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ADDITION AND SUBSPACE THEOREMS FOR
ASYMPTOTIC LARGE INDUCTIVE DIMENSION

BY

T. RADUL (Concepcion)

Abstract. We prove the addition and subspace theorems for asymptotic large induc-
tive dimension. We investigate a transfinite extension of this dimension and show that it
is trivial.

0. Asymptotic dimension asdim of a metric space was defined by Gro-
mov for studying asymptotic invariants of discrete groups [4]. This dimen-
sion can be considered as an asymptotic analogue of the Lebesgue covering
dimension dim. Dranishnikov has introduced the dimension asInd which
is analogous to large inductive dimension Ind (see [1]). It is known that
asdim X = asInd X for each proper metric space with asdim X < oo.
The problem of coincidence of asdim and asInd is still open in the general
case [2].

Among basic theorems of classical dimension theory are the sum, addi-
tion and subspace theorems for different dimensions and classes of topolog-
ical spaces. Here we mention some of them related to dimension Ind. (All

the above mentioned facts from classical dimension theory can be found
in [3].)

1. Countable sum theorem: If a strongly hereditarily normal space X can
be represented as the union of a sequence Fi, Fy, ... of closed subsets such
that Ind F; < n for each ¢ € N, then Ind X < n.

2. Addition theorem: If a hereditarily normal space X is represented as
the union of two subspaces X; and X5, then Ind X < Ind X; + Ind X5 + 1.

Let us remark that the above theorems do not generalize to the class of
all normal spaces. We have only a weaker result:

3. If a normal space X is represented as the union of two closed subsets
X1 and X, then Ind X < Ind X7 + Ind Xs.

2000 Mathematics Subject Classification: 54F45, 54D35.
Key words and phrases: asymptotic dimension, transfinite extension.
The research was partially supported by grant 205.013.026-1.0, UDEC, Chile.

[57]



58 T. RADUL

And finally:

4. Subspace theorem: For each closed subset M of a normal space X we
have Ind M < Ind X. Let us remark that if X is a strongly hereditarily
normal space, then the condition that M is closed can be dropped.

There is no countable sum theorem for asInd. Indeed, the space of inte-
gers 7Z has asymptotic dimension 1 but it is a countable union of its points
which have asymptotic dimension —1. However we prove the subspace and
addition theorems for asInd in this paper.

Extending the codomain of Ind to ordinal numbers we obtain the trans-
finite extension trInd of the dimension Ind. It is known that there exists
a space S, such that trInd S, = « for each countable ordinal number .
Zarichnyi has proposed to consider transfinite extension of asInd and con-
jectured that this extension is trivial. We prove this conjecture: if a space
has a transfinite asymptotic dimension, then its dimension is finite.

The paper is organized as follows: in Section 1 we give some necessary
definitions and introduce some notations, in Section 2 we prove a theorem
which can be considered a weak version of the countable sum theorem, in
Section 3 we obtain the main results and in Section 4 we show that the
transfinite extension of aslnd is trivial.

1. Let Ay, Ao C X be two disjoint closed subsets in a topological space.
We recall that a partition between A; and As is a subset C C X such that
there are open disjoint sets Uy, Uy with X \ C = U; U Uy, A1 C U; and
Ay C Us. Clearly a partition C' is a closed subset of X.

We recall the definition of the large inductive dimension Ind (see [3]):
IndX = -1 iff X = 0; Ind X < n if for any two disjoint closed subsets
Ay, Ay C X there is a partition C' with IndC <n — 1.

We will define the dimension asInd for the class of proper metric spaces.
We recall that a metric space is proper if every closed ball is compact.
Assume that some base point xy € X is chosen in each proper metric
space X. We denote by d the generic metric. If X is a metric space and
A C X we denote by N,.(A) the closed r-neighborhood of A in X: N,.(A) =
{z € X | d(z,A) < r}, and by B,(A) the open r-neighborhood: B,(A) =
{re X |d(x,A) <r}.

A subset W of a metric space X is called an asymptotic neighborhood
of aset A C X if lim, oo d(A\ By(x0), X \ W) = co. We call two subsets
Ay, Ay C X asymptotically disjoint if

TILI{.IO d(A1 \ Br<£0), AQ \ Br<£0)) = Q.
It is easy to see that A; and As are asymptotically disjoint iff X \ As is an

asymptotic neighborhood of A; and X \ A; is an asymptotic neighborhood
of AQ.
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A map ¢ : X — I =[0,1] is called slowly oscillating if for any r,e > 0,
there exists D > 0 such that diam ¢(B,(x)) < ¢ for all x with d(z,z) > D.
If C,(X) is the set of all continuous slowly oscillating functions ¢ : X — I,
then the Higson compactification is the closure of the image of X under the
embedding @ : X — I¢(X) defined as ®(z) = (¢(z) | ¢ € Cp(X)) € 160X,
We denote the Higson compactification of a proper metric space X by ¢X
and the remainder ¢X \ X by vX. The compactum vX is called the Higson
corona. Note that v X need not be metrizable.

Let C be a subset of a proper metric space X. We denote by C’ the inter-
section cl C Nv X where cl is the closure in the Higson compactification ¢X.
Clearly, two sets A; and Ay are asymptotically disjoint iff their traces A}
and A} in the Higson corona are disjoint. Note that for each r > 0 we have
N,.(C) =C".

Let A1, Ay C X be two asymptotically disjoint subsets of a proper metric
space X. A closed subset C' C X is called an asymptotic separator for Ay
and A, if its trace C’ is a partition for A} and A5 in vX.

We define asInd X = —1 if and only if X is bounded; asInd X < n if for
any two asymptotically disjoint sets A, B C X there is an asymptotic sepa-
rator C' with asIndC' < n — 1. Naturally we say aslnd X = n if asInd X
< n and it is not true that asiInd X < n — 1. We set asInd X = oo if
asInd X > n for each n € N (see [1]).

For each A C Y C X we define exy A =Y’ \ (Y \ A)". Clearly, exy A
is an open set in Y’. We denote by w“ the set of all functions 7 :
NU {0} — NU {0} such that 7(0) = 0. For each 7 € w* we set V.Y (4) =
{y € Y | d(y,z0) > 7([d(y,A)])} where [] is the integer part. Clearly,
A C VY(A) for each 7 € w”. If X =Y we use the simpler notations ex A
and V;(A).

LEMMA 1. The family {ex(V.(A)) | T € w¥} forms a base of neighbor-
hoods of the set A’ in the space vX.

Proof. Let us show first that A C ex(V;(A)) for each 7 € w“.
It is enough to show that A and X \ V;(A) are asymptotically disjoint.
Fix any D > 0. Put R = max{r(l) | I € {0,...,[D]}}. Then for each
x € (X \ Vo(A)) \ Br(zg) we have R < d(z,z9) < 7([d(x,A)]). Thus
d(z,A) > [D] +1> D.

Consider now any closed subset B of vX such that BN A" = (). Then
there exists a continuous function f : vX — [0,1] such that f(B) C {0}
and f(A") C {1}. We can extend f to a continuous function g : ¢X — [0, 1]
such that A C ¢g71(1). Put C = ¢=1[0,1/2] N X. The sets C' and A are
asymptotically disjoint. For each n € N there exists R(n) > 0 such that
d(C\ Bg(n)(z0),A) > n. Put 7(0) = 0 and 7(n) = [R(n + 1)]. Choose any
¢ € C. Then d(c,z9) < R([d(c,A)] + 1) = 7([d(¢c, A)]). So, C C X \ V-(A)
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and B C C" C (X \V;(A)) Cc vX \ exV;(A). Hence {ex(V-(A)) | T € w*}
forms the base of neighborhoods of A" in v X and the lemma is proved.

2. Let X be a proper metric space and let Xy be an unbounded subset
of X. We say that Xy is a kernel of X if there exists a sequence (k;):2, of
natural numbers such that k; — oo and By, (z) = {z} for each i € NU {0}
and x € X \ N;(Xo). We suppose that zy € Xy where z( is the base point
of X.

LEMMA 2. If Xq is a kernel of a proper metric space X then the family
{V:(Xo)) | 7 € w¥} forms a base of clopen neighborhoods of the set X in
the space vX.

Proof. 1t follows from Lemma 1 that it is enough to prove that V, (Xy)'N
(X \ V2(Xp))" = 0. Suppose the contrary: there exists x € V,(Xg) N
(X \ V(Xo))'. Let U be a neighborhood of = in ¢X. Then there exist
two sequences (a;) and (b;) in V-(Xo) NU and (X \ V;(Xo)) N U respec-
tively such that 0 < d(a;,b;) < r for some r > 0 and a;,b; € X \ B;(x).
Choose any ng € N such that k, > r for each n > ny where (k,) is a se-
quence from the definition of kernel. Then a;,b; € Ny, (Xo) for each i € N.
Hence 0 # clU N N, (Xo)" = clU N X|, and = € X, which is a contradic-

tion.

LEMMA 3. If X is a kernel of X then Ind(vX \ V:(Xo)") <0 for each
T Cwv.

Proof. Since vX \ V;(Xp)' is compact, it is enough to prove that the
space v X \ V-(Xy)" has a base of clopen sets [3, Theorem 1.6.5].

Choose any z € vX \ V;(Xp)" and its open neighborhood U C vX \
V:(Xop)". Take a continuous function f : vX — [0,1] such that f(z) = 0
and f(rX \U) C {1}. Extend f to a continuous function g : ¢X — [0, 1].
Put A = ¢g710,1/3] N X and C = ¢g~1[2/3,1] N X. Then C and A are
asymptotically disjoint. Moreover, x € A" and vX \ U C C'. For each n € N
there exists R(n) > 0 such that d(C'\ Br(zo), A\ Br(xg)) > n. Put 7(0) =0
and 7(n) = [R(n + 1)]. We can show that V;(A)’ is a clopen neighborhood
of z such that V,.(A)" C U using the same reasoning as in Lemmas 1 and 2.
The lemma is proved.

Let us define a preorder <* in w* as follows: 7 <* ¢ iff there exists n € N
such that 7(¢) < (i) for each i > n. It is easy to check that V. (A) C V,(A)’
if o <* 7.

THEOREM 1. Let X be a kernel of a proper metric space X such that
aslnd Xo < k > 0. Then asInd X < k.

Proof. We use induction on k. Let asInd Xy < 0. Then Ind X) < 0
(see [1]). Consider any two asymptotically disjoint sets A and B in X. We
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can represent X as K UL where K and L are disjoint closed subsets of X
such that A'N X} C K and B'NX|, C L. Then A’UK and B'UL are disjoint
closed subsets of v.X. Choose two disjoint open subsets U; and Us of v X
such that A’ UK C U; and B’UL C Us,. Then U; U Us is a neighborhood
of Xy in vX and there exists 7 € w* such that V;(Xy)" C Uy UU,. The sets
ANwX\V;(Xo)) and B'N(rX\V;(Xo)") are disjoint closed subsets of the
0-dimensional space v X'\ V- (X)’, so there exist open disjoint subsets O1, Oy
of v X\ V;(Xo)" such that A'N(v X \V;(Xo)") C O1, BN(wX\V;(Xo)") C Oq
and O1 U Oy = vX \ VT(X())/. Put V7 = (Ul N VT(X())/) UO; and Vo =
(UzNV-(Xp)")UO3. Since V- (Xp)' is a clopen subset of v X, the sets V4 and
V4 are open. Moreover, they are disjoint, V1 U V5 = vX and A" C V; and
B’ C V5. Thus, the empty space is a partition between A" and B’ in vX.
Hence, the empty space is an asymptotic separator between A and B in X
and asInd X < 0.

Suppose that the theorem is proved for each ¢ < n > 1. Consider the
case when asInd Xg < n. Let A and B be any asymptotically disjoint sub-
sets of X. Then A’ N X and B’ N X, are disjoint closed subsets of X, and
we can choose a continuous function f’: X — [0, 1] such that /(A" N X{)
C {0} and f'(B’'n X{) C {1}. We extend it to a continuous function f :
cl Xo — [0,1]. The sets A; = (f~1[0,1/3]) N Xo and By = (f~1[2/3,1]) N X,
are asymptotically disjoint and we can choose an asymptotic separator
L C Xy between them such that asInd L < n.

Write X = Uzoio Xl where Xl = NI(X(]) \Ni—l(XO) for i € N. It follows
from the definition of kernel that for each R > 0 there exists i(R) € N such
that Uy ) Xk is R-discrete and d(UpZ;(g) X 2(50)_1 X%) > R.

Since L is an asymptotic separator in Xg between A; and By, the set L’
is a partition in X|; between A} and Bj. Thus we can choose open disjoint
sets O4 and Op in X|) such that A} C O, B} C Op and X(j\L' = 04UOp.

For each 7 € w* we can represent X \ V(L) as a union of two disjoint
sets A, and B; such that A7 C O4 and B, C Opg. Moreover, we can suppose
that for each 7 <* o there exists R > 0 such that A, D A, \ Bgr(xo) and
B, D B; \ Br(xo). Define for each 7 € w* two subsets Cr, D, of X as
follows:

Cr = |J{z € Xi | Ni(x) n Xo C A},
=0

D, = | J{z € X; | Ni(z) N B, # 0}.
=0
We have C- N D, = () and

o0

X\ (CruD;) C | J{r e Xi | Ni(z) V(L) # 0}
=0
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Let us show that ex C; D exx, A;. Choose any point = € exx, A;. Then
there exists Z C Xy such that Z and X, \ A, are asymptotically disjoint
and z € Z'. Choose any a > 0. Since k; — 0o, there exists ng € N such that
kpn, > a. Choose any R > 0 such that

d(Z \ BR(wo), (XO \ AT) \ BR(IBO)) > a+ng.

Consider any z € Z\ B, (z0) and y € Ui o {z € X; | Ni(z) N (Xo \ 4;) #0}.
We have d(z,y) > a. Hence the sets Z and (J;—,{z € X; | Ni(z) N (X \ A-)
# ()} are asymptotically disjoint and = € ex C. Analogously we can show
that ex D, D exx, B-.

Now consider any x € C. N D.. Then for every neighborhood V of x
in the Higson compactification ¢X there exist two sequences (¢;) in V N C;
and (d;) in V N D, such that 0 < d(¢;,d;) < r for some r > 0 and ¢;,d; €
X \ Bi(zp). Choose ng € N such that ky,,+1 > r. So, ¢;,d; € UZO:O X
and 0 # clV N (Up2y Xk) = clV N X{. Hence z € X{. Moreover, z €
X(l) \ (eXXO A U exx, B.,-) = VTXO (L),

Define

Se(M) = | J{z € Xi | Nii(z) N M # 0}
i=0
for any M C X, and k € N. The set S1(M) is denoted simply by S(M).
Then
vX \ (exD,UexC;) = (X\D,)N(X\C.) Cc(X\(D-UC,))
U(DLNCL) © (S (L)),

Put K; = S(Bj(zo)) for each j € N. Then K; and X, are asymptotically
disjoint for each j € N. There exists ; € w* such that V, (Xo)' N K} = 0.
Define o¢ € w* as follows: 0¢(0) = 0 and ¢ (i) = max{c;(i) | 7 < i}. Then
aj <* g for each j € N. Hence cl{J;2, K C vX \ Vi, (Xo)".

Let us show that
(%) () (S(VZ(L))) N Vo (Xo)' C (Sa(L))"

TEWY
Choose any x ¢ (S2(L))" U (v X \ Vs, (Xo)"). Then there exists Z C X such
that x € Z’ and the sets Z, So(L)U(X \ V4, (X0)) are asymptotically disjoint.
Set O(Z) = {y € Xo | there exists i € NU {0} and z € X; N Z such that
d(y,z) < i}.

Suppose that there exist » € N and two sequences (y;) in O(Z) and
(li) in L such that d(y;,l;) < r and l;,y; € Xo \ Bi(zo). For each i choose
z]" € X;, N Z such that d(z!*,y;) < j;. Consider two cases:

1. There exists ng € N such that j; < ng for each i € N. Then d(z*,1;) <
no + r, contrary to the asymptotic disjointness of Z and Sy (L).
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2. In the contrary case we can suppose that j; > r for each ¢ € N
and j; — oo. Then d(x!',l;) < ji +r < 2j;. Since zI* € X;,, we have
2J" € S5(L)N Z and we obtain a contradiction again. So, the sets O(Z) and
L are asymptotically disjoint.

We can choose 7 € w* such that O(Z) and V. X°(L) are asymptotically
disjoint. Let us show that Z and S(V,X°(L)) are asymptotically disjoint.
Suppose the contrary. Then there exist » € N and two sequences (z;) in
Z and (s;) in S(V.X0(L)) such that d(z;,s;) < 7 and z;,s; € Xo \ Bi(zo).
Consider two cases:

1. There exists ng € N such that z;, s; € U?:OO X;. We can choose y; € O(Z)
and [; € V.Xo(L) for each i € N such that d(y;, 2;) < ng and d(l;,s;) < ng.
Then d(y;,l;) < 2ng + r, contrary to the asymptotic disjointness of O(Z)
and V. Xo(L).

2. We can suppose that z;,s; ¢ U?io X, where k,, > r for each n > nyg.
Then z; = s; for each i € N and we can choose y; € O(Z) N VXo(L).
Moreover, since Z and X \ V,,(Xo) D U]Oil K are asymptotically disjoint,
we can assume that d(y;,z9) — oo. We obtain a contradiction again and
Z and S(VXo(L)) are asymptotically disjoint. Hence x ¢ (S(V.X(L)))’" and
we have proved ().

Put

Va= U exC, and Vg = U exD,.
TEWY TEWY
Choose x € V4NVp. Then there exist 71, 7o € w* such that z €ex C;, Nex D,
Put 7 = max{7, 72 }. Since ex C- Nex D, = ), we have z € (exC,, \exC,)U
(ex D, \ ex D). Consider the case when z € exC, \ exC,. Choose n € N
such that A, \ A, C By, (x0). Then x € S(B,,(z0))". The same holds in the
case when x € ex Dy, \ ex D,. Thus VaNVp C UjZ, K} CvX \ Vo, (Xo)'.

We have V4 D 04 D A'NX| and Vg D Op D B'NX|). Hence there exists
T € w* such that V4 D V,(Xo) N A" and Vg D V. (Xy) N B’. Moreover,
we can suppose that (S2(L) N V-(Xyp))' N(A"UB’) =0 and o9 <* 7. Then
ULNU% = 0 where U} = VanV.(Xo), Uy = Vg N V,(Xp). Thus U}
and U} are disjoint open subsets of vX such that U} D V,(Xo)' N A’ and
Ug D Vo(Xo)' N B'. Since Ind(vX \ V;(Xp)') < 0, there exist open (in
v X\ V;(Xp)') disjoint sets U3 and U% such that U3 D (v X \ V,(Xo))N A/,
UZ D (vX \ Va(Xo))N B and vX \ V,(Xg) = U% UU3. Since V,(Xo)' is
clopen, U% and U3 are open in vX.

The sets Uy = U UUZ and Ug = U} UU% are open disjoint subsets of
vX such that A’ C Uy, B’ CUp and v X \ (UaUUg) C (S2(L) NV-(Xp)) .

Thus S2(L)NV-(Xp) is an asymptotic separator in X between A and B.
Since L is a kernel of S3(L) N V-(Xy), we have asInd(S2(L) NV, (X)) <n
by the inductive assumption and the theorem is proved.
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3. In this section we prove the subspace and addition theorems.

THEOREM 2. Let X be a proper metric space and Y C X. Then asIndY
< aslnd X.

Proof. We apply induction on asInd X. The case when aslnd X = —1
is trivial. The case when asInd X = 0 follows from the equivalence of
asInd X = 0 and Ind vX = 0 for each proper metric space X (see [1]).

Assume that we have proved the theorem for each X with aslnd X <
n > 1. Consider a proper metric space X with asInd X = n. Suppose that
A and B are asymptotically disjoint subsets of Y and C' is an asymptotic
separator in X between V, and Vg with asInd C' < n where V4 and Vg are
asymptotic neighborhoods of A and B respectively such that V4 and Vg
are asymptotically disjoint. We will build an asymptotic separator L in Y
between A and B such that asInd L < n using a construction from [2, Lem-
ma 5.4].

Set Do =C.Put Z=Y \ (V4 UVp). Let

k—1
Dy = (Nu(Do) 1 2)\ Bi( | D)
=0

for k € N. There exists a subset L of D; which is k-discrete and for each
x € Dy, there exists y € Ly, such that d(z,y) < k. Put L = |J;2, L;. It was
shown in [2] that L is an asymptotic separator in Y between A and B. It
is easy to see that C' is a kernel in C'U L. Hence asInd(C' U L) < n and we
have asInd L < n by the inductive assumption. The theorem is proved.

LEMMA 4. Let X be a proper metric space and f : ¢X — [0,1] be a
continuous function. Then for any a,b € [0, 1] with a < b,

(fH([a,0) N X) = (f7([0,0) N X) N (f~([a, 1)) N X)".

Proof. Choose any z € (f~1([0,8]) N X)" N (f~1([a,1]) N X)’ and any
neighborhood V' of x in ¢X. Then there exist two sequences (a;), (b;) in
V' N X such that f(a;) > a, f(b;)) < b, d(a;,b;) < r for some r > 0 and
a;,b; € X \ Bji(zg) for each i € N. We can suppose that f(a;) — c; and
f(b;) — c2. Since f|X is slowly oscillating, we have ¢; = ¢3 = ¢ € [a, b]. Thus
a<c<bora<c<hb Consider the case a < ¢ < b. There exists ng € N
such that f(b,) € [a,b] for each n > ng. Hence c1V N (f~1([a,b]) N X)) # 0
and = € (f~*([a,b]) N X)". The proof is analogous in the case a < ¢ < b.
The inclusion (f~1([a,b]) N X)" C (f~1([0,6])) N X)' N (f~([a,1]) N X)" is

trivial and the lemma is proved. m

THEOREM 3. Let X be a proper metric space and X =Y U Z where Y
and Z are unbounded sets. Then asInd X < asIndY + asInd Z.
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Proof. We apply induction on asInd = 0. We have IndY’' =Ind Z’ =0
(see [1]). Since v X =Y’ U Z’, we have IndvX = 0 [3, Theorem 2.2.7]. Thus
asInd X = 0 (see [1]).

Assume that the theorem is proved for each Y and Z with asIndY <
m > 0,asInd Z <[ > 0and m+Il < n > 1. Consider the case when m+I[ = n.
Let A and B be asymptotically disjoint subsets of X. Then A’ N B’ = (.
Choose a continuous function f : vX — [0,1] such that f(A’) C {0} and
f(B’) € {1} and extend it to a continuous function g : ¢X — [0, 1]. Then
the sets ¢g71[0,1/3] N X and g~1[2/3,1]N X are asymptotically disjoint. We
can choose an asymptotic separator L; in Y between ¢g~1[0,1/3] N'Y and
g7 12/3,1]NY such that asInd L; < m. Put Ly = ¢g~%[1/3,2/3] N Z. Then
asInd Ly < asInd Z < [. We know that asIndL; UL, < m —1+1 < n by
the inductive assumption.

Let us show that LU Lo is an asymptotic separator between A and B. It
is easy to see that K = g~1[1/3,2/3]N X is an asymptotic separator between
Aand Bin X. Put V; =ex(¢g71[0,1/3) N X) and V5 = ex(g71(2/3,1] N X).
Then Vi and V5 are disjoint open sets in X such that A’ € V4 and B’ C U;.
It follows from Lemma 4 that vX \ K’ C V43 U U;. Since L; is an asymp-
totic separator in Y between ¢=1[0,1/3]NY and g—1[2/3,1]NY, there exist
two disjoint open sets O; and Oz in Y’ such that O; D (¢71[0,1/3]NY),
O2 D (¢7Y2/3,1]NY) and Y'\ L} = O; UOy. Put Vo = O \ Z’ and
Us =02\Z". Then V =V, UV, and U = Uy U U, are open disjoint subsets
of vX such that A’ C V, B’ C U and v X \ (L1 ULy) C VUU. The theorem
is proved.

4. In this section we investigate the transfinite extension of asInd. Recall
the definition of the transfinite large inductive dimension trInd (see [3]):
trind X = —1 iff X = ); trInd X < « for an ordinal number if for any
disjoint closed subsets A1, A5 C X there is a partition C with IndC < a.

Define the transfinite extension trasInd X analogously: trasInd X = —1 if
and only if X is bounded; trasInd X < « where « is an ordinal number if for
any asymptotically disjoint sets A, B C X there is an asymptotic separator
C with trasInd C' < § for some § < a. Naturally we say trasInd X = « if
trasIlnd X < « and it is not true that trasInd X < g for some § < a. We set
trasInd X = oo if trasInd X < « for no ordinal number «.

The proof of the following theorem is the same as that of Theorem 2.

THEOREM 4. Let X be a proper metric space and Y C X. Then trasIndY
< trasInd X.

Let X be a proper metric space and {A; | i« € N} a countable family
of subsets. We say that this family is asymptotically discrete if for each
i € N the sets A; and |J it A; are asymptotically disjoint. We say that X
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is asymptotically S-like if it can be represented as the union of a sequence
X1, Xs, ... of subsets such that asInd X; > i and the family {X; | i € N}
is asymptotically discrete. The class of all asymptotically S-like spaces is
denoted by S.

LEMMA 5. If a proper metric space X 1is asymptotically S-like, then
trasInd X = oo.

Proof. Suppose the contrary. Then there exists X € S such that
trasInd X < oo. Put £ = min{« | there exists X, € S such that trasInd X,
= a}. Clearly, £ > w where w is the first infinite ordinal number.

Choose any X € S such that trasInd X = £. Let us represent X as the
union | J;~; X; of subsets X; such that asInd X; > i and the family {X; |
i € N} is asymptotically discrete. For each i € N choose two asymptotically
disjoint subsets A; and B; of X; such that for each asymptotic separator L;
in X; between A; and B; we have trasInd L; > ¢ — 1.

We build by induction sets C; C A; and D; C B; such that

(2 7

d(C’i U Dj) >4 and d(Di, U C’j) >4 for each 7 € N.
Jj=1 Jj=1

Since A; and B; are asymptotically disjoint, there exists » > 0 such that

d(C1,D1) > 1 where Cy = Ay \ By-(z9) and Dy = By \ B-(xg). Suppose we

have built Cj, and Dy, for each k < n > 1. Since J;_; X; and X, are

asymptotically disjoint, there exists » > 0 such that

a(( Ln) X;) \ Br(wo)s Xny1 \ Br(wo)) = n+1.
j=1

Since A, 41 and B,11 are asymptotically disjoint, there exists ¢ > 0 such
that

d(An+1 \ BT(SCO), Bn+1 \BT(ﬂfo)) >n+ 1.

Put s = max{r,t} and Cp41 = Ap+1 \ Bs(20), Dnt1 = Bnt1 \ Bs(xo). It is
easy to see that the sets C' = Ufil C;and D = Ufil D; are asymptotically
disjoint and for each asymptotic separator L; in X; between C; and D; we
have trasInd L; > ¢ — 1.

Choose any asymptotic separator L in X between C and D such that
trasInd L < &. Since the family {X;} is asymptotically discrete, L; = LN X;
is an asymptotic separator in X; between C; and D; for each i € N. Hence
asInd L; > i — 1. Thus, L € § and we have a contradiction. The lemma is
proved.

LEMMA 6. Let X be a proper metric space such that traslnd X < oo.
Then for each x € vX there exists a neighborhood V of x in c¢X such that
aslndV N X < oo.
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Proof. Suppose the contrary. Then there exists * € vX such that
asIndV N X = oo for each neighborhood V of z in ¢X. Let us build by
induction a sequence (L;) of subsets of X and a sequence (V;) of neighbor-
hoods of x in ¢X such that L and Vi N X are asymptotically disjoint for
eachkeN, L,y CVy,aslndL, =occand V; D V5 D ...

We have, in particular, asInd X = oo. There exist two asymptotically
disjoint subsets A, B C X such that asInd L = oo for each asymptotic sepa-
rator L between A and B. We can assume that ¢ B’. Choose a continuous
function f : vX — [0, 1] such that f(zUA’) C {0} and f(B’) C {1}. Choose
an asymptotic separator L; between f~1[0,1/3] N X and f~1[2/3,1] N X
and put Vi = f71[0,1/3] N X.

Assume we have built L; and V; for each i <n > 1. Then trasInd V,, = co.
So, there exist two asymptotically disjoint subsets C' and D of V,, such that
asIlnd L = oo for each asymptotic separator L between C and D. We can
choose L,4+1 and V,,41 as before. The sequences (L;) and (V;) are built. It
is easy to check that the family {L;} is asymptotically discrete. Put L =
Ui2, L. So, trasInd L = oo by Lemma 5 and trasInd X = oo by Theorem 4.

THEOREM 5. Let X be a proper metric space such that trasInd X < oo.
Then asInd X < oo.

Proof. For each x € v X we can choose a neighborhood V, in ¢X such
that asIndV, N X < oo. Since vX is compact, we have v X C Ule Vi
= V where each V; is an open set in ¢X with asIndV; N X < oo. Then
asIndV N X < oo by Theorem 3. Moreover, there exists r > 0 such that
X C VUB,(xg). Hence asInd X < oc.
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