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STRONGLY GROUPOID GRADED RINGS AND COHOMOLOGY

BY

PATRIK LUNDSTRÖM (Trollhättan)

Abstract. We interpret the collection of invertible bimodules as a groupoid and call
it the Picard groupoid. We use this groupoid to generalize the classical construction of
crossed products to what we call groupoid crossed products, and show that these coincide
with the class of strongly groupoid graded rings. We then use groupoid crossed products
to obtain a generalization from the group graded situation to the groupoid graded case
of the bijection from a second cohomology group, defined by the grading and the functor
from the groupoid in question to the Picard groupoid, to the collection of equivalence
classes of rings strongly graded by the groupoid.

1. Introduction. Many important mathematical objects are graded.
By folklore this means that the object can be written as a direct sum subject
to certain multiplicative relations that are coherent with the grading. A ring
R (always assumed to be associative and equipped with a multiplicative
identity) is graded by a group G if there is a set of additive subgroups, Rσ,
σ ∈ G, of R such that R =

⊕

σ∈G Rσ and RσRτ ⊆ Rστ for all σ, τ ∈ G.
Analogously, a left R-module M is called graded by G if there is a set of
additive subgroups Mσ, σ ∈ G, of M such that M =

⊕

σ∈G Mα and RσMτ ⊆
Mστ for all σ, τ ∈ G. Group graded rings and modules have been studied
extensively (see e.g. [3]–[6], [8], [10] and [14]).

Given two rings R and S graded by G, a ring homomorphism R → S is
called graded if f(Rσ) ⊆ Sσ for all σ ∈ G. An important question now is how
to describe the isomorphism classes of rings graded by G. It turns out that for
strongly graded rings, that is, rings R with the property that RσRτ = Rστ

for all σ, τ ∈ G, this question can be answered by using the language of
cohomology in the following way. Each strongly graded ring can be presented
(see [14] and [9]) as a so-called generalized crossed product (F, f), where F is
a group homomorphism from G to the Picard group Pic(A) of isomorphism
classes of invertible A-bimodules (see Section 2 for the precise definition),
for a given ring A, and f is a factor set associated to F , that is, a collection
of A-bimodule isomorphisms fσ,τ : Mσ ⊗A Mτ → Mστ chosen so that the
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following diagram commutes:

Mσ ⊗A Mτ ⊗A M̺

idMσ⊗fτ,̺
−−−−−−−→ Mσ ⊗A Mτ̺

fσ,τ⊗idM̺





y





y

fσ,τ̺

Mστ ⊗A M̺
fστ,̺

−−−−→ Mστ̺

for all σ, τ, ̺ ∈ G, where F (σ) = [Mσ] (the isomorphism class of Mσ in
Pic(A)) for all σ ∈ G. The multiplication in (F, f) =

⊕

σ∈G Mσ is defined
by the bilinear extension of the relation x · y = fσ,τ (x ⊗ y) for all x ∈ Mσ,
y ∈ Mτ , σ, τ ∈ G. Since each Mσ is invertible it follows that we have
an action of G on C(A), the center of A, and hence also on C(A)∗, the
corresponding group of units, defined by the relation σ(a)x = xa for all
σ ∈ G, a ∈ C(A), x ∈ Mσ (see [1]).

Năstăsescu and Van Oystaeyen [14] have shown that given a factor set
f associated to F , the map from Z2(G, C(A)∗) to the collection of all factor
sets associated to F , defined by q 7→ qf , is a well defined bijection. Note that
for a ring R strongly graded by the group G, we can set A = Re (e is the
identity element of G) and define the group homomorphism F : G → Pic(Re)
by F (σ) = [Rσ] for all σ ∈ G. Furthermore, two rings R and S, strongly
graded by G, are called equivalent if there is an isomorphism f : R → S
of graded rings that is simultaneously an Re-bimodule isomorphism. The
Re-bimodule structure on S is defined by r · s := f(r)s for all r ∈ Re and all
s ∈ S. In the same paper Năstăsescu and Van Oystaeyen show that there
is an induced bijection from H2(G, C(A)∗) to the collection of equivalence
classes of rings strongly graded by G.

Many natural examples of rings, such as e.g. rings of matrices, crossed
product algebras defined by separable extensions and groupoid rings (see
[12], [13] and Example 4.3), are not in any natural way graded by groups, but
instead by groupoids, i.e. categories with the property that all morphisms are
isomorphisms. This inspired us in [11] to introduce and analyze the category
of groupoid graded modules. The purpose of this article is to continue this
line of work and give a homological answer to the question of when strongly
groupoid graded rings are equivalent, analogous to the result in the group
graded case described above. Since the components of groupoid graded rings
are not in general bimodules where the left and right rings are equal, we first
have to replace the Picard group from the group graded case by the collection
of all invertible bimodules.

In Section 2, we equip this collection of modules with a groupoid struc-
ture (induced by the tensor product) and call it the Picard groupoid.

In Section 3, we prove some results concerning strongly groupoid graded
rings that we need in later sections. After that, in Section 4, we introduce
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groupoid crossed products as a generalization of generalized crossed prod-
ucts and we show that each strongly groupoid graded ring can be presented
in this way.

In Section 5, we recall the definitions concerning the cohomology theory
of groupoids. We need this at the end of the article in Section 6 where we
use the construction of groupoid crossed products to obtain a generalization
from the group graded situation to the groupoid graded case of the bijection
from the second cohomology group, defined by the grading and the functor
from the groupoid in question to the Picard groupoid, to the collection of
equivalence classes of rings strongly graded by the groupoid (see Theorem
6.3).

2. The Picard groupoid. In this section, we interpret the collection of
invertible bimodules as a groupoid and call it the Picard groupoid. Next, we
extend some well known sequences relating Picard groups and automorphism
groups, to the Picard groupoid (see Propositions 2.1 and 2.2).

All rings are associative and are assumed to have multiplicative iden-
tities that act as identity maps on all modules and are preserved by ring
homomorphisms. The center and the group of units of a ring A are denoted
by C(A) and A∗ respectively.

Recall that a groupoid is a category with the property that all morphisms
are isomorphisms. Equivalently, it can be defined as a nonempty collection
Γ equipped with a unary operation Γ ∋ σ 7→ σ−1 ∈ Γ and a partial binary
operation Γ × Γ ∋ (σ, τ) 7→ στ ∈ Γ satisfying the following four axioms:
(i) d(σ) := σ−1σ and r(σ) := σσ−1 are always defined (d = “domain” and
r = “range”); (ii) στ is defined if and only if d(σ) = r(τ); (iii) if στ and τ̺
are defined, then (στ)̺ and σ(τ̺) are defined and equal; (iv) each of d(σ)τ ,
τd(σ), r(σ)τ , and τr(σ) is equal to τ if it is defined. Define Γ0 = {d(σ) |
σ ∈ Γ} = {r(σ) | σ ∈ Γ} and for a positive integer n, let

Γn = {(σ0, . . . , σn−1) ∈ Γn | d(σi) = r(σi+1), i = 0, . . . , n − 2},

where Γn denotes the direct product of n copies of Γ . Let Γ ′ be another
groupoid. If Γ ′ is a subcategory of Γ , closed under inverses, then we say
that it is a subgroupoid. Let F be a homomorphism of groupoids, that is,
a functor, from Γ to Γ ′. Then the kernel and image of F , ker(F ) = {σ ∈ Γ |
F (σ) ∈ Γ ′

0} and im(F ) = {F (σ) | σ ∈ Γ}, are subgroupoids of Γ and Γ ′

respectively. A sequence of homomorphisms of groupoids

· · · → Γn−1
Fn−1
−→ Γn

Fn−→ Γn+1 → · · · , n ∈ Z,

is called exact if im(Fn−1) = ker(Fn) for all n ∈ Z. For more details on
groupoids, see e.g. [16].
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Now we recall some definitions from [1] (see also [2] and [7]). Let A
and B be rings. An A-B-bimodule M is called invertible if there is a B-
A-bimodule N and isomorphisms f : M ⊗B N → A (as A-bimodules) and
g : N ⊗A M → B (as B-bimodules) such that the following two diagrams
commute:

M ⊗B N ⊗A M
f⊗idM
−−−−→ A ⊗A M

idM⊗g





y





y

I

M ⊗B B
II

−−−−→ M

N ⊗A M ⊗B N
g⊗idN
−−−−→ B ⊗B N

idN⊗f





y





y

III

N ⊗A A
IV

−−−−→ N

where I–IV are the multiplication maps. We denote by [M ] the class of
invertible A-B-bimodules that are isomorphic to M . We denote by PIC the
collection of all such classes. Let C be another ring. If M ′ is an invertible
B-C-bimodule, then we set [M ][M ′] = [M ⊗B M ′]. It is easy to check that,
with this partial binary operation, PIC is a groupoid, called the Picard

groupoid. Note that if M is an invertible A-B-bimodule, then r([M ]) = [A]
and d([M ]) = [B]. We also remark that the Picard group Pic(A) of A (see [1])
is, in a natural way, a subgroupoid of PIC.

We denote by Ring the category of rings and ring homomorphisms. We
denote by I, INN and ISO the subcategories of Ring with the same objects
as Ring but with morphisms consisting of, respectively, the identities, the
inner automorphisms and the isomorphisms. We denote by i : I → INN
and j : INN → ISO the canonical functors. Note that I, INN and ISO are
groupoids and that the functors i and j are homomorphisms of groupoids.

To state our first result, we need some more notation. Let A and A′

be rings. If M is an A-A′-bimodule and f : B → A and g : B′ → A′

are ring homomorphisms, then let the B-B′-bimodule fMg be defined as
M as an additive group but with the multiplication of scalars defined by
b · m · b′ = f(b)mg(b′), b ∈ S, m ∈ M , b′ ∈ S′. We define a homomorphism
k : ISO → PIC of groupoids by k(f) = 1A

′

f for all ring isomorphisms

f from A to A′. The map k respects the operations on ISO and PIC. In
fact, if f : A′ → A′′ and g : A → A′ are ring isomorphisms, then the map

1A
′′

f⊗A′ 1A
′
g ∋ x⊗y 7→ xf(y) ∈ 1A

′′

f◦g is an isomorphism of A′′-A′-bimodules.
Our first result will not be needed in what follows, but we record it for

its own interest.

2.1. Proposition. With the above notations, the sequence of groupoids

(1) I
i
→ INN

j
→ ISO

k
→ PIC

is exact.

Proof. Exactness at INN is trivial. Now we show exactness at ISO. Let
A be a ring.
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Assume first that we are given a ring automorphism f of A such that
[1Af ] = [1A1], i.e., that there is an A-bimodule isomorphism g from 1Af

to 1A1. Set u = g(1). If a ∈ A, then au = ag(1) = g(a) = g(1) · a = uf(a).
Hence, since u is a unit, f(a) = u−1au, a ∈ A. Thus f is inner.

On the other hand, if we are given an inner automorphism f of A, then
f(a) = u−1au, a ∈ A, for some unit u in A. Therefore we can define an
A-bimodule isomorphism g from 1Af to 1A1 by g(x) = xu, x ∈ 1Af . Hence
[1Af ] = [1A1].

Note that (1) contains the exact sequence of groups 1 → Inn(A) →
Aut(A) → Pic(A) from [7].

We denote by ISOC the groupoid of ring isomorphisms of all commuta-
tive rings, equipped with the same partial binary operation as the one we
defined on ISO. Moreover, we define a map l : PIC → ISOC by the formula
l([M ]) = fM where fM : C(B) → C(A) is the ring isomorphism defined by
the relation mb = fM (b)m, m ∈ M , b ∈ C(B).

2.2. Proposition. The map l : PIC → ISOC is a groupoid homomor-

phism.

Proof. For the existence of the maps fM , see e.g. [7]. It is easy to check
that l is well defined. Next, if B′ is another ring and N is an invertible B-B′-
bimodule, then m⊗nb′ = m⊗ fN (b′)n = mfN (b′)⊗n = (fM ◦ fN )(b′)m⊗n
for all m ∈ M , n ∈ N , b′ ∈ C(B′), and we get l([M ][N ]) = l([M ⊗B N ]) =
fM⊗BN = fM ◦ fN = l([M ])l([N ]).

3. Strongly graded modules. In this section we recall the definitions
concerning groupoid graded rings and modules introduced in [11]. Our main
goal in this section is to state and prove a result (see Proposition 3.3) that
gives a functorial description of strongly graded rings and modules that will
come in handy in later sections. To do that we need a few preliminary results
(see Proposition 3.1 and Lemma 3.2).

For the rest of the article, we fix a groupoid Γ that is small considered
as a category. We say that a ring R is graded if there is a family of additive
subgroups, Rσ, σ ∈ Γ , of R such that R =

⊕

σ∈Γ Rσ, and for all σ, τ ∈ Γ ,
we have RσRτ ⊆ Rστ if (σ, τ) ∈ Γ2, and RσRτ = {0} otherwise.

If R is a graded ring, then we say that a left R-module M is graded if
there is a family of additive subgroups, Mσ, σ ∈ Γ , of M such that M =
⊕

σ∈Γ Mσ, and for all σ, τ ∈ Γ , we have RσMτ ⊆ Mστ if (σ, τ) ∈ Γ2, and
RσMτ = {0} otherwise. Let R-mod (R-gr) denote the category of (graded)
left R-modules. The morphisms in the graded case are taken to be R-linear
maps f : M → M ′ with the property f(Mσ) ⊆ M ′

σ, σ ∈ Γ . Furthermore, we
say that a graded ring or module is strongly graded if we have equality in the
inclusions RσRτ ⊆ Rστ (respectively, RσMτ ⊆ Mστ ) for any (σ, τ) ∈ Γ2. It is
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easy to see that R-gr is an abelian category. In fact, it is even a Grothendieck
category.

For the rest of the article, we fix a graded ring R. Let M be a graded left
R-module. Elements of

⋃

σ∈Γ Mσ are called homogeneous elements of M .
Any nonzero m ∈ M has a unique decomposition m =

∑

σ∈Γ mσ, where
mσ ∈ Mσ, σ ∈ Γ , and all but a finite number of the mσ are nonzero. The
nonzero elements mσ in the decomposition of m are called the homogeneous

components of m. We set M0 =
⊕

σ∈Γ0
Mσ.

By the next proposition, we can always assume that Γ0 is finite.

3.1. Proposition. With the above notations, we get :

(a) 1 ∈
⊕

σ∈Γ0
Rσ.

If we set Γ ′ = {σ ∈ Γ | 1d(σ), 1r(σ) 6= 0}, then

(b) The set Γ ′, with the operations induced from Γ , is a groupoid.

(c) Γ ′
0 is finite.

(d) R =
⊕

σ∈Γ ′ Rσ.

Proof. Straightforward (see [11] for the details).

By the last proposition, we can write 1 =
∑

e∈Γ0
1e, where 1e ∈ Re \{0},

e ∈ Γ0. Note that if M is a graded left R-module, then this implies that

(2) 1r(σ)m = m

for all m ∈ Mσ, σ ∈ Γ .

3.2. Lemma. The ring R is strongly graded if and only if

(3) Rr(σ) = RσRσ−1

for all σ ∈ Γ .

Proof. If R is strongly graded, then, trivially, (3) holds. On the other
hand, if (3) holds, then, by (2), we get RσRτ ⊆Rστ =Rr(σ)Rστ ⊆RσRσ−1Rστ

⊆ RσRτ for all (σ, τ) ∈ Γ2. Hence R is strongly graded.

Let i denote the inclusion R0 ⊆ R. Since R0 is a ring, i is a ring homomor-
phism. Now we introduce the graded restriction and induction functors gri∗
from R-gr to R0-mod and gri

∗ from R0-mod to R-gr, respectively. By mim-
icking the ungraded case we define these functors by gri∗(M) = M0, with
the induced left R0-module structure, for all graded left R-modules M , and

gri
∗(N) = R⊗R0 N , with the induced left R-module structure, and a grading

defined by (R⊗R0N)σ = Rσ⊗R0N for all σ ∈ Γ and all left R0-modules N . It
is easy to check that gri∗ is a right adjoint of gri

∗, and that the correspond-
ing unit α : idR0-mod → gri∗gri

∗ and counit β : gri
∗
gri∗ → idR-gr are the

natural maps αN : N → R0⊗R0 N , N ∈ R0-mod, and βM : R⊗R0 M0 → M ,
M ∈ R-gr.
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3.3. Proposition. With the above notations, the following three con-

ditions are equivalent :

(i) The ring R is strongly graded.

(ii) Every graded left R-module is strongly graded.

(iii) The natural transformations α and β are natural equivalences.

Proof. Suppose that (i) holds. We show (ii). Take a graded left R-
module M . If (σ, τ) ∈ Γ2, then, by (3), we get RσMτ ⊆ Mστ = Rr(σ)Mστ =
RσRσ−1Mστ ⊆ RσMτ . Hence M is strongly graded.

Now suppose that (ii) holds. We show (iii). Take a graded left R-mo-
dule M . By the assumptions, βM is surjective. Set K = ker(βM ). Take
σ ∈ Γ . Then, since βM |R0⊗R0

M : R0 ⊗R0 M → M is an isomorphism, we get

Kσ = RσK0 = Rσ((R0 ⊗R0 M) ∩ K) = Rσ ker(βM |R0⊗R0
M ) = Rσ0 = 0.

Therefore K = 0. Also, αN is an isomorphism for all left R0-modules N . In
fact, the inverse of αN is given by the map R0 ⊗R0 N ∋ r ⊗ n 7→ rn ∈ N ,
r ∈ R0, n ∈ N .

If (iii) holds, then trivially (ii) and hence (i) holds.

To state the next result, we need some more notation. For a graded left
R-module M and σ ∈ Γ , let M(σ), the σ-suspension of M , be the graded
submodule of M defined by the new grading M(σ)τ = Mτσ if (τ, σ) ∈ Γ2

and M(σ)τ = {0} otherwise, for all τ ∈ Γ .

3.4. Corollary. Suppose that R is a strongly graded ring and M a

strongly graded left R-module. With the above notations, we get :

(a) The multiplication map R ⊗R0 Mτ → M(τ) is an isomorphism of

graded left R-modules.

(b) If (σ, τ) ∈ Γ2, then the multiplication map Rσ ⊗Rr(τ)
Rτ → Rστ is

an isomorphism of Rr(σ)-Rd(τ)-bimodules.

Proof. (a) By (the proof of) Proposition 3.3, the multiplication map
βM : R⊗R0 M → M is an isomorphism of graded left R-modules. This map
restricts to an isomorphism R ⊗R0 Mτ → M(τ) of graded left R-modules.

(b) This follows from (a) and the canonical isomorphism Rσ ⊗R0 Rτ →
Rσ ⊗Rr(τ)

Rτ of Rr(σ)-Rd(τ)-bimodules.

4. Groupoid crossed products. In this section, we begin by defin-
ing groupoid crossed products. Then we show that every groupoid crossed
product is a strongly graded ring and that, conversely, every strongly graded
ring can be presented as a groupoid crossed product (see Proposition 4.1).
We end this section by showing that there are many natural examples of
groupoid crossed products (see Example 4.3).
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Let F : Γ → PIC be a groupoid homomorphism. Set F (σ) = [Mσ],
σ ∈ Γ , where each Mσ is an invertible Ar(σ)-Ad(σ)-bimodule, for some rings
Ar(σ) and Ad(σ). Then a factor set associated to F is a family f = {fσ,τ |
(σ, τ) ∈ Γ2}, where each fσ,τ : Mσ ⊗Ad(σ)

Mτ → Mστ is an isomorphism of
Ar(σ)-Ad(τ)-bimodules, making the diagram

(4)

Mσ ⊗Ad(σ)
Mτ ⊗Ad(τ)

M̺
idMσ⊗fτ,̺
−−−−−−−→ Mσ ⊗Ad(σ)

Mτ̺

fσ,τ⊗idM̺





y





y

fσ,τ̺

Mστ ⊗Ad(τ)
M̺

fστ,̺
−−−−→ Mστ̺

commute for all (σ, τ, ̺) ∈ Γ3. If f is a factor set associated to F , then we
define the groupoid crossed product

(F, f) =
⊕

σ∈Γ

Mσ,

the additive group with multiplication defined by the bilinear extension of
the rule x · y = fσ,τ (x ⊗ y) if (σ, τ) ∈ Γ2 and x · y = 0 otherwise, for all
x ∈ Mσ and y ∈ Mτ and σ, τ ∈ Γ .

4.1. Proposition. Let F : Γ → PIC be a groupoid homomorphism and

f a factor set associated to F .

(a) (F, f) is a strongly graded ring.

(b) If R is a strongly graded ring , then there is a groupoid homomor-

phism F : Γ → PIC and a factor set f associated to F such that R
is isomorphic to (F, f).

Proof. (a) Set S = (F, f). By (4) multiplication in S is associative and
by the definition of this multiplication, SσSτ = Sστ for any (σ, τ) ∈ Γ2. All
that is left to show is that S has a multiplicative identity. Since F (e) =
[Me] = [Ae], e ∈ Γ0, we see that Me

∼= Ae as Ae-bimodules. Thus, there
exist me ∈ Me, e ∈ Γ0, such that Me = Aeme = meAe and ame = mea,
a ∈ Ae. Since each fe,e : Me ⊗Ae

Me → Me, e ∈ Γ0, is an isomorphism
of Ae-bimodules, we can write fe,e(me ⊗ me) = ceme for some ce ∈ C(Ae)

∗

(note that m⊗m is a generator of a left and right R-module M⊗M). Now set
ne = c−1

e me, e ∈ Γ0. Then fe,e(ne ⊗ ne) = ne, e ∈ Γ0. Hence n :=
∑

e∈Γ0
ne

is a multiplicative identity of S. Notice that if x ∈ Mσ for some σ ∈ Γ , then,
since Mr(σ) = nr(σ)Ad(σ), there is y ∈ Mσ such that x = fr(σ),σ(nr(σ) ⊗ y).
Thus, by (4), we get

n · x = nr(σ) · x = fr(σ),σ(nr(σ) ⊗ x) = fr(σ),σ(nr(σ) ⊗ fr(σ),σ(nr(σ) ⊗ y))

= fr(σ),σ(fr(σ),r(σ)(nr(σ) ⊗ nr(σ)) ⊗ y) = fr(σ),σ(nr(σ) ⊗ y) = x.

Analogously, x · n = x.
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(b) Define F : Γ → PIC by F (σ) = [Rσ], σ ∈ Γ , and a factor set f
associated to F by the multiplication maps fσ,τ : Rσ ⊗Rd(σ)

Rτ → Rστ ,
(σ, τ) ∈ Γ2. The claim now follows immediately from Corollary 3.4(b).

Now we show that the isomorphism class of (F, f) does not depend on
the choice of the bimodules Mσ. To do that we need some more notation
and a lemma.

Let F and F ′ be homomorphisms of groupoids from Γ to PIC that
coincide on Γ0. Take factor sets f and f ′ associated to F and F ′ respectively
and set F (σ) = [Mσ], F ′(σ) = [M ′

σ], σ ∈ Γ . A morphism from f to f ′ is
defined to be a family α = (ασ)σ∈Γ , where each ασ : Mσ → M ′

σ is an
Ar(σ)-Ad(σ)-bimodule homomorphism such that the diagram

(5)

Mσ ⊗Ad(σ)
Mτ

fσ,τ
−−−−→ Mστ

ασ⊗ατ





y





y

αστ

M ′
σ ⊗Ad(σ)

M ′
τ

f ′

στ−−−−→ M ′
στ

is commutative for all (σ, τ) ∈ Γ2.

4.2. Lemma. With the above notations, a morphism α from f to f ′

induces a homomorphism of graded rings α from (F, f) to (F ′, f ′). If each

αe, e ∈ Γ0, is surjective, then α(1) = 1. Moreover , α is an isomorphism if

and only if each αe, e ∈ Γ0, is bijective.

Proof. By (5), α is multiplicative. Let n denote the multiplicative iden-
tity of (F, f) and set n′ = α(n). Fix e ∈ Γ0 and take y ∈ M ′

e. If αe is surjec-
tive, then there is x ∈ Me such that αe(x) = y. Hence n′ · y = α(n) · α(x) =
α(n · x) = α(x) = y. Analogously, y · n′ = y. Since e ∈ Γ0 was arbitrarily
chosen, n′ is a multiplicative identity of (F ′, f ′). The last statement of the
lemma is obvious.

By the above lemma, the isomorphism class of (F, f) does not depend
on the choice of the bimodules Mσ, σ ∈ Γ . In fact, if F (σ) = [Mσ] = [M ′

σ],
σ ∈ Γ , then there exist Ar(σ)-Ad(σ)-bimodule isomorphisms ασ : M ′

σ → Mσ,

σ ∈ Γ . If we now set f ′
σ,τ = α−1

στ ◦ fσ,τ ◦ (ασ ⊗ ατ ) for (σ, τ) ∈ Γ2, then f ′ is
a factor set associated to F and (5) commutes.

We end this section by showing that there are lots of natural examples
of groupoid crossed products.

4.3. Example. (a) If T is an associative ring, then the groupoid ring
T [Γ ] of T over Γ is defined to be the set of all formal sums

∑

σ∈Γ tσσ with
tσ ∈ T , σ ∈ Γ , and tσ = 0 for almost all σ ∈ Γ . Addition is defined pointwise
and multiplication is defined by the T -linear extension of the rule σ · τ = στ
if (σ, τ) ∈ Γ2 and σ · τ = 0 otherwise. The grading is, of course, defined by
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T [Γ ]σ = Tσ, σ ∈ Γ . By defining the maps fσ,τ via the multiplication in
T [Γ ], it is easy to see that T [Γ ] is a groupoid crossed product. Note also
that if Γ is a group, then T [Γ ] is the usual group ring of T over Γ . On the
other hand, if Γ = I × I, where I is a finite set of cardinality n, and Γ is
equipped with the partial binary operation defined by letting (i, j)(k, l) be
defined and equal to (i, l) precisely when j = k, then T [Γ ] is the ring of n×n
matrices over T . For results concerning the separability and semisimplicity
of groupoid rings, see [12].

(b) Let K/F be a separable finite field extension and F a fixed algebraic
closure of F containing K. Let L denote the normal closure of K/F in F
and let Gal be the Galois group of L/F . Let K1, . . . , Kn be the different
conjugate fields of K under the action of Gal. Furthermore, if 1 ≤ i, j ≤ n,
then let Γij denote the set of σ ∈ Gal such that σ(Kj) = Ki. If we let
Γ =

⋃

i,j Γi,j , then Γ is, in a natural way, a groupoid. We will use the
notation r(σ) = i and d(σ) = j for σ ∈ Γij . Let (K/F, f) denote the direct
sum

⊕

σ∈Γ Kr(σ)uσ equipped with the multiplication auσbuτ = aσ(b)fσ,τuστ

if (σ, τ) ∈ Γ2 and auσbuτ = 0 otherwise, for all a ∈ Kr(σ), b ∈ Kr(τ),
σ, τ ∈ Γ , where fσ,τ ∈ Kr(σ), (σ, τ) ∈ Γ2, and fσ,τ̺σ(fτ,̺) = fστ,̺fσ,τ for all
(σ, τ, ̺) ∈ Γ3. By interpreting this equation as a commutative diagram of the
type (4), it is easy to see that the F -algebra (K/F, f) is a groupoid crossed
product. Note also that if K/F is actually Galois, then the construction
of (K/F, f) coincides with the classical construction of a crossed product
relative the extension K/F (see e.g. [15]). For results concerning separability
of crossed product algebras (and heredity of crossed product orders) defined
by separable field extensions, see [13].

5. Cohomology of groupoids. For use in the last section, we now
recall the cohomology theory for groupoids. For details see e.g. [16]. Let
X = (Xe)e∈Γ0 be a collection of abelian groups. Let I(X) denote the set of
isomorphisms ϕe,e′ : Xe′ → Xe, e, e′ ∈ Γ0. Note that I(X) is in a natural
way a groupoid with respect to composition and that there is a canonical
bijection Γ0 → I(X)0, where e 7→ idXe

, e ∈ Γ0. Furthermore, X is called
a left Γ -module if there is a homomorphism of groupoids L : Γ → I(X)
such that L(e) = idXe

, e ∈ Γ0. Let X ′ denote the disjoint union of the Xe,
e ∈ Γ0. Let n be a nonnegative integer. A function c : Γn → X ′ is called
an n-cochain if for all (σ0, . . . , σn−1) ∈ Γn, the following two conditions
hold:

(i) c(σ0, . . . , σn−1) ∈ Xr(σ0);
(ii) if 0 ≤ i ≤ n − 1 and σi ∈ Γ0, then c(σ0, . . . , σn−1) = 0.

The collection of n-cochains forms an abelian group which is denoted
by Cn(Γ, X). Define a map δn from Cn(Γ, X) to Cn+1(Γ, X) by δ0(σ0) =
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L(σ0)(c(r(σ0))) − c(d(σ0)) for n = 0, c ∈ C0(Γ, X) and σ0 ∈ Γ0, and

δn(c)(σ0, . . . , σn) = L(σ0)(c(σ1, . . . , σn))

+
n

∑

i=1

(−1)ic(σ0, . . . , σi−2, σi−1σi, σi+1, . . . , σn) + (−1)n+1c(σ0, . . . , σn−1)

for n > 0, c ∈ Cn(Γ, X) and (σ0, . . . , σn) ∈ Γn+1. Then (Cn(Γ, X), δn)
is a cochain complex. Now set Zn(Γ, X) = ker(δn) and for positive n, set
Bn(Γ, X) = im(δn−1). Then Hn(Γ, X) := Zn(Γ, X)/Bn(Γ, X) is called the
nth cohomology group of the Γ -module X.

6. Cohomology and strongly graded rings. In this section, we ob-
tain a bijection from the second cohomology group to the collection of equiv-
alence classes of rings strongly graded by the groupoid (see Theorem 6.3).
This bijection is a generalization from the group graded situation to the
groupoid graded case. To accomplish this, we need some more notations
and a lemma.

Let F : Γ → PIC be a groupoid homomorphism. We set F (σ) = [Mσ],
σ ∈ Γ , where Mσ is an invertible Ar(σ)-Ad(σ)-bimodule. By Proposition
2.2 there is a homomorphism of groupoids l from PIC to ISOC. If we set
A = (C(Ae)

∗)e∈Γ0 and L = l ◦ F , then, in the language of Section 5, A is a
left Γ -module.

6.1. Lemma. Let f and g be factor sets associated to F .

(a) If q ∈ Z2(Γ, A), then fq is a factor set associated to F .

(b) There is q ∈ Z2(Γ, A) such that g = qf .

(c) A cocycle q ∈ Z2(Γ, A) belongs to B2(Γ, A) if and only if there is

a graded ring isomorphism α from (F, f) to (F, qf) such that each

graded restriction ασ to Mσ, σ ∈ Γ , is an Ar(σ)-Ad(σ)-bimodule iso-

morphism.

Proof. (a) Set h = fq. We have to verify that (4) commutes for h. Take
(σ, τ, ̺) ∈ Γ3, x ∈ Mσ, y ∈ Mτ and z ∈ M̺. Then

(hστ,̺ ◦ (hσ,τ ⊗ idMσ
))(x ⊗ y ⊗ z)

= qστ,̺qσ,τ (fστ,̺ ◦ (fσ,τ ⊗ idPσ
))(x ⊗ y ⊗ z)

= (qσ,τ̺σ(qτ,̺))(fσ,τ̺ ◦ (idMσ
⊗ fτ,̺))(x ⊗ y ⊗ z)

= (qσ,τ̺σ(qτ,̺))fσ,τ̺(x ⊗ fτ,̺(y ⊗ z)) = hσ,τ̺(σ(qτ,̺x ⊗ fτ,̺(y ⊗ z)))

= hσ,τ̺(xqτ,̺ ⊗ fτ,̺(y ⊗ z)) = hσ,τ̺(x ⊗ hτ,̺(y ⊗ z))

= (hσ,τ̺ ◦ (idMσ
⊗ hτ,̺))(x ⊗ y ⊗ x).

(b) Set hσ,τ = gσ,τ ◦ f−1
σ,τ for all (σ, τ) ∈ Γ2. Then hσ,τ is an Ar(σ)-

Ad(σ)-bimodule automorphism of Mστ . Hence, by Proposition 2.2, there is
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qσ,τ ∈ C(Ar(σ))
∗ such that hσ,τ (x) = qσ,τx, x ∈ Mστ . By (4) it follows that

q ∈ Z2(Γ, A).
(c) Suppose now that q ∈ B2(Γ, A). Then there is c ∈ C1(Γ, A) such

that qσ,τ = σ(cτ )cσc−1
στ , (σ, τ) ∈ Γ2. Define a map α from (F, qf) to (F, f)

by α(x) = cσx, x ∈ Mσ. If x ∈ Mσ, y ∈ Mτ and (σ, τ) ∈ Γ2, then α(xy) =
cστqσ,τfσ,τ (x⊗y) = q−1

σ,τσ(cτ )cσqσ,τfσ,τ (x⊗y) = fσ,τ (cσx⊗cτy) = α(x)α(y).
Clearly, each ασ, σ ∈ Γ , is an Ar(σ)-Ad(σ)-bimodule isomorphism.

On the other hand, suppose that there is an isomorphism β of graded
rings from (F, qf) to (F, f) such that each βσ, σ ∈ Γ , is an Ar(σ)-Ad(σ)-
bimodule isomorphism. Hence (as above) there are dσ ∈ C(Ar(σ))

∗ such
that βσ(x) = dσx, x ∈ Mσ. Therefore, for all x ∈ Mσ, y ∈ Mτ , (σ, τ) ∈ Γ2,
we obtain β(xy) = β(x)β(y) ⇔ dστqσ,τfσ,τ (x ⊗ y) = fσ,τ (dσx ⊗ dτy) ⇔
dστqσ,τfσ,τ (x ⊗ y) = dσσ(dτ )fσ,τ (x ⊗ y). Thus q ∈ B2(Γ, A).

6.2. Corollary. If f is a factor set associated to F , then the map from

Z2(Γ, A) to the collection of factor sets associated to F , defined by q 7→ qf ,
is bijective.

Finally, to state the main result of this article, we need some more no-
tations. If f and f ′ are factor sets associated to F , then we write (F, f) ≈
(F, f ′) if there is an isomorphism of graded rings from (F, f) to (F, f ′) such
that each graded restriction to Mσ, σ ∈ Γ , is an Ar(σ)-Ad(σ)-bimodule iso-
morphism. Let (F ) denote the collection of equivalence classes of groupoid
crossed products (F, f) modulo ≈, where f runs over all factor sets associ-
ated to F .

6.3. Theorem. If f is a factor set associated to F , then the map from

H2(Γ, A) to (F ), defined by q 7→ qf , is bijective.

Acknowledgements. The author is indebted to the referee for numer-
ous corrections on the original manuscript.
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