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CALABI�YAU STABLE MODULE CATEGORIES OF FINITE TYPEBYJERZY BIA�KOWSKI and ANDRZEJ SKOWRO�SKI (Toru«)Abstra
t. We des
ribe the stable module 
ategories of the self-inje
tive �nite-dimen-sional algebras of �nite representation type over an algebrai
ally 
losed �eld whi
h areCalabi�Yau (in the sense of Kontsevi
h).Introdu
tion. Throughout the paper, by an algebra we mean a �nite-dimensional asso
iative K-algebra with an identity over a �xed algebrai
ally
losed �eld K. For an algebra A, we denote by modA the 
ategory of�nite-dimensional (over K) right A-modules and by D the standard duality
HomK(−, K) on modA. An algebra A is said to be of �nite type if modAadmits only �nitely many isomorphism 
lasses of inde
omposable modules.Further, an algebra A is 
alled self-inje
tive if AA is inje
tive, or equivalentlythe proje
tive A-modules are inje
tive. An important 
lass of self-inje
tivealgebras is formed by the symmetri
 algebras A for whi
h A and D(A) areisomorphi
 as A-A-bimodules.Following Bondal and Kapranov [7℄, a triangulated K-linear 
ategory A issaid to have a Serre duality if there is a triangle autoequivalen
e S : A → A,
alled a Serre fun
tor, su
h that there are natural K-linear automorphisms
HomA(A, B) ∼= D HomA(B, S(A)) for all obje
ts A and B in A, where D =
HomK(−, K). Moreover, if S and S′ are two Serre fun
tors of A, then theyare naturally isomorphi
 (see [7℄, [20℄). Further, following Kontsevi
h [19℄(see also [18℄), a triangulated K-linear 
ategory A, with shift fun
tor T , issaid to be Calabi�Yau if an iterated shift fun
tor Tm is a Serre duality of Afor some integer m ≥ 0.An important 
lass of triangulated K-linear 
ategories of algebrai
 natureis formed by the stable module 
ategories modA of self-inje
tive algebras A,where the shift T is given by the inverse Ω−1

A of Heller's syzygy fun
tor (see[16℄). Re
all that the obje
ts of modA are the obje
ts of modA withoutproje
tive dire
t summands, and for any two obje
ts M and N of modA the2000 Mathemati
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spa
e of morphisms from M to N in modA is the quotient HomA(M, N) =
HomA(M, N)/P (M, N), where P (M, N) is the subspa
e of HomA(M, N)
onsisting of all A-homomorphisms whi
h fa
torize through proje
tive A-modules. Then we have two mutually inverse Heller's syzygy fun
tors ΩA,
Ω−1

A : modA
∼
→ modA whi
h assign to an obje
t M of modA respe
tivelythe kernel ΩA(M) of its proje
tive 
over PA(M) → M and the 
okernel

Ω−1
A (M) of its inje
tive envelope M → IA(M) in modA. Further, denoteby νA : modA

∼
→ modA the Nakayama fun
tor D HomA(−, A). By generaltheory, the Auslander�Reiten translation τA = D Tr is equivalent to Ω2

AνA =
νAΩ2

A. In parti
ular, τA = Ω2
A if A is symmetri
. Two self-inje
tive algebras

A and Λ are 
alled stably equivalent if the stable module 
ategories modAand modΛ are equivalent.It is known that S = ΩAνA is a Serre duality of modA (see [12, (1.2)℄).Therefore, the stable module 
ategory modA of a self-inje
tive algebra A isCalabi�Yau if and only if νA
∼= Ω−m−1

A (equivalently, τA
∼= Ω−m+1

A ) for someinteger m ≥ 0. In that 
ase, the smallest integer m ≥ 0 with the property
νA

∼= Ω−m+1
A is 
alled the stable Calabi�Yau dimension of A (see [12℄). It isshown in [12, Propositions 2.1 and 2.2℄ that a 
onne
ted self-inje
tive algebra

A is of stable Calabi�Yau dimension 0 (respe
tively, 1) if and only if A isMorita equivalent to a Nakayama algebra of Loewy length at most 2 (respe
-tively, a lo
al Nakayama algebra of Loewy length at least 3). In parti
ular,every self-inje
tive algebra A of stable Calabi�Yau dimension at most 1 isof �nite representation type. Further, it follows from [6, Theorem 1.2℄ thatevery 
onne
ted self-inje
tive algebra A of stable Calabi�Yau dimension 2 isMorita equivalent to a deformed preproje
tive algebra of generalized Dynkintype. We mention that, with the ex
eption of a few 
ases of small dimension,the deformed preproje
tive algebras of generalized Dynkin type are of wildrepresentation type (see [12, Theorem 3.7℄). Finally, we denote by Γ s
A thestable Auslander�Reiten quiver of A, obtained from its Auslander�Reitenquiver ΓA by removing the proje
tive-inje
tive verti
es and the arrows at-ta
hed to them. Then we also get the indu
ed automorphisms ΩA, Ω−1

A , τA,
τ−1
A , νA, ν−1

A of Γ s
A.It has been proved in [11℄ and [12℄ that the 
lass of all 
onne
ted sym-metri
 algebras of tame representation type and with the Calabi�Yau stablemodule 
ategories 
oin
ides with the 
lass of algebras whi
h are Moritaequivalent to the algebras of the following three types: so
le deformations ofthe symmetri
 algebras of Dynkin type, so
le deformations of the symmetri
algebras of tubular type, and algebras of quaternion type. We would like tomention that there are also wild self-inje
tive algebras with the Calabi�Yaustable module 
ategories: for example, most of the preproje
tive algebras ofDynkin type have this property (see [4℄, [6℄, [13℄). Further, in [12, (4.5)℄,
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a 
lass of self-inje
tive algebras of �nite representation type whose stablemodule 
ategories are not Calabi�Yau is exhibited. We also refer to [1℄ forthe stru
ture of triangulated 
ategories with �nitely many inde
omposableobje
ts.The aim of this note is to des
ribe the Morita equivalen
e 
lasses of all
onne
ted self-inje
tive algebras of �nite type whose stable module 
ategoriesare Calabi�Yau.From now on we use the term algebra for a basi
, 
onne
ted algebraover K. By a Dynkin graph we mean a graph of one of the Dynkin types:
An (n ≥ 1), Dn (n ≥ 4), E6, E7, E8. For a Dynkin graph ∆, denote by h∆the Coxeter number of ∆. Re
all that h∆ is the order of the Coxeter elementof the Coxeter (Weyl) group of ∆, so that

hAn
= n + 1, hDn

= 2n − 2, hE6
= 12, hE7

= 18, hE8
= 30.Moreover, we de�ne h∗

∆ to be h∆/2 if ∆ = A4l−3 (l ≥ 1), Dn (n even), E7,
E8, and h∆ for the remaining Dynkin graphs ∆ .Let A be a non-simple self-inje
tive algebra of �nite type. By generaltheory, we may asso
iate to A three 
ombinatorial invariants: a Dynkin graph
∆(A) and integers s(A) ≥ 1 and t(A) ∈ {1, 2, 3} (see Se
tion 1 for thedetails).The following theorem is the main result of the paper.Theorem. Let A be a non-simple self-inje
tive algebra of �nite type.Then modA is Calabi�Yau if and only if the following 
onditions are satis-�ed :(1) gcd(s(A), h∗

∆(A)) = 1.(2) t(A) ≤ 2.(3) s(A) and t(A) have the same parity if ∆(A) = A4l−3 for some l ≥ 2.It would be interesting to determine the stable Calabi�Yau dimensionof self-inje
tive algebras of �nite representation type. For the symmetri
algebras of �nite representation type it is given in [12, Theorem 4.3℄.For basi
 ba
kground on the representation theory applied here we referto [3℄, [5℄, [23℄, [24℄, [25℄, [26℄, [29℄.1. Self-inje
tive algebras of �nite type. By general theory (see [10℄,[17℄, [21℄, [22℄, [26℄, [27℄, [28℄), the 
lass of self-inje
tive algebras of �nite typemay be divided into two disjoint 
lasses: the standard algebras whi
h admitsimply 
onne
ted Galois 
overings, and the remaining non-standard algebras.The non-standard self-inje
tive algebras of �nite type o

ur only in 
hara
-teristi
 2 and are symmetri
 (see [22℄, [27℄, [28℄), and 
onsequently theirstable module 
ategories are Calabi�Yau. Therefore, in order to des
ribe the
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Calabi�Yau stable module 
ategories of �nite type, we may restri
t ourselvesto the standard self-inje
tive algebras of �nite type. We will now present asuitable des
ription of these algebras and relevant fa
ts.An important 
lass of self-inje
tive algebras is formed by the orbit al-gebras B̂/G, where B̂ is the repetitive algebra of the algebra B (see [17℄),and G is an admissible group of automorphisms of B̂. Re
all that

B̂ =
⊕

k∈Z

(Bk ⊕ D(B)k)

with Bk = B and D(B)k = D(B) for all k ∈ Z, and the multipli
ation in B̂is de�ned by
(ak, fk) · (bk, gk) = (akbk, akgk + fkbk+1)kfor ak, bk ∈ Bk, fk, gk ∈ D(B)k. For a �xed set E = {ei | 1 ≤ i ≤ n} oforthogonal primitive idempotents of B with 1B = e1 + · · · + en, 
onsiderthe 
anoni
al set Ê = {ej,k | 1 ≤ j ≤ n, k ∈ Z} of orthogonal primitiveidempotents of B̂ su
h that 1Bk

= e1,k + · · · + en,k. By an automorphismof B̂ we mean a K-algebra automorphism of B̂ whi
h �xes the 
hosen set
Ê of orthogonal primitive idempotents of B̂. A group G of automorphismsof B̂ is said to be admissible if the indu
ed a
tion of G on Ê is free andhas �nitely many orbits. Then the orbit algebra B̂/G (see [15℄) is a self-inje
tive algebra and the G-orbits in Ê form a 
anoni
al set of orthogonalprimitive idempotents of B̂/G whose sum is the identity of B̂/G. We denoteby ν

B̂
the Nakayama automorphism of B̂ whose restri
tion to ea
h 
opy

Bk ⊕D(B)k is the identity map Bk ⊕D(B)k → Bk+1 ⊕D(B)k+1. Then thein�nite 
y
li
 group (ν
B̂
) generated by ν

B̂
is admissible and B̂/(ν

B̂
) is thetrivial extension T(B) = B ⋉ D(B) of B by D(B), and it is a symmetri
algebra. An automorphism ϕ of B̂ is said to be positive (respe
tively, rigid)if ϕ(Bk) ⊆

∑
i≥k(Bi) (respe
tively, ϕ(Bk) = Bk) for any k ∈ Z. Moreover,

ϕ is said to be stri
tly positive if ϕ is positive but not rigid.Let ∆ be a Dynkin graph An (n ≥ 1), Dn (n ≥ 4), En (n = 6, 7, 8). Bya tilted algebra of Dynkin type ∆ we mean an algebra B = EndH(T ) where
H is the path algebra K ~∆ of a quiver ~∆ with the underlying graph ∆ and
T is a multipli
ity-free tilting H-module (see [3℄, [16℄, [23℄).The following theorem gives a des
ription of the non-simple standardself-inje
tive algebras of �nite type (see [10℄, [21℄, [22℄, [28℄, and [26, Theo-rem 3.5℄).Theorem 1.1. Let A be a non-simple standard self-inje
tive algebra. Thefollowing 
onditions are equivalent :(i) A is of �nite type.
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(ii) A ∼= B̂/(σϕs), where B is a tilted algebra of Dynkin type ∆, ϕ isa stri
tly positive primitive root of the Nakayama automorphism ν
B̂and σ is a rigid automorphism of B̂ of �nite order.Therefore, we may asso
iate to any non-simple standard self-inje
tivealgebra A = B̂/(σϕs) of �nite type the numeri
al data: the Dynkin type

∆(A) = ∆(B) of the tilted algebra B, the degree e(A) of the primitive root
ϕ of ν

B̂
, the (torsion) order t(A) of the automorphism σ, and the power

s(A) = s of ϕ. We also note that f(A) = s(A)/e(A) is the frequen
y of Aand typ(A) = (∆(A), f(A), t(A)) is the type of A, de�ned in [2, (2.1)℄.The following theorem proved by Asashiba [2, Theorem 2.2℄ des
ribesthe stable equivalen
e 
lasses of all non-simple, basi
, 
onne
ted, standard,self-inje
tive algebras of �nite type.Theorem 1.2. Let A and A′ be two non-simple, standard , self-inje
tivealgebras of �nite type. Then the following 
onditions are equivalent :(i) A and A′ are stably equivalent.(ii) typ(A) = typ(A′).Further, we have the following proposition.Proposition 1.3. The set of types of non-simple standard self-inje
tivealgebras of �nite type is the disjoint union of the following sets :
{(An, s/n, 1) | n, s ∈ N};

{(A2p+1, s, 2) | p, s ∈ N};

{(Dn, s, 1) | n, s ∈ N, n ≥ 4};

{(D3m, s/3, 1) | m, s ∈ N, m ≥ 2, 3 ∤ s};

{(Dn, s, 2) | n, s ∈ N, n ≥ 4};

{(D4, s, 3) | s ∈ N};

{(En, s, 1) | n = 6, 7, 8, s ∈ N};

{(E6, s, 2) | s ∈ N}.For a Dynkin graph ∆, we put m∆ = h∆ − 1.The following proposition des
ribes the a
tion of the syzygy fun
tors Ω
B̂on the stable module 
ategories mod B̂ of the repetitive algebras B̂ of tiltedalgebras B of Dynkin types (see [9℄, [12, Proposition 4.2℄ and [14, Se
tion 6℄).Proposition 1.4. Let B be a tilted algebra of Dynkin type ∆. Then wehave equivalen
es of fun
tors on the 
ategory mod B̂:(i) Ω

B̂
∼= τ

h∆/2

B̂
for ∆ = A1, Dn (n even), E7, E8.(ii) ΩB̂

∼= στ
h∆/2

B̂
for ∆ = An (n ≥ 3 odd), Dn (n odd), E6 and anautomorphism σ of order 2, 
ommuting with τ

B̂
.(iii) Ω

B̂
∼= ̺τ

m∆/2

B̂
for ∆ = An (n even) and an automorphism ̺ with

̺2 = τ
B̂
.In parti
ular , in all 
ases , we have Ω2

B̂
∼= τh∆

B̂
.
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The following proposition (see [10℄, [17℄) des
ribes the indu
ed a
tion ofthe Nakayama automorphism ν

B̂
on the stable module 
ategory mod B̂ ofthe repetitive algebra B̂ of a tilted algebra B of Dynkin type.Proposition 1.5. Let B be a tilted algebra of Dynkin type ∆. Then

ν
B̂
∼= τ−m∆

B̂
as endofun
tors on mod B̂.Let B be a tilted algebra of Dynkin type and G an admissible in�nite
y
li
 group of automorphisms of B̂. Then there are a 
anoni
al Galois 
ov-ering F : B̂ → B̂/G with Galois group G (see [15, (3.1)℄) and the asso
iatedpush-down fun
tor

Fλ : mod B̂ → B̂/G.Moreover, B̂ is lo
ally representation-�nite, by [17℄. Therefore, applying [8,Se
tion 3℄ and [15, Se
tion 3℄, we obtain the following proposition.Proposition 1.6. Let B be a tilted algebra of Dynkin type, G an admis-sible in�nite 
y
li
 group of automorphisms of B̂ and A = B̂/G. Then thefollowing statements hold :(i) Fλ : mod B̂ → modA is exa
t , dense, and indu
es a bije
tion be-tween the G-orbits of isomorphism 
lasses of inde
omposable �nite-dimensional B̂-modules and the isomorphism 
lasses of inde
ompos-able �nite-dimensional A-modules.(ii) FλΩ
B̂
∼= ΩAFλ.(iii) Fλτ

B̂
∼= τAFλ.It is known (see [26, Theorem 3.10℄) that, if A is a non-simple standardself-inje
tive algebra of �nite type and e(A) ≥ 2, then one of the following
ases holds:(1) ∆(A) = An and e(A) = n for some n ≥ 2,(2) ∆(A) = D3m and e(A) = 3 for some m ≥ 2(see also Proposition 1.3). Moreover, mAn

= n and mD3m
= 2(3m) − 3 =

3(2m−1). Therefore, we may assign to any non-simple standard self-inje
tivealgebra A the natural number
r(A) = s(A)t(A)m∆(A)/e(A).We have the following 
onsequen
e of Theorem 1.1 and Propositions 1.5 and1.6 (see also [15, Theorem 3.6℄).Corollary 1.7. Let A be a non-simple standard self-inje
tive algebra of�nite type. Then r(A) is the order of the Auslander�Reiten translation τA.We end this se
tion with a des
ription of non-standard self-inje
tive al-gebras of �nite type. Re
all that two self-inje
tive algebras Λ and A are 
alledso
le equivalent if the fa
tor algebras Λ/soc Λ and A/soc A are isomorphi
.
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Then we have the following version of a result from [22℄, [27℄, [28℄ (see [26,Theorem 3.8 and Proposition 3.9℄).Theorem 1.8. Let A be a self-inje
tive algebra. Then A is non-standardof �nite type if and only if charK = 2 and A is so
le equivalent to a standardalgebra A′ of the form B̂/(ϕ), where B is a tilted algebra of Dynkin type D3mand ϕ is a stri
tly positive 3-root of νB̂.For a non-standard self-inje
tive algebra A of �nite type, the standardalgebra A′ so
le equivalent to A is uniquely determined (up to isomorphism)by A, and is 
alled the standard form of A. Moreover, the stable Auslander�Reiten quivers Γ s
A and Γ s

A′ are isomorphi
 as translation quivers. Therefore,we may asso
iate to A the numeri
al data ∆(A) = ∆(A′) = D3m, e(A) =
e(A′) = 3, t(A) = t(A′) = 1, s(A) = s(A′) = 1, and r(A) = r(A′) = 2m − 1.2. Proof of the Theorem. Let A be a non-simple self-inje
tive algebraof �nite type. Assume �rst that A is non-standard. Then ∆(A) = D3m,
s(A) = 1, t(A) = 1 satisfy 
onditions (1)�(3) of the theorem. Moreover, A is asymmetri
 algebra (see [22℄, [27℄, [28℄) with modA Calabi�Yau, be
ause νA

∼=
1modA and Ω−m−1

A
∼= 1modA for some m ≥ 0 (see also [12, Theorem 4.3℄).From now on we assume that A is a non-simple standard self-inje
tivealgebra of �nite type. Then A has a 
anoni
al presentation A ∼= B̂/(σϕs)given by Theorem 1.2. We abbreviate below the asso
iated numeri
al data:

∆ = ∆(A), e = e(A), t = t(A), s = s(A), and r = r(A). We divide the proofinto several steps.Proposition 2.1. Assume t(A) = 1 and ∆(A) 6= A4l−3 for l ≥ 2. Then
modA is Calabi�Yau if and only if gcd(s(A), h∗

∆(A)) = 1.Proof. We know that modA is Calabi�Yau if and only if τ−1
A

∼= Ωd
A forsome integer d ≥ −1. Moreover, by Corollary 1.7, r = stm∆/e = sm∆/eis the order of τA. A

ording to Proposition 1.4, we have three 
ases to
onsider.(a) Assume ∆ = A1, Dn (n even), E7, or E8. Then h∗

∆ = h∆/2. ApplyingProposition 1.6, we 
on
lude that ΩA
∼= τ

h∗

∆

A . Suppose modA is Calabi�Yau,and τ−1
A

∼= Ωd
A for some d ≥ −1. Then we obtain the equivalen
es of fun
tors

τ
dh∗

∆
+1

A = (τ
h∗

∆

A )dτA
∼= Ωd

AτA
∼= 1modA,and 
onsequently, passing to the stable Auslander�Reiten quiver Γ s

A, weobtain the equality τ
dh∗

∆
+1

A = 1Γ s

A
. Hen
e

dh∗
∆ + 1 ≡ 0 (mod r).Sin
e r = sm∆/e, this immediately implies the required 
ondition gcd(s, h∗

∆)
= 1. Conversely, assume that gcd(s, h∗

∆) = 1. Sin
e gcd(m∆, h∆) = 1 for
es
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gcd(m∆/e, h∗

∆) = 1, we then obtain gcd(r, h∗
∆) = 1. But then h∗

∆ + rZgenerates the 
y
li
 group Z/rZ, and 
onsequently there exists d ≥ 1 su
hthat d(h∗
∆ + rZ) = (r − 1) + rZ, or equivalently dh∗

∆ + 1 ≡ 0 (mod r). Thus
Ωd

AτA
∼= (τ

h∗

∆

A )dτA = τ
dh∗

∆
+1

A
∼= 1modA.Hen
e, τ−1

A
∼= Ωd

A, and so modA is Calabi�Yau.(b) Assume ∆ = An (n ≥ 3 odd), Dn (n odd), or E6. Then h∗
∆ = h∆,be
ause ∆ 6= A4l−3 for l ≥ 1. Applying Propositions 1.4 and 1.6, we 
on
ludethat ΩA

∼= στ
h∆/2
A for an automorphism σ of modA of order 2, 
ommutingwith τA. Suppose modA is Calabi�Yau, and τ−1

A
∼= Ωd

A for some d ≥ −1.Then we obtain
σdτ

dh∆/2+1
A = (στ

h∆/2
A )dτA

∼= Ωd
AτA

∼= 1modA.Hen
e d is even and passing to Γ s
A we 
on
lude that σdτ

dh∆/2+1
A = 1Γ s

A
. Thusthe order r = sm∆/e of τA divides dh∆/2+1, or equivalently dh∆/2+1 ≡ 0

(mod r). Let d = 2d1. Then d1h∆ +1 ≡ 0 (mod r), and hen
e gcd(s, h∆) = 1.Conversely, assume that gcd(s, h∆) = 1. Then, as in (a), we infer that thereis an integer d1 ≥ 1 su
h that d1h∆ + 1 ≡ 0 (mod r). Then, for d = 2d1, wehave dh∆/2 + 1 ≡ 0 (mod r). Hen
e,
Ωd

AτA
∼= (στ

h∆/2
A )dτA = σ2d1τ

dh∆/2+1
A = τ

dh∆/2+1
A

∼= 1modA.Thus, τ−1
A

∼= Ωd
A, and 
onsequently modA is Calabi�Yau.(
) Assume ∆ = An (n even). Then h∗

∆ = h∆. Applying Propositions1.4 and 1.6, we 
on
lude that ΩA
∼= ̺τ

m∆/2
A for an automorphism ̺ of

modA with ̺2 = τA. Suppose modA is Calabi�Yau, and τ−1
A

∼= Ωd
A for some

d ≥ −1. Then we obtain
̺dτ

dm∆/2+1
A = (̺τ

m∆/2
A )dτA

∼= Ωd
AτA

∼= 1modA,and hen
e d = 2d1 for some d1 ≥ 0. Then
τd1h∆+1
A = τd1

A τd1m∆+1
A = ̺dτ

dm∆/2+1
A

∼= 1modA,and 
onsequently passing to Γ s
A we infer that τd1h∆+1

A = 1Γ s

A
, and hen
e

r = sm∆/e divides d1h∆+1. In parti
ular, we obtain gcd(s, h∗
∆) = 1, be
ause

h∗
∆ = h∆. Conversely, assume that gcd(s, h∗

∆) = 1. Sin
e gcd(m∆/e, h∆) = 1,we have gcd(r, h∆) = 1, and so h∆+rZ generates the group Z/rZ. Therefore,there exists an integer d1 ≥ 1 su
h that d1h∆ + 1 ≡ 0 (mod r). Then, taking
d = 2d1, we obtain

Ωd
AτA

∼= (̺τ
m∆/2
A )dτA = ̺2d1τd1m∆+1

A = τd1h∆+1
A

∼= 1modA.Thus, Ωd
A
∼= τ−1

A , and hen
e modA is Calabi�Yau.
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Lemma 2.2. Assume t(A) = 1 and ∆(A) = A4l−3 for some l ≥ 2. Then
modA is Calabi�Yau if and only if gcd(s(A), h∗

∆(A)) = 1 and s(A) is odd.Proof. We have h∗
∆ = h∆/2 = 2l − 1. Further, sin
e 4l − 3 is odd andgreater than 1, applying Propositions 1.4 and 1.6, we have ΩA

∼= στ
h∗

∆

A for anautomorphism σ of modA of order 2, 
ommuting with τA. We also note that
gcd(s, h∆) = 1 if and only if s is odd and gcd(s, h∗

∆) = 1. Then the lemmafollows by the argument applied in part (b) of the proof of Proposition 2.1.Lemma 2.3. Assume t(A) = 3. Then modA is not Calabi�Yau.Proof. Sin
e t = t(A) = 3, it follows from Proposition 1.3 that ∆ = D4,and so h∆ = 6, h∗
∆ = 3, m∆ = 5. Applying Proposition 1.4, we 
on
lude that

ΩA
∼= τ3

A. Suppose modA is Calabi�Yau, and τ−1
A

∼= Ωd
A for some d ≥ −1.Then we obtain

τ3d+1
A = (τ3

A)dτA
∼= Ωd

AτA
∼= 1modA.But then passing to Γ s

A we 
on
lude that τ3d+1
A = 1Γ s

A
, and so the order

r = stm∆ = 15s of τA divides 3d + 1, a 
ontradi
tion. Therefore, modA isnot Calabi�Yau.We will now analyse the 
ase when t = t(A) = 2. Observe that, byProposition 1.3, t(A) = 2 for
es ∆ = ∆(A) to be one of the graphs: An(n ≥ 3 odd), Dn, or E6.Proposition 2.4. Assume t(A) = 2 and ∆(A) = Dn with n even. Then
modA is Calabi�Yau if and only if gcd(s(A), h∗

∆(A)) = 1.Proof. Observe �rst that h∗
∆ = h∆/2 = n−1 is odd, and hen
e gcd(s, h∗

∆)
= 1 is equivalent to gcd(st, h∗

∆) = 1. Sin
e gcd(m∆/e, h∗
∆) = 1, the latteris also equivalent to gcd(r, h∗

∆) = gcd(stm∆/e, h∗
∆) = 1. Further, it followsfrom Propositions 1.4 and 1.6 that ΩA

∼= τ
h∗

∆

A = τn−1
A . Assume modA isCalabi�Yau, and τ−1

A
∼= Ωd

A for some d ≥ −1. Then we have
τ

dh∗

∆
+1

A = (τ
h∗

∆

A )dτA
∼= Ωd

AτA
∼= 1modA,and 
onsequently passing to Γ s

A we infer that τ
dh∗

∆
+1

A = 1Γ s

A
, and hen
e

r = stm∆/e divides dh∗
∆+1. Then gcd(r, h∗

∆) = 1, and hen
e gcd(s, h∗
∆) = 1.Conversely, if gcd(s, h∗

∆) = 1 then gcd(r, h∗
∆) = 1 and there is d ≥ 1 su
hthat dh∗

∆ + 1 ≡ 0 (mod r). Hen
e,
Ωd

AτA
∼= (τ

h∗

∆

A )dτA = τ
dh∗

∆
+1

A
∼= 1modA.Thus, τ−1

A
∼= Ωd

A and modA is Calabi�Yau.
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Proposition 2.5. Assume t(A) = 2 and ∆(A) is one of the graphs Dn(n odd), E6, or An (n ≥ 3 odd but not of the form 4l − 3 for some l ≥ 2).Then modA is Calabi�Yau if and only if gcd(s(A), h∗

∆(A)) = 1.Proof. Observe that, in the 
ases 
onsidered, h∗
∆ = h∆ and h∆/2 areeven. Sin
e A = B̂/(σνs

B̂
) for a rigid automorphism σ of B̂ of order 2,invoking Propositions 1.5 and 1.6 we 
on
lude that τ sm∆

A = σ for the indu
edautomorphism σ of modA of order 2. Hen
e, τ2sm∆

A = 1modA implies that
τA = στ sm∆+1

A . Further, applying Propositions 1.4 and 1.6, we obtain ΩA
∼=

στ
h∆/2
A for the same automorphism σ of modA. Assume modA is Calabi�Yau, and let τ−1

A
∼= Ωd

A for some d ≥ −1. Then we have
σd+1τ

dh∆/2+sm∆+1
A = (στ

h∆/2
A )d(στ sm∆+1

A ) ∼= Ωd
AτA

∼= 1modA.Then
τ

2(dh∆/2+sm∆+1)
A = (σd+1τ

dh∆/2+sm∆+1
A )2 ∼= 1modA,and 
onsequently passing to Γ s

A we 
on
lude that τ
2(dh∆/2+sm∆+1)
A = 1Γ s

A
,and so the order r = 2sm∆ of τA divides 2(dh∆/2 + sm∆ + 1). Hen
e sm∆divides dh∆/2 + 1 and we have gcd(s, h∆/2) = 1. Sin
e h∆/2 is even, s isodd, and therefore we 
on
lude that gcd(s, h∗

∆) = gcd(s, h∆) = 1.Conversely, assume that gcd(s, h∆) = 1. Then s is odd and gcd(m∆, h∆)
= 1 for
es gcd(sm∆, h∆) = 1. Hen
e there is an integer d1 ≥ 1 su
h that

d1h∆ + (h∆/2 + 1) ≡ 0 (mod sm∆),or equivalently
d1h∆ + h∆/2 + 1 + sm∆ ≡ 0 (mod sm∆).On the other hand, sm∆ is odd, and so 1+ sm∆ is even. Sin
e h∆ and h∆/2are also even, we then 
on
lude that
d1h∆ + h∆/2 + sm∆ + 1 ≡ 0 (mod2sm∆).Taking d = 2d1 + 1, we obtain

Ωd
AτA

∼= σd+1τ
dh∆/2+sm∆+1
A = τ

d1h∆+h∆/2+sm∆+1
A

∼= 1modA.Hen
e, Ωd
A
∼= τ−1

A , and 
onsequently modA is Calabi�Yau.The following proposition 
ompletes the proof of the theorem.Proposition 2.6. Assume t(A) = 2 and ∆(A) = A4l−3 for some l ≥ 2.Then modA is Calabi�Yau if and only if s(A) is even and gcd(s(A), h∗
∆(A))

= 1.Proof. Observe �rst that h∗
∆ = h∆/2 = 2l − 1 is odd. As in Propo-sition 2.5, we have τ sm∆

A = σ, τA = στ sm∆+1
A and ΩA

∼= στ
h∆/2
A for an
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automorphism σ of modA of order 2. Assume that modA is Calabi�Yau,and let τ−1
A

∼= Ωd
A for some d ≥ −1. Then we 
on
lude as above that

σd+1τ
dh∗

∆
+sm∆+1

A
∼= 1modA.Hen
e, passing to Γ s

A we 
on
lude that σd+1τ
dh∗

∆
+sm∆+1

A = 1Γ s

A
. Then r =

2sm∆ divides 2(dh∗
∆ +sm∆ +1), and so sm∆ divides dh∗

∆ +1. In parti
ular,we get gcd(s, h∗
∆) = 1. We 
laim that s is even. Suppose s is odd. Sin
e

h∗
∆ = h∆/2 is odd, we obtain

Ωd
A
∼= (στ

h∗

∆

A )d = (σh∗

∆τ
h∗

∆

A )d = σdh∗

∆τ
dh∗

∆

A .Observe that dh∗
∆ = p+asm∆ for some p ∈ {1, . . . , sm∆−1} and an integer

a ≥ 0. Further, sin
e sm∆ − 1 is even, we have
σsm∆τ sm∆

A = σsm∆−1τ−1
A (στ sm∆+1

A ) ∼= τ−1
A τA = 1modA.Therefore we obtain

Ωd
A
∼= σdh∗

∆τ
dh∗

∆

A = σp+asm∆τp+asm∆

A = σpτp
A(σsm∆τ sm∆

A )a ∼= σpτp
A.Hen
e

σpτp+1
A

∼= Ωd
AτA

∼= 1modA and τ
2(p+1)
A

∼= (σpτp+1
A )2 ∼= 1modA.Then, passing to Γ s

A we dedu
e that τ
2(p+1)
A = 1Γ s

A
, and hen
e the order

r = 2sm∆ of τA divides 2(p + 1), and so sm∆ divides p + 1. Therefore, byour assumption 0 < p < sm∆, we 
on
lude that p = sm∆ − 1, and hen
e pis even. Finally, we obtain
σ ∼= τ sm∆

A
∼= σpτp+1

A
∼= 1modA,a 
ontradi
tion. Therefore, s is even.Conversely, assume that s is even and gcd(s, h∗

∆) = 1. Sin
e gcd(m∆, h∗
∆)

= 1 and h∗
∆ is odd, we then have gcd(2sm∆, h∗

∆) = 1. Therefore, there existsan integer d ≥ 1 su
h that
dh∗

∆ + (sm∆ + 1) ≡ 0 (mod2sm∆).Observe that d is odd, be
ause h∗
∆ is odd and s is even. Then we 
on
ludethat

Ωd
AτA

∼= σd+1τ
dh∆/2+sm∆+1
A = τ

dh∗

∆
+sm∆+1

A
∼= 1modA.Hen
e, Ωd

A
∼= τ−1

A , and 
onsequently modA is Calabi�Yau.
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