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BUTLER GROUPS SPLITTING OVER A BASE ELEMENT

BY

CLORINDA DE VIVO and CLAUDIA METELLI (Napoli)

Abstract. We characterize a particular kind of decomposition of a Butler group that
is the general case for Butler B(1)-groups; and exhibit a decomposition of a B(2)-group
which is not of that kind.

Introduction. All groups in the following are torsionfree Abelian of fi-
nite rank. A Butler B(n)-group G is a torsionfree Abelian group that is the
sum of m > n rank 1 groups, G = (g1)«+- - -+ (gm)« (where , indicates pure
closure), subject to n independent relations involving all of the m rank 1
groups. B(0) is the class of completely decomposable groups; in the following
we suppose n > 1. B(1)-groups have been amply studied (for history, see [1]),
using, as a basic equivalence, quasi-isomorphism [6] instead of isomorphism;
this is also what we do in this paper; in fact, we will write isomorphic, inde-
composable, direct decomposition,. . .instead of “quasi-isomorphic, strongly
indecomposable, quasi-direct decomposition,...”.

Direct decompositions of B(1)-groups were studied in [7], [3], and many
other papers; when a B(1)-group G splits, it always has a decomposition
G = G’ ® G” such that all but one of the base elements g, ..., g, belong
either to G’ or to G”; we call this a decomposition over a base element. This
is not the case in general: in Section 2 we give a necessary and sufficient
condition for a Butler B(n)-group to split over a base element. The condition
consists of two parts, mirroring the double nature of Butler groups: an order-
theoretical one, which is the one that is necessary and sufficient in the B(1)
case, and guarantees G = G’ + G”; and an additional linear one, ensuring
that G'NG” = 0. In Section 3 we give two examples showing a decomposition
of a B(2)-group that does not occur over a base element.

1. Notation and first remarks. Lower case Greek letters will denote
rational numbers. We will use extensively the notation and tools developed
in our previous papers on B(1)-groups (see in particular [2], [3]); we recall
here some of them.
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By type we mean the isomorphism type of an additive subgroup of Q.
T(V,A) denotes the lattice of all types, with the added maximum oo for the
type of the 0 group; if w is an element of a group W, ty(w) denotes the
type of w in W.

Throughout, I = {1,...,m}; partitions of I are ordered by “bigger =
coarser”; blocks of partitions are nonempty by definition.

If wq, ..., w, are elements of a group W and E C I, we define

wg = Z{wl |ie B}, with wy=0,

Wg = (w; | i € E) =Y {(wi)a | i € B} + (wp).

(the last equality is proved in [5]).

W = (wi)«+ -+ (W), and w = Brwe, + - - + Brwe, with B; # f;
if 1 # j, then C = {C4,...,Cy} will be called a partition of I into equal-
coefficient blocks for w.

In our B(n)-group

G = <gl>*+"'+<gm>*

the elements g1, ..., g, are the base elements, and are fixed throughout;
setting t; = t(g;) for all i € I, the ¢; are the base types of G; (t1,...,tm) is
the type-base of G.
It is not difficult to show (see also [5]) that there is no loss of generality
in supposing that the relations are of the form
gr=g1+-+9gm=0 (the first, or diagonal, relation),
2194, + -+ o294, =0,
3194, T+ agrga, =0,

an,lgAl + -+ an,kgAk = 07

where each A; C I collects some indices of generators with equal coefficients,
and moreover if j # j' = 1,..., k there is at least one row r = 2,...,n such
that o, ; # o, ;. Clearly, n < k < m. The ensuing partition

A={A,..., A}

of I is the basic partition of (the given base of) G} its blocks A; are called
the sections of G. Note that if 0 = B1g¢, + - -+ Brgc, with 8; # B;if i # 5
then C = {C4,...,Cy} > A. Replacing each nondiagonal relation with the
difference

ar1ga, + o pga, —or1(gi 4+ gm) =0
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we may suppose that a;,.; = 0 for all » = 2,...,n. Then the matrix
Q22 -0 Qok
M=1... - ...,
Qp2 - Qpi

a reduced matriz of G, is of rank n — 1.

2. Splitting over a base element. For completeness, let us first sketch
the situation of a nontrivial splitting G = G’ @ G” in which all of the base
elements belong either to G’ or to G”; the conditions will turn out to be only
linear. Note that this is, in fact, the case when we consider the direct sum
of a B(n')-group G’ and a B(n”)-group G”, and choose for a base the union
of the two bases and for the linear system the union of the two systems; in
this case the B(n)-group G will be called degenerate.

Examining necessary conditions, setting ' = {i € I | g; € G'}, E" =
{i €I| g € G}, we have G' = Gg (= Y {{gi)« | i € E} + (9E)+),
G" = Ggr. The diagonal relation gy = gg +gg» = 0 provides a common ele-
ment to the two summands, hence we have the two relations ggr = —gg» = 0;
in particular, this yields {E’, E”} > A. Analogously, each nondiagonal rela-
tion in G yields two relations, one in Ggr and one in Ggr, therefore among
the n relations thus obtained there will be 7’ independent ones in G g/, and
r" in Ggr, with v’ +7" = n. Replacing the initial relations with these makes
the matrix M block-diagonal, where the columns of one block are indexed
by j’s such that A; C E’, and those of the other by j’s such that A; C E”.
Conversely, if the matrix M of G is (equivalent to) a block-diagonal one,
with E’ resp. E” gathering the indices of base elements involved in the first
resp. second block, it is not difficult to prove that G = G & Gg». Note
that this situation cannot occur for B(1)-groups; for more about degenerate
B(2)-groups see [4]. Thus we have

PrROPOSITION 2.1. A decomposition in which all base elements belong
to some summand is possible if and only if the matriz is equivalent to a
block-diagonal one, that is, if and only if the group is degenerate.

An interesting observation can be drawn from the above considerations.
Recall that a B(1)-group G is decomposable [7] if and only if there exist a
subset E of I and an index i € I with ¢ ¢ E such that ¢; < t¢(gg). Necessity
derives from the following two facts:

I) If rtkG(t;) = 1 for all ¢ € I, then G is indecomposable. (The proof
consists in noting that if G did decompose then each base element would
have to belong to some summand, an impossibility, as noted above.) De-
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composability then follows from the existence of elements of maximal type
different from (not proportional to) base elements.
IT) The maximal types of G are of the form ¢g(gg) for some E C I.

Neither of these two facts holds any more if G is a B(n)-group with n > 2:
I) has been examined above, II) is shown to fail in Example 1. Therefore,
while for n > 2 a condition ¢; < tG(gg) may stand a chance among sufficient
conditions, for necessary conditions we must look elsewhere.

Let now G split over a base element, that is, G = G’ & G”, and for some
i’ €I and alli € I,i+#1, g; belongs either to G’ or to G”. There is no loss
of generality in supposing

i'=1¢ Aq;
then for
E={iel|geG}, F={iellgelG"}
we have [ = {1} U E'U F, a disjoint union.

Observe that in the above notation Gg <, G’ and Gr <, G”; the
diagonal relation g1 = —gp — gr yields (Gg + Gr)x = G; then for the
splitting we need Gg = G’ and Gr = G”; that is, Gg + Gr = G and
GpNGp=0.

LEMMA 2.2. If I ={1}UEUF is a disjoint union, then t; = tg(gg) N
ta(gr) if and only if t1 < tq(9r).

Proof. One way is obvious; the other follows from the fact that, if ¢; =
ta(g1) <ta(gg), then t; <tg(ge+91) = tc(gr); but g1 = —gr — gr implies
t1 > ta(ge) Nta(gr). =

Clearly, a necessary condition for G = G ® G is t1 < tg(gg); moreover
from Lemma 2.2 we have

PROPOSITION 2.3. If I = {1} U E U F is a disjoint union, then t; <
ta(gr) implies G = Gg + GF.

Proof. By Lemma 2.2, we have t; = tq(g9r) A ta(gr), hence (g1)« is
contained in Gg + G, which then equals G. =

Consider now the condition GgNGg = 0. It does not involve the diagonal
relation; but if we set £ = ENAj and F; = FNAj forall j =1,...,k,
then any other relation (with zero as the first coefficient)

Qar2ga, + -+ arpga, =0
may yield a nonzero common element g = o295, + - -+ k9B, = —(r29F,
+ -+ o k9F, ), unless

(x) either E or F' is contained in Aj.

If () holds, then Gg N GF = 0: for if, say, £ = Ej, a common element
0 7& Z{ﬁlg, ‘ 1€ El} = Z{%gi | s F} would yield 0= Z{ﬁzgz | 1€ El}
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—>{7igi | i € F'}, absurd since this element has a partition that is not > A
(it splits A1). Note that () obviously always holds in a B(1)-group, where
I=A.

If (%) does not hold, the above element g € GgNGF is certainly nonzero
if there is a j € {2,...,k} such that both E; and F} are nonempty, for then
g has a partition that is not > A. Therefore a first necessary condition for
GrNGr = 0 is that, for every j = 2,...,k, one of Ej;, F; be empty; that
is, each A; with j # 1 must be contained either in E or in F.

Let then without loss of generality Ao, ..., As C E, Asy1,..., A C F
with 2 < s < k. As above, each relation except the diagonal one provides
an element a, € Gg N Gp with 2 <r <n,

ar = {orjga; [2<j<s}=> {anga; [s+1<j<k}

To get Gg N Gr = 0 we need a, = 0 for all r = 2,...,n. At this point we
can already draw a conclusion for n = 2: the unique second relation does
not allow ay = 0 for any choice of F and F, therefore (x) is a necessary
condition.

For n > 2 the conditions a, = 0 for all r = 2,...,n yield a set of 2(n—1)
relations, among which there will be n—1 independent ones; then the matrix
M can be replaced by a block-diagonal matrix

M(E) 0
0 M(F)

,_

)

where (after possibly re-ordering rows) the columns of M(E) are indexed
by j’s such that A; C E, and those of M(F') are indexzed by j’s such that
A; CF.

We can now reach a conclusion:

THEOREM 2.4. Let G = (g1)s + -+ + (gm)« be a B(n)-group. Then G
splits over one of its base elements—without loss of generality over gy —if
and only if there is a partition {{1}, E, F'} of I such that

(a) t1 <tg(9ge),
(b) one of the following two conditions holds:

(%) one of E, F is contained in Aj;
(%) a reduced matriz of G is block-diagonal of the form
M(E) 0

0 M(F)

M =

)

with the above notation.

In particular: if G is a B(1)-group, then (a) is also sufficient; if G is B(2),
then G splits over t1 if and only if (a) and () hold.
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Proof. Necessity has been proved above. For sufficiency, note that Propo-
sition 2.3(a) implies G = Gg + Gp. Now if (x) holds, we proved above that
GgNGpr = 0. If (xx) holds, let g € GE N GF; then g = > {fBigi | i € E} =
S {895 | i € F). hence Y-{figi | i € B} — >:{By9; | j € F} = 0. This
relation is then a linear combination of nondiagonal basic relations, which
by (x%) separate into those indexed in E and those indexed in F. This in
turn implies that each of the two terms is 0, that is, g = 0. =

3. Examples. With our definitions, not all m-tuples of types are bases
of B(n)-groups; “regularity” must be imposed [5], and all our examples are
checked for it. We will use the notation of [2]-[5], where a type with all zeros
but a finite number of infinities is denoted by replacing each infinity by its
prime and each zero by a dot, while eliminating infinite tails of zeros [3];
e.g.

0=0000000 ... zeros ... =- - 57 =--pgq.

EXAMPLE 1 (of a type which is maximal but not of the form tg(gg)).

Let m=8,n=2 k=4, A= {{1,2},{3,4},{5,6},{7,8}}, with relations

g1+--+98=0, 934} — 29561 +9{78) = 0.
Let the base types be:

P
At
fo=---
ty = .
Ay 3=p1 - D3
ty=p1p2 -
ts=p1 -
As 5=Dp1 * D3
te = - p2p3
tr = -
Ay 7=p1D2
ts = - p2p3

The element g = —2g3 — 394 + 495 — 397 = —ga — 496 — g7 + 298 = g3 —
295 — 696 +3gs (obtained by adding 2(gy3 4y — 29¢5,6} + 9{7,8}) resP. 3(g(3,4} —
295,61 + 9q7,83)) is clearly divisible by p1, p2 and p3, hence has maximum
type, while a computation shows that no element of the form gg reaches the
maximum type.

EXAMPLE 2 (showing that, in the above notation, ¢; < tg(gg) does not
imply ¢; < t¢(gg, ), which proves that condition (b) cannot be eliminated).
Let m =7, n = 2, with relations

g1+ +g7=0,
191,23} + @204 + a3gs + aage + asgr = 0,
with pairwise different coefficients, thus A = {{1,2,3},{4},{5},{6},{7}};
let £ ={2,4,5} (thus By = {2}), F = {3,6,7};
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li=pq
A1 ta=-gq

t3=p-
Ay ty=-q
Az ts=-q
As te=p-
As tr=p-

Here t; = pq = tc(9g) > ta(9m,) = to; in fact we have 0 # (a2 — a1)gs +
(a3 —a1)gs = (1 — aa)ge + (1 — a5)g7 € G5 N Gzey-

We now give two examples of B(2)-group-splittings that do not occur
over a single base element, showing that our study does not exhaust the
decomposition problem.

EXAMPLE 3. Let n =2, I = {1,...,8}, A= {41, A2, A3} = {{1,2,3},
{4, 5}, {6,7, 8}}, E= {3,5,7}, F= {2,4, 6}, Ej = EﬂAj, Fj = FﬂAj for
Jj =1,2,3; with the two relations g = 0, g4, + @294, = 0, with ag # 0, 1.

Let

th=p'p’ - - 91 =91+ g2 + a2,
A b= g g1 =91 + g3 + aags,
Zip p'//q' : = g5 = (a2 — 1)g5 — g7,
A g8 = (a2 — 1) g4 — ge,
ts=p - q :
to=-p" ¢’
As tr=p - q - G'=(d1)« + G + (g5)«
ts=- - qq" G = <”> +GF+< >

Here G = G’ ® G”, where G' and G” are B(2)-groups with relations ¢} +
g + g5 = 0= g{ + gr + g§ (the diagonal relations) and ¢} + gg, + @298, =
0 = g{ + g + a2gr, (the secondary relations). The relations ensure that
the sum of the ranks of G’ and G” does not exceed the rank of G; we will
have a direct sum if we show that the types t1 of g1 = ¢} + ¢ and tg of
gs = g5 + g4 are fully recovered in G’ @ G”. But this is the case because

g1 = g1+ 92+ azg4 = gy — (94, + @294,) = —(g3 + g5) has the prime p”
in its first form and p’ in its second form, thus completing t; = p/p”; and
analogously does ¢”. The same works for gt and g¢ with respect to ¢, ¢”
and tg = ¢'q".

In order to see that G does not split over any of its base elements, it
is enough to verify that no ¢; is < tg with E a subset of the section A;
containing i, with F disjoint from {i}. This is clear if E is a singleton.
If not, then we are left with the sections A; and Az, whose situation is

analogous. Starting with ¢ = 1, we have t; = p/p”; to get p’ to divide the
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type of
9E = 9{2.3) = 9{2,3) + Agr + 1(9(1,2,3) + 29745})
= A+ g1+ A+ p+1)gpay + (A + pa)gusy + Age,7.8)
we must determine A, y in such a way as to eliminate g2, g4, g, gs, that is,
Adp+1=X+pay=XA=0,
which is impossible. For i = 2 we have to = p”q¢”; for p” to divide the type
of
9E = 91,3} = 9{1,3) + Agr + 1(9(1,2,3) + 29745})
= A+ u)ge+ A+ p+1)gasy + (A + pas)gas) + Agge,7.8)
we must determine A, p in such a way as to eliminate g3, g5, g7, gs, which
is impossible; the same happens for i = 3.

EXAMPLE 4. Let n =2, m =k =6, A = {{1},{2},{3}, {4}, {5}, {6}};
E=1{2,3}, F={4,5}; E; = ENAj, F;=FnNAjfor j=1,...,6; with the
two relations g5 = 0, angs + @393 + @94 + 595 + agge = 0, with coefficients

nonzero and pairwise different.
Let

gr=ag ' ((a2 — ag)g2 + (a3 — ag)gs),
9Y = o " ((0vs — ) g4 + (@5 — ag)gs),
g6 =—0g (a2g2 + asgs),
9¢ = —og (aaga + asgs),

A1 ti=piq -
Az ta=p1 - pe -
Az tz=p1 - ps -

Ay ta= - q1 - g

As ts=-q - g

As te= - - Psqs G,:<9£>* +Gg+ <gé>*7
G"=(g1)« + GF + (gg) -
We have aggy = (a2 — ag)g2 + (a3 — ag)gs = —as(g2 + g3 + g6) =

—a6(g1 + g9a + g5), hence tc(g1) > pi1gips; analogously, ta(gy) > p1aige;
ta(96) = p1pegs; ta(gl) > qipegs. We thus recover the types of g1 = ¢} + ¢
and of g¢ = g + g¢, hence G' + G” = G. Now, G’ and G” are B(2)-groups
with relations g} + gg + g6 = 0 = ¢{ + gr + g{ (the diagonal relations) and
69y — (a2 — 6)gE, — (3 —ag)gr; = 0 = aggf — (aa —ag)gr, — (a5 —6)grs
(the secondary relations). The relations ensure that the sum of the ranks of
G’ and G” does not exceed the rank of G, hence the splitting is proved.
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