-injetive al-gebras of �nite type. Reall that two self-injetive algebras Λ and A are alledsole equivalent if the fator algebras Λ/soc Λ and A/soc A are isomorphi.
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Then we have the following version of a result from [22℄, [27℄, [28℄ (see [26,Theorem 3.8 and Proposition 3.9℄).Theorem 1.8. Let A be a self-injetive algebra. Then A is non-standardof �nite type if and only if charK = 2 and A is sole equivalent to a standardalgebra A′ of the form B̂/(ϕ), where B is a tilted algebra of Dynkin type D3mand ϕ is a stritly positive 3-root of νB̂.For a non-standard self-injetive algebra A of �nite type, the standardalgebra A′ sole equivalent to A is uniquely determined (up to isomorphism)by A, and is alled the standard form of A. Moreover, the stable Auslander�Reiten quivers Γ s
A and Γ s

A′ are isomorphi as translation quivers. Therefore,we may assoiate to A the numerial data ∆(A) = ∆(A′) = D3m, e(A) =
e(A′) = 3, t(A) = t(A′) = 1, s(A) = s(A′) = 1, and r(A) = r(A′) = 2m − 1.2. Proof of the Theorem. Let A be a non-simple self-injetive algebraof �nite type. Assume �rst that A is non-standard. Then ∆(A) = D3m,
s(A) = 1, t(A) = 1 satisfy onditions (1)�(3) of the theorem. Moreover, A is asymmetri algebra (see [22℄, [27℄, [28℄) with modA Calabi�Yau, beause νA

∼=
1modA and Ω−m−1

A
∼= 1modA for some m ≥ 0 (see also [12, Theorem 4.3℄).From now on we assume that A is a non-simple standard self-injetivealgebra of �nite type. Then A has a anonial presentation A ∼= B̂/(σϕs)given by Theorem 1.2. We abbreviate below the assoiated numerial data:

∆ = ∆(A), e = e(A), t = t(A), s = s(A), and r = r(A). We divide the proofinto several steps.Proposition 2.1. Assume t(A) = 1 and ∆(A) 6= A4l−3 for l ≥ 2. Then
modA is Calabi�Yau if and only if gcd(s(A), h∗

∆(A)) = 1.Proof. We know that modA is Calabi�Yau if and only if τ−1
A

∼= Ωd
A forsome integer d ≥ −1. Moreover, by Corollary 1.7, r = stm∆/e = sm∆/eis the order of τA. Aording to Proposition 1.4, we have three ases toonsider.(a) Assume ∆ = A1, Dn (n even), E7, or E8. Then h∗

∆ = h∆/2. ApplyingProposition 1.6, we onlude that ΩA
∼= τ

h∗

∆

A . Suppose modA is Calabi�Yau,and τ−1
A

∼= Ωd
A for some d ≥ −1. Then we obtain the equivalenes of funtors

τ
dh∗

∆
+1

A = (τ
h∗

∆

A )dτA
∼= Ωd

AτA
∼= 1modA,and onsequently, passing to the stable Auslander�Reiten quiver Γ s

A, weobtain the equality τ
dh∗

∆
+1

A = 1Γ s

A
. Hene

dh∗
∆ + 1 ≡ 0 (mod r).Sine r = sm∆/e, this immediately implies the required ondition gcd(s, h∗

∆)
= 1. Conversely, assume that gcd(s, h∗

∆) = 1. Sine gcd(m∆, h∆) = 1 fores
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gcd(m∆/e, h∗

∆) = 1, we then obtain gcd(r, h∗
∆) = 1. But then h∗

∆ + rZgenerates the yli group Z/rZ, and onsequently there exists d ≥ 1 suhthat d(h∗
∆ + rZ) = (r − 1) + rZ, or equivalently dh∗

∆ + 1 ≡ 0 (mod r). Thus
Ωd

AτA
∼= (τ

h∗

∆

A )dτA = τ
dh∗

∆
+1

A
∼= 1modA.Hene, τ−1

A
∼= Ωd

A, and so modA is Calabi�Yau.(b) Assume ∆ = An (n ≥ 3 odd), Dn (n odd), or E6. Then h∗
∆ = h∆,beause ∆ 6= A4l−3 for l ≥ 1. Applying Propositions 1.4 and 1.6, we onludethat ΩA

∼= στ
h∆/2
A for an automorphism σ of modA of order 2, ommutingwith τA. Suppose modA is Calabi�Yau, and τ−1

A
∼= Ωd

A for some d ≥ −1.Then we obtain
σdτ

dh∆/2+1
A = (στ

h∆/2
A )dτA

∼= Ωd
AτA

∼= 1modA.Hene d is even and passing to Γ s
A we onlude that σdτ

dh∆/2+1
A = 1Γ s

A
. Thusthe order r = sm∆/e of τA divides dh∆/2+1, or equivalently dh∆/2+1 ≡ 0

(mod r). Let d = 2d1. Then d1h∆ +1 ≡ 0 (mod r), and hene gcd(s, h∆) = 1.Conversely, assume that gcd(s, h∆) = 1. Then, as in (a), we infer that thereis an integer d1 ≥ 1 suh that d1h∆ + 1 ≡ 0 (mod r). Then, for d = 2d1, wehave dh∆/2 + 1 ≡ 0 (mod r). Hene,
Ωd

AτA
∼= (στ

h∆/2
A )dτA = σ2d1τ

dh∆/2+1
A = τ

dh∆/2+1
A

∼= 1modA.Thus, τ−1
A

∼= Ωd
A, and onsequently modA is Calabi�Yau.() Assume ∆ = An (n even). Then h∗

∆ = h∆. Applying Propositions1.4 and 1.6, we onlude that ΩA
∼= ̺τ

m∆/2
A for an automorphism ̺ of

modA with ̺2 = τA. Suppose modA is Calabi�Yau, and τ−1
A

∼= Ωd
A for some

d ≥ −1. Then we obtain
̺dτ

dm∆/2+1
A = (̺τ

m∆/2
A )dτA

∼= Ωd
AτA

∼= 1modA,and hene d = 2d1 for some d1 ≥ 0. Then
τd1h∆+1
A = τd1

A τd1m∆+1
A = ̺dτ

dm∆/2+1
A

∼= 1modA,and onsequently passing to Γ s
A we infer that τd1h∆+1

A = 1Γ s

A
, and hene

r = sm∆/e divides d1h∆+1. In partiular, we obtain gcd(s, h∗
∆) = 1, beause

h∗
∆ = h∆. Conversely, assume that gcd(s, h∗

∆) = 1. Sine gcd(m∆/e, h∆) = 1,we have gcd(r, h∆) = 1, and so h∆+rZ generates the group Z/rZ. Therefore,there exists an integer d1 ≥ 1 suh that d1h∆ + 1 ≡ 0 (mod r). Then, taking
d = 2d1, we obtain

Ωd
AτA

∼= (̺τ
m∆/2
A )dτA = ̺2d1τd1m∆+1

A = τd1h∆+1
A

∼= 1modA.Thus, Ωd
A
∼= τ−1

A , and hene modA is Calabi�Yau.
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Lemma 2.2. Assume t(A) = 1 and ∆(A) = A4l−3 for some l ≥ 2. Then
modA is Calabi�Yau if and only if gcd(s(A), h∗

∆(A)) = 1 and s(A) is odd.Proof. We have h∗
∆ = h∆/2 = 2l − 1. Further, sine 4l − 3 is odd andgreater than 1, applying Propositions 1.4 and 1.6, we have ΩA

∼= στ
h∗

∆

A for anautomorphism σ of modA of order 2, ommuting with τA. We also note that
gcd(s, h∆) = 1 if and only if s is odd and gcd(s, h∗

∆) = 1. Then the lemmafollows by the argument applied in part (b) of the proof of Proposition 2.1.Lemma 2.3. Assume t(A) = 3. Then modA is not Calabi�Yau.Proof. Sine t = t(A) = 3, it follows from Proposition 1.3 that ∆ = D4,and so h∆ = 6, h∗
∆ = 3, m∆ = 5. Applying Proposition 1.4, we onlude that

ΩA
∼= τ3

A. Suppose modA is Calabi�Yau, and τ−1
A

∼= Ωd
A for some d ≥ −1.Then we obtain

τ3d+1
A = (τ3

A)dτA
∼= Ωd

AτA
∼= 1modA.But then passing to Γ s

A we onlude that τ3d+1
A = 1Γ s

A
, and so the order

r = stm∆ = 15s of τA divides 3d + 1, a ontradition. Therefore, modA isnot Calabi�Yau.We will now analyse the ase when t = t(A) = 2. Observe that, byProposition 1.3, t(A) = 2 fores ∆ = ∆(A) to be one of the graphs: An(n ≥ 3 odd), Dn, or E6.Proposition 2.4. Assume t(A) = 2 and ∆(A) = Dn with n even. Then
modA is Calabi�Yau if and only if gcd(s(A), h∗

∆(A)) = 1.Proof. Observe �rst that h∗
∆ = h∆/2 = n−1 is odd, and hene gcd(s, h∗

∆)
= 1 is equivalent to gcd(st, h∗

∆) = 1. Sine gcd(m∆/e, h∗
∆) = 1, the latteris also equivalent to gcd(r, h∗

∆) = gcd(stm∆/e, h∗
∆) = 1. Further, it followsfrom Propositions 1.4 and 1.6 that ΩA

∼= τ
h∗

∆

A = τn−1
A . Assume modA isCalabi�Yau, and τ−1

A
∼= Ωd

A for some d ≥ −1. Then we have
τ

dh∗

∆
+1

A = (τ
h∗

∆

A )dτA
∼= Ωd

AτA
∼= 1modA,and onsequently passing to Γ s

A we infer that τ
dh∗

∆
+1

A = 1Γ s

A
, and hene

r = stm∆/e divides dh∗
∆+1. Then gcd(r, h∗

∆) = 1, and hene gcd(s, h∗
∆) = 1.Conversely, if gcd(s, h∗

∆) = 1 then gcd(r, h∗
∆) = 1 and there is d ≥ 1 suhthat dh∗

∆ + 1 ≡ 0 (mod r). Hene,
Ωd

AτA
∼= (τ

h∗

∆

A )dτA = τ
dh∗

∆
+1

A
∼= 1modA.Thus, τ−1

A
∼= Ωd

A and modA is Calabi�Yau.



266 J. BIA�KOWSKI AND A. SKOWRO�SKI
Proposition 2.5. Assume t(A) = 2 and ∆(A) is one of the graphs Dn(n odd), E6, or An (n ≥ 3 odd but not of the form 4l − 3 for some l ≥ 2).Then modA is Calabi�Yau if and only if gcd(s(A), h∗

∆(A)) = 1.Proof. Observe that, in the ases onsidered, h∗
∆ = h∆ and h∆/2 areeven. Sine A = B̂/(σνs

B̂
) for a rigid automorphism σ of B̂ of order 2,invoking Propositions 1.5 and 1.6 we onlude that τ sm∆

A = σ for the induedautomorphism σ of modA of order 2. Hene, τ2sm∆

A = 1modA implies that
τA = στ sm∆+1

A . Further, applying Propositions 1.4 and 1.6, we obtain ΩA
∼=

στ
h∆/2
A for the same automorphism σ of modA. Assume modA is Calabi�Yau, and let τ−1

A
∼= Ωd

A for some d ≥ −1. Then we have
σd+1τ

dh∆/2+sm∆+1
A = (στ

h∆/2
A )d(στ sm∆+1

A ) ∼= Ωd
AτA

∼= 1modA.Then
τ

2(dh∆/2+sm∆+1)
A = (σd+1τ

dh∆/2+sm∆+1
A )2 ∼= 1modA,and onsequently passing to Γ s

A we onlude that τ
2(dh∆/2+sm∆+1)
A = 1Γ s

A
,and so the order r = 2sm∆ of τA divides 2(dh∆/2 + sm∆ + 1). Hene sm∆divides dh∆/2 + 1 and we have gcd(s, h∆/2) = 1. Sine h∆/2 is even, s isodd, and therefore we onlude that gcd(s, h∗

∆) = gcd(s, h∆) = 1.Conversely, assume that gcd(s, h∆) = 1. Then s is odd and gcd(m∆, h∆)
= 1 fores gcd(sm∆, h∆) = 1. Hene there is an integer d1 ≥ 1 suh that

d1h∆ + (h∆/2 + 1) ≡ 0 (mod sm∆),or equivalently
d1h∆ + h∆/2 + 1 + sm∆ ≡ 0 (mod sm∆).On the other hand, sm∆ is odd, and so 1+ sm∆ is even. Sine h∆ and h∆/2are also even, we then onlude that
d1h∆ + h∆/2 + sm∆ + 1 ≡ 0 (mod2sm∆).Taking d = 2d1 + 1, we obtain

Ωd
AτA

∼= σd+1τ
dh∆/2+sm∆+1
A = τ

d1h∆+h∆/2+sm∆+1
A

∼= 1modA.Hene, Ωd
A
∼= τ−1

A , and onsequently modA is Calabi�Yau.The following proposition ompletes the proof of the theorem.Proposition 2.6. Assume t(A) = 2 and ∆(A) = A4l−3 for some l ≥ 2.Then modA is Calabi�Yau if and only if s(A) is even and gcd(s(A), h∗
∆(A))

= 1.Proof. Observe �rst that h∗
∆ = h∆/2 = 2l − 1 is odd. As in Propo-sition 2.5, we have τ sm∆

A = σ, τA = στ sm∆+1
A and ΩA

∼= στ
h∆/2
A for an
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automorphism σ of modA of order 2. Assume that modA is Calabi�Yau,and let τ−1
A

∼= Ωd
A for some d ≥ −1. Then we onlude as above that

σd+1τ
dh∗

∆
+sm∆+1

A
∼= 1modA.Hene, passing to Γ s

A we onlude that σd+1τ
dh∗

∆
+sm∆+1

A = 1Γ s

A
. Then r =

2sm∆ divides 2(dh∗
∆ +sm∆ +1), and so sm∆ divides dh∗

∆ +1. In partiular,we get gcd(s, h∗
∆) = 1. We laim that s is even. Suppose s is odd. Sine

h∗
∆ = h∆/2 is odd, we obtain

Ωd
A
∼= (στ

h∗

∆

A )d = (σh∗

∆τ
h∗

∆

A )d = σdh∗

∆τ
dh∗

∆

A .Observe that dh∗
∆ = p+asm∆ for some p ∈ {1, . . . , sm∆−1} and an integer

a ≥ 0. Further, sine sm∆ − 1 is even, we have
σsm∆τ sm∆

A = σsm∆−1τ−1
A (στ sm∆+1

A ) ∼= τ−1
A τA = 1modA.Therefore we obtain

Ωd
A
∼= σdh∗

∆τ
dh∗

∆

A = σp+asm∆τp+asm∆

A = σpτp
A(σsm∆τ sm∆

A )a ∼= σpτp
A.Hene

σpτp+1
A

∼= Ωd
AτA

∼= 1modA and τ
2(p+1)
A

∼= (σpτp+1
A )2 ∼= 1modA.Then, passing to Γ s

A we dedue that τ
2(p+1)
A = 1Γ s

A
, and hene the order

r = 2sm∆ of τA divides 2(p + 1), and so sm∆ divides p + 1. Therefore, byour assumption 0 < p < sm∆, we onlude that p = sm∆ − 1, and hene pis even. Finally, we obtain
σ ∼= τ sm∆

A
∼= σpτp+1

A
∼= 1modA,a ontradition. Therefore, s is even.Conversely, assume that s is even and gcd(s, h∗

∆) = 1. Sine gcd(m∆, h∗
∆)

= 1 and h∗
∆ is odd, we then have gcd(2sm∆, h∗

∆) = 1. Therefore, there existsan integer d ≥ 1 suh that
dh∗

∆ + (sm∆ + 1) ≡ 0 (mod2sm∆).Observe that d is odd, beause h∗
∆ is odd and s is even. Then we onludethat

Ωd
AτA

∼= σd+1τ
dh∆/2+sm∆+1
A = τ

dh∗

∆
+sm∆+1

A
∼= 1modA.Hene, Ωd

A
∼= τ−1

A , and onsequently modA is Calabi�Yau.
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