VOL. 106

2006

NO. 1

ON RINGS OF CONSTANTS OF DERIVATIONS IN TWO VARIABLES IN POSITIVE CHARACTERISTIC

ВY

PIOTR JĘDRZEJEWICZ (Toruń)

Abstract. Let k be a field of chracteristic p > 0. We describe all derivations of the polynomial algebra k[x, y], homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$.

Introduction. A. Nowicki and M. Nagata proved in [4] that if d is a nonzero k-derivation of k[x, y], where k is a field of characteristic p > 0, then $k[x, y]^d$, the ring of constants of d, is a free $k[x^p, y^p]$ -module. Moreover they showed that if p = 2, then $k[x, y]^d = k[x^p, y^p, f]$ for some $f \in k[x, y]$. W. Li proved in [2] that the rank of $k[x, y]^d$ as a free $k[x^p, y^p]$ -module equals 1 or p.

It is natural to ask, for arbitrary p, when a k-derivation of k[x, y] has the ring of constants of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$. In this paper we answer this question for derivations which are homogeneous with respect to a given weight vector (Theorem 11, Corollary 12). This is a generalization of the results of [1].

In the last section we obtain a description, for arbitrary p, of all monomial derivations of k[x, y] with rings of constants of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$ (Theorem 16, Corollary 17). Note that the rings of constants of all monomial derivations for p = 2 and p = 3 were computed by S.-I. Okuda in [5], using his adaptation of van den Essen's algorithm for the case of positive characteristic.

1. Preliminaries. Throughout this paper k is a field of characteristic p > 0. We denote by k[X] the polynomial k-algebra $k[x_1, \ldots, x_n]$ and by $k[X^p]$ the k-subalgebra $k[x_1^p, \ldots, x_n^p]$. In the case of two variables we will just write k[x, y].

A k-linear mapping $d: k[X] \to k[X]$ is called a k-derivation of k[X] if d(fg) = fd(g) + gd(f) for all $f, g \in k[X]$. Every k-derivation d of k[X] is

²⁰⁰⁰ Mathematics Subject Classification: Primary 12H05; Secondary 13N15.

Key words and phrases: derivation, ring of constants.

of the form $g_1 \cdot \partial/\partial x_1 + \cdots + g_n \cdot \partial/\partial x_n$ for some polynomials $g_1, \ldots, g_n \in k[X]$, that is, d is uniquely determined by the conditions $d(x_1) = g_1, \ldots, d(x_n) = g_n$. If d is a k-derivation of k[X], then we denote by $k[X]^d$ the ring of constants of d:

$$k[X]^d = \{ f \in k[X] : d(f) = 0 \}.$$

Note that $k[X^p] \subseteq k[X]^d$, so $k[X]^d$ is a $k[X^p]$ -algebra.

We introduce the notion of γ -homogeneity analogously to [3, 2.1]. Consider a vector $\gamma = (\gamma_1, \ldots, \gamma_n) \in k^n \setminus \{(0, \ldots, 0)\}$. For every $r \in k$ denote by $k[X]_{(r)}^{\gamma}$ the k-linear span of all monomials $x_1^{l_1} \cdots x_n^{l_n}$ such that

$$l_1\gamma_1 + \dots + l_n\gamma_n = r.$$

If no monomial satisfies this equality, then $k[X]_{(r)}^{\gamma} = 0$. We obtain a grading of k[X] by the additive group of the field k. Polynomials belonging to $k[X]_{(r)}^{\gamma}$ are called γ -forms of degree r. In particular, x_i is a γ -form of degree γ_i for $i = 1, \ldots, n$. If $\gamma_1 = \cdots = \gamma_n$, then the γ -forms are exactly the p-homogeneous polynomials in the sense of [1].

A k-derivation d of k[X] is called γ -homogeneous of degree s, where $s \in k$, if $d(k[X]_{(r)}^{\gamma}) \subseteq k[X]_{(r+s)}^{\gamma}$ for every $r \in k$, that is, $d(x_i) \in k[X]_{(\gamma_i+s)}^{\gamma}$ for $i = 1, \ldots, n$. Denote by E^{γ} the derivation of the form

$$\gamma_1 x_1 \cdot \frac{\partial}{\partial x_1} + \dots + \gamma_n x_n \cdot \frac{\partial}{\partial x_n}$$

which is γ -homogeneous of degree 0. Observe that

$$E^{\gamma}(x_1^{l_1}\cdots x_n^{l_n}) = (l_1\gamma_1 + \cdots + l_n\gamma_n) \cdot x_1^{l_1}\cdots x_n^{l_n}$$

so a polynomial f is a γ -form of degree r if and only if $E^{\gamma}(f) = rf$. This is a weight analog of the Euler formula (compare [3, 2.1.1], [1, 1.4]). In particular, $k[x, y]_{(0)}^{\gamma}$ is the ring of constants of E^{γ} .

For every $f \in k[X]$ let

$$C_k(f) = k(x_1^p, \dots, x_n^p)[f] \cap k[X],$$

where $k(x_1^p, \ldots, x_n^p)$ is the subfield of $k(x_1, \ldots, x_n)$ generated by x_1^p, \ldots, x_n^p . The following fact immediately follows from [4, Proposition 1.2].

PROPOSITION 1. If d is a nonzero k-derivation of k[x,y] such that $k[x,y]^d \neq k[x^p,y^p]$, then $k[x,y]^d = C_k(f)$ for some (and then for any) $f \in k[x,y]^d \setminus k[x^p,y^p]$.

We denote by \overline{f} the greatest common divisor of $\partial f/\partial x_1, \ldots, \partial f/\partial x_n$ (defined up to a nonzero scalar factor). We write $f \sim g$, where f, g are polynomials, if f = ag for some $a \in k \setminus \{0\}$. We use the same convention for derivations, i.e. we write $d_1 \sim d_2$ if $d_1 = ad_2$ for some $a \in k \setminus \{0\}$.

It is easy to verify that Corollary 2.4, Proposition 2.6, Theorem 3.2 and Corollary 3.3 from [1] hold true for γ -forms, so we obtain the following result.

PROPOSITION 2. If $f \in k[X] \setminus k[X^p]$ is a γ -form of a nonzero degree, then the following conditions are equivalent:

- (i) $C_k(f) = k[X^p][f],$
- (ii) f has no multiple factors and no factors from $k[X^p] \setminus k$,
- (iii) $\overline{f} \sim 1.$

2. γ -homogeneous derivations of k[x, y]. For a polynomial $f \in k[x, y]$ we denote by d_f the *jacobian derivation* with respect to f:

$$d_f = \frac{\partial f}{\partial x} \cdot \frac{\partial}{\partial y} - \frac{\partial f}{\partial y} \cdot \frac{\partial}{\partial x}.$$

If f is a γ -form of degree r, where $\gamma = (\lambda, \mu)$, then d_f is a γ -homogeneous derivation of degree $r - \lambda - \mu$. Note that $d_f = d_g$ if and only if $f - g \in k[x^p, y^p]$.

We can reformulate Proposition 4.1 and generalize Proposition 4.3 from [1] in the following way.

PROPOSITION 3. Let d be a nonzero k-derivation of k[x, y] such that $k[x, y]^d \neq k[x^p, y^p]$, and let $f \in k[x, y]^d \setminus k[x^p, y^p]$. Then

$$f \cdot d \sim \gcd(d(x), d(y)) \cdot d_f,$$

where $\overline{f} = \gcd(\partial f/\partial x, \partial f/\partial y)$. In particular, if d(x), d(y) are coprime and $\overline{f} \sim 1$, then $d \sim d_f$.

COROLLARY 4. Let d be a nonzero k-derivation of k[x, y]. If d(f) = 0 for some $f \in k[x, y]_{(0)}^{\gamma} \setminus k[x^p, y^p]$, then $k[x, y]^d = k[x, y]_{(0)}^{\gamma}$.

Proof. If $f \in [x, y]_{(0)}^{\gamma}$, then $E^{\gamma}(f) = 0$, so $k[x, y]^d = k[x, y]^{E^{\gamma}} = k[x, y]_{(0)}^{\gamma}$, by Proposition 1.

COROLLARY 5. Let $\gamma = (\lambda, \mu)$ and let $f \in k[x, y] \setminus k[x^p, y^p]$ be a γ -form of degree 0 such that $\overline{f} \sim 1$.

- (a) If $\lambda, \mu \neq 0$, then $d_f \sim E^{\gamma}$.
- (b) If $\lambda = 0$, $\mu \neq 0$, then $yd_f \sim E^{\gamma}$.
- (c) If $\lambda \neq 0$, $\mu = 0$, then $xd_f \sim E^{\gamma}$.

Proof. Applying Proposition 3 to $d = E^{\gamma}$, we obtain the following formula:

$$gcd(\lambda x, \mu y) \cdot d_f \sim \overline{f} \cdot E^{\gamma}.$$

Recall Proposition 2.7 from [1] in the case of two variables.

PROPOSITION 6. Let $f, g \in k[x, y]$. Then $k[x^p, y^p, f] = k[x^p, y^p, g]$ if and only if $f - ag \in k[x^p, y^p]$ for some $a \in k \setminus \{0\}$.

The following proposition is a generalization of Proposition 4.4 from [1]. This proof is new; the proof in [1] was partially specific to homogeneity without weights.

PROPOSITION 7. Let $f \in k[x, y]_{(0)}^{\gamma} \setminus k[x^p, y^p]$, where $\gamma = (\lambda, \mu)$. Then the following conditions are equivalent:

(i) k[x, y]^γ₍₀₎ = k[x^p, y^p, f], λ + μ = 0, f = axy + g (ii) or λ = 0, f = ax + g or μ = 0, f = ay + g

(iii) *f* ~ 1.

Proof. (i) \Rightarrow (ii). Assume that $k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, f]$. If $\lambda + \mu = 0$, then all monomials of degree 0 are of the form $x^{mp+l}y^{np+l}$, where $m, n, l \ge 0$, so $k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, xy]$, and, by Proposition 6, $f - axy \in k[x^p, y^p]$ for some $a \in k \setminus \{0\}$. If $\lambda = 0, \ \mu \ne 0$, then all monomials of degree 0 are of the form $x^l y^{np}$, where $l, n \ge 0$, and we have $k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, x]$, so (Proposition 6) $f - ax \in k[x^p, y^p]$ for some $a \in k \setminus \{0\}$. Analogously, if $\lambda \ne 0, \ \mu = 0$, then $k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, y]$, so $f - ay \in k[x^p, y^p]$ for some $a \in k \setminus \{0\}$.

Now, let $\lambda, \mu \neq 0$ and $\lambda + \mu \neq 0$. Note that λ, μ are linearly dependent over the prime subfield \mathbb{F}_p of k, because $k[x, y]_{(0)}^{\gamma} \neq k[x^p, y^p]$. Consider integers $j, l \in \{2, \ldots, p-1\}$ such that $j\lambda + \mu = 0$ and $\lambda + l\mu = 0$. In this case the monomials $x^j y$ and xy^l are γ -homogeneous of degree 0, so $x^j y, xy^l \in k[x^p, y^p, f]$. Following the method from Example 4.3 in [4], we consider polynomials $u(T), v(T) \in k[x^p, y^p][T]$ such that $x^j y = u(f), xy^l = v(f)$. We obtain the following equalities:

$$jx^{j-1}y = u'(f) \cdot \frac{\partial f}{\partial x}, \quad x^j = u'(f) \cdot \frac{\partial f}{\partial y}, \quad y^l = v'(f) \cdot \frac{\partial f}{\partial x},$$

from which we deduce that $u'(f) = cx^{j-1}$ for some $c \in k \setminus \{0\}$, so $x^{j-1} \in k[x^p, y^p, f]$. This is a contradiction, because $E^{\gamma}(x^{j-1}) \neq 0$.

(ii) \Rightarrow (i). Consider arbitrary $a \in k \setminus \{0\}$ and $g \in k[x^p, y^p]$. If $\lambda + \mu = 0$, then $k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, xy] = k[x^p, y^p, f]$ for f = axy + g. If $\lambda = 0$ and f = ax + g, then $k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, x] = k[x^p, y^p, f]$. Analogously, if $\mu = 0$ and f = ay + g, then $k[x, y]_{(0)}^{\gamma} = k[x^p, y^p, y] = k[x^p, y^p, f]$.

(ii) \Rightarrow (iii). Obviously, in each case f belongs to $k[x, y]_{(0)}^{\gamma} \setminus k[x^p, y^p]$ and $\partial f/\partial x$, $\partial f/\partial y$ are coprime.

(iii) \Rightarrow (ii). If $\lambda, \mu \neq 0$, then, by Corollary 5, $d_f = cE^{\gamma}$ for some $c \in k \setminus \{0\}$, so we obtain a system of partial differential equations $\partial f/\partial x = c\mu y$ and $\partial f/\partial y = -c\lambda x$. Note that

$$c\mu = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -c\lambda,$$

so $\lambda + \mu = 0$. In this case the general solution is of the form $f = c\mu xy + g$, where $g \in k[x^p, y^p]$. If $\lambda = 0$, then (Corollary 5) $yd_f = cE^{\gamma}$ for some $c \in k \setminus \{0\}$, we have a system $\partial f/\partial x = c\mu$, $\partial f/\partial y = 0$, and the solution is $f = c\mu x + g$, where $g \in k[x^p, y^p]$. Analogously, if $\mu = 0$, then $\partial f/\partial x = 0$ and $\partial f/\partial y = -c\lambda$, so $f = -c\lambda y + g$, where $g \in k[x^p, y^p]$.

COROLLARY 8. Let d be a nonzero k-derivation of k[x,y] such that $k[x,y]^d \neq k[x^p, y^p]$, and let $f \in k[x,y]^d \setminus k[x^p, y^p]$ be a γ -form. Then $k[x,y]^d = k[x^p, y^p, f]$ if and only if $\overline{f} \sim 1$.

Proof. This follows from Propositions 1 and 2 if f is a γ -form of a nonzero degree, and from Proposition 7 and Corollary 4 if f is a γ -form of degree 0.

The next two propositions explain some relations between γ -homogeneity of derivations and γ -homogeneity of polynomials.

LEMMA 9. Let $f \in k[x, y] \setminus k[x^p, y^p]$. If d_f is a γ -homogeneous k-derivation of k[x, y], then there exists a γ -form $h \in k[x, y] \setminus k[x^p, y^p]$ such that $f - h \in k[x^p, y^p]$.

Proof. Assume that d_f is γ -homogeneous of degree s. This means that $\partial f/\partial x$ and $\partial f/\partial y$ are γ -forms of degrees $s + \mu$ and $s + \lambda$, respectively.

If f_r is the γ -homogeneous component of f of degree $r \in k$, then $\partial f_r/\partial x$ is the γ -homogeneous component of $\partial f/\partial x$ of degree $r - \lambda$, so $\partial f_r/\partial x = 0$ for $r \neq s + \lambda + \mu$. Analogously, $\partial f_r/\partial y$ is the γ -homogeneous component of $\partial f/\partial y$ of degree $r - \mu$, so $\partial f_r/\partial y = 0$ for $r \neq s + \lambda + \mu$. This implies that $f_r \in k[x^p, y^p]$ for $r \neq s + \lambda + \mu$, and we may put $h = f_{s+\lambda+\mu}$.

LEMMA 10. If d is a nonzero γ -homogeneous k-derivation of k[x, y] such that $k[x, y]^d = k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$, then there exists a γ -form $h \in k[x, y]^d \setminus k[x^p, y^p]$ such that $f - h \in k[x^p, y^p]$.

Proof. By γ -homogeneity of d, all γ -homogeneous components of f belong to $k[x, y]^d$. If the γ -homogeneous component of f of degree 0 does not belong to $k[x^p, y^p]$, then $k[x, y]^d = k[x, y]^{\gamma}_{(0)}$ by Corollary 4, so $f \in k[x, y]^{\gamma}_{(0)}$, and we may apply the implication (i) \Rightarrow (ii) from Proposition 7.

Now assume that the γ -homogeneous component of f of degree 0 belongs to $k[x^p, y^p]$. Let f_r be the γ -homogeneous component of f of degree $r \neq 0$, so $f_r \in k[x, y]^d$, and, by the assumption, $f_r = u(f)$ for some polynomial $u(T) \in k[x^p, y^p][T]$. Then $rf_r = E^{\gamma}(f_r) = E^{\gamma}(f) \cdot u'(f)$.

Assume that $f_r \neq 0$. Then deg $f_r \leq \deg E^{\gamma}(f)$, where deg denotes the ordinary degree of a polynomial, so the above equality implies that $rf_r = cE^{\gamma}(f)$ for some $c \in k \setminus \{0\}$. Hence $E^{\gamma}(f)$ is a γ -form of degree r and f_r is the only nonzero γ -homogeneous component of f of a nonzero degree, so we may put $h = f_r$.

Now we are ready to prove the following theorem.

THEOREM 11. Let k be a field of characteristic p > 0, let d be a nonzero γ -homogeneous k-derivation of k[x, y] such that d(x) and d(y) are coprime, and let $f \in k[x, y] \setminus k[x^p, y^p]$. Then

$$k[x,y]^d = k[x^p, y^p, f]$$

if and only if $d \sim d_f$.

Proof. (\Rightarrow) If $k[x, y]^d = k[x^p, y^p, f]$ for some $f \in k[x, y] \setminus k[x^p, y^p]$, then (Lemma 10) there exists a γ -form $h \in k[x, y]$ such that $f - h \in k[x^p, y^p]$, that is, $k[x, y]^d = k[x^p, y^p, h]$. Then $\overline{h} \sim 1$ by Corollary 8, so, by Proposition 3, $d \sim d_h \sim d_f$.

(⇐) If $d \sim d_f$, then (Lemma 9) $d \sim d_h$ for some γ -form $h \in k[x, y] \setminus k[x^p, y^p]$ such that $f - h \in k[x^p, y^p]$. Since d(x) and d(y) are coprime, that is, $\overline{h} \sim 1$, we deduce by Corollary 8 that $k[x, y]^d = k[x^p, y^p, h] = k[x^p, y^p, f]$.

COROLLARY 12. Let d be a nonzero γ -homogeneous k-derivation of k[x, y] such that d(x) and d(y) are coprime. Then $k[x, y]^d = k[x^p, y^p, f]$ for some $f \in k[x, y] \setminus k[x^p, y^p]$ if and only if d is a jacobian derivation.

3. Monomial derivations of k[x, y]. A k-derivation $d: k[x, y] \to k[x, y]$ is called *monomial* if $d(x) = x^t y^u$ and $d(y) = x^v y^w$ for some integers $t, u, v, w \ge 0$. We will consider a slightly more general case:

(*)
$$\begin{cases} d(x) = \alpha x^t y^u, \\ d(y) = \beta x^v y^w, \end{cases}$$

where $\alpha, \beta \in k$.

Now consider an arbitrary nonzero k-derivation d of k[x, y] and a polynomial $f \in k[x, y] \setminus k[x^p, y^p]$. By Corollary 8, if $\partial f / \partial x$ and $\partial f / \partial y$ are coprime, d(f) = 0 and f is a γ -form for some γ , then $k[x, y]^d = k[x^p, y^p, f]$. This is the way one can easily verify the following fact.

EXAMPLE 13. Let m, n, r, s be nonnegative integers, $m, n \not\equiv -1 \pmod{p}$, let $\alpha, \beta \in k \setminus \{0\}$. The following k-derivations of k[x, y] have the rings of contants of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$:

$$\begin{cases} d_{1}(x) = \alpha x^{rp}, \\ d_{1}(y) = \beta y^{sp}, \end{cases} \quad k[x, y]^{d_{1}} = k[x^{p}, y^{p}, \beta x y^{sp} - \alpha x^{rp} y], \\ \begin{cases} d_{2}(x) = \alpha x, \\ d_{2}(y) = -\alpha y, \end{cases} \quad k[x, y]^{d_{2}} = k[x^{p}, y^{p}, xy], \\ \begin{cases} d_{3}(x) = \alpha y^{n}, \\ d_{3}(y) = \beta x^{m}, \end{cases} \quad k[x, y]^{d_{3}} = k[x^{p}, y^{p}, (n+1)\beta x^{m+1} - (m+1)\alpha y^{n+1}], \\ \begin{cases} d_{4}(x) = \alpha x^{rp} y^{n}, \\ d_{4}(y) = \beta, \end{cases} \quad k[x, y]^{d_{4}} = k[x^{p}, y^{p}, (n+1)\beta x - \alpha x^{rp} y^{n+1}], \end{cases}$$

$$\begin{cases} d_5(x) = 0, \\ d_5(y) = \beta, \end{cases} & k[x, y]^{d_5} = k[x^p, y^p, x], \\ \begin{cases} d_6(x) = \alpha, \\ d_6(y) = \beta x^m y^{sp}, \end{cases} & k[x, y]^{d_6} = k[x^p, y^p, \beta x^{m+1} y^{sp} - (m+1)\alpha y], \\ \begin{cases} d_7(x) = \alpha, \\ d_7(y) = 0, \end{cases} & k[x, y]^{d_7} = k[x^p, y^p, y]. \end{cases}$$

We will show in Theorem 16 that the above derivations are, up to multiplication by a monomial, all derivations of the form (*) such that $k[x, y]^d = k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$. Note the following adaptation of Proposition 2.1.6 from [3]. The original proof remains valid in our situation.

LEMMA 14. Let d be a k-derivation of k[x, y] of the form (*). Then there exists a vector $\gamma \in k^2 \setminus \{(0, 0)\}$ such that d is a γ -homogeneous derivation.

Recall that if d is a k-derivation of k[x, y], then the polynomial

$$d^* = \frac{\partial(d(x))}{\partial x} + \frac{\partial(d(y))}{\partial y}$$

is called the *divergence* of d, and recall Lemma 5.1 from [1].

LEMMA 15. Let d be a k-derivation of k[x, y] and let

$$d(x) = \sum_{0 \le j, l < p} a_{jl} x^j y^l, \quad d(y) = \sum_{0 \le j, l < p} b_{jl} x^j y^l,$$

where $a_{jl}, b_{jl} \in k[x^p, y^p]$. Then d is a jacobian derivation if and only if

(**) $d^* = 0, \quad a_{0,p-1} = 0, \quad b_{p-1,0} = 0.$

Finally, we can prove the following theorem.

THEOREM 16. Let k be a field of characteristic p > 0, and let d be a k-derivation of k[x, y] of the form (*). Then

$$k[x,y]^d = k[x^p, y^p, f]$$

for some $f \in k[x, y] \setminus k[x^p, y^p]$ if and only if $d = x^j y^l \cdot d_i$, where $j, l \ge 0$, $i \in \{1, \ldots, 7\}$ and d_i is a derivation from Example 13 with $m, n, r, s \ge 0$, $m, n \not\equiv -1 \pmod{p}, \alpha, \beta \in k \setminus \{0\}.$

Proof. We may assume that d is a nonzero derivation. If $\alpha, \beta \neq 0$, we put $j = \min(t, v)$ and $l = \min(u, w)$, if $\alpha = 0$, we put j = v, l = w, and if $\beta = 0$, we put j = t, l = u. Then $d = x^j y^l \cdot d_0$, where d_0 is a k-derivation of k[x, y] such that $d_0(x)$ and $d_0(y)$ are coprime. By Lemma 14 the derivation d_0 is γ -homogeneous for some $\gamma \in k^2 \setminus \{(0, 0)\}$, so, by Corollary 12, the ring of constants of d is of the form $k[x^p, y^p, f]$, where $f \in k[x, y] \setminus k[x^p, y^p]$, if and only if d_0 is a jacobian derivation. We verify the conditions (**) from

Lemma 15 for all possible forms of d_0 :

(a)
$$\begin{cases} d_0(x) = \alpha x^m, \\ d_0(y) = \beta y^n, \end{cases}$$

where $m, n \ge 0$, $\alpha, \beta \ne 0$. We have $d_0^* = m\alpha x^{m-1} + n\beta y^{n-1}$, $a_{0,p-1} = 0$ and $b_{p-1,0} = 0$. The conditions (**) hold in two cases:

- $m \equiv 0 \pmod{p}$ and $n \equiv 0 \pmod{p}$, that is, $d_0 = d_1$,
- m = 1, n = 1 and $\alpha + \beta = 0$, that is, $d = d_2$.

(b)
$$\begin{cases} d_0(x) = \alpha y^n, \\ d_0(y) = \beta x^m, \end{cases}$$

where $m, n \ge 0$, $\alpha, \beta \ne 0$. In this case $d_0^* = 0$. The conditions (**) are equivalent to $m, n \not\equiv -1 \pmod{p}$, that is, $d_0 = d_3$.

,

(c)
$$\begin{cases} d_0(x) = \alpha x^m y^n \\ d_0(y) = \beta, \end{cases}$$

where $m, n \ge 0, \beta \ne 0$. We have $d_0^* = m\alpha x^{m-1}y^n, b_{p-1,0} = 0$. The conditions (**) hold in two cases:

- $m \equiv 0 \pmod{p}$ and $n \not\equiv -1 \pmod{p}$, when $d_0 = d_4$,
- $\alpha = 0$, when $d_0 = d_5$.

(d)
$$\begin{cases} d_0(x) = \alpha, \\ d_0(y) = \beta x^m y^n, \end{cases}$$

where $m, n \ge 0$, $\alpha \ne 0$. We have $d_0^* = n\beta x^m y^{n-1}$, $a_{0,p-1} = 0$. The conditions (**) hold in two cases:

- $m \not\equiv -1 \pmod{p}$ and $n \equiv 0 \pmod{p}$, when $d_0 = d_6$,
- $\beta = 0$, when $d_0 = d_7$.

Note that in each case a polynomial f such that $k[x, y]^d = k[x^p, y^p, f]$ can be easily obtained from the condition $d_0 = d_f$, that is, $\partial f/\partial x = d_0(y)$ and $\partial f/\partial y = -d_0(x)$.

COROLLARY 17. All monomial k-derivations of k[x, y] such that $k[x, y]^d = k[x^p, y^p, f]$ for some $f \in k[x, y] \setminus k[x^p, y^p]$ are of the form $x^j y^l \cdot d_i$, where:

- (1) $j, l \ge 0,$
- (2) $i \in \{1, ..., 7\}$, but i = 2 only in the case of p = 2,
- (3) d_1, \ldots, d_7 are derivations from Example 13 with $m, n, r, s \ge 0, m, n \not\equiv -1 \pmod{p}$ and $\alpha = \beta = 1$.

REFERENCES

 P. Jędrzejewicz, Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra 31 (2003), 5501-5511.

- W. Li, Remarks on rings of constants of derivations, Proc. Amer. Math. Soc. 107 (1989), 337-340.
- [3] A. Nowicki, Polynomial Derivations and Their Rings of Constants, UMK, Toruń, 1994.
- [4] A. Nowicki and M. Nagata, Rings of constants for k-derivations in k[x1,...,xn], J. Math. Kyoto Univ. 28 (1988), 111-118.
- [5] S.-I. Okuda, Kernels of derivations in positive characteristic, Hiroshima Math. J. 34 (2004), 1–19.

Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland E-mail: pjedrzej@mat.uni.torun.pl

> Received 11 October 2005; revised 12 December 2005

(4675)