FINITE-DIMENSIONAL MAPS AND DENDRITES WITH
DENSE SETS OF END POINTS

BY

HISAO KATO and EIICHI MATSUHASHI (Ibaraki)

Abstract. The first author has recently proved that if \(f : X \to Y \) is a \(k \)-dimensional map between compacta and \(Y \) is \(p \)-dimensional \((0 \leq k, p < \infty)\), then for each \(0 \leq i \leq p + k \), the set of maps \(g \) in the space \(C(X, I^{p+2k+1-i}) \) such that the diagonal product \(f \times g : X \to Y \times I^{p+2k+1-i} \) is an \((i+1)\)-to-1 map is a dense \(G_\delta \)-subset of \(C(X, I^{p+2k+1-i}) \).

In this paper, we prove that if \(f : X \to Y \) is as above and \(D_j (j = 1, \ldots, k) \) are superdendrites, then the set of maps \(h \) in \(C(X, \prod_{j=1}^k D_j \times I^{p+1-i}) \) such that \(f \times h : X \to Y \times (\prod_{j=1}^k D_j \times I^{p+1-i}) \) is \((i+1)\)-to-1 is a dense \(G_\delta \)-subset of \(C(X, \prod_{j=1}^k D_j \times I^{p+1-i}) \) for each \(0 \leq i \leq p \).

1. Introduction. In this paper, all spaces are separable metric spaces and maps are continuous. We denote the unit interval by \(I \). A compact metric space is called a compactum, and continuum means a connected compactum. Let \(X \) and \(Y \) be compacta. Then \(C(X, Y) \) denotes the set of all continuous maps from \(X \) to \(Y \) endowed with the sup metric. A map \(f : X \to Y \) is called \(\sigma \)-closed if there exists a family \(\{F_i\}_{i=1}^\infty \) of closed subsets in \(X \) such that \(X = \bigcup_{i=1}^\infty F_i \) and \(f|F_i : F_i \to f(F_i) \) is a closed map for each \(i = 1, 2, \ldots \). A map \(f : X \to Y \) is called \(k \)-dimensional if \(\dim f^{-1}(y) \leq k \) for each \(y \in Y \), and \(k \)-to-1 if \(|f^{-1}(y)| \leq k \) for each \(y \in Y \). In [3] and [4], Pasynkov proved that if \(f : X \to Y \) is a \(k \)-dimensional map from a compactum \(X \) to a finite-dimensional compactum \(Y \), then there is a map \(g : X \to I^k \) such that \(\dim (f \times g) = 0 \). Also, he proved that if \(f : X \to Y \) is a \(k \)-dimensional map of compacta and \(\dim Y = p < \infty \), then the set of maps \(g \) in the space \(C(X, I^{p+2k+1}) \) such that the diagonal product \(f \times g : X \to Y \times I^{p+2k+1} \) is an embedding is a dense \(G_\delta \)-subset of \(C(X, I^{p+2k+1}) \). Furthermore, in [2] the first author proved the following theorem.

Theorem 1 ([2]). If \(f : X \to Y \) is a \(k \)-dimensional map of compacta and \(\dim Y = p < \infty \), then for each \(0 \leq i \leq p + k \), the set of maps \(g \) in the space \(C(X, I^{p+2k+1-i}) \) such that \(f \times g : X \to Y \times I^{p+2k+1-i} \) is...
(i + 1)-to-1 is a dense G_δ-subset of $C(X, I^{p+2k+1-i})$. Hence the restriction $g|f^{-1}(y): f^{-1}(y) \to I^{p+2k+1-i}$ is (i + 1)-to-1 for each $y \in Y$.

A locally connected continuum D is called a dendrite if it contains no circle. A dendrite D is called a superdendrite [5] if the set of all end points of D is dense in D. The main aim of this paper is to prove the following theorem.

Theorem 2. Let $f : X \to Y$ be a k-dimensional map of compacta and $\dim Y = p < \infty$, and let D_j $(j = 1, \ldots, k)$ be superdendrites. Then the set of maps h in the space $C(X, \prod_{j=1}^k D_j \times I^{p+1-i})$ such that $f \times h : X \to Y \times (\prod_{j=1}^k D_j \times I^{p+1-i})$ is (i + 1)-to-1 is a dense G_δ-subset of $C(X, \prod_{j=1}^k D_j \times I^{p+1-i})$ for each $0 \leq i \leq p$. Hence $h|f^{-1}(y) : f^{-1}(y) \to \prod_{j=1}^k D_j \times I^{p+1-i}$ is (i + 1)-to-1 for each $y \in Y$.

This is a generalization of the following theorem of Bowers [1] (cf. [5]): If X is an n-dimensional compactum and D_1, \ldots, D_n are superdendrites, then the set $\{h \in C(X, \prod_{j=1}^n D_j \times I) \mid h$ is an embedding $\}$ is a dense G_δ-subset in $C(X, \prod_{j=1}^n D_j \times I)$. As a corollary, we have a representation theorem for finite-dimensional maps using superdendrites (see Theorem 15).

2. Main theorem. First we set up some notation and terminology (cf. [5] and [6]). Let X, Y be compacta and let $A \subset X$ be a closed subset. If $f : X \to Y$ is a map, we set

$$S_f = \{x \in X \mid f^{-1}(x) = \{x\}, \quad R_{(X,A,Y)} = \{f \in C(X,Y) \mid A \subset S_f\}.$$

A set $S \subset X$ is said to be residual if S contains a dense G_δ-subset of X. A map $f : X \to Y$ is called a (k, ε)-map ($\varepsilon > 0$) if for each $y \in Y$, there are subsets A_1, \ldots, A_k of $f^{-1}(y)$ such that $f^{-1}(y) = \bigcup_{i=1}^k A_i$ and $\text{diam} A_i < \varepsilon$. The main aim of this section is to prove Theorem 2. To do this we need the following results.

Theorem 3 ([6]). Let X, Y be spaces with $\dim Y < \infty$ and let $f : X \to Y$ be a σ-closed k-dimensional map. Then there exists a 0-dimensional F_σ-subset $A \subset X$ such that $f|(X \setminus A)$ is $(k - 1)$-dimensional.

Theorem 4 ([5]). Let X be a compactum and let $A \subset X$ be a 0-dimensional F_σ-subset. Then for each superdendrite D, $R_{(X,A,D)} = \{f \in C(X,D) \mid A \subset S_f\}$ is residual in $C(X,D)$.

Proposition 5. Let X, Y and Z be compacta and let $f : X \to Y$ be a map. Then $\{g \in C(X,Z) \mid f|(X \setminus S_g)$ is k-dimensional$\}$ is a G_δ-subset in $C(X,Z)$.
Proof. For a, $b > 0$ and $g \in C(X,Z)$, let
\[
F(g,a) = \{ x \in X \mid \text{diam}(g^{-1}g(x)) \geq a \},
\]
\[
U(a,b) = \{ g \in C(X,Z) \mid \text{diam}(g^{-1}g(x)) \geq a \text{ for each } y \in Y \},
\]
where $d_{n+1}(F) < b$ if there exists an open cover of F with mesh b and order $\leq n$.

CLAIM. $U(a,b)$ is an open subset in $C(X,Y)$.

Proof of claim. Assume that $U(a,b)$ is not open in $C(X,Y)$. Then there exist $g \in U(a,b)$ and \(\{ g_i \}_{i=1}^\infty \subset C(X,Y) \setminus U(a,b) \) such that $g_i \to g$. For each $i = 1, 2, \ldots$, there exists $y_i \in Y$ such that $d_{k+1}(f^{-1}(y_i) \cap F(g_i,a)) \geq b$. We may assume $y = \lim_{i \to \infty} y_i$. Since $g \in U(a,b)$, there exists a family \mathcal{U} of open subsets in X such that $\text{ord} \mathcal{U} \leq k$, mesh$\mathcal{U} < b$ and $f^{-1}(y) \cap F(g,a) \subset \bigcup \mathcal{U}$. Since $d_{k+1}(f^{-1}(y_i) \cap F(g_i,a)) \geq b$, there exist $x_i \in X$ such that $\text{diam}(g_i^{-1}g_i(x_i)) \geq a$ and $f^{-1}(y_i) \cap g_i^{-1}g_i(x_i) \nsubseteq \bigcup \mathcal{U}$ for each $i = 1, 2, \ldots$. In fact, we may choose $x_i \in (f^{-1}(y_i) \cap g_i^{-1}g_i(x_i)) \setminus \bigcup \mathcal{U}$. We may assume $x = \lim_{i \to \infty} x_i$. Since $\text{diam} g^{-1}g(x) \geq a$, we have $f^{-1}(y) \cap g^{-1}g(x) \subset \bigcup \mathcal{U}$. So $f^{-1}(y_i) \cap g_i^{-1}g_i(x_i) \subset \bigcup \mathcal{U}$ for infinitely many i. This is a contradiction. This completes the proof of the claim.

It is easy to see that $\{ g \in C(X,Z) \mid f|(X \setminus S_g) \text{ is } k\text{-dimensional} \} = \bigcap_{m,n \in \mathbb{N}} U(1/m, 1/n)$. This completes the proof.

The next result is due to Pasynkov. For completeness, we will give the proof.

Proposition 6 ([3]). Let X, Y and Z be compacta and let $f : X \to Y$ be a map. Then $\{ g \in C(X,Z) \mid f \times g \text{ is } k\text{-dimensional} \}$ is a G_δ-subset in $C(X,Z)$.

Proof. It suffices to observe that
\[
\{ g \in C(X,Z) \mid d_{k+1}((f \times g)^{-1}(y,z)) < b \text{ for each } y \in Y \text{ and } z \in Z \}
\]
is an open subset of $C(X,Z)$. The argument is similar to that in the proof of the preceding proposition. This completes the proof.

Theorem 7. Let $f : X \to Y$ be a k-dimensional map of compacta with $\text{dim} Y = p < \infty$, and let D_j ($j = 1, \ldots, k$) be superdendrites. Then the set of maps g in the space $C(X, \prod_{j=1}^k D_j)$ such that $f|(X \setminus S_g)$ is 0-dimensional is a dense G_δ-subset of $C(X, \prod_{j=1}^k D_j)$. In particular, the set of maps g in the space $C(X, \prod_{j=1}^k D_j)$ such that the diagonal product $f \times g : X \to Y \times \prod_{j=1}^k D_j$ is 0-dimensional is a dense G_δ-subset of $C(X, \prod_{j=1}^k D_j)$.

Proof. Let $\mathcal{G}(X, \prod_{j=1}^k D_j) = \{ g \in C(X, \prod_{j=1}^k D_j) \mid f|(X \setminus S_g)$ is 0-dimensional$\}$. By Propositions 5 and 6, it is sufficient to show that
\[G(X, \prod_{j=1}^{k} D_j) \] is a dense subset of \(C(X, \prod_{j=1}^{k} D_j) \). Let \(r = r_1 \times \ldots \times r_k \in C(X, \prod_{j=1}^{k} D_j) \). We will find a map \(g = g_1 \times \cdots \times g_k \in G(X, \prod_{j=1}^{k} D_j) \) arbitrarily close to \(r \). By Theorem 3, there exists a 0-dimensional \(F_{\sigma} \)-set \(A_1 \subset X \) such that \(f|(X \setminus A_1) : X \setminus A_1 \rightarrow Y \) is \((k-1)\)-dimensional. By Theorem 4, \(R_{(X,A_1,D_1)} \) is residual in \(C(X,D_1) \). So we can take a map \(g_1 \in R_{(X,A_1,D_1)} \) arbitrarily close to \(r_1 \). Note that \(A_1 \subset S_{g_1} \). Let \(B_1 = X \setminus S_{g_1} \). Then \(B_1 \) is an \(F_{\sigma} \)-subset in \(X \) because \(S_{g_1} \) is a \(G_{\delta} \)-subset in \(X \). Since \(f|B_1 : B_1 \rightarrow Y \) is a \(\sigma \)-closed \((k-1)\)-dimensional map, by Theorem 3 there exists a 0-dimensional \(F_{\sigma} \)-subset \(A_2 \subset B_1 \) such that \(f|(B_1 \setminus A_2) : B_1 \setminus A_2 \rightarrow Y \) is \((k-2)\)-dimensional. By Theorem 4, we can take a map \(g_2 \in R_{(X,A_2,D_2)} \) arbitrarily close to \(r_2 \). Note that \(A_2 \subset S_{g_2} \). Let \(B_2 = B_1 \setminus S_{g_2} \). Then \(B_2 = X \setminus (S_{g_1} \cup S_{g_2}) \). By induction, for each \(i = 1, \ldots, k \), we can find a map \(g_i : X \rightarrow D_i \), an \(F_{\sigma} \)-subset \(B_i \subset X \) and a 0-dimensional \(F_{\sigma} \)-subset \(A_i \subset B_{i-1} \) such that

1. \(r_i \) and \(g_i \) are arbitrarily close to each other,
2. \(g_i \in R_{(X,A_i,D_i)} \),
3. \(f|(B_{i-1} \setminus A_i) : B_{i-1} \setminus A_i \rightarrow Y \) is \((k-i)\)-dimensional,
4. \(B_i = B_{i-1} \setminus S_{g_i} \).

Note that \(B_k = X \setminus \bigcup_{i=1}^{k} S_{g_i} \). Then \(r \) and \(g = g_1 \times \cdots \times g_k \) are arbitrarily close to each other and \(f|B_k : B_k \rightarrow Y \) is 0-dimensional. Note that \(\bigcup_{i=1}^{k} S_{g_i} \subset S_g \).

So \(g \) is the required map. This completes the proof.

Perhaps the next proposition is known. For completeness, we will give the proof.

Proposition 8. Let \(X \), \(Y \) and \(Z \) be compacta and let \(f : X \rightarrow Y \) be a map. Then for each \(k = 1, 2, \ldots \), the set \(H = \{ h \in C(X,Z) \mid f \times h \text{ is } k\text{-to-1} \} \) is a \(G_{\delta} \)-subset in \(C(X,Y) \).

Proof. For each \(n = 1, 2, \ldots \), let \(H_n = \{ h \in C(X,Z) \mid f \times h \text{ is a } (k,1/n)\text{-map} \} \). It is easy to see that \(H_n \) is an open subset in \(C(X,Z) \) and \(H = \bigcap_{n=1}^{\infty} H_n \). This completes the proof.

Now we prove Theorem 2.

Proof of Theorem 2. Let \(i = 0, 1, \ldots, p \) and

\[v = (r_1 \times \cdots \times r_k) \times (u_1 \times \cdots \times u_{p+1-i}) \in C\left(X, \prod_{j=1}^{k} D_j \times I^{p+1-i}\right). \]

Let \(r = r_1 \times \cdots \times r_k \). By Proposition 8, it is sufficient to show that there exists a map \(h : X \rightarrow \prod_{j=1}^{k} D_j \times I^{p+1-i} \) arbitrarily close to \(v \), such that \(f \times h : X \rightarrow Y \times (\prod_{j=1}^{k} D_j \times I^{p+1-i}) \) is \((i+1)\)-to-1. By Theorem 7, there exists \(g : X \rightarrow \prod_{j=1}^{k} D_j \) arbitrarily close to \(r \), such that \(f|(X \setminus S_g) \) is 0-dimensional. Let \(X \setminus S_g = \bigcup_{i=1}^{\infty} F_i \), where \(F_i \) is closed in \(X \) and \(F_i \subset F_{i+1} \).

for \(l = 1, 2, \ldots \). For \(l = 1, 2, \ldots, \) let
\[
S_l(X, I^{p+1-i}) = \{ s \in C(X, I^{p+1-i}) \mid (f \times s)|F_l : F_l \to Y \times I^{p+1-i} \text{ is } (i+1)-\text{to}-1 \}.
\]
As \(f|F_l : F_l \to Y \) is 0-dimensional, by Theorem 1 the set \(\{ s \in C(F_l, I^{p+1-i}) \mid f|F_l \times s : F_l \to Y \times I^{p+1-i} \text{ is } (i+1)-\text{to}-1 \} \) is a dense \(G_\delta \)-subset in \(C(F_l, I^{p+1-i}) \) for \(l = 1, 2, \ldots \). So it is easy to see that \(S_l(X, I^{p+1-i}) \) is a dense \(G_\delta \)-subset in \(C(X, I^{p+1-i}) \) for \(l = 1, 2, \ldots \). By Baire’s theorem \(\bigcap_{l=1}^{\infty} S_l(X, I^{p+1-i}) \) is a dense \(G_\delta \)-subset in \(C(X, I^{p+1-i}) \). So we can select \(s \in \bigcap_{l=1}^{\infty} S_l(X, I^{p+1-i}) \) arbitrarily close to \(u = u_1 \times \cdots \times u_{p+1-i} \). Let \(h = g \times s : X \to \prod_{j=1}^k D_j \times I^{p+1-i} \).
Then \(h \) is as required. This completes the proof.

3. Finite-dimensional maps and compositions of maps parallel to the unit interval and superdendrites. Now we consider an application of Theorem 2. A map \(f : X \to Y \) is said to be embedded in a map \(f_0 : X_0 \to Y_0 \) (see [3], [4]) if there exist embeddings \(g : X \to X_0 \) and \(h : Y \to Y_0 \) such that \(h \circ f = f_0 \circ g \). A map \(f : X \to Y \) is parallel to the space \(Z \) (see [3], [4]) if \(f \) can be embedded in the natural projection \(p : Y \times Z \to Y \). In [3], [4], Pasynkov proved the following theorem: If \(f : X \to Y \) has \(\dim f = k \) and \(\dim Y < \infty \), then \(f \) can be represented as the composition \(f = h_k \circ \cdots \circ h_1 \circ g \) of a zero-dimensional map \(g \) and maps \(h_i \) (\(i = 1, \ldots, k \)) parallel to the unit interval \(I \). Furthermore the first author proved the following [2]: A map \(f : X \to Y \) of compacta with \(\dim Y = p < \infty \) is \(k \)-dimensional if and only if \(f \) can be represented as the composition \(f = g_{p+2k+1} \circ \cdots \circ g_{p+k+1} \circ g_{p+k} \circ \cdots \circ g_1 \) of maps parallel to the unit interval \(I \) such that \(g_i \) is \((i+1)\text{-to-1} \) for each \(i = 1, \ldots, p+k \) and \(g_{p+k+1} \) is zero-dimensional. In this section we prove another representation theorem for finite-dimensional maps using superdendrites.

Lemma 9 ([6]). Let \(\varepsilon > 0 \). Suppose that \(f : X \to Y \) is a map of compacta with \(\dim f = 0 \) and \(\dim Y = p < \infty \). For each \(i = 1, \ldots, l \), let \(K_i \) and \(L_i \) be closed disjoint subsets of \(X \). Then there are open subsets \(E_i \) of \(X \) separating \(X \) between \(K_i \) and \(L_i \) such that \(f|(\text{Cl}(E_1) \cup \cdots \cup \text{Cl}(E_l)) \) is a \((p, \varepsilon)\)-map.

The next three results are essentially contained in [2]. For completeness, we give their proofs.

Proposition 10 ([2]). Let \(X, Y \) and \(Z \) be compacta and \(0 \leq k < \infty \). Let \(T \) be the set of maps \(g = u \times v : X \to Y \times Z \) in \(C(X, Y \times Z) \) such that \(\dim v(u^{-1}(y)) \leq k \) for each \(y \in Y \). Then \(T \) is a \(G_\delta \)-subset of \(C(X, Y \times Z) \).

Proof. Let \(\varepsilon > 0 \) and let \(T_\varepsilon \) be the set of maps \(g = u \times v : X \to Y \times Z \) in \(C(X, Y \times Z) \) such that for each \(y \in Y \), \(v(u^{-1}(y)) \) is covered by a family
\(\mathcal{U} \) of open sets of \(Z \) such that \(\text{mesh } \mathcal{U} < \varepsilon \) and \(\text{ord } \mathcal{U} \leq k \). Then \(T_\varepsilon \) is open in \(C(X, Y \times Z) \). Note that \(T = \bigcap_{n=1}^{\infty} T_{1/n} \).

Lemma 11 ([2], cf. [7], [9]). Let \(f : X \to Y \) be a \(0 \)-dimensional map from a compactum \(X \) to a \(p \)-dimensional compactum \(Y \) (\(p < \infty \)). Let \(T \) be the set of all maps \(u : X \to I \) such that \(\dim u(f^{-1}(y)) = 0 \) for each \(y \in Y \). Then \(T \) is a dense \(G_\delta \)-subset of \(C(X, I) \).

Proof. Let \(W_b \) be the set of maps \(u : X \to I \) such that for each \(y \in Y \), \(u(f^{-1}(y)) \) is covered by disjoint open sets of diameters less than \(b \). By an argument similar to that in the proof of Proposition 5, \(W_b \) is an open subset of \(C(X, I) \). Since \(T = \bigcap_{n=1}^{\infty} W_{1/n} \), it suffices to prove that \(W_b \) is dense in \(C(X, I) \). Let \(h \in C(X, I) \) and \(\varepsilon > 0 \). Choose \(\delta > 0 \) such that if \(A \subset X \) and \(\text{diam } A < \delta \), then \(\text{diam } h(A) < \min\{2\varepsilon, b/(2p)\} = \varepsilon' \).

Choose a finite family \(\{(U_n, V_n)\mid n = 1, \ldots, m\} \), where \(U_n \) and \(V_n \) are open subsets of \(X \) such that \(\{U_n \mid n = 1, \ldots, m\} \) is a cover of \(X \) with \(\text{Cl}(U_n) \subset V_n \) and \(\text{diam } V_n < \delta \) for all \(n = 1, \ldots, m \). By Lemma 9, there are open subsets \(E_n \) separating \(X \) between \(\text{Cl}(U_n) \) and \(X \setminus V_n \) such that \(f|(\text{Cl}(E_1) \cup \cdots \cup \text{Cl}(E_m)) \) is a \((p, \delta)\)-map. Note that \(X \setminus (E_1 \cup \cdots \cup E_m) = \bigcup_{n=1}^{m} D_n \), where \(D_n \) \((n = 1, \ldots, m) \) are disjoint closed subsets of \(X \) such that \(\text{diam } D_n < \delta \). There are points \(x_n \in I \) such that \(h(D_n) \subset (x_n - \varepsilon'/2, x_n + \varepsilon'/2) \). The function that maps each \(D_n \) to \(x_n \) has a continuous extension \(u : X \to I \) whose supremum distance to \(h \) is less than \(\varepsilon'/2 \leq \varepsilon \). Let \(y \in Y \). Since \(f|(\text{Cl}(E_1) \cup \cdots \cup \text{Cl}(E_m)) \) is a \((p, \delta)\)-map, there are closed subsets \(A_1, \ldots, A_p \) of \(f^{-1}(y) \) such that \(f^{-1}(y) \cap (\text{Cl}(E_1) \cup \cdots \cup \text{Cl}(E_m)) = \bigcup_{i=1}^{p} A_i \) and \(\text{diam } A_i < \delta \) for \(i = 1, \ldots, p \). Note that \(\text{diam } u(A_i) < 2\varepsilon' \) for each \(i \), and \(u(D_n) = \{x_n\} \) for each \(n \). We can see that for each component \(C \) of \(\bigcup_{i=1}^{p} u(A_i) \), we have \(\text{diam } C < 2p\varepsilon' \leq b \) and

\[
u(f^{-1}(y)) \subset \{x_1, \ldots, x_m\} \cup \bigcup_{i=1}^{p} u(A_i).
\]

Hence, each component of \(u(f^{-1}(y)) \) has a neighbourhood that is closed and open in \(u(f^{-1}(y)) \) and has diameter less than \(b \). It follows that \(u \in W_b \), which completes the proof.

Lemma 12 ([2]). Let \(f : X \to Y, g : X \to Z \) and \(u : X \to I \) be maps of compacta such that \(\dim Z = k \) and \(\dim u((f \times g)^{-1}(y, z)) = 0 \) for each \(y \in Y \) and \(z \in Z \). Then \(\dim (g \times u)(f^{-1}(y)) \leq k \) for each \(y \in Y \).

Proof. Let \(y \in Y \). Consider the natural projection \(p : Y \times Z \times I \to Y \times Z \).

Then \(p|((f \times g) \times u)(X) : ((f \times g) \times u)(X) \to (f \times g)(X) \) is a \(0 \)-dimensional map, because for \((y, z) \in (f \times g)(X) \subset Y \times Z \), \(p^{-1}(y, z) \cap (f \times g \times u)(X) = \{(y, z)\} \times u((f \times g)^{-1}(y, z)) \).
Also, note that \((f \times g \times u)(f^{-1}(y)) = \{y\} \times (g \times u)(f^{-1}(y))\), and hence the set
\[
p(\{y\} \times (g \times u)(f^{-1}(y))) = (f \times g)(f^{-1}(y)) = \{y\} \times g(f^{-1}(y)) \subset \{y\} \times Z
\]
is at most \(k\)-dimensional. Since
\[
p|\{y\} \times (g \times u)(f^{-1}(y)) : \{y\} \times (g \times u)(f^{-1}(y)) \to \{y\} \times g(f^{-1}(y))
\]
is a zero-dimensional map, by a theorem of Hurewicz we conclude that \(\dim(g \times u)(f^{-1}(y)) \leq k\).

By Theorem 7, Propositions 6 and 10, and Lemmas 11 and 12, we obtain the next result.

Proposition 13 ([2], cf. [7], [9]). Let \(f : X \to Y\) be a \(k\)-dimensional map of compacta and \(\dim Y = p < \infty\). Let \(T\) be the set of all maps \(h = g \times u : X \to \prod_{j=1}^{k} D_j \times I\) in \(C(X, \prod_{j=1}^{k} D_j \times I)\) such that \(\dim(h^{-1}(y)) \leq k\), \(\dim u((f \times g)^{-1}(y,t)) = 0\) for all \(y \in Y\) and \(t \in \prod_{j=1}^{k} D_j\), and \(\dim(f \times g) = 0\). Then \(T\) is a dense \(G_\delta\)-subset of \(C(X, \prod_{j=1}^{k} D_j \times I)\).

Proposition 14. Let \(f : X \to Y\) be a \(k\)-dimensional map of compacta and \(\dim Y = p < \infty\). For \(i = 0,1, \ldots, p+1\), let \(p_i : \prod_{j=1}^{k} D_j \times I^{p+1} \to \prod_{j=1}^{k} D_j \times I^{p+1-i}\) be the natural projection, where \(p_0 : \prod_{j=1}^{k} D_j \times I^{p+1} \to \prod_{j=1}^{k} D_j \times I^{p+1}\) is the identity. Let \(\hat{E}(X, \prod_{j=1}^{k} D_j \times I^{p+1})\) be the set of maps \(g\) in \(C(X, \prod_{j=1}^{k} D_j \times I^{p+1})\) such that

1. for each \(0 \leq i \leq p\), \((f \times (p_i \circ g)) : X \to Y \times \prod_{j=1}^{k} D_j \times I^{p+1-i}\) is an \((i+1)\)-to-1 map,
2. the map \(h = p_p \circ g = g' \times u : X \to \prod_{j=1}^{k} D_j \times I\) satisfies \(\dim h(f^{-1}(y)) \leq k\), \(\dim u((f \times g')^{-1}(y,t)) = 0\) for all \(y \in Y\) and \(t \in \prod_{j=1}^{k} D_j\), and \(\dim(f \times g') = 0\).

Then \(\hat{E}(X, \prod_{j=1}^{k} D_j \times I^{p+1})\) is a dense \(G_\delta\)-subset of \(C(X, \prod_{j=1}^{k} D_j \times I^{p+1})\).

Proof. Note that if \(q : A \to B\) is an open map and \(C\) is a dense subset of \(B\), then \(q^{-1}(C)\) is dense in \(A\). The natural projection \(p_i : \prod_{j=1}^{k} D_j \times I^{p+1} \to \prod_{j=1}^{k} D_j \times I^{p+1-i}\) induces the open map \(P_i : C(X, \prod_{j=1}^{k} D_j \times I^{p+1}) \to C(X, \prod_{j=1}^{k} D_j \times I^{p+1-i})\) defined by \(P_i(h) = p_i \circ h\) for \(h \in C(X, \prod_{j=1}^{k} D_j \times I^{p+1})\). For \(i = 0,1, \ldots, p\), let \(E_i\) be the set of \(g\) in \(C(X, \prod_{j=1}^{k} D_j \times I^{p+1-i})\) such that \((f \times g) : X \to Y \times \prod_{j=1}^{k} D_j \times I^{p+1-i}\) is \((i+1)\)-to-1. Also, let \(T\) be the subset of \(C(X, \prod_{j=1}^{k} D_j \times I)\) as in Proposition 13. By Theorem 2 and Proposition 13,
\[
\tilde{E}(X, \prod_{j=1}^{k} D_j \times I^{p+1}) = \bigcap_{i=0}^{p} P_i^{-1}(E_i) \cap P_p^{-1}(T)
\]
is a dense G_δ-subset of $C(X, \prod_{j=1}^{k} D_j \times I^{p+1})$. This completes the proof.

Now, we have the following representation theorem for finite-dimensional maps.

Theorem 15. Let $f : X \to Y$ be a map of compacta such that $0 \leq k < \infty$ and $\dim Y = p < \infty$. Then f is k-dimensional if and only if f can be represented as the composition

\[f = g_{p+k+1} \circ \cdots \circ g_{p+1} \circ g_p \circ \cdots \circ g_1\]
such that

1. g_i is an $(i+1)$-to-1 map for each $i = 1, \ldots, p$ and g_{p+1} is a zero-dimensional map,
2. g_i is parallel to I for $i = 1, \ldots, p+1$,
3. g_i is parallel to a superdendrite for $i = p+2, \ldots, p+k+1$.

Proof. Let $\tilde{E}(X, \prod_{j=1}^{k} D_j \times I^{p+1})$ be as in Proposition 14. Choose $g \in \tilde{E}(X, \prod_{j=1}^{k} D_j \times I^{p+1})$. Let

\[Z_i = \begin{cases}
\prod_{j=1}^{k} D_j \times I^{p+1-i} & \text{for } i = 0, 1, \ldots, p+1, \\
\prod_{j=1}^{p+k+1-i} D_j & \text{for } i = p+2, \ldots, p+k.
\end{cases}\]

For $i = 0, 1, \ldots, p+k$, let $p_i : Z_0 \to Z_i$ be the natural projection. For $i = 0, 1, \ldots, p+k$, put $X_i = (f \times (p_i \circ g))(X)$ and put $X_{p+k+1} = Y$. Let $g_1 = q_1 \circ (f \times g)$ and for $i = 2, \ldots, p+k+1$, let $g_i = |q_i| X_{i-1} : X_{i-1} \to X_i$, where $q_i : Y \times Z_{i-1} \to Y \times Z_i$ is the natural projection for $i = 1, \ldots, p+k$ and $q_{p+k+1} : Y \times D_1 \to Y$ is the natural projection. By Proposition 14, we see that g_{p+1} is a 0-dimensional map. Hence the maps g_i are as desired. This completes the proof.

Remark. After the paper [2] had been submitted for publication, the paper of Tuncali and Valov [8] was published. They obtained a more general result in the class of all metrizable spaces.

Acknowledgements. The authors would like to thank the referee for a careful reading of the paper and helpful comments.

References

Institute of Mathematics
University of Tsukuba
Ibaraki, 305-8571 Japan
E-mail: hisakato@sakura.cc.tsukuba.ac.jp
aichi@math.tsukuba.ac.jp

Received 6 June 2005;
revised 26 December 2005

(4609)