ON RINGS OF CONSTANTS OF DERIVATIONS
IN TWO VARIABLES IN POSITIVE CHARACTERISTIC

BY

PIOTR JĘDRZEJEWICZ (Toruń)

Abstract. Let k be a field of characteristic $p > 0$. We describe all derivations of the polynomial algebra $k[x, y]$, homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$.

Introduction. A. Nowicki and M. Nagata proved in [4] that if d is a nonzero k-derivation of $k[x, y]$, where k is a field of characteristic $p > 0$, then $k[x, y]^d$, the ring of constants of d, is a free $k[x^p, y^p]$-module. Moreover they showed that if $p = 2$, then $k[x, y]^d = k[x^p, y^p, f]$ for some $f \in k[x, y]$. W. Li proved in [2] that the rank of $k[x, y]^d$ as a free $k[x^p, y^p]$-module equals 1 or p.

It is natural to ask, for arbitrary p, when a k-derivation of $k[x, y]$ has the ring of constants of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$. In this paper we answer this question for derivations which are homogeneous with respect to a given weight vector (Theorem 11, Corollary 12). This is a generalization of the results of [1].

In the last section we obtain a description, for arbitrary p, of all monomial derivations of $k[x, y]$ with rings of constants of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$ (Theorem 16, Corollary 17). Note that the rings of constants of all monomial derivations for $p = 2$ and $p = 3$ were computed by S.-I. Okuda in [5], using his adaptation of van den Essen's algorithm for the case of positive characteristic.

1. Preliminaries. Throughout this paper k is a field of characteristic $p > 0$. We denote by $k[X]$ the polynomial k-algebra $k[x_1, \ldots, x_n]$ and by $k[X^p]$ the k-subalgebra $k[x_1^p, \ldots, x_n^p]$. In the case of two variables we will just write $k[x, y]$.

A k-linear mapping $d: k[X] \to k[X]$ is called a k-derivation of $k[X]$ if $d(fg) = fd(g) + gd(f)$ for all $f, g \in k[X]$. Every k-derivation d of $k[X]$ is

2000 Mathematics Subject Classification: Primary 12H05; Secondary 13N15.

Key words and phrases: derivation, ring of constants.
of the form \(g_1 \cdot \partial / \partial x_1 + \cdots + g_n \cdot \partial / \partial x_n \) for some polynomials \(g_1, \ldots, g_n \in k[X] \), that is, \(d \) is uniquely determined by the conditions \(d(x_1) = g_1, \ldots, d(x_n) = g_n \). If \(d \) is a \(k \)-derivation of \(k[X] \), then we denote by \(k[X]^d \) the ring of constants of \(d \):

\[
k[X]^d = \{ f \in k[X] : d(f) = 0 \}.
\]

Note that \(k[X]^d \subseteq k[X]^d \), so \(k[X]^d \) is a \(k[X]^d \)-algebra.

We introduce the notion of \(\gamma \)-homogeneity analogously to [3, 2.1]. Consider a vector \(\gamma = (\gamma_1, \ldots, \gamma_n) \in k^n \setminus \{(0, \ldots, 0)\} \). For every \(r \in k \) denote by \(k[X]_{(r)}^\gamma \) the \(k \)-linear span of all monomials \(x_1^{l_1} \cdots x_n^{l_n} \) such that

\[
l_1 \gamma_1 + \cdots + l_n \gamma_n = r.
\]

If no monomial satisfies this equality, then \(k[X]_{(r)}^\gamma = 0 \). We obtain a grading of \(k[X] \) by the additive group of the field \(k \). Polynomials belonging to \(k[X]_{(r)}^\gamma \) are called \(\gamma \)-forms of degree \(r \). In particular, \(x_i \) is a \(\gamma \)-form of degree \(\gamma_i \) for \(i = 1, \ldots, n \). If \(\gamma_1 = \cdots = \gamma_n \), then the \(\gamma \)-forms are exactly the \(p \)-homogeneous polynomials in the sense of [1].

A \(k \)-derivation \(d \) of \(k[X] \) is called \(\gamma \)-homogeneous of degree \(s \), where \(s \in k \), if \(d(k[X]_{(r)}^\gamma) \subseteq k[X]_{(r+s)}^\gamma \) for every \(r \in k \), that is, \(d(x_i) \in k[X]_{(\gamma_i+s)}^\gamma \) for \(i = 1, \ldots, n \). Denote by \(E^\gamma \) the derivation of the form

\[
\gamma_1 x_1 \cdot \frac{\partial}{\partial x_1} + \cdots + \gamma_n x_n \cdot \frac{\partial}{\partial x_n},
\]

which is \(\gamma \)-homogeneous of degree 0. Observe that

\[
E^\gamma(x_1^{l_1} \cdots x_n^{l_n}) = (l_1 \gamma_1 + \cdots + l_n \gamma_n) \cdot x_1^{l_1} \cdots x_n^{l_n},
\]

so a polynomial \(f \) is a \(\gamma \)-form of degree \(r \) if and only if \(E^\gamma(f) = rf \). This is a weight analog of the Euler formula (compare [3, 2.1.1], [1, 1.4]). In particular, \(k[x, y]_{(0)}^\gamma \) is the ring of constants of \(E^\gamma \).

For every \(f \in k[X] \) let

\[
C_k(f) = k(x_1^p, \ldots, x_n^p)[f] \cap k[X],
\]

where \(k(x_1^p, \ldots, x_n^p) \) is the subfield of \(k(x_1, \ldots, x_n) \) generated by \(x_1^p, \ldots, x_n^p \). The following fact immediately follows from [4, Proposition 1.2].

Proposition 1. If \(d \) is a nonzero \(k \)-derivation of \(k[x, y] \) such that \(k[x, y]^d \neq k[x^p, y^p] \), then \(k[x, y]^d = C_k(f) \) for some \((\text{and then for any}) \) \(f \in k[x, y]^d \setminus k[x^p, y^p] \). \(\blacksquare \)

We denote by \(\bar{f} \) the greatest common divisor of \(\partial f / \partial x_1, \ldots, \partial f / \partial x_n \) (defined up to a nonzero scalar factor). We write \(f \sim g \), where \(f, g \) are polynomials, if \(f = ag \) for some \(a \in k \setminus \{0\} \). We use the same convention for derivations, i.e. we write \(d_1 \sim d_2 \) if \(d_1 = ad_2 \) for some \(a \in k \setminus \{0\} \).

It is easy to verify that Corollary 2.4, Proposition 2.6, Theorem 3.2 and Corollary 3.3 from [1] hold true for \(\gamma \)-forms, so we obtain the following result.
Proposition 2. If \(f \in k[X] \setminus k[X^p] \) is a \(\gamma \)-form of a nonzero degree, then the following conditions are equivalent:

(i) \(C_k(f) = k[X^p][f] \),
(ii) \(f \) has no multiple factors and no factors from \(k[X^p] \setminus k \),
(iii) \(\bar{f} \sim 1 \). □

2. \(\gamma \)-homogeneous derivations of \(k[x, y] \). For a polynomial \(f \in k[x, y] \) we denote by \(d_f \) the jacobian derivation with respect to \(f \):

\[
d_f = \frac{\partial f}{\partial x} \cdot \frac{\partial}{\partial y} - \frac{\partial f}{\partial y} \cdot \frac{\partial}{\partial x}.
\]

If \(f \) is a \(\gamma \)-form of degree \(r \), where \(\gamma = (\lambda, \mu) \), then \(d_f \) is a \(\gamma \)-homogeneous derivation of degree \(r - \lambda - \mu \). Note that \(d_f = d_g \) if and only if \(f - g \in k[x^p, y^p] \).

We can reformulate Proposition 4.1 and generalize Proposition 4.3 from [1] in the following way.

Proposition 3. Let \(d \) be a nonzero \(k \)-derivation of \(k[x, y] \) such that \(k[x, y]^d \neq k[x^p, y^p] \), and let \(f \in k[x, y]^d \setminus k[x^p, y^p] \). Then

\[
\bar{f} \cdot d \sim \gcd(d(x), d(y)) \cdot d_f,
\]

where \(\bar{f} = \gcd(\partial f/\partial x, \partial f/\partial y) \). In particular, if \(d(x), d(y) \) are coprime and \(\bar{f} \sim 1 \), then \(d \sim d_f \). □

Corollary 4. Let \(d \) be a nonzero \(k \)-derivation of \(k[x, y] \). If \(d(f) = 0 \) for some \(f \in k[x, y]^\gamma(0) \setminus k[x^p, y^p] \), then \(k[x, y]^d = k[x, y]^\gamma(0) \).

Proof. If \(f \in [x, y]^\gamma(0) \), then \(E^\gamma(f) = 0 \), so \(k[x, y]^d = k[x, y]^E^\gamma = k[x, y]^\gamma(0) \), by Proposition 1. □

Corollary 5. Let \(\gamma = (\lambda, \mu) \) and let \(f \in k[x, y] \setminus k[x^p, y^p] \) be a \(\gamma \)-form of degree 0 such that \(\bar{f} \sim 1 \).

(a) If \(\lambda, \mu \neq 0 \), then \(d_f \sim E^\gamma \).
(b) If \(\lambda = 0, \mu \neq 0 \), then \(y d_f \sim E^\gamma \).
(c) If \(\lambda \neq 0, \mu = 0 \), then \(x d_f \sim E^\gamma \).

Proof. Applying Proposition 3 to \(d = E^\gamma \), we obtain the following formula:

\[
\gcd(\lambda x, \mu y) \cdot d_f \sim \bar{f} \cdot E^\gamma. \quad \blacksquare
\]

Recall Proposition 2.7 from [1] in the case of two variables.

Proposition 6. Let \(f, g \in k[x, y] \). Then \(k[x^p, y^p, f] = k[x^p, y^p, g] \) if and only if \(f - ag \in k[x^p, y^p] \) for some \(a \in k \setminus \{0\} \). □

The following proposition is a generalization of Proposition 4.4 from [1]. This proof is new; the proof in [1] was partially specific to homogeneity without weights.
Proposition 7. Let \(f \in k[x, y]_{(0)}^{\gamma} \setminus k[x^p, y^p] \), where \(\gamma = (\lambda, \mu) \). Then the following conditions are equivalent:

(i) \(k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, f] \),

\[
\lambda + \mu = 0, \quad f = axy + g
\]

(ii) or \(\lambda = 0, \quad f = ax + g \)

\(\lambda = 0 \)

\(\mu = 0 \)

\(f = ay + g \)

for some \(a \in k \setminus \{0\} \) and \(g \in k[x^p, y^p] \),

(iii) \(\bar{f} \sim 1 \).

Proof. (i) \(\Rightarrow \) (ii). Assume that \(k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, f] \). If \(\lambda + \mu = 0 \), then all monomials of degree 0 are of the form \(x^{mp+l}y^{np+l} \), where \(m, n, l \geq 0 \), so \(k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, xy] \), and, by Proposition 6, \(f - axy \in k[x^p, y^p] \) for some \(a \in k \setminus \{0\} \). If \(\lambda = 0, \mu \neq 0 \), then all monomials of degree 0 are of the form \(x^ly^{np} \), where \(l, n \geq 0 \), and we have \(k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, x] \), so (Proposition 6) \(f - ax \in k[x^p, y^p] \) for some \(a \in k \setminus \{0\} \). Analogously, if \(\lambda \neq 0, \mu = 0 \), then \(k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, y] \), so \(f - ay \in k[x^p, y^p] \) for some \(a \in k \setminus \{0\} \).

Now, let \(\lambda, \mu \neq 0 \) and \(\lambda + \mu \neq 0 \). Note that \(\lambda, \mu \) are linearly dependent over the prime subfield \(\mathbb{F}_p \) of \(k \), because \(k[x, y]_{(0)}^{\gamma} \neq k[x^p, y^p, f] \). Consider integers \(j, l \in \{2, \ldots, p-1\} \) such that \(j \lambda + \mu = 0 \) and \(\lambda + l \mu = 0 \). In this case the monomials \(x^y \) and \(xy^l \) are \(\gamma \)-homogeneous of degree 0, so \(x^y, xy^l \in k[x^p, y^p, f] \).

Following the method from Example 4.3 in [4], we consider polynomials \(u(T), v(T) \in k[x^p, y^p][T] \) such that \(x^jy = u(f), xy^l = v(f) \). We obtain the following equalities:

\[
\begin{align*}
 jx^{j-1}y &= u'(f) \cdot \frac{\partial f}{\partial x}, \quad x^j = u'(f) \cdot \frac{\partial f}{\partial y}, \quad y^l = v'(f) \cdot \frac{\partial f}{\partial x},
\end{align*}
\]

from which we deduce that \(u'(f) = cx^{-1} \) for some \(c \in k \setminus \{0\} \), so \(x^{j-1} \in k[x^p, y^p, f] \). This is a contradiction, because \(E^\gamma(x^{-1}) \neq 0 \).

(ii) \(\Rightarrow \) (i). Consider arbitrary \(a \in k \setminus \{0\} \) and \(g \in k[x^p, y^p] \). If \(\lambda + \mu = 0 \), then \(k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, xy] = k[x^p, y^p, f] \) for \(f = axy + g \). If \(\lambda = 0 \) and \(f = ax + g \), then \(k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, x] = k[x^p, y^p, f] \). Analogously, if \(\mu = 0 \) and \(f = ay + g \), then \(k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, y] = k[x^p, y^p, f] \).

(ii) \(\Rightarrow \) (iii). Obviously, in each case \(f \) belongs to \(k[x, y]_{(0)}^{\gamma} \setminus k[x^p, y^p] \) and \(\partial f/\partial x, \partial f/\partial y \) are coprime.

(iii) \(\Rightarrow \) (ii). If \(\lambda, \mu \neq 0 \), then, by Corollary 5, \(df = cE^\gamma \) for some \(c \in k \setminus \{0\} \), so we obtain a system of partial differential equations \(\partial f/\partial x = c\mu y \) and \(\partial f/\partial y = -c\lambda x \). Note that

\[
c\mu = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -c\lambda,
\]

so \(\lambda + \mu = 0 \). In this case the general solution is of the form \(f = c\mu xy + g \), where \(g \in k[x^p, y^p] \).
If $\lambda = 0$, then (Corollary 5) $yd_f = cE^\gamma$ for some $c \in k \setminus \{0\}$, we have a system $\partial f/\partial x = c\mu$, $\partial f/\partial y = 0$, and the solution is $f = c\mu x + g$, where $g \in k[x^p, y^p]$. Analogously, if $\mu = 0$, then $\partial f/\partial x = 0$ and $\partial f/\partial y = -c\lambda$, so $f = -c\lambda y + g$, where $g \in k[x^p, y^p]$.

Corollary 8. Let d be a nonzero k-derivation of $k[x,y]$ such that $k[x,y]^d \neq k[x^p, y^p]$, and let $f \in k[x,y]^d \setminus k[x^p, y^p]$ be a γ-form. Then $k[x,y]^d = k[x^p, y^p, f]$ if and only if $\bar{f} \sim 1$.

Proof. This follows from Propositions 1 and 2 if f is a γ-form of a nonzero degree, and from Proposition 7 and Corollary 4 if f is a γ-form of degree 0.

The next two propositions explain some relations between γ-homogeneity of derivations and γ-homogeneity of polynomials.

Lemma 9. Let $f \in k[x,y] \setminus k[x^p, y^p]$. If d_f is a γ-homogeneous k-derivation of $k[x,y]$, then there exists a γ-form $h \in k[x,y] \setminus k[x^p, y^p]$ such that $f - h \in k[x^p, y^p]$.

Proof. Assume that d_f is γ-homogeneous of degree s. This means that $\partial f/\partial x$ and $\partial f/\partial y$ are γ-forms of degrees $s + \mu$ and $s + \lambda$, respectively.

If f_r is the γ-homogeneous component of f of degree $r \in k$, then $\partial f_r/\partial x$ is the γ-homogeneous component of $\partial f/\partial x$ of degree $r - \lambda$, so $\partial f_r/\partial x = 0$ for $r \neq s + \lambda + \mu$. Analogously, $\partial f_r/\partial y$ is the γ-homogeneous component of $\partial f/\partial y$ of degree $r - \mu$, so $\partial f_r/\partial y = 0$ for $r \neq s + \lambda + \mu$. This implies that $f_r \in k[x^p, y^p]$ for $r \neq s + \lambda + \mu$, and we may put $h = f_{s+\lambda+\mu}$.

Lemma 10. If d is a nonzero γ-homogeneous k-derivation of $k[x,y]$ such that $k[x,y]^d = k[x^p, y^p, f]$, where $f \in k[x,y] \setminus k[x^p, y^p]$, then there exists a γ-form $h \in k[x,y]^d \setminus k[x^p, y^p]$ such that $f - h \in k[x^p, y^p]$.

Proof. By γ-homogeneity of d, all γ-homogeneous components of f belong to $k[x,y]^d$. If the γ-homogeneous component of f of degree 0 does not belong to $k[x^p, y^p]$, then $k[x,y]^d = k[x,y]^0$ by Corollary 4, so $f \in k[x,y]^0$, and we may apply the implication (i)\Rightarrow(ii) from Proposition 7.

Now assume that the γ-homogeneous component of f of degree 0 belongs to $k[x^p, y^p]$. Let f_r be the γ-homogeneous component of f of degree $r \neq 0$, so $f_r \in k[x,y]^d$, and, by the assumption, $f_r = u(f)$ for some polynomial $u(T) \in k[x^p, y^p][T]$. Then $r f_r = E^\gamma(f_r) = E^\gamma(f) \cdot u'(f)$.

Assume that $f_r \neq 0$. Then $\deg f_r \leq \deg E^\gamma(f)$, where \deg denotes the ordinary degree of a polynomial, so the above equality implies that $r f_r = cE^\gamma(f)$ for some $c \in k \setminus \{0\}$. Hence $E^\gamma(f)$ is a γ-form of degree r and f_r is the only nonzero γ-homogeneous component of f of a nonzero degree, so we may put $h = f_r$.

Now we are ready to prove the following theorem.
Theorem 11. Let k be a field of characteristic $p > 0$, let d be a nonzero γ-homogeneous k-derivation of $k[x, y]$ such that $d(x)$ and $d(y)$ are coprime, and let $f \in k[x, y] \setminus k[x^p, y^p]$. Then

$$k[x, y]^d = k[x^p, y^p, f]$$

if and only if $d \sim d_f$.

Proof. (\Rightarrow) If $k[x, y]^d = k[x^p, y^p, f]$ for some $f \in k[x, y] \setminus k[x^p, y^p]$, then (Lemma 10) there exists a γ-form $h \in k[x, y]$ such that $f - h \in k[x^p, y^p]$, that is, $k[x, y]^d = k[x^p, y^p, h]$. Then $h \sim 1$ by Corollary 8, so, by Proposition 3, $d \sim d_h \sim d_f$.

(\Leftarrow) If $d \sim d_f$, then (Lemma 9) $d \sim d_h$ for some γ-form $h \in k[x, y] \setminus k[x^p, y^p]$ such that $f - h \in k[x^p, y^p]$. Since $d(x)$ and $d(y)$ are coprime, that is, $h \sim 1$, we deduce by Corollary 8 that $k[x, y]^d = k[x^p, y^p, f]$.

Corollary 12. Let d be a nonzero γ-homogeneous k-derivation of $k[x, y]$ such that $d(x)$ and $d(y)$ are coprime. Then $k[x, y]^d = k[x^p, y^p, f]$ for some $f \in k[x, y] \setminus k[x^p, y^p]$ if and only if d is a jacobian derivation.

3. Monomial derivations of $k[x, y]$. A k-derivation $d: k[x, y] \to k[x, y]$ is called *monomial* if $d(x) = x^t y^u$ and $d(y) = x^v y^w$ for some integers $t, u, v, w \geq 0$. We will consider a slightly more general case:

\[
\begin{align*}
\{ & d(x) = \alpha x^t y^u, \\
& d(y) = \beta x^v y^w,
\end{align*}
\]

where $\alpha, \beta \in k$.

Now consider an arbitrary nonzero k-derivation d of $k[x, y]$ and a polynomial $f \in k[x, y] \setminus k[x^p, y^p]$. By Corollary 8, if $\partial f/\partial x$ and $\partial f/\partial y$ are coprime, $d(f) = 0$ and f is a γ-form for some γ, then $k[x, y]^d = k[x^p, y^p, f]$. This is the way one can easily verify the following fact.

Example 13. Let m, n, r, s be nonnegative integers, $m, n \neq -1 \mod p$, let $\alpha, \beta \in k \setminus \{0\}$. The following k-derivations of $k[x, y]$ have the rings of contants of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$:

\[
\begin{align*}
\{ & d_1(x) = \alpha x^{rp}, \\
& d_1(y) = \beta y^{sp}, \\
& d_2(x) = \alpha x, \\
& d_2(y) = -\alpha y, \\
& d_3(x) = \alpha y^n, \\
& d_3(y) = \beta x^m, \\
& d_4(x) = \alpha x^{rp} y^n, \\
& d_4(y) = \beta,
\end{align*}
\]

$k[x, y]^d = k[x^p, y^p, \beta xy^{sp} - \alpha x^{rp} y],

k[x, y]^d_1 = k[x^p, y^p, \beta x^p y^p, \beta xy^{sp} - \alpha x^{rp} y],

k[x, y]^d_2 = k[x^p, y^p, xy],

k[x, y]^d_3 = k[x^p, y^p, x^m, \beta x^p y^p, (n + 1)\beta x^{m+1} - (m + 1)\alpha y^{n+1}],

k[x, y]^d_4 = k[x^p, y^p, (n + 1)\beta x - \alpha x^{rp} y^{n+1}],

k[x, y]^d_4 = k[x^p, y^p, (n + 1)\beta x - \alpha x^{rp} y^{n+1}].$
\[
\begin{aligned}
\{ d_5(x) = 0, \\
d_5(y) = \beta, \\
d_6(x) = \alpha, \\
d_6(y) = \beta x^m y^p, \\
d_7(x) = \alpha, \\
d_7(y) = 0, \\
\} \\
k[x, y]^{d_5} = k[x^p, y^p, x], \\
k[x, y]^{d_6} = k[x^p, y^p, \beta x^{m+1} y^p - (m + 1)\alpha y], \\
k[x, y]^{d_7} = k[x^p, y^p, y]. \\
\end{aligned}
\]

We will show in Theorem 16 that the above derivations are, up to multiplication by a monomial, all derivations of the form (*) such that \(k[x, y]^d = k[x^p, y^p, f] \), where \(f \in k[x, y] \setminus k[x^p, y^p] \). Note the following adaptation of Proposition 2.1.6 from [3]. The original proof remains valid in our situation.

Lemma 14. Let \(d \) be a \(k \)-derivation of \(k[x, y] \) of the form (*). Then there exists a vector \(\gamma \in k^2 \setminus \{(0,0)\} \) such that \(d \) is a \(\gamma \)-homogeneous derivation. \(\blacksquare \)

Recall that if \(d \) is a \(k \)-derivation of \(k[x, y] \), then the polynomial
\[
d^* = \frac{\partial(d(x))}{\partial x} + \frac{\partial(d(y))}{\partial y}
\]
is called the divergence of \(d \), and recall Lemma 5.1 from [1].

Lemma 15. Let \(d \) be a \(k \)-derivation of \(k[x, y] \) and let
\[
d(x) = \sum_{0 \leq j, l < p} a_{jl} x^j y^l, \quad d(y) = \sum_{0 \leq j, l < p} b_{jl} x^j y^l,
\]
where \(a_{jl}, b_{jl} \in k[x^p, y^p] \). Then \(d \) is a jacobian derivation if and only if
\[(**) \quad d^* = 0, \quad a_{0,p-1} = 0, \quad b_{p-1,0} = 0. \quad \blacksquare \]

Finally, we can prove the following theorem.

Theorem 16. Let \(k \) be a field of characteristic \(p > 0 \), and let \(d \) be a \(k \)-derivation of \(k[x, y] \) of the form (*). Then
\[
k[x, y]^d = k[x^p, y^p, f]
\]
for some \(f \in k[x, y] \setminus k[x^p, y^p] \) if and only if \(d = x^j y^l \cdot d_i \), where \(j, l \geq 0, i \in \{1, \ldots, 7\} \) and \(d_i \) is a derivation from Example 13 with \(m, n, r, s \geq 0, m, n \neq -1 \)(mod \(p \)), \(\alpha, \beta \in k \setminus \{0\} \).

Proof. We may assume that \(d \) is a nonzero derivation. If \(\alpha, \beta \neq 0 \), we put \(j = \min(t, v) \) and \(l = \min(u, w) \), if \(\alpha = 0 \), we put \(j = v, l = w \), and if \(\beta = 0 \), we put \(j = t, l = u \). Then \(d = x^j y^l \cdot d_0 \), where \(d_0 \) is a \(k \)-derivation of \(k[x, y] \) such that \(d_0(x) \) and \(d_0(y) \) are coprime. By Lemma 14 the derivation \(d_0 \) is \(\gamma \)-homogeneous for some \(\gamma \in k^2 \setminus \{(0,0)\} \), so, by Corollary 12, the ring of constants of \(d \) is of the form \(k[x^p, y^p, f] \), where \(f \in k[x, y] \setminus k[x^p, y^p] \), if and only if \(d_0 \) is a jacobian derivation. We verify the conditions (***) from
Lemma 15 for all possible forms of \(d_0 \):

\[
\begin{align*}
\begin{cases}
 d_0(x) = \alpha x^m, \\
 d_0(y) = \beta y^n,
\end{cases}
\end{align*}
\]

where \(m, n \geq 0, \alpha, \beta \neq 0 \). We have \(d_0^* = \max x^{m-1} + n \beta y^{n-1}, a_{0,p-1} = 0 \) and \(b_{p-1,0} = 0 \). The conditions \((**))\) hold in two cases:

\begin{itemize}
 \item \(m \equiv 0 \pmod{p} \) and \(n \equiv 0 \pmod{p} \), that is, \(d_0 = d_1 \),
 \item \(m = 1, n = 1 \) and \(\alpha + \beta = 0 \), that is, \(d = d_2 \).
\end{itemize}

(b) \[
\begin{align*}
\begin{cases}
 d_0(x) = \alpha y^n, \\
 d_0(y) = \beta x^m,
\end{cases}
\end{align*}
\]

where \(m, n \geq 0, \alpha, \beta \neq 0 \). In this case \(d_0^* = 0 \). The conditions \((**))\) are equivalent to \(m, n \not\equiv -1 \pmod{p} \), that is, \(d_0 = d_3 \).

(c) \[
\begin{align*}
\begin{cases}
 d_0(x) = \alpha x^m y^n, \\
 d_0(y) = \beta,
\end{cases}
\end{align*}
\]

where \(m, n \geq 0, \beta \neq 0 \). We have \(d_0^* = \max x^{m-1} y^n, b_{p-1,0} = 0 \). The conditions \((**))\) hold in two cases:

\begin{itemize}
 \item \(m \equiv 0 \pmod{p} \) and \(n \not\equiv -1 \pmod{p} \), when \(d_0 = d_4 \),
 \item \(\alpha = 0 \), when \(d_0 = d_5 \).
\end{itemize}

(d) \[
\begin{align*}
\begin{cases}
 d_0(x) = \alpha, \\
 d_0(y) = \beta x^m y^n,
\end{cases}
\end{align*}
\]

where \(m, n \geq 0, \alpha \neq 0 \). We have \(d_0^* = n \beta x^m y^{n-1}, a_{0,p-1} = 0 \). The conditions \((**))\) hold in two cases:

\begin{itemize}
 \item \(m \not\equiv -1 \pmod{p} \) and \(n \equiv 0 \pmod{p} \), when \(d_0 = d_6 \),
 \item \(\beta = 0 \), when \(d_0 = d_7 \).
\end{itemize}

Note that in each case a polynomial \(f \) such that \(k[x,y]^d = k[x^p, y^p, f] \) can be easily obtained from the condition \(d_0 = d_f \), that is, \(\partial f / \partial x = d_0(y) \) and \(\partial f / \partial y = -d_0(x) \). \(\blacksquare \)

Corollary 17. All monomial \(k \)-derivations of \(k[x,y] \) such that \(k[x,y]^d = k[x^p, y^p, f] \) for some \(f \in k[x,y] \setminus k[x^p, y^p] \) are of the form \(x^j y^l \cdot d_i \), where:

1. \(j, l \geq 0 \),
2. \(i \in \{1, \ldots, 7\} \), but \(i = 2 \) only in the case of \(p = 2 \),
3. \(d_1, \ldots, d_7 \) are derivations from Example 13 with \(m, n, r, s \geq 0, m, n \not\equiv -1 \pmod{p} \) and \(\alpha = \beta = 1 \). \(\blacksquare \)

REFERENCES

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: pjedrzej@mat.uni.torun.pl

Received 11 October 2005;
revised 12 December 2005 (4675)