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LIFTS FOR SEMIGROUPS OF ENDOMORPHISMSOF AN INDEPENDENCE ALGEBRABYJO�O ARAÚJO (Lisboa)Dediated to the memory of Professor Kazimierz UrbanikAbstrat. For a universal algebra A, let End(A) and Aut(A) denote, respetively,the endomorphism monoid and the automorphism group of A. Let S be a semigroupand let T be a harateristi subsemigroup of S. We say that φ ∈ Aut(S) is a lift for
ψ ∈ Aut(T ) if φ|T = ψ. For ψ ∈ Aut(T ) we denote by L(ψ) the set of lifts of ψ, that is,

L(ψ) = {φ ∈ Aut(S) | φ|T = ψ}.LetA be an independene algebra of in�nite rank and let S be a monoid of monomorphismssuh that G = Aut(A) ≤ S ≤ End(A). It is obvious that G is harateristi in S.Fitzpatrik and Symons proved that if A is a set (that is, an algebra without operations),then |L(φ)| = 1. The author proved in a previous paper that the analogue of this resultdoes not hold for all monoids of monomorphisms of an independene algebra. The aimof this paper is to prove that the analogue of the result above holds for semigroups S =
〈Aut(A) ∪ E ∪ R〉 ≤ End(A), where E is any set of idempotents and R is the empty setor a set ontaining a speial monomorphism α and a speial epimorphism α∗.1. Introdution. We assume the reader to be familiar with both semi-group theory and universal algebra. We reommend as referenes [22℄ and [29℄.Also we assume the reader to have a basi knowledge of the theory of in-dependene algebras. We reommend [5℄, [14℄, [15℄ and [19℄ as referenes.Independene algebras were introdued as v∗-algebras by Narkiewiz [30℄(see also [31℄ and [32℄). For an exellent survey paper on v∗-algebras seeUrbanik [41℄.These algebras appeared in Poland as a result of researh on di�erent no-tions of independene valid in any universal algebra. This researh, promptedby Marzewski [24℄, bene�ted from the ontributions of Marzewski himself(e.g., [25℄�[28℄), Narkiewiz ([30℄�[32℄), Grätzer [20℄, Urbanik ([38℄�[41℄), et.Suh investigations led to many important results and to several questionsthat forty years later remain open. An exellent aount and the main refer-ene regarding all these investigations is Gªazek [16℄, a omprehensive survey2000 Mathematis Subjet Classi�ation: 08B20, 08A35, 20M10, 20M20.Key words and phrases: universal algebra, independene algebra.[39℄
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paper (ontaining the impressive number of more than eight hundred refer-enes). But when speaking about v∗-algebras, the most notable ahievementis due to Urbanik: a series of deep papers leading to the lassi�ation of thesealgebras. For the full piture see [41℄. (See also [9℄.)Semigroup theorists redisovered v∗-algebras (giving them the name ofindependene algebras) as a tool to provide uni�ed proofs for results thatgraphially hold for both sets and vetor spaes, or more preisely, hold forthe endomorphism monoid of a set and for the endomorphism monoid of avetor spae. Sine the early 1990s, endomorphism monoids of independenealgebras, and related semigroups, have been extensively studied and thetopi ontinues to reeive a great deal of attention. From the point of viewof semigroups the pre-history of independene algebras might be in 1966,when Howie desribed the subsemigroup EX of T (X) generated by all thenon-identity idempotents [21℄. The orresponding result for End(V ), where
V is a �nite-dimensional vetor spae, was proved by Erdos the followingyear [11℄, but it was not until nearly twenty years later that Reynolds andSullivan [33℄ found the appropriate analogue in the in�nite-dimensional ase.Their work also unovered a signi�ant di�erene between the semigroups
EX and EV where X is an in�nite set, V is an in�nite-dimensional vetorspae, and where for any algebra A we denote by EA the subsemigroupof End(A) generated by the non-identity idempotents. Sullivan surveyedthe parallels and distintions between T (X) and End(V ) in an in�uentialonferene talk in 1990 whih was published in [37℄.Fountain and Lewin, having seen a preliminary version of Gould's pa-per [19℄, realized that independene algebras provided a suitable oneptualframework for unifying those results on produts of idempotents whih holdfor both T (X) and End(V ). They desribed EA for an independene algebraof �nite rank in [14℄. (For a diret proof see [4℄.) After that, independenealgebras have been very useful to(1) export results from semigroup theory to linear algebra (the other way,unfortunately, proved to be less fruitful);(2) give uni�ed proofs for results that hold for both sets and vetorspaes;(3) provide explanations for why sometimes vetor spaes and sets behavedi�erently.Among others, the papers [7℄ and [8℄ are examples of (1); the papers [3℄and [13℄ are examples of (3); the urrent paper is an example of (1) and (2).The �rst step in the de�nition of independene algebras is the introdu-tion of a notion of independene valid for universal algebras. Let A be analgebra with universe A and let X be a set ontained in A. Then we de-note by 〈X〉 the algebra generated by X. Now, a subset X of an algebra is
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said to be independent if X = ∅ or if, for every element x ∈ X, we have
x 6∈ 〈X \ {x}〉; a set is dependent if it is not independent.Lemma 1.1. For an algebra A, the following onditions are equivalent :(1) for every subset X of A and all elements u, v of A, if u ∈ 〈X ∪ {v}〉and u 6∈ 〈X〉, then v ∈ 〈X ∪ {u}〉;(2) for every subset X of A and every element u ∈ A, if X is independentand u 6∈ 〈X〉, then X ∪ {u} is independent ;(3) for every subset X of A, if Y is a maximal independent subset of X,then 〈X〉 = 〈Y 〉;(4) for subsets X,Y of A with Y ⊆ X, if Y is independent , then there isan independent set Z with Y ⊆ Z ⊆ X and 〈Z〉 = 〈X〉.Proof. See [29, p. 50, Exerise 6℄.An algebra A is said to have the exhange property, or to satisfy [EP℄, ifit satis�es the equivalent onditions of Lemma 1.1. A basis for A is a subsetof A whih generates A and is independent. It is lear from Lemma 1.1 thatany algebra with [EP℄ has a basis. Furthermore, for suh an algebra, basesmay be haraterized as minimal generating sets or maximal independentsets, and all bases for A have the same ardinality [19, Proposition 3.3℄.This ardinal is alled the rank of A and is written rank(A).We say that A is an independene algebra if A satis�es [EP℄ and thefollowing property:[F℄ for every basis X of A and mapping f : X → A, there exists amorphism F : 〈X〉 → A extending f .Suppose a is a partial endomorphism of A. We denote the domain of aby ∆a and the image of a by ∇a. Observe that both ∆a and ∇a are subalge-bras of A. If a ∈ End(A), we denote by rank(a) the rank of the algebra ∇a.Reall that given a subalgebra B ≤ A, and a basis B for B, if B ∪ X and
B ∪ Y are bases of A, then |X| = |Y |. This ardinal is alled the orank of
B and is denoted by corank(B). This notation will be extended to endomor-phisms as above: for a ∈ End(A), we write corank(a) to denote the orankof ∇a.Let A be an independene algebra and let X,Y be two disjoint andindependent subsets of A. Then A is said to be strong if 〈X〉 ∩ 〈Y 〉 = Conimplies that X∪Y is an independent set (where Con denotes the onstants ofthe algebra A). Clearly, any subalgebra of a strong independene algebra isalso a strong independene algebra. Partiular ases of strong independenealgebras are sets and vetor spaes.Let f be an endomorphism of an independene algebra A. Then B is apreimage basis for f if Bf is a basis for the image of f and f |B is injetive.(We observe that mappings at on the right; we write xf rather than f(x).)
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If A is a universal algebra, denote by End(A) and Aut(A), respetively,the endomorphism monoid and the automorphism group of A. By PEnd(A)we denote the monoid of partial endomorphisms of A.When A = X, where X is a set (that is, when the algebra has no op-erations), then End(A) = T (X) and Aut(A) = Sym(X), respetively, themonoid of all transformations on X and the symmetri group on X.Let S be a semigroup and let T be a subsemigroup of S. We say that Tis harateristi in S if, for every φ ∈ Aut(S), we have φ|T ∈ Aut(T ), thatis, if the restrition to T of every automorphism of S is an automorphismof T . Now suppose that T is a harateristi subsemigroup of S. We saythat an automorphism φ ∈ Aut(S) is a lift for ψ ∈ Aut(T ) if φ|T = ψ. For

φ ∈ Aut(T ) we denote by L(φ) the set of lifts of φ, that is,
L(φ) = {ψ ∈ Aut(S) | ψ|T = φ}.It is well known that lifts play a ruial role in the desription of theautomorphism group of a semigroup. The general sheme goes as follows: ifwe want to desribe the automorphism group of S, a good idea is to try to�nd a subsemigroup T ≤ S suh that:(1) T is harateristi in S;(2) we have (or an �nd) a desription of Aut(T ), the automorphismgroup of T ;(3) for every g ∈ Aut(T ) we an desribe L(g).Sine (1) implies that Aut(S) =

⋃

g∈Aut(T ) L(g), from (3) we get a de-sription of Aut(S). (Usually it is neessary to have (2) in order to �nd (3).)For example, in [23℄ Mal'tsev desribed Aut(T (X)). He onsidered thesemigroup
T1(X) = {f ∈ T (X) | |(X)f | = 1},proved that T1(X) is harateristi in T (X), desribed the automorphismsof T1(X) (whih are the mappings τ g : a 7→ g−1ag, where g ∈ Sym(X)and a ∈ T1(X)) and proved that |L(τ g)| = 1 for all g ∈ Aut(T1(X)). Thus

Aut(T (X)) = Inn(T (X)), the inner automorphisms, that is, the automor-phisms indued under onjugation by the elements g ∈ Sym(X).Another example: in [12℄ Fitzpatrik and Symons onsidered semigroups
S of injetive mappings suh that Sym(X) ≤ S ≤ T (X) (where X is anin�nite set; see also [10℄). In the most deliate part of their proof they showedthat, given an h ∈ Aut(Sym(X)), we have |L(h)| = 1. Thus, sine Sym(X)is harateristi in S (and all automorphisms of Sym(X) are inner), we have
Aut(S) =

⋃

τg∈Aut(Sym(X)) L(τ g) and hene for every semigroup S of injetivemappings suh that Sym(X) ≤ S ≤ T (X) we have
Aut(S) = {τ g : s 7→ g−1sg | g ∈ Sym(X)}.
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In [17℄ Gluskin used the same general sheme to desribe the automor-phism group of End(V ), where V is a vetor spae, thus proving the vetorspae analogue of the result proved by Mal'tsev for sets, as referred to above.The linear analogue of the result of Fitzpatrik and Symons quoted abovewould read as follows: given a vetor spae V of in�nite dimension and asemigroup S of injetive linear transformations suh that Aut(V ) ≤ S ≤
End(V ), prove that for all h ∈ Aut(Aut(V )) we have

|L(h)| = |{g ∈ Aut(S) | g|Aut(Aut(V )) = h}| = 1.In [3℄ the author proved that this is not true and then haraterized theindependene algebras in whih the analogue of this result holds. This was anegative result and the best that ould be done was to desribe the boundsof that negative answer.The aim of this paper is to provide positive answers for many lassesof semigroups, thus providing the desription of the automorphisms of thosesemigroups, modulo a desription of Aut(Aut(A)), an open problem in grouptheory. More preisely, we want to identify large lasses of semigroups S, with
Aut(V ) ≤ S ≤ End(V ), in whih an analogue of the result of Fitzpatrik andSymons referred to above holds. The ornerstone of the results in this paperare the so-alled fundamental representations of endomorphisms (introduedin [1℄ and [6℄) and two endomorphisms α and α∗ introdued in [2℄. These twoendomorphisms have the property that 〈Aut(A) ∪ E(End(A)) ∪ {α, α∗}〉 =
End(A) (the symbol E(End(A)) denotes the set of idempotents of End(A)).In Setion 2 we introdue some notation and basi results. The followingtwo setions ontain tehnial results. In Setion 5 we state and prove ourmain result. The paper ends with a setion of proposed problems.2. Preliminaries. We start by introduing some notation, de�nitionsand onventions. Let A be an algebra. To simplify the notation let G =
Aut(A) and denote by Con the onstants of A. In this paper we assume that
Con ⊆ {0}, that is, Con is empty or has at most one element, denoted by 0.Let B be a basis for an independene algebra A and let α : B → Abe a mapping. Sine there exists one and only one morphism α : A → Aextending α (that is, suh that α|B = α) we will use the same letter α todenote the mapping and the endomorphism.For a semigroup S we denote by E(S) the set of idempotents of S, thatis, the set of elements s ∈ S suh that s2 = s.We introdue some auxiliary results about strong independene algebras.Lemma 2.1. Let A be a strong independene algebra. Let B and C be sub-algebras of A. If B is a basis for B ∩ C, B ∪C is a basis for B and B ∪D isa basis for C, then B∪C ∪D is a basis for the algebra generated by B and C.Proof. See [15, Lemma 1.6℄.
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Definition 2.2. Let I be a set and, for a symbol 0 6∈ I, let I0 = I ∪ {0}.Moreover, let A be a strong independene algebra and let (Ai)i∈I be a par-tition of a basis of A. Consider the endomorphism α ∈ End(A) de�ned by

Aiα = {ai} for i ∈ I, where {ai : i ∈ I} is an independent set (and hene abasis for ∇(α)), and let A0α = {0}. An endomorphism α ∈ End(A) underthese onditions is represented by the matrix
[

A0 Ai

0 ai

]

i∈I

.This matrix is said to be a fundamental representation of α. The set A0 inthe fundamental representation is said to be the onstant omponent.If the algebra has no onstants, then the onstant omponent is the emptyset and then the endomorphism an be de�ned by
[

Ai

ai

]

i∈I

.The importane of this onept lies in the following fat:Theorem 2.3. Every endomorphism of a strong independene algebraadmits a fundamental representation.Proof. This follows from [15, Lemma 2.8℄ and the observations followingCorollary 2.10 of [15℄. See also [1℄ and [6℄.We observe that if e ∈ E(End(A)), then e has a fundamental represen-tation
[

A0 Ai

0 ai

]

i∈I

,where ai ∈ Ai for all i ∈ I. Moreover, if C is a basis for ∇e and C0 = C∪{0},then there is a basis of A, say B =
⋃

c∈C0
Ac, suh that Ace = c for all c ∈ C0.Thus, e an be represented as (and is de�ned by)

[

Ac

c

]

c∈C0

.Let X 6= ∅ be a subset of A × A. Then the ongruene generated by Xwill be denoted by Θ(X).Lemma 2.4. Let e be an idempotent endomorphism with the fundamentalrepresentation
[

Ac

c

]

c∈C0

,where c ∈ Ac for all c ∈ C. Moreover , let X =
⋃

c∈C0
(Ac ×Ac). Then Θ(X)is equal to Ker(e).
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Proof. Clearly, (x, xe) belongs to X for all x ∈ B. Thus for every term tand x1, . . . , xn ∈ B, we have (x1, x1e) ∈ X, . . . , (xn, xne) ∈ X and hene
(t(x1, . . . , xn), t(x1e, . . . , xne)) ∈ Θ(X).Therefore, for all elements u = t(x1, . . . , xn) ∈ A, we have (u, ue) ∈ Θ(X).Now, let (u, v) ∈ Ker(e). On the one hand, (u, ue) and (ve, v) both belongto Θ(X). On the other hand, (u, v) ∈ Ker(e) implies that ue = ve. Bytransitivity, (u, v) belongs to Θ(X). This proves that Ker(e) is ontained in

Θ(X). As the onverse is obvious, the lemma follows.Throughout this paper, A always denotes a strong independene algebraof in�nite rank with universe A (reall that Con ⊆ {0}), and S denotesa semigroup of endomorphisms of A suh that G = Aut(A) ≤ S ≤ End(A).In the next two setions we prove auxiliary tehnial results.3. eτ = e. The aim of this setion is the proof of the following theorem.Theorem 3.1. Let A be a strong independene algebra with at most oneonstant , let G ≤ S ≤ End(A) and let τ ∈ Aut(S) be suh that τ |G = idG.Then eτ = e for all e ∈ E(S).This result will be proved in a series of lemmas. We start by introduingsome notation. Let X be a basis for A and let x, y ∈ X. Then we denote by
(xy)X the automorphism ofA that is indued by the transposition (xy)X , thepermutation of X that maps x to y, maps y to x and �xes all the remainingelements of X. We �rst prove the following lemma.Lemma 3.2. Let A be a strong independene algebra, S be a semigroupsuh that G ≤ S ≤ End(A) and let e ∈ E(S). Moreover , let τ ∈ Aut(S) besuh that τ |G = idG. Then Ker(eτ) = Ker(e).Proof. Let

[

Ac

c

]

c∈C0be a fundamental representation for e and let B =
⋃

c∈C0
Ac. Let c ∈ C0and suppose that |Ac| > 1. Then for all x, y ∈ Ac, we have (xy)Be = e andhene (xy)B(eτ) = eτ . Thus x(eτ) = y(eτ) and so (x, y) ∈ Ker(eτ). We haveproved that Ac × Ac ⊆ Ker(eτ). If, for some c ∈ C0, we have |Ac| = 1, say

Ac = {x}, then Ac ×Ac = {(x, x)} ⊆ Ker(eτ). Thus for all c ∈ C0 we have
Ac ×Ac ⊆ Ker(eτ).Let X =

⋃

c∈C0
(Ac ×Ac). As X ⊆ Ker(eτ) it follows that Θ(X) ⊆ Ker(eτ).Then, by Lemma 2.4, Ker(e) = Θ(X) ⊆ Ker(eτ). By symmetry, Ker(eτ) ⊆

Ker(e) and the lemma follows.
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The following lemmas show that ∇(e) = ∇(eτ). Observe that this issu�ient for proving the main theorem of this setion. In fat, if ∇(e) =

∇(eτ) then, as Ker(e) = Ker(eτ), the idempotent endomorphisms e and eτare HEnd(A)-related and hene e = eτ (see [22, Theorem 2.2.5℄).Lemma 3.3. Let S be a semigroup suh that G ≤ S ≤ End(A) and let
e ∈ E(S). Moreover , let τ ∈ Aut(S) be suh that τ |G = idG. Then ∇(e)annot be stritly ontained in ∇(eτ).Proof. Suppose that ∇(eτ) = A. Then eτ is a surjetive idempotent en-domorphism and hene eτ = idA. This omes from the fat that eτ is idem-potent and hene all the elements in ∇(eτ) are �xed points. As ∇(eτ) = Ait follows that a(eτ) = a for all a ∈ A. However, if eτ = idA = idA τ , itfollows that e = idA and hene ∇(e) = ∇(eτ).Suppose now that ∇(e) ⊆ ∇(eτ) and ∇(eτ) is stritly ontained in A.Moreover, let B be a basis for ∇(e), let C be suh that B ∪ C is a basisfor ∇(eτ), and let D be suh that B ∪ C ∪ D is a basis for A. If |C| ≥ 1then there exists g ∈ G suh that g|B = idB and g|C∪D has no �xed points.(This is possible beause |C ∪ D| > 1, as both C and D are non-empty.)Then eg = e and hene (eτ)g = eτ . However, for c ∈ C, we have c(eτ) = c,as c ∈ ∇(eτ), but cg 6= c. Thus, c(eτ)g 6= c(eτ). This ontradition followsfrom the supposition that |C| ≥ 1. The lemma is proved.Corollary 3.4. Let S be a semigroup suh that G ≤ S ≤ End(A) andlet e ∈ E(S). Moreover , let τ ∈ Aut(S) be suh that τ |G = idG. Then ∇(eτ)annot be stritly ontained in ∇(e).Proof. Certainly eτ ∈ E(S) and τ−1 ∈ Aut(S) is suh that τ−1|G = idG.Hene ∇(eτ) annot be stritly ontained in ∇((eτ)τ−1), that is, annot bestritly ontained in ∇(e).Lemma 3.5. Let S be a semigroup suh that G ≤ S ≤ End(A) and let
e ∈ E(S). Moreover , let τ ∈Aut(S) be suh that τ |G = idG. If corank(e)> 1,then ∇(e) = ∇(eτ).Proof. Consider the following sets:1. B, a basis for ∇(e) ∩∇(eτ);2. B ∪ C, a basis for ∇(e);3. B ∪D, a basis for ∇(eτ);4. B ∪ C ∪D ∪W , a basis for A.Suppose that D 6= ∅, say y ∈ D. Now let g ∈ G be suh that g|B∪C =
idB∪C and (D ∪W )g = D ∪W , with yg = z 6= y. This is possible beause
corank(e) > 1 implies |D ∪W | > 1. We have eg = e and hene (eτ)g = eτ .But for w ∈ A suh that w(eτ) = y, we have w(eτ)g = yg = z 6= y,a ontradition. Thus D must be empty. It follows that C = ∅ as well. In fat,
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if C 6= ∅, then ∇(eτ) = 〈B〉 is stritly ontained in ∇(e) = 〈B ∪ C〉, whihis impossible by Corollary 3.4. Hene, D = ∅ = C and ∇(e) = 〈B〉 = ∇(eτ)and the lemma follows.As noted before Lemma 3.3 we have the following orollary.Corollary 3.6. Let S be a semigroup suh that G ≤ S ≤ End(A)and let e ∈ E(S). Moreover , let τ ∈ Aut(S) be suh that τ |G = idG. If
corank(e) > 1, then e = eτ .Corollary 3.7. Let S be a semigroup suh that G ≤ S ≤ End(A)and let e ∈ E(S). Moreover , let τ ∈ Aut(S) be suh that τ |G = idG. If
∇(e) > Con, then ∇(eτ) ∩∇(e) 6= Con.Proof. By the previous result, if corank(e) > 1 then e = eτ and hene
∇(e) = ∇(eτ).Suppose now that corank(e) = 1 and∇(e)∩∇(eτ) = Con. As A is strong,if B is a basis for ∇(e) and C is a basis for ∇(eτ), then B∪C is independent,and hene there is a set W suh that B ∪ C ∪W is a basis for A. However,
corank(e) = 1 and hene |C ∪ W | = 1. As we suppose C 6= ∅, we have
W = ∅ and so B ∪ C is a basis for A. This implies corank(eτ) = |B| > 1,as |B| = rank(A), whih is supposed to be in�nite. This ontradits theprevious orollary as corank(eτ) > 1 implies eτ = (eτ)τ−1 = e.Now let e ∈ E(S) be suh that corank(e) = 1 and b1 ∈ ∇(e) ∩ ∇(eτ).Moreover, let B∪{x} be a basis for ∇(e) suh that b1 ∈ B. As corank(e) = 1there is an element y ∈ A suh that B ∪ {x} ∪ {y} is a basis for A. Underthese onditions we have the following three lemmas.Lemma 3.8. Suppose that e is de�ned by

[

{x, y} {b}

x b

]

b∈B

.Then ∇(e) = ∇(eτ).Proof. For an element b1 ∈ B, onsider an automorphism g ∈ G induedby the permutation (xyb1)Y ∈ Sym(Y ), where Y = B ∪ {x, y}. Clearly, egeis de�ned by
[

{x, y, b1} {b}

x b

]

b∈B\{b1}

.As ege is idempotent and corank(ege) = 2, Corollary 3.6 implies (ege)τ =
ege. Thus ∇(ege) =∇((ege)τ) =∇((eτ)g(eτ))⊆∇(eτ). However, (B \ {b1})
∪ {x} = ∇(ege) and so b1 ∈ ∇(eτ), so that B ∪ {x} ⊆ ∇(eτ), and hene
∇(e) ⊆ ∇(eτ). Hene, by Lemma 3.3, we have ∇(e) = ∇(eτ).
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Lemma 3.9. Suppose that e is de�ned by

[

{x} {b1, y} {b}

x b1 b

]

b∈B\{b1}

.Then ∇(e) = ∇(eτ).Proof. Let h ∈ G be the automorphism indued by (xb1)Y , where Y =
B ∪ {x, y}. Then (x)heh = x, (y)heh = x, (b1)heh = b1 and (b)heh = bfor the remaining elements of B. Let g ∈ G be the automorphism induedby (yb1)Y ∈ Sym(Y ) and let heh = eh. Then (x)ehg = x, (y)ehg = x,
(b1)e

hg = y and (b)ehg = b for the remaining b ∈ B. Thus ehg is de�ned by
[

{x, y} {b1} {b}

x y b

]

b∈B\{b1}and so ehgehge is de�ned by
[

{x, y, b1} {b}

x b

]

b∈B\{b1}

.As corank(ehgehge) = 2 and ehgehge is idempotent, it follows that (ehgehge)τ
= ehgehge. Hene

∇(ehgehge) = ∇((ehgehge)τ) = ∇((ehτ)gehg(eτ)) ⊆ ∇(eτ).Also b1 ∈ ∇(eτ) and so B ∪ {x} ⊆ ∇(eτ). Thus ∇(e) ⊆ ∇(eτ). It followsfrom Lemma 3.3 that ∇(e) = ∇(eτ).Lemma 3.10. Suppose that e is de�ned by
[

{y} {x} {b1} {b}

0 x b1 b

]

b∈B\{b1}

.Then ∇(e) = ∇(eτ).Proof. Let Y = B ∪ {x, y} and, for z ∈ (B ∪ {x}) \ {b1}, let gz ∈ G bethe automorphism indued by (b1z)Y . Then gzegz = e sine
ygzegz = yegz = 0gz = 0 = ye,

b1gzegz = zegz = zgz = b1 = b1e,

zgzegz = b1egz = b1gz = z = ze,

bgzegz = b = be for the remaining b ∈ B.Now, gzegz = e implies gz(eτ)gz = eτ and so
z(eτ) = (zgz)(eτ)gz = b1(eτ)gz

= b1gz (as b1 ∈ ∇(eτ))
= z.
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Thus z ∈ ∇(eτ) for all z ∈ (B ∪ {x}) \ {b1} and, as b1 ∈ ∇(eτ), we have
B ∪ {x} ⊆ ∇(eτ). Hene ∇(e) ⊆ ∇(eτ) and it follows from Lemma 3.3 that
∇(e) = ∇(eτ).We now onlude the proof of Theorem 3.1. Let S be a semigroup suhthat G ≤ S ≤ End(A) and e ∈ E(S) be an idempotent endomorphism suhthat corank(e) = 1. Moreover, let τ ∈ Aut(S) be suh that τ |G = idG.If corank(eτ) > 1, then it follows from Corollary 3.6 that eτ = (eτ)τ−1

= e. Thus, we an assume that corank(e) = 1 and that corank(eτ) = 1.Reall the following sets de�ned in Lemma 3.5.1. B is a basis for ∇(e) ∩∇(eτ);2. B ∪ C is a basis for ∇(e);3. B ∪D is a basis for ∇(eτ);4. B ∪ C ∪D ∪W is a basis for A.If D = ∅, then ∇(ατ) = 〈B〉 ⊆ ∇(e). If C = ∅ then ∇(e) ⊆ ∇(eτ). Ineither ase, ∇(e) = ∇(eτ) by Lemma 3.3. Thus W = ∅ and |D| = |C| = 1sine corank(e) = corank(eτ) = 1.Suppose now that W is empty. Then, as |D ∪W | = 1, it follows that
|D| = 1. By symmetry, we have |C| = 1, say C = {x}. Thus, B ∪ {x} is abasis for ∇(e). Let λ = rank(A) and B = {bi | i ∈ I}.First suppose that 0e−1 = ∅ and let the following matrix be a fundamen-tal representation for e:

[

Ax Ab

x b

]

b∈B

.If |Ax| = 1 = |Ab| for all b ∈ B, it follows that e is one-one and hene, as eis idempotent, e = idA. Thus |Ax| > 1 or |Ab| > 1 for some b ∈ B.On the other hand, corank(e) = |D| = 1 and if B ∪ T is a basis for A,then |T | = 2. The set Ax ∪
⋃

b∈B Ab is a basis for A. Hene |Ax| ≤ 2 or
|Ab| ≤ 2 for some b ∈ B.Suppose �rst that |Ax| = 2. Then the fundamental representation of ehas the form

e↔

[

{x, y} {b}

x b

]

b∈Band so, by Lemma 3.8, ∇(e) = ∇(eτ).Suppose now that there is a b ∈ B suh that |Ab| = 2, say |Ab1 | = 2.Then e has the fundamental representation
e↔

[

{x} {b1, y} {b}

x b1 b

]

b∈B\{b1}and so, by Lemma 3.9, ∇(e) = ∇(eτ).



50 J. ARAÚJO
Finally, suppose that 0e−1 6= {0}. Then e has a fundamental representa-tion of the form

e↔

[

A0 Ax Ab

0 x b

]

b∈B

.

Now Y = A0 ∪Ax ∪
⋃

b∈B Ab is a basis for A whih ontains B ∪{x}. As
corank 〈B ∪ {x}〉) = 1 it follows that |A0| = 1.Thus 1 = |A0| = |Ax| = |Ab| for all b ∈ B, and hene, by Lemma 3.10,
∇(e) = ∇(eτ).This �nishes the proof of Theorem 3.1.4. τ |R = idR. We start with a de�nition. Let S0 = 〈E0 ∪ G〉, where
E0 ⊆ E(End(A)). We say that R = {α, α∗} ⊆ End(A) is a regular set in S0if it has the following two properties:(1) for some ω ∈ S0 we have αωα∗ = idA;(2) for some h ∈ G we have α∗αωα = α∗αωh.Now we an state the main theorem in this setion.Theorem 4.1. Let R = {α, α∗} be a regular set in S0 = 〈E0 ∪ G〉,where E0 ⊆ E(End(A)). Let S = 〈S0 ∪ R〉 and let τ ∈ Aut(S) be suh that
τ |G = idG. Then τ = idS.Proof. Sine R is regular, there exists an element ω ∈ S0 suh that
αωα∗ = idA. The main tool in this proof will be the element α∗αωα ∈ S.Let ε = α∗αω. Then

ε2 = α∗αωα∗αω = α∗(αωα∗)αω = α∗(idA)αω = α∗αω = ε.This proves that ε is idempotent.Observe that α must be a monomorphism sine Ker(α) ⊆ Ker(αωα∗) =
Ker(idA). Sine Ker(idA) is the identity relation so is Ker(α).Now, for some h ∈ G, we have εα = εh (sine R is regular) so that
(εα)τ = (εh)τ . As ε is idempotent, by the main theorem of the previoussetion, ετ = ε; and by hypothesis hτ = h. Therefore

(εα)τ = (εh)τ ⇒ ε(ατ) = εh = εα.Let y ∈ ∇(ε). Sine ε is idempotent, yε = y. Thus
y(ατ) = yε(ατ) = yεα = yα.Hene, as α is injetive, we an apply Lemma 3.4 of [3℄ to onlude that

ατ = α.
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To prove that α∗τ = α∗ we have the following hain of equalities:
α∗ = α∗ idA

= α∗αωα∗ (as αωα∗ = idA)

= (α∗αω)τα∗ (as α∗αω = ε and ετ = ε)

= (α∗τ)(ατ)(ωτ)α∗

= (α∗τ)αωα∗ (as ατ = α and ωτ = ω)

= (α∗τ) idA (as αωα∗ = idA)

= α∗τ.The theorem is proved.5. The main result. The results of the previous two setions providethe neessary bakground to prove the main result of this paper:Theorem 5.1. Let A be a strong independene algebra of in�nite rankwith at most one onstant. Let S0 = 〈G ∪E0〉, where E0 ⊆ E(End(A)), andlet S = 〈S0∪R0〉 with R0 ∈ {∅, {α, α∗}} where {α, α∗} is a regular set in S0.Then every ψ ∈ Aut(G) admits at most one lift , that is,
|L(ψ)| = |{φ ∈ Aut(S) | φ|S = ψ}| ≤ 1.Proof. Let ψ ∈ Aut(G) and suppose that φ1, φ2 ∈ L(ψ). Therefore

φ1|G = ψ = φ2|G so that τ |G = (φ1φ
−1
2 )|G = idG and τ |G ∈ Aut(S).The main theorem in Setion 3 implies that eτ = e for all e ∈ E0 (and all

τ ∈ Aut(S) suh that τ |G = idG), so that eφ1 = eφ2. In the same way themain theorem in Setion 4 implies that aτ = a for all a ∈ R0, and hene
aφ1 = aφ2. We have proved that φ1 and φ2 oinide on a generating set of Sand hene φ1 = φ2.In [3℄ it was proved that there are some semigroups S suh that G ≤
S ≤ End(A) and |L(ψ)| ≥ 1 for some ψ ∈ Aut(G). But nothing was saidabout End(A) itself. Theorem 5.1 together with the main result of [2℄ givesthe following orollary.Corollary 5.2. Let A be a strong independene algebra of in�nite rankwith at most one onstant. Let S = End(A). Then every ψ ∈ Aut(G) admitsat most one lift , that is,

|L(ψ)| = |{φ ∈ Aut(S) | φ|S = ψ}| ≤ 1.Proof. We start by introduing two speial endomorphisms. Let B be abasis of A and let α ∈ End(A) be suh that α : B → Y is a one-one mappingand |B| = |Y | = corank(α). Hene rank(α) = corank(α) = rank(A). Let
Y ∪W be a basis of A.
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De�ne α−1 : Y → B suh that for all xα ∈ Y we have (xα)α−1 = x.Moreover, let

α∗ : Y ∪W → B, y ∈ Y 7→ yα−1, x ∈W 7→ bx ∈ B.Thus α∗|Y = α−1 and α∗ is onto.As said before, we will use the same letter α to represent the mapping
α : B → Y and the unique morphism α : 〈B〉 → 〈Y 〉 that extends themapping α. A similar onvention will be adopted for α−1 and α∗. Moreover,the letters B and Y are reserved for the independent sets related to α. Theletter W will represent a �xed set suh that Y ∪W is a basis of A.The main result in [2℄ states that

End(A) = 〈G ∪ E(End(A)) ∪R〉,where R = {α, α∗}. Therefore, to prove the theorem, it remains to prove that
R = {α, α∗} is a regular set in End(A)0 = 〈G∪E(End(A))〉. It is obvious that
αα∗ = idA. Sine idA ∈ G, it follows that there exists ω = idA ∈ End(A)0suh that αωα∗ = idA. Finally, we have to prove that α∗αα = α∗αh for some
h ∈ G. Let α∗α = ε and reall that |Y α| = |Y | = |B| and |Wα| = |W | = |B|.Let Z be a set suh that Y α∪Wα∪Z is a basis for A. The mapping α∗ααis determined by the following omposition of mappings:

Y ∪W → B → Y ∪W → Y α ∪Wα ∪ Z.As |Wα ∪ Z| = |B| = |W | and |Y α| = |Y |, there is a bijetion g : Y α ∪Wα

∪ Z → Y ∪W suh that g|Y α = α−1|Y α and (Wα ∪ Z)g = W .We laim that εαg = ε. In fat, let a ∈ A. Then, sine ∇(ε) = 〈Y 〉, wehave aε = t(y1, . . . , yn) for some term t and y1, . . . , yn ∈ Y . Hene
(a)εαg = t(y1, . . . , yn)αg = t(y1α, . . . , ynα)g = t(y1αg, . . . , ynαg)

= t(y1, . . . , yn) (as g|Y α
= α−1|Y α)

= aε.This proves that εαg = ε and hene, for h = g−1 ∈ G, we have εα = εh asrequired. Therefore R is a regular set in End(A)0 and hene, by the previoustheorem,
|L(ψ)| = |{φ ∈ Aut(S) | φ|S = ψ}| ≤ 1.Theorem 5.1 yields a desription of Aut(S), for every semigroup S underthe hypothesis of the theorem, provided we know a desription of Aut(G).Sine this is the ase when A is a set or a vetor spae, we �nish this paperwith two orollaries. We start by introduing some notation. Let S ≤ T (X).Then the normalizer of S in Sym(X) is
NSym(X)(S) = {g ∈ Sym(X) | g−1Sg = S}.Let T be a semigroup, let S ≤ T be a subsemigroup and H ≤ T be agroup. For h ∈ H, let τh : S → T be the mapping de�ned by sτh = h−1shfor all s ∈ S. Now we an state the �rst orollary.
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Corollary 5.3. Let X be an in�nite set. Let S0 = 〈Sym(X) ∪ E0〉,where E0 ⊆ E(T (X)), and let S = 〈S0 ∪ R0〉 with R0 ∈ {∅, {α, α∗}} where
{α, α∗} is a regular set in S0. Then

Aut(S) = {τ g | g ∈ Sym(X)}.In partiular Aut(T (X)) = {τ g | g ∈ Sym(X)}.Proof. It is well known (see [35℄) that Aut(Sym(X)) is the group of allmappings indued under onjugation by the permutations g ∈ Sym(X), thatis, if φ ∈ Aut(Sym(X)) then, for some g ∈ Sym(X), φ = τ g : Sym(X) →
Sym(X), where aτ g = g−1ag.By Theorem 5.1, |L(τ g)| ≤ 1 and it is obvious that |L(τ g)| = 1 if and onlyif g ∈ NSym(X)(S). Sine Sym(X) ≤ S, it follows thatNSym(X)(S) = Sym(X)and hene

Aut(S) = {τ g : S → S | g ∈ Sym(X)}.In partiular Aut(T (X)) = {τ g : T (X) → T (X) | g ∈ Sym(X)}.Before stating our �nal orollary, we introdue some notation and de�ni-tions about vetor spaes. Let V be an in�nite vetor spae (over a �eld F ).A bijetion γ of V is said to be semilinear if there is an automorphism α of
F suh that for all a, b ∈ V and λ ∈ F we have

(a+ b)γ = (a)γ + (b)γ and (λa)γ = λα(aγ).The group of semilinear transformations is usually denoted by Γ (V ). It iswell known (see [34℄) that
Aut(Aut(V )) = {τ g : Aut(V ) → Aut(V ) | g ∈ Γ (V )}.Repeating the same arguments used in the proof of the previous orollarywe have the following.Corollary 5.4. Let V be a vetor spae of in�nite dimension over a�eld F . Let S0 = 〈Aut(V ) ∪ E0〉, where E0 ⊆ E(End(V )), and let S =

〈S0 ∪R0〉 with R0 ∈ {∅, {α, α∗}} where {α, α∗} is a regular set in S0. Then
Aut(S) = {τ g | g ∈ Γ (V ) and g−1Sg = S}.In partiular Aut(End(V )) = {τ g | g ∈ Γ (V )}.6. Problems. The previous setions suggest a number of problems thatwe now state.1. Given S0 = 〈G ∪ E0〉 lassify all the regular sets in S0, where Ais an independene algebra of in�nite rank, G = Aut(A) and E0 ⊆

E(End(A)).2. Given a semigroup S suh that S = 〈G ∪ E0 ∪ {α, α∗}〉, where α isinjetive, α∗ is onto, but {α, α∗} is not regular, desribe the lifts ofevery ψ ∈ Aut(G).
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3. Given a semigroup of monomorphisms G < S ≤ End(A), desribe thelifts of every ψ ∈ Aut(G).4. Given a semigroup of epimorphisms G < S ≤ End(A), desribe thelifts of every ψ ∈ Aut(G).5. Charaterize the semigroups S suh that Aut(A) ≤ S ≤ PEnd(A)and S has the unique extension property.6. Let S be a semigroup suh that Aut(A) ≤ S ≤ PEnd(A). Desribethe group Aut(S).The desription of Aut(Aut(A)) is an open problem. We onjeture thatfor an independene algebra A of in�nite rank,

Aut(Aut(A)) = {τ g | g ∈ WAut(A)}where WAut(A) is the group of weak automorphisms of A (see [18℄ and [36℄).Aknowledgements. I would like to thank my supervisor, ProfessorJohn Fountain, and Professors Vitoria Gould and Peter M. Higgins, fortheir omments on a previous draft of this paper. Also I thank for the sup-port of POCTI-ISFL-1-143 of Centro de Algebra da Universidade de Lisboa,�naned by FCT and FEDER.
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