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ADDITION AND SUBSPACE THEOREMS FOR

ASYMPTOTIC LARGE INDUCTIVE DIMENSION

BY

T. RADUL (Concepcion)

Abstract. We prove the addition and subspace theorems for asymptotic large induc-
tive dimension. We investigate a transfinite extension of this dimension and show that it
is trivial.

0. Asymptotic dimension asdim of a metric space was defined by Gro-
mov for studying asymptotic invariants of discrete groups [4]. This dimen-
sion can be considered as an asymptotic analogue of the Lebesgue covering
dimension dim. Dranishnikov has introduced the dimension asInd which
is analogous to large inductive dimension Ind (see [1]). It is known that
asdimX = asIndX for each proper metric space with asdimX < ∞.
The problem of coincidence of asdim and asInd is still open in the general
case [2].
Among basic theorems of classical dimension theory are the sum, addi-

tion and subspace theorems for different dimensions and classes of topolog-
ical spaces. Here we mention some of them related to dimension Ind. (All
the above mentioned facts from classical dimension theory can be found
in [3].)

1. Countable sum theorem: If a strongly hereditarily normal space X can
be represented as the union of a sequence F1, F2, . . . of closed subsets such
that IndFi ≤ n for each i ∈ N, then IndX ≤ n.

2. Addition theorem: If a hereditarily normal space X is represented as
the union of two subspaces X1 and X2, then IndX ≤ IndX1 + IndX2 + 1.

Let us remark that the above theorems do not generalize to the class of
all normal spaces. We have only a weaker result:

3. If a normal space X is represented as the union of two closed subsets
X1 and X2, then IndX ≤ IndX1 + IndX2.
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And finally:

4. Subspace theorem: For each closed subset M of a normal space X we
have IndM ≤ IndX. Let us remark that if X is a strongly hereditarily
normal space, then the condition that M is closed can be dropped.

There is no countable sum theorem for asInd. Indeed, the space of inte-
gers Z has asymptotic dimension 1 but it is a countable union of its points
which have asymptotic dimension −1. However we prove the subspace and
addition theorems for asInd in this paper.
Extending the codomain of Ind to ordinal numbers we obtain the trans-

finite extension trInd of the dimension Ind. It is known that there exists
a space Sα such that trIndSα = α for each countable ordinal number α.
Zarichnyi has proposed to consider transfinite extension of asInd and con-
jectured that this extension is trivial. We prove this conjecture: if a space
has a transfinite asymptotic dimension, then its dimension is finite.
The paper is organized as follows: in Section 1 we give some necessary

definitions and introduce some notations, in Section 2 we prove a theorem
which can be considered a weak version of the countable sum theorem, in
Section 3 we obtain the main results and in Section 4 we show that the
transfinite extension of asInd is trivial.

1. Let A1, A2 ⊂ X be two disjoint closed subsets in a topological space.
We recall that a partition between A1 and A2 is a subset C ⊂ X such that
there are open disjoint sets U1, U2 with X \ C = U1 ∪ U2, A1 ⊂ U1 and
A2 ⊂ U2. Clearly a partition C is a closed subset of X.
We recall the definition of the large inductive dimension Ind (see [3]):

IndX = −1 iff X = ∅; IndX ≤ n if for any two disjoint closed subsets
A1, A2 ⊂ X there is a partition C with IndC ≤ n− 1.
We will define the dimension asInd for the class of proper metric spaces.

We recall that a metric space is proper if every closed ball is compact.
Assume that some base point x0 ∈ X is chosen in each proper metric
space X. We denote by d the generic metric. If X is a metric space and
A ⊂ X we denote by Nr(A) the closed r-neighborhood of A in X: Nr(A) =
{x ∈ X | d(x,A) ≤ r}, and by Br(A) the open r-neighborhood: Br(A) =
{x ∈ X | d(x,A) < r}.
A subset W of a metric space X is called an asymptotic neighborhood

of a set A ⊂ X if limr→∞ d(A \ Br(x0), X \W ) = ∞. We call two subsets
A1, A2 ⊂ X asymptotically disjoint if

lim
r→∞
d(A1 \Br(x0), A2 \Br(x0)) =∞.

It is easy to see that A1 and A2 are asymptotically disjoint iff X \A2 is an
asymptotic neighborhood of A1 and X \A1 is an asymptotic neighborhood
of A2.
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A map φ : X → I = [0, 1] is called slowly oscillating if for any r, ε > 0,
there exists D > 0 such that diamφ(Br(x)) < ε for all x with d(x, x0) ≥ D.
If Ch(X) is the set of all continuous slowly oscillating functions φ : X → I,
then the Higson compactification is the closure of the image of X under the
embedding Φ : X → ICh(X) defined as Φ(x) = (φ(x) | φ ∈ Ch(X)) ∈ I

Ch(X).
We denote the Higson compactification of a proper metric space X by cX
and the remainder cX \X by νX. The compactum νX is called the Higson
corona. Note that νX need not be metrizable.

Let C be a subset of a proper metric space X. We denote by C ′ the inter-
section clC ∩ νX where cl is the closure in the Higson compactification cX.
Clearly, two sets A1 and A2 are asymptotically disjoint iff their traces A

′
1

and A′2 in the Higson corona are disjoint. Note that for each r > 0 we have
Nr(C)

′ = C ′.

Let A1, A2 ⊂ X be two asymptotically disjoint subsets of a proper metric
space X. A closed subset C ⊂ X is called an asymptotic separator for A1
and A2 if its trace C

′ is a partition for A′1 and A
′
2 in νX.

We define asIndX = −1 if and only if X is bounded; asIndX ≤ n if for
any two asymptotically disjoint sets A,B ⊂ X there is an asymptotic sepa-
rator C with asIndC ≤ n − 1. Naturally we say asIndX = n if asIndX
≤ n and it is not true that asIndX ≤ n − 1. We set asIndX =∞ if
asIndX > n for each n ∈ N (see [1]).

For each A ⊂ Y ⊂ X we define exY A = Y
′ \ (Y \ A)′. Clearly, exY A

is an open set in Y ′. We denote by ωω the set of all functions τ :
N ∪ {0} → N ∪ {0} such that τ(0) = 0. For each τ ∈ ωω we set V Yτ (A) =
{y ∈ Y | d(y, x0) ≥ τ([d(y,A)])} where [·] is the integer part. Clearly,
A ⊂ V Yτ (A) for each τ ∈ ω

ω. If X = Y we use the simpler notations exA
and Vτ (A).

Lemma 1. The family {ex(Vτ (A)) | τ ∈ ω
ω} forms a base of neighbor-

hoods of the set A′ in the space νX.

Proof. Let us show first that A′ ⊂ ex(Vτ (A)) for each τ ∈ ω
ω.

It is enough to show that A and X \ Vτ (A) are asymptotically disjoint.
Fix any D > 0. Put R = max{τ(l) | l ∈ {0, . . . , [D]}}. Then for each
x ∈ (X \ Vτ (A)) \ BR(x0) we have R ≤ d(x, x0) < τ([d(x,A)]). Thus
d(x,A) ≥ [D] + 1 > D.
Consider now any closed subset B of νX such that B ∩ A′ = ∅. Then

there exists a continuous function f : νX → [0, 1] such that f(B) ⊂ {0}
and f(A′) ⊂ {1}. We can extend f to a continuous function g : cX → [0, 1]
such that A ⊂ g−1(1). Put C = g−1[0, 1/2] ∩ X. The sets C and A are
asymptotically disjoint. For each n ∈ N there exists R(n) > 0 such that
d(C \ BR(n)(x0), A) ≥ n. Put τ(0) = 0 and τ(n) = [R(n + 1)]. Choose any
c ∈ C. Then d(c, x0) < R([d(c, A)] + 1) = τ([d(c, A)]). So, C ⊂ X \ Vτ (A)
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and B ⊂ C ′ ⊂ (X \ Vτ (A))
′ ⊂ νX \ exVτ (A). Hence {ex(Vτ (A)) | τ ∈ ω

ω}
forms the base of neighborhoods of A′ in νX and the lemma is proved.

2. Let X be a proper metric space and let X0 be an unbounded subset
of X. We say that X0 is a kernel of X if there exists a sequence (ki)

∞
i=0 of

natural numbers such that ki → ∞ and Bki(x) = {x} for each i ∈ N ∪ {0}
and x ∈ X \Ni(X0). We suppose that x0 ∈ X0 where x0 is the base point
of X.

Lemma 2. If X0 is a kernel of a proper metric space X then the family
{Vτ (X0)) | τ ∈ ω

ω} forms a base of clopen neighborhoods of the set X ′0 in
the space νX.

Proof. It follows from Lemma 1 that it is enough to prove that Vτ (X0)
′∩

(X \ Vτ (X0))
′ = ∅. Suppose the contrary: there exists x ∈ Vτ (X0)

′ ∩
(X \ Vτ (X0))

′. Let U be a neighborhood of x in cX. Then there exist
two sequences (ai) and (bi) in Vτ (X0) ∩ U and (X \ Vτ (X0)) ∩ U respec-
tively such that 0 < d(ai, bi) ≤ r for some r > 0 and ai, bi ∈ X \ Bi(x0).
Choose any n0 ∈ N such that kn > r for each n ≥ n0 where (kn) is a se-
quence from the definition of kernel. Then ai, bi ∈ Nn0(X0) for each i ∈ N.
Hence ∅ 6= clU ∩ Nn0(X0)

′ = clU ∩X ′0 and x ∈ X0, which is a contradic-
tion.

Lemma 3. If X0 is a kernel of X then Ind(νX \ Vτ (X0)
′) ≤ 0 for each

τ ∈ ωω.

Proof. Since νX \ Vτ (X0)
′ is compact, it is enough to prove that the

space νX \ Vτ (X0)
′ has a base of clopen sets [3, Theorem 1.6.5].

Choose any x ∈ νX \ Vτ (X0)
′ and its open neighborhood U ⊂ νX \

Vτ (X0)
′. Take a continuous function f : νX → [0, 1] such that f(x) = 0

and f(νX \ U) ⊂ {1}. Extend f to a continuous function g : cX → [0, 1].
Put A = g−1[0, 1/3] ∩ X and C = g−1[2/3, 1] ∩ X. Then C and A are
asymptotically disjoint. Moreover, x ∈ A′ and νX \U ⊂ C ′. For each n ∈ N

there exists R(n) > 0 such that d(C \BR(x0), A\BR(x0)) ≥ n. Put τ(0) = 0
and τ(n) = [R(n+ 1)]. We can show that Vτ (A)

′ is a clopen neighborhood
of x such that Vτ (A)

′ ⊂ U using the same reasoning as in Lemmas 1 and 2.
The lemma is proved.

Let us define a preorder ≤∗ in ωω as follows: τ ≤∗ σ iff there exists n ∈ N

such that τ(i) ≤ σ(i) for each i ≥ n. It is easy to check that Vτ (A)
′ ⊂ Vσ(A)

′

if σ ≤∗ τ .

Theorem 1. Let X0 be a kernel of a proper metric space X such that
asIndX0 ≤ k ≥ 0. Then asIndX ≤ k.

Proof. We use induction on k. Let asIndX0 ≤ 0. Then IndX
′
0 ≤ 0

(see [1]). Consider any two asymptotically disjoint sets A and B in X. We
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can represent X ′0 as K ∪L where K and L are disjoint closed subsets of X
′
0

such that A′∩X ′0 ⊂ K and B
′∩X ′0 ⊂ L. Then A

′∪K and B′∪L are disjoint
closed subsets of νX. Choose two disjoint open subsets U1 and U2 of νX
such that A′ ∪K ⊂ U1 and B

′ ∪ L ⊂ U2. Then U1 ∪ U2 is a neighborhood
of X0 in νX and there exists τ ∈ ω

ω such that Vτ (X0)
′ ⊂ U1 ∪U2. The sets

A′∩(νX \Vτ (X0)
′) and B′∩(νX \Vτ (X0)

′) are disjoint closed subsets of the
0-dimensional space νX\Vτ (X0)

′, so there exist open disjoint subsets O1, O2
of νX\Vτ (X0)

′ such that A′∩(νX\Vτ (X0)
′) ⊂ O1, B

′∩(νX\Vτ (X0)
′) ⊂ O2

and O1 ∪ O2 = νX \ Vτ (X0)
′. Put V1 = (U1 ∩ Vτ (X0)

′) ∪ O1 and V2 =
(U2∩Vτ (X0)

′)∪O2. Since Vτ (X0)
′ is a clopen subset of νX, the sets V1 and

V2 are open. Moreover, they are disjoint, V1 ∪ V2 = νX and A
′ ⊂ V1 and

B′ ⊂ V2. Thus, the empty space is a partition between A
′ and B′ in νX.

Hence, the empty space is an asymptotic separator between A and B in X
and asIndX ≤ 0.
Suppose that the theorem is proved for each i < n ≥ 1. Consider the

case when asIndX0 ≤ n. Let A and B be any asymptotically disjoint sub-
sets of X. Then A′ ∩X ′0 and B

′ ∩X ′0 are disjoint closed subsets of X
′
0 and

we can choose a continuous function f ′ : X ′0 → [0, 1] such that f
′(A′ ∩X ′0)

⊂ {0} and f ′(B′ ∩ X ′0) ⊂ {1}. We extend it to a continuous function f :

clX0→ [0, 1]. The sets A1 = (f
−1[0, 1/3]) ∩X0 and B1= (f

−1[2/3, 1]) ∩X0
are asymptotically disjoint and we can choose an asymptotic separator
L ⊂ X0 between them such that asIndL < n.
Write X =

⋃∞
i=0Xi where Xi = Ni(X0) \Ni−1(X0) for i ∈ N. It follows

from the definition of kernel that for each R > 0 there exists i(R) ∈ N such

that
⋃∞
k=i(R)Xk is R-discrete and d(

⋃∞
k=i(R)Xk,

⋃i(R)−1
k=0 Xk) ≥ R.

Since L is an asymptotic separator in X0 between A1 and B1, the set L
′

is a partition in X ′0 between A
′
1 and B

′
1. Thus we can choose open disjoint

sets OA and OB in X
′
0 such that A

′
1 ⊂ OA, B

′
1 ⊂ OB and X

′
0\L

′ = OA∪OB.
For each τ ∈ ωω we can represent X0 \ Vτ (L) as a union of two disjoint

sets Aτ and Bτ such that A
′
τ ⊂ OA and B

′
τ ⊂ OB. Moreover, we can suppose

that for each τ ≤∗ σ there exists R > 0 such that Aσ ⊃ Aτ \ BR(x0) and
Bσ ⊃ Bτ \ BR(x0). Define for each τ ∈ ω

ω two subsets Cτ , Dτ of X as
follows:

Cτ =
∞
⋃

i=0

{x ∈ Xi | Ni(x) ∩X0 ⊂ Aτ},

Dτ =
∞
⋃

i=0

{x ∈ Xi | Ni(x) ∩Bτ 6= ∅}.

We have Cτ ∩Dτ = ∅ and

X \ (Cτ ∪Dτ ) ⊂
∞
⋃

i=0

{x ∈ Xi | Ni(x) ∩ V
X0
τ (L) 6= ∅}.
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Let us show that exCτ ⊃ exX0 Aτ . Choose any point x ∈ exX0 Aτ . Then
there exists Z ⊂ X0 such that Z and X0 \ Aτ are asymptotically disjoint
and x ∈ Z ′. Choose any a > 0. Since ki →∞, there exists n0 ∈ N such that
kn0 ≥ a. Choose any R > 0 such that

d(Z \BR(x0), (X0 \ Aτ ) \BR(x0)) ≥ a+ n0.

Consider any z∈Z\BR+n0(x0) and y∈
⋃∞
i=0{x∈Xi |Ni(x) ∩ (X0 \Aτ) 6=∅}.

We have d(z, y) ≥ a. Hence the sets Z and
⋃∞
i=0{x ∈ Xi | Ni(x)∩ (X0 \Aτ )

6= ∅} are asymptotically disjoint and x ∈ exCτ . Analogously we can show
that exDτ ⊃ exX0 Bτ .
Now consider any x ∈ C ′τ ∩ D

′
τ . Then for every neighborhood V of x

in the Higson compactification cX there exist two sequences (ci) in V ∩Cτ
and (di) in V ∩Dτ such that 0 < d(ci, di) ≤ r for some r > 0 and ci, di ∈
X \ Bi(x0). Choose n0 ∈ N such that kn0+1 > r. So, ci, di ∈

⋃n0
k=0Xk

and ∅ 6= clV ∩ (
⋃n0
k=0Xk)

′ = clV ∩ X ′0. Hence x ∈ X
′
0. Moreover, x ∈

X ′0 \ (exX0 Aτ ∪ exX0 Bτ ) = V
X0
τ (L)

′.

Define

Sk(M) =
∞
⋃

i=0

{x ∈ Xi | Nki(x) ∩M 6= ∅}

for any M ⊂ X0 and k ∈ N. The set S1(M) is denoted simply by S(M).
Then

νX \ (exDτ ∪ exCτ ) = (X \Dτ )
′ ∩ (X \ Cτ )

′ ⊂ (X \ (Dτ ∪ Cτ ))
′

∪ (D′τ ∩ C
′
τ ) ⊂ (S(V

X0
τ (L)))

′.

Put Kj = S(Bj(x0)) for each j ∈ N. Then Kj and X0 are asymptotically
disjoint for each j ∈ N. There exists σj ∈ ω

ω such that Vσj (X0)
′ ∩K ′j = ∅.

Define σ0 ∈ ω
ω as follows: σ0(0) = 0 and σ0(i) = max{σj(i) | j ≤ i}. Then

σj ≤
∗ σ0 for each j ∈ N. Hence cl

⋃∞
j=1K

′
j ⊂ νX \ Vσ0(X0)

′.

Let us show that

(∗)
⋂

τ∈ωω

(S(V X0τ (L)))
′ ∩ Vσ0(X0)

′ ⊂ (S2(L))
′.

Choose any x /∈ (S2(L))
′ ∪ (νX \ Vσ0(X0)

′). Then there exists Z ⊂ X such
that x ∈ Z ′ and the sets Z, S2(L)∪(X\Vσ0(X0)) are asymptotically disjoint.
Set O(Z) = {y ∈ X0 | there exists i ∈ N ∪ {0} and x ∈ Xi ∩ Z such that
d(y, x) ≤ i}.
Suppose that there exist r ∈ N and two sequences (yi) in O(Z) and

(li) in L such that d(yi, li) ≤ r and li, yi ∈ X0 \ Bi(x0). For each i choose

xjii ∈ Xji ∩ Z such that d(x
ji
i , yi) ≤ ji. Consider two cases:

1. There exists n0 ∈ N such that ji ≤ n0 for each i ∈ N. Then d(xjii , li) ≤
n0 + r, contrary to the asymptotic disjointness of Z and S2(L).
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2. In the contrary case we can suppose that ji ≥ r for each i ∈ N

and ji → ∞. Then d(x
ji
i , li) ≤ ji + r ≤ 2ji. Since x

ji
i ∈ Xji , we have

xjii ∈ S2(L)∩Z and we obtain a contradiction again. So, the sets O(Z) and
L are asymptotically disjoint.

We can choose τ ∈ ωω such that O(Z) and V X0τ (L) are asymptotically
disjoint. Let us show that Z and S(V X0τ (L)) are asymptotically disjoint.
Suppose the contrary. Then there exist r ∈ N and two sequences (zi) in
Z and (si) in S(V

X0
τ (L)) such that d(zi, si) ≤ r and zi, si ∈ X0 \ Bi(x0).

Consider two cases:

1. There exists n0 ∈N such that zi, si ∈
⋃n0
i=0Xi. We can choose yi ∈O(Z)

and li ∈ V
X0
τ (L) for each i ∈ N such that d(yi, zi) ≤ n0 and d(li, si) ≤ n0.

Then d(yi, li) ≤ 2n0 + r, contrary to the asymptotic disjointness of O(Z)
and V X0τ (L).

2. We can suppose that zi, si /∈
⋃n0
j=0Xj where kn > r for each n ≥ n0.

Then zi = si for each i ∈ N and we can choose yi ∈ O(Z) ∩ V
X0
τ (L).

Moreover, since Z and X \ Vσ0(X0) ⊃
⋃∞
j=1Kj are asymptotically disjoint,

we can assume that d(yi, x0) → ∞. We obtain a contradiction again and
Z and S(V X0τ (L)) are asymptotically disjoint. Hence x /∈ (S(V

X0
τ (L)))

′ and
we have proved (∗).
Put

VA =
⋃

τ∈ωω

exCτ and VB =
⋃

τ∈ωω

exDτ .

Choose x∈VA∩VB. Then there exist τ1, τ2 ∈ω
ω such that x∈ exCτ1∩exDτ2 .

Put τ = max{τ1, τ2}. Since exCτ ∩exDτ = ∅, we have x ∈ (exCτ1 \exCτ )∪
(exDτ2 \ exDτ ). Consider the case when x ∈ exCτ1 \ exCτ . Choose n ∈ N

such that Aτ1 \Aτ ⊂ Bn(x0). Then x ∈ S(Bn(x0))
′. The same holds in the

case when x ∈ exDτ2 \ exDτ . Thus VA ∩ VB ⊂
⋃∞
j=1K

′
j ⊂ νX \ Vσ0(X0)

′.

We have VA ⊃ OA ⊃ A
′∩X ′0 and VB ⊃ OB ⊃ B

′∩X ′0. Hence there exists
τ ∈ ωω such that VA ⊃ Vτ (X0)

′ ∩ A′ and VB ⊃ Vτ (X0)
′ ∩ B′. Moreover,

we can suppose that (S2(L) ∩ Vτ (X0))
′ ∩ (A′ ∪ B′) = ∅ and σ0 ≤

∗ τ . Then
U1A ∩ U

2
B = ∅ where U

1
A = VA ∩ Vτ (X0)

′, U1B = VB ∩ Vτ (X0)
′. Thus U1A

and U1B are disjoint open subsets of νX such that U
1
A ⊃ Vτ (X0)

′ ∩ A′ and
U1B ⊃ Vτ (X0)

′ ∩ B′. Since Ind(νX \ Vτ (X0)
′) ≤ 0, there exist open (in

νX \Vτ (X0)
′) disjoint sets U2A and U

2
B such that U

2
A ⊃ (νX \Vτ (X0)

′)∩A′,

U2B ⊃ (νX \ Vτ (X0)
′) ∩ B′ and νX \ Vτ (X0)

′ = U2A ∪ U
2
B. Since Vτ (X0)

′ is
clopen, U2A and U

2
B are open in νX.

The sets UA = U
1
A ∪U

2
A and UB = U

1
B ∪U

2
B are open disjoint subsets of

νX such that A′ ⊂ UA, B
′ ⊂ UB and νX \ (UA ∪UB) ⊂ (S2(L)∩ Vτ (X0))

′.

Thus S2(L)∩Vτ (X0) is an asymptotic separator in X between A and B.
Since L is a kernel of S2(L) ∩ Vτ (X0), we have asInd(S2(L) ∩ Vτ (X0)) < n
by the inductive assumption and the theorem is proved.
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3. In this section we prove the subspace and addition theorems.

Theorem 2. Let X be a proper metric space and Y ⊂ X. Then asIndY
≤ asIndX.

Proof. We apply induction on asIndX. The case when asIndX = −1
is trivial. The case when asIndX = 0 follows from the equivalence of
asIndX = 0 and Ind νX = 0 for each proper metric space X (see [1]).

Assume that we have proved the theorem for each X with asIndX <
n ≥ 1. Consider a proper metric space X with asIndX = n. Suppose that
A and B are asymptotically disjoint subsets of Y and C is an asymptotic
separator in X between VA and VB with asIndC < n where VA and VB are
asymptotic neighborhoods of A and B respectively such that VA and VB
are asymptotically disjoint. We will build an asymptotic separator L in Y
between A and B such that asIndL < n using a construction from [2, Lem-
ma 5.4].

Set D0 = C. Put Z = Y \ (VA ∪ VB). Let

Dk = (Nk(D0) ∩ Z) \Bk
(

k−1
⋃

i=0

Di

)

for k ∈ N. There exists a subset Lk of Dk which is k-discrete and for each
x ∈ Dk there exists y ∈ Lk such that d(x, y) ≤ k. Put L =

⋃∞
i=1 Li. It was

shown in [2] that L is an asymptotic separator in Y between A and B. It
is easy to see that C is a kernel in C ∪ L. Hence asInd(C ∪ L) < n and we
have asIndL < n by the inductive assumption. The theorem is proved.

Lemma 4. Let X be a proper metric space and f : cX → [0, 1] be a
continuous function. Then for any a, b ∈ [0, 1] with a < b,

(f−1([a, b]) ∩X)′ = (f−1([0, b]) ∩X)′ ∩ (f−1([a, 1]) ∩X)′.

Proof. Choose any x ∈ (f−1([0, b]) ∩ X)′ ∩ (f−1([a, 1]) ∩ X)′ and any
neighborhood V of x in cX. Then there exist two sequences (ai), (bi) in
V ∩ X such that f(ai) ≥ a, f(bi) ≤ b , d(ai, bi) ≤ r for some r > 0 and
ai, bi ∈ X \ Bi(x0) for each i ∈ N. We can suppose that f(ai) → c1 and
f(bi)→ c2. Since f |X is slowly oscillating, we have c1 = c2 = c ∈ [a, b]. Thus
a < c ≤ b or a ≤ c < b. Consider the case a ≤ c < b. There exists n0 ∈ N

such that f(bn) ∈ [a, b] for each n ≥ n0. Hence clV ∩ (f
−1([a, b]) ∩X)′ 6= ∅

and x ∈ (f−1([a, b]) ∩ X)′. The proof is analogous in the case a < c ≤ b.
The inclusion (f−1([a, b]) ∩ X)′ ⊂ (f−1([0, b]) ∩ X)′ ∩ (f−1([a, 1]) ∩ X)′ is
trivial and the lemma is proved.

Theorem 3. Let X be a proper metric space and X = Y ∪ Z where Y
and Z are unbounded sets. Then asIndX ≤ asIndY + asIndZ.
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Proof. We apply induction on asInd = 0. We have IndY ′ = IndZ ′ = 0
(see [1]). Since νX = Y ′ ∪Z ′, we have Ind νX = 0 [3, Theorem 2.2.7]. Thus
asIndX = 0 (see [1]).
Assume that the theorem is proved for each Y and Z with asIndY ≤

m ≥ 0, asIndZ ≤ l ≥ 0 andm+l < n ≥ 1. Consider the case whenm+l = n.
Let A and B be asymptotically disjoint subsets of X. Then A′ ∩ B′ = ∅.
Choose a continuous function f : νX → [0, 1] such that f(A′) ⊂ {0} and
f(B′) ⊂ {1} and extend it to a continuous function g : cX → [0, 1]. Then
the sets g−1[0, 1/3]∩X and g−1[2/3, 1]∩X are asymptotically disjoint. We
can choose an asymptotic separator L1 in Y between g

−1[0, 1/3] ∩ Y and
g−1[2/3, 1] ∩ Y such that asIndL1 < m. Put L2 = g

−1[1/3, 2/3] ∩ Z. Then
asIndL2 ≤ asIndZ ≤ l. We know that asIndL1 ∪ L2 ≤ m − 1 + l < n by
the inductive assumption.
Let us show that L1∪L2 is an asymptotic separator between A and B. It

is easy to see that K = g−1[1/3, 2/3]∩X is an asymptotic separator between
A and B in X. Put V1 = ex(g

−1[0, 1/3)∩X) and V2 = ex(g
−1(2/3, 1]∩X).

Then V1 and V2 are disjoint open sets in νX such that A
′ ⊂ V1 and B

′ ⊂ U1.
It follows from Lemma 4 that νX \ K ′ ⊂ V1 ∪ U1. Since L1 is an asymp-
totic separator in Y between g−1[0, 1/3]∩Y and g−1[2/3, 1]∩Y , there exist
two disjoint open sets O1 and O2 in Y

′ such that O1 ⊃ (g
−1[0, 1/3] ∩ Y )′,

O2 ⊃ (g
−1[2/3, 1] ∩ Y )′ and Y ′ \ L′1 = O1 ∪ O2. Put V2 = O1 \ Z

′ and
U2 = O2 \Z

′. Then V = V1 ∪ V2 and U = U1 ∪U2 are open disjoint subsets
of νX such that A′ ⊂ V , B′ ⊂ U and νX \ (L1∪L2)

′ ⊂ V ∪U . The theorem
is proved.

4. In this section we investigate the transfinite extension of asInd. Recall
the definition of the transfinite large inductive dimension trInd (see [3]):
trIndX = −1 iff X = ∅; trIndX ≤ α for an ordinal number if for any
disjoint closed subsets A1, A2 ⊂ X there is a partition C with IndC ≤ α.
Define the transfinite extension trasIndX analogously: trasIndX = −1 if

and only if X is bounded; trasIndX ≤ α where α is an ordinal number if for
any asymptotically disjoint sets A,B ⊂ X there is an asymptotic separator
C with trasIndC ≤ β for some β < α. Naturally we say trasIndX = α if
trasIndX ≤ α and it is not true that trasIndX ≤ β for some β < α. We set
trasIndX =∞ if trasIndX ≤ α for no ordinal number α.
The proof of the following theorem is the same as that of Theorem 2.

Theorem 4. Let X be a proper metric space and Y ⊂X. Then trasIndY
≤ trasIndX.

Let X be a proper metric space and {Ai | i ∈ N} a countable family
of subsets. We say that this family is asymptotically discrete if for each
i ∈ N the sets Ai and

⋃

j 6=iAj are asymptotically disjoint. We say that X
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is asymptotically S-like if it can be represented as the union of a sequence
X1, X2, . . . of subsets such that asIndXi ≥ i and the family {Xi | i ∈ N}
is asymptotically discrete. The class of all asymptotically S-like spaces is
denoted by S.

Lemma 5. If a proper metric space X is asymptotically S-like, then
trasIndX =∞.

Proof. Suppose the contrary. Then there exists X ∈ S such that
trasIndX <∞. Put ξ = min{α | there exists Xα ∈ S such that trasIndXα
= α}. Clearly, ξ ≥ ω where ω is the first infinite ordinal number.
Choose any X ∈ S such that trasIndX = ξ. Let us represent X as the

union
⋃∞
i=1Xi of subsets Xi such that asIndXi ≥ i and the family {Xi |

i ∈ N} is asymptotically discrete. For each i ∈ N choose two asymptotically
disjoint subsets Ai and Bi of Xi such that for each asymptotic separator Li
in Xi between Ai and Bi we have trasIndLi ≥ i− 1.
We build by induction sets Ci ⊂ Ai and Di ⊂ Bi such that

d
(

Ci,
i
⋃

j=1

Dj

)

≥ i and d
(

Di,
i
⋃

j=1

Cj

)

≥ i for each i ∈ N.

Since A1 and B1 are asymptotically disjoint, there exists r > 0 such that
d(C1, D1) ≥ 1 where C1 = A1 \Br(x0) and D1 = B1 \ Br(x0). Suppose we
have built Ck and Dk for each k ≤ n ≥ 1. Since

⋃n

j=1Xj and Xn+1 are
asymptotically disjoint, there exists r > 0 such that

d
((

n
⋃

j=1

Xj

)

\Br(x0), Xn+1 \Br(x0)
)

≥ n+ 1.

Since An+1 and Bn+1 are asymptotically disjoint, there exists t > 0 such
that

d(An+1 \Br(x0), Bn+1 \Br(x0)) ≥ n+ 1.

Put s = max{r, t} and Cn+1 = An+1 \Bs(x0), Dn+1 = Bn+1 \Bs(x0). It is
easy to see that the sets C =

⋃∞
i=1Ci and D =

⋃∞
i=1Di are asymptotically

disjoint and for each asymptotic separator Li in Xi between Ci and Di we
have trasIndLi ≥ i− 1.
Choose any asymptotic separator L in X between C and D such that

trasIndL < ξ. Since the family {Xi} is asymptotically discrete, Li = L∩Xi
is an asymptotic separator in Xi between Ci and Di for each i ∈ N. Hence
asIndLi ≥ i − 1. Thus, L ∈ S and we have a contradiction. The lemma is
proved.

Lemma 6. Let X be a proper metric space such that trasIndX < ∞.
Then for each x ∈ νX there exists a neighborhood V of x in cX such that
asIndV ∩X <∞.
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Proof. Suppose the contrary. Then there exists x ∈ νX such that
asIndV ∩ X = ∞ for each neighborhood V of x in cX. Let us build by
induction a sequence (Li) of subsets of X and a sequence (Vi) of neighbor-
hoods of x in cX such that Lk and Vk ∩ X are asymptotically disjoint for
each k ∈ N, Ln+1 ⊂ Vn, asIndLn =∞ and V1 ⊃ V2 ⊃ . . . .
We have, in particular, asIndX = ∞. There exist two asymptotically

disjoint subsets A,B ⊂ X such that asIndL =∞ for each asymptotic sepa-
rator L between A and B. We can assume that x /∈ B′. Choose a continuous
function f : νX → [0, 1] such that f(x∪A′) ⊂ {0} and f(B′) ⊂ {1}. Choose
an asymptotic separator L1 between f

−1[0, 1/3] ∩ X and f−1[2/3, 1] ∩ X
and put V1 = f

−1[0, 1/3] ∩X.
Assume we have built Li and Vi for each i≤n≥ 1. Then trasIndVn=∞.

So, there exist two asymptotically disjoint subsets C and D of Vn such that
asIndL = ∞ for each asymptotic separator L between C and D. We can
choose Ln+1 and Vn+1 as before. The sequences (Li) and (Vi) are built. It
is easy to check that the family {Li} is asymptotically discrete. Put L =
⋃∞
i=1 Li. So, trasIndL =∞ by Lemma 5 and trasIndX =∞ by Theorem 4.

Theorem 5. Let X be a proper metric space such that trasIndX <∞.
Then asIndX <∞.

Proof. For each x ∈ νX we can choose a neighborhood Vx in cX such
that asIndVx ∩ X < ∞. Since νX is compact, we have νX ⊂

⋃k

i=1 Vi
= V where each Vi is an open set in cX with asIndVi ∩ X < ∞. Then
asIndV ∩ X < ∞ by Theorem 3. Moreover, there exists r > 0 such that
X ⊂ V ∪Br(x0). Hence asIndX <∞.
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