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Abstract. The first author has recently proved that if f : X — Y is a k-dimensional
map between compacta and Y is p-dimensional (0 < k,p < o), then for each 0 < i <
p + k, the set of maps g in the space C(X, IPT2*T17%) such that the diagonal product
fxg:X =Y xIPY?+1=% i an (i+1)-to-1 map is a dense Gs-subset of C/(X, [PF2E+1=1),
In this paper, we prove that if f : X — Y is as above and D; (j = 1,...,k) are super-
dendrites, then the set of maps h in C(X, Hle D; x IP"17%) such that f x h : X —

Y x (H?:1 D; x IP"17%) is (i + 1)-to-1 is a dense Gs-subset of C(X, H?Zl D; x P17
for each 0 < i < p.

1. Introduction. In this paper, all spaces are separable metric spaces
and maps are continuous. We denote the unit interval by I. A compact met-
ric space is called a compactum, and continuum means a connected com-
pactum. Let X and Y be compacta. Then C(X,Y’) denotes the set of all
continuous maps from X to Y endowed with the sup metric. A map f :
X — Y is called o-closed if there exists a family {F;}°, of closed subsets
in X such that X = J;2, F; and f|F; : F; — f(F;) is a closed map for each
i=1,2,.... Amap f : X — Y is called k-dimensional if dim f~1(y) < k for
eachy € Y, and k-to-1if | f~1(y)| < k for each y € Y. In [3] and [4], Pasynkov
proved that if f : X — Y is a k-dimensional map from a compactum X to
a finite-dimensional compactum Y, then there is a map ¢ : X — I*¥ such
that dim(f x g) = 0. Also, he proved that if f: X — Y is a k-dimensional
map of compacta and dimY = p < oo, then the set of maps ¢ in the space
C(X, IPt2k+1) such that the diagonal product f x g : X — Y x [P+2k+l
is an embedding is a dense Gs-subset of C'(X, IP*?**+1). Furthermore, in [2]
the first author proved the following theorem.

THEOREM 1 ([2]). If f : X — Y is a k-dimensional map of compacta
and dimY = p < oo, then for each 0 < i < p + k, the set of maps g
in the space C(X,IPY?R1=%) such that f x g : X — Y x [PT2E+1=i g
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(i + 1)-to-1 is a dense Gs-subset of C(X, [PT2F177) " Hence the restriction
glf~y) : f 1 (y) — IPT2H1=0 s (i + 1)-to-1 for each y €Y.

A locally connected continuum D is called a dendrite if it contains no
circle. A dendrite D is called a superdendrite [5] if the set of all end points
of D is dense in D. The main aim of this paper is to prove the following
theorem.

THEOREM 2. Let f : X — Y be a k-dimensional map of compacta and
dimY = p < oo, and let D; (j = 1,...,k) be superdendrites. Then the
set of maps h in the space C(X, H?:l Dj x IPY17%) such that f x h: X —
Y x (H?Zl D x IPH178) s (i+1)-to-1 is a dense Gs-subset of C(X, H?Zl Djx
IPH1=%) for each 0 < i < p. Hence h|f~1(y) : f~1(y) — H?Zl Dj x IPT1=t g
(i 4+ 1)-to-1 for each y € Y.

This is a generalization of the following theorem of Bowers [1] (cf. [5]) : If
X is an n-dimensional compactum and D1, ..., D, are superdendrites, then
the set {h € C(X,[[}_; Dj x I) | h is an embedding} is a dense G;-subset
in C(X, H?Zl D; x I). As a corollary, we have a representation theorem for
finite-dimensional maps using superdendrites (see Theorem 15).

2. Main theorem. First we set up some notation and terminology (cf.
[5] and [6]). Let X, Y be compacta and let A C X be a closed subset. If f :
X — Y is a map, we set

Sg={zeX| [ f(x)={z}}, Rxay) ={feCX,Y)|ACS}

A set S C X is said to be residual if S contains a dense Gg-subset of X.
Amap f: X — Y is called a (k,e)-map (¢ > 0) if for each y € Y, there are
subsets Ay, ... Ay of f~1(y) such that f=1(y) = Ule A; and diam A; < e.
The main aim of this section is to prove Theorem 2. To do this we need the
following results.

THEOREM 3 ([6]). Let X, Y be spaces with dimY < oo and let f :
X — Y be ao-closed k-dimensional map. Then there exists a 0-dimensional

F,-subset A C X such that f|(X \ A) is (k — 1)-dimensional.

THEOREM 4 ([5]). Let X be a compactum and let A C X be a 0-

dimensional Fy-subset. Then for each superdendrite D, R(x A p)y = {f €
C(X,D) | AC Sy} is residual in C(X, D).

PROPOSITION 5. Let X, Y and Z be compacta and let f : X — Y be a
map. Then {g € C(X,Z) | fI(X \ Sy) is k-dimensional} is a Gs-subset in
C(X,2).
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Proof. For a,b>0and g € C(X,Z), let
F(g,a) = {z € X | diam(¢'g(x)) > a},
U(a,b) = {g € C(X, Z) | di11(F(g,a) N [~ (y)) < b for each y € Y},

where dp,41(F) < b if there exists an open cover of F' with mesh < b and
order < n.

CrAamM. U(a,b) is an open subset in C(X,Y).

Proof of claim. Assume that U(a,b) is not open in C(X,Y’). Then there
exist g € U(a,b) and {g;}32, € C(X,Y) \ U(a,b) such that g; — g¢. For
each i = 1,2, ..., there exists y; € Y such that dg1(f~'(v;) N F(g;,a)) > b.
We may assume y = lim;_,o y;. Since g € U(a,b), there exists a family
U of open subsets in X such that ordd < k, mesh/ < b and f~1(y) N
F(g,a) C JU. Since di1(f~*(y;) N F(gi,a)) > b, there exist z; € X such
that diam(g; 'gi(2:)) > aand f~'(y;)Ng; *gi(z;) & U for eachi = 1,2,. ...
In fact, we may choose x; € (f~'(y:) N g; 'gi(z:)) \ UU. We may assume
x = lim;_ 7. Since diam g~ 'g(x) > a, we have f~1(y) Ng~lg(z) Cc UU.
So f~1(y;) N g[lgi(mi) C JU for infinitely many ¢. This is a contradiction.
This completes the proof of the claim.

It is easy to see that {g € C(X,Z) | fl(X \ Sy) is k-dimensional} =
Mimnen U(1/m,1/n). This completes the proof.

The next result is due to Pasynkov. For completeness, we will give the
proof.

PROPOSITION 6 ([3]). Let X, Y and Z be compacta and let f : X —Y
be a map. Then {g € C(X,Z) | f X g is k-dimensional} is a Gs-subset in
O(X, Z).

Proof. It suffices to observe that
{ge C(X,2Z) | dps1((f x 9) " (y,2)) < bforeach y € Y and z € Z}

is an open subset of C'(X, Z). The argument is similar to that in the proof
of the preceding proposition. This completes the proof.

THEOREM 7. Let f : X — Y be a k-dimensional map of compacta with
dimY = p < oo, and let Dj (j = 1,...,k) be superdendrites. Then the set

of maps g in the space C(X, H?Zl Dj) such that f|(X \ Sy) is 0-dimensional
is a dense Gg-subset of C(X, H§:1 Dj). In particular, the set of maps g
in the space C(X, H§:1 Dj) such that the diagonal product f x g : X —
Y x H?Zl Dj is 0-dimensional is a dense Gg-subset of C(X, H§:1 D;).

Proof. Let G(X,T[j_, D;) = {g € C(X.IIj=, Dj) | FI(X\S,) is 0-
dimensional}. By Propositions 5 and 6, it is sufficient to show that



86 H. KATO AND E. MATSUHASHI

G(X, H§:1 Dj) is a dense subset of C(X, H§:1 Dj). Let r =7 X...x1} €
C(X, H§=1 D;). We will find a map g = g1 x--- X gy € G(X, H§:1 D;) arbi-
trarily close to r. By Theorem 3, there exists a 0-dimensional F,-set A1 C X
such that f|(X \ 41) : X\ 41 — Y is (k — 1)-dimensional. By Theorem 4,
R(x,A,,py) 1s residual in C(X,Dy). So we can take a map g1 € R(x A,,D1)
arbitrarily close to ri. Note that A1 C Sy,. Let By = X'\ Sy,. Then By is an
F,-subset in X because Sy, is a Gs-subset in X. Since f|By : By — Y is a
o-closed (k—1)-dimensional map, by Theorem 3 there exists a 0-dimensional
F,-subset Ay C Bj such that f|(B1\Asg) : B1\ Az — Y is (k—2)-dimensional.
By Theorem 4, we can take a map g2 € R(x 4, p,) arbitrarily close to rs.
Note that Ay C Sg,. Let By = By \ Sg,. Note that By = X \ (S, U Sg,).
By induction, for each ¢ = 1,...,k, we can find a map ¢g; : X — D;, an
F -subset B; C X and a 0-dimensional F,-subset A; C B;_1 such that

(1) 7 and g; are arbitrarily close to each other,

(2) 9i € R(x,4,,D,)5

(3) fl(Bi—1 \ 4;) : Bi—1 \ A; — Y is (k — i)-dimensional,
Note that By = X\Uf:1 Sg;- Thenr and g = g1 % - - X g, are arbitrarily close
to each other and f|By, : By, — Y is O-dimensional. Note that Ule Sg, C 8.
So g is the required map. This completes the proof.

Perhaps the next proposition is known. For completeness, we will give
the proof.

PRrOPOSITION 8. Let X, Y and Z be compacta and let f : X — Y be
a map. Then for each k = 1,2,..., the set H = {h € C(X,Z) | f x h is
k-to-1} is a Gs-subset in C(X,Y).

Proof. For each n = 1,2,..., let H, = {h € C(X,Z) | f x his a
(k,1/n)-map}. It is easy to see that H,, is an open subset in C(X, Z) and
H = (0,2, Hy. This completes the proof.

Now we prove Theorem 2.

Proof of Theorem 2. Let i =0,1,...,p and

k

v = (Tl XKoo er) X (u1 X xup+1_i) €C<X,HD]' X Ip+1_i>.

j=1

Let r = r1 X .-+ X 1. By Proposition 8, it is sufficient to show that there
exists a map h: X — H?:l Dj; x TPt grbitrarily close to v and such that
fxh:X =Y x (], Dj x I"*'17%) is (i + 1)-to-1. By Theorem 7, there
exists g : X — H?:l D; arbitrarily close to r and such that f|(X \ Sy) is
O-dimensional. Let X \ S; = U?; Fy, where Fj is closed in X and F; C Fi4q
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forl=1,2,....For [ =1,2,..., let

Sl(X, Ip—i—l—i)
= {se C(X, PPN | (f x s)|F;: F; = Y x IP"170is (i + 1)-to-1}.

As f|F; : F;—Y is 0-dimensional, by Theorem 1 the set {s € C(Fj, IPT1~%) |
fIFixs: Fy — Y xIP*17%is (i4+1)-to-1} is a dense G-subset in C(Fy, [PT17%)
for I =1,2,.... So it is easy to see that S;(X, IP*17%) is a dense Gs-subset
in C(X, IPT17%) for [ = 1,2,.... By Baire’s theorem ;2 S;(X, IPT17%) is a
dense Gs-subset in C(X, IPT17%). So we can select s € (2, Si(X, IPT17%) ar-
bitrarily close to u = g X+ - Xup41—. Let h = gxs: X — [[_) Dyx P+,
Then h is as required. This completes the proof.

3. Finite-dimensional maps and compositions of maps parallel
to the unit interval and superdendrites. Now we consider an appli-
cation of Theorem 2. A map f : X — Y is said to be embedded in a map
fo: Xo — Yo (see [3], [4]) if there exist embeddings g : X — Xy and
h:Y — Yysuch that ho f = foog. Amap f : X — Y is parallel
to the space Z (see [3], [4]) if f can be embedded in the natural projec-
tion p : Y x Z — Y. In [3], [4], Pasynkov proved the following theorem:
If f: X — Y has dimf = k and dimY < oo, then f can be repre-
sented as the composition f = hy o--- 0 hy o g of a zero-dimensional map g
and maps h; (i = 1,...,k) parallel to the unit interval I. Furthermore the
first author proved the following [2]: A map f : X — Y of compacta with
dimY = p < oo is k-dimensional if and only if f can be represented as the
composition f = gp12k+1 0 0 gptk+1 © gp+k © - -+ © g1 of maps parallel to
the unit interval I such that g; is (i + 1)-to-1 for each i = 1,...,p+ k and
9p+k+1 is zero-dimensional. In this section we prove another representation
theorem for finite-dimensional maps using superdendrites.

LEMMA 9 ([6]). Lete > 0. Suppose that f : X — 'Y is a map of compacta
with dim f =0 and dimY = p < c0. For eachi=1,...,1, let K; and L; be
closed disjoint subsets of X. Then there are open subsets E; of X separating
X between K; and L; such that f|(Cl(Ey)U---UCI(E})) is a (p,e)-map.

The next three results are essentially contained in [2]. For completeness,
we give their proofs.

PROPOSITION 10 ([2]). Let X, Y and Z be compacta and 0 < k < oo.
Let T be the set of maps g=uxv: X =Y x Z in C(X,Y x Z) such that
dimv(u='(y)) < k for eachy € Y. Then T is a Gs-subset of C(X,Y x Z).

Proof. Let € > 0 and let T; be the set of maps g=uxv: X =Y x 2
in C(X,Y x Z) such that for each y € Y, v(u~!(y)) is covered by a family
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U of open sets of Z such that mesh I/ < € and ord U < k. Then T is open
in C(X,Y x Z). Note that T' = (72 T} /p,-

LeMMA 11 ([2], cf. [7], [9]). Let f : X — Y be a 0-dimensional map from
a compactum X to a p-dimensional compactum Y (p < o). Let T be the set
of all maps v : X — I such that dimu(f~'(y)) =0 for eachy €Y. Then T
is a dense Ggs-subset of C(X,I).

Proof. Let Wy be the set of maps v : X — [ such that for each
y €Y, u(f~1(y)) is covered by disjoint open sets of diameters less than b.
By an argument similar to that in the proof of Proposition 5, W} is an
open subset of C(X,I). Since T = (2, Wy, it suffices to prove that
Wy is dense in C(X,I). Let h € C(X,I) and € > 0. Choose § > 0 such
that if A € X and diam A < ¢, then diamh(A) < min{2e,b/(2p)}=¢".
Choose a finite family {(U,,V,) | n = 1,...,m}, where U, and V,, are
open subsets of X such that {U, | n = 1,...,m} is a cover of X with
Cl(U,) C V,, and diamV,, < ¢§ for all n = 1,...,m. By Lemma 9, there
are open subsets E, separating X between Cl(U,) and X \ V;, such that
fI(CY(E)U---UCI(Ey)) is a (p,0)-map. Note that X \ (B4 U---UEy,,) =
Un—y Dy, where D, (n = 1,...,m) are disjoint closed subsets of X such
that diam D,, < 0. There are points z,, € I such that h(D,) C (z, —
e'/2,x, + €'/2). The function that maps each D, to x, has a continu-
ous extension u : X — I whose supremum distance to h is less than
e'/2 < e. Let y € Y. Since f|(Cl(Ey) U ---UCl(Ey,)) is a (p,0)-map,
there are closed subsets Aj,..., A, of f~1(y) such that f~!(y) N (Cl(E;) U
< UCHER)) = U A and diamA; < § for i = 1,...,p. Note that
diamu(4;) < 2¢’ for each i, and u(D,) = {z,} for each n. We can see
that for each component C of (J/_; u(4;), we have diamC < 2pe’ < b
and

p
u(f_l(y)) - {1'1, s 7:Bm} U U U(AZ)
i=1

Hence, each component of u(f~!(y)) has a neighbourhood that is closed
and open in u(f~1(y)) and has diameter less than b. It follows that u € W},
which completes the proof.

LEMMA 12 ([2]). Let f: X =Y, 9: X — Z and u : X — I be maps
of compacta such that dimZ = k and dim u((f x g)~*(y,2)) = 0 for each
y €Y and z € Z. Then dim(g x u)(f~1(y)) < k for eachy €Y.

Proof. Let y € Y. Consider the natural projectionp : Y X ZxI — Y x Z.
Then p|(f x g x u)(X) : (f x g x u)(X) — (f x g)(X) is a 0-dimensional
map, because for (y,2) € (f x g)(X) CY x Z,

Py, 2)N(f x g xu)(X) ={(y,2)} xul(f x 9)" (y,2)).
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Also, note that (f x g x u)(f~*(y)) = {y} x (¢ x w)(f~(y)), and hence the
set

Py}t x (gxuw)(f ') = (F x9)(f W) ={y} xg(f '(y) c{y} x Z

is at most k-dimensional. Since

pl{y} x (g x w)(fH W) : {y} x (g x w)(F 1 (y)) — {y} x 9(f 7' (v))
is a zero-dimensional map, by a theorem of Hurewicz we conclude that
dim(g x u)(f~'(y)) < k.

By Theorem 7, Propositions 6 and 10, and Lemmas 11 and 12, we obtain
the next result.

ProposITION 13 ([2], cf. [7], [9]). Let f : X — Y be a k-dimensional
map of compacta and dimY = p < oco. Let T be the set of all maps h =
gxu:X — H?:l D;x1I inC(X, H§:1 D;x I) such that dim h(f~1(y)) < k,
dimu((fxg)~1(y,t)) =0 forally € Y andt € H?:l Dj, and dim(fxg) = 0.
Then T is a dense Gs-subset of C(X, H§:1 D; x I).

PROPOSITION 14. Let f : X — Y be a k-dimensional map of compacta
and dimY = p < co. Fori = 0,1,...,p+ 1, let p; : H§:1Dj x [Pt
k 1—i ot TR 1
Hizl Dj x II: | be tﬁe nqtuml p?"fjectzori, where p0+.1 szl D; x 1Pt —
szl Dj x IPT is the identity. Let E(X, szl D; x IPT) be the set of maps

g in C(X, H;?:l Dj; x IPTY) such that

(1) for each 0 <i<p, fx(piog): X =Y x H§:1Dj x IPH1=1 45 an
(1 + 1)-to-1 map,

(2) the map h = ppog = ¢'xu: X — H§:1 D; x I satisfies dim h(f~(y))
<k, dimu((f x ¢')"Yy,t)) =0 forally €Y andt € H§:1 Dj, and
dim(f x ¢') = 0.

Then E(X, H§:1 D; x IPT1) s a dense Gs-subset of C(X, H§:1 D; x IPT1).

Proof. Note that if g : A — B is an open map and C' is a dense subset of
B, then ¢~1(C) is dense in A. The natural projection p; : H?Zl D; x 1Pt —
H?:l D; x IPT1=" induces the open map P; : C(X, H;?:l D; x IPT1) —
C(X, [T, D; x IPT1=%) defined by P;(h) = p; o h for h € C(X,[[5_; D;
x IPY1). Fori =0,1,...,p, let E; be the set of g € C(X, H§:1 Dj x IPH1=0)
such that f x g : X — Y x H§:1 D; x IPT1="is (i + 1)-to-1. Also, let T
be the subset of C'(X, H§:1 D;xI) as in Proposition 13. By Theorem 2 and
Proposition 13,
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k p
E(X, []D; x Ip“) = (" B (E:) NP, N (T)
=0

j=1
is a dense Ggs-subset of C'(X, H?:l D; x IPT1). This completes the proof.

Now, we have the following representation theorem for finite-dimensional
maps.

THEOREM 15. Let f: X =Y be a map of compacta such that 0 < k < oo
and dimY = p < oo. Then f is k-dimensional if and only if f can be
represented as the composition

f =Gprkt10--0gpr10gp0---0g1
such that

(1) gi is an (i + 1)-to-1 map for each i = 1,...,p and gp41 s a zero-
dimensional map,

(2) g is parallel to I fori=1,...,p+1,

(3) gi is parallel to a superdendrite fori=p+2,...,p+k+ 1.

N Proof. Let E(X, H?:l D; x IP*1) be as in Proposition 14. Choose g €
E(X, 15, D;j x IP*1). Let

g _ Hf (D x "Y1 for i =0,1,...,p+1,
’ HerkJrl ‘ fori=p+2,....,p+k.

For i = 0,1,....p+ Kk, let p; : Zo — Z; be the natural projection. For
i=0,1,...,p+k, put X; = (f x (piog))(X) and put X, 11 =Y. Let
gp=qo(fxg)andfori=2,...,p+k+1,let g =q|Xi—1: Xiz1 — Xi,
where q; : Y x Z;_1 — Y x Z; is the natural projection for i =1,...,p+k
and gpir41 1Y X Dy — Y is the natural projection. By Propositon 14, we
see that g,1 is a 0-dimensional map. Hence the maps g; are as desired. This
completes the proof.

REMARK. After the paper [2] had been submitted for publication, the
paper of Tuncali and Valov [8] was published. They obtained a more general
result in the class of all metrizable spaces.
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