COLLOQUIUM MATHEMATICUM

ON RINGS OF CONSTANTS OF DERIVATIONS IN TWO VARIABLES IN POSITIVE CHARACTERISTIC

BY
PIOTR JĘDRZEJEWICZ (Toruń)

Abstract

Let k be a field of chracteristic $p>0$. We describe all derivations of the polynomial algebra $k[x, y]$, homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form $k\left[x^{p}, y^{p}, f\right]$, where $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$.

Introduction. A. Nowicki and M. Nagata proved in [4] that if d is a nonzero k-derivation of $k[x, y]$, where k is a field of characteristic $p>0$, then $k[x, y]^{d}$, the ring of constants of d, is a free $k\left[x^{p}, y^{p}\right]$-module. Morover they showed that if $p=2$, then $k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]$ for some $f \in k[x, y]$. W. Li proved in [2] that the rank of $k[x, y]^{d}$ as a free $k\left[x^{p}, y^{p}\right]$-module equals 1 or p.

It is natural to ask, for arbitrary p, when a k-derivation of $k[x, y]$ has the ring of constants of the form $k\left[x^{p}, y^{p}, f\right]$, where $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$. In this paper we answer this question for derivations which are homogeneous with respect to a given weight vector (Theorem 11, Corollary 12). This is a generalization of the results of [1].

In the last section we obtain a description, for arbitrary p, of all monomial derivations of $k[x, y]$ with rings of constants of the form $k\left[x^{p}, y^{p}, f\right]$, where $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$ (Theorem 16, Corollary 17). Note that the rings of constants of all monomial derivations for $p=2$ and $p=3$ were computed by S.-I. Okuda in [5], using his adaptation of van den Essen's algorithm for the case of positive characteristic.

1. Preliminaries. Throughout this paper k is a field of characteristic $p>0$. We denote by $k[X]$ the polynomial k-algebra $k\left[x_{1}, \ldots, x_{n}\right]$ and by $k\left[X^{p}\right]$ the k-subalgebra $k\left[x_{1}^{p}, \ldots, x_{n}^{p}\right]$. In the case of two variables we will just write $k[x, y]$.

A k-linear mapping $d: k[X] \rightarrow k[X]$ is called a k-derivation of $k[X]$ if $d(f g)=f d(g)+g d(f)$ for all $f, g \in k[X]$. Every k-derivation d of $k[X]$ is

[^0]of the form $g_{1} \cdot \partial / \partial x_{1}+\cdots+g_{n} \cdot \partial / \partial x_{n}$ for some polynomials $g_{1}, \ldots, g_{n} \in$ $k[X]$, that is, d is uniquely determined by the conditions $d\left(x_{1}\right)=g_{1}, \ldots$, $d\left(x_{n}\right)=g_{n}$. If d is a k-derivation of $k[X]$, then we denote by $k[X]^{d}$ the ring of constants of d :
$$
k[X]^{d}=\{f \in k[X]: d(f)=0\} .
$$

Note that $k\left[X^{p}\right] \subseteq k[X]^{d}$, so $k[X]^{d}$ is a $k\left[X^{p}\right]$-algebra.
We introduce the notion of γ-homogeneity analogously to [3, 2.1]. Consider a vector $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in k^{n} \backslash\{(0, \ldots, 0)\}$. For every $r \in k$ denote by $k[X]_{(r)}^{\gamma}$ the k-linear span of all monomials $x_{1}^{l_{1}} \cdots x_{n}^{l_{n}}$ such that

$$
l_{1} \gamma_{1}+\cdots+l_{n} \gamma_{n}=r .
$$

If no monomial satisfies this equality, then $k[X]_{(r)}^{\gamma}=0$. We obtain a grading of $k[X]$ by the additive group of the field k. Polynomials belonging to $k[X]_{(r)}^{\gamma}$ are called γ-forms of degree r. In particular, x_{i} is a γ-form of degree γ_{i} for $i=1, \ldots, n$. If $\gamma_{1}=\cdots=\gamma_{n}$, then the γ-forms are exactly the p-homogeneous polynomials in the sense of [1].

A k-derivation d of $k[X]$ is called γ-homogeneous of degree s, where $s \in k$, if $d\left(k[X]_{(r)}^{\gamma}\right) \subseteq k[X]_{(r+s)}^{\gamma}$ for every $r \in k$, that is, $d\left(x_{i}\right) \in k[X]_{\left(\gamma_{i}+s\right)}^{\gamma}$ for $i=1, \ldots, n$. Denote by E^{γ} the derivation of the form

$$
\gamma_{1} x_{1} \cdot \frac{\partial}{\partial x_{1}}+\cdots+\gamma_{n} x_{n} \cdot \frac{\partial}{\partial x_{n}},
$$

which is γ-homogeneous of degree 0 . Observe that

$$
E^{\gamma}\left(x_{1}^{l_{1}} \cdots x_{n}^{l_{n}}\right)=\left(l_{1} \gamma_{1}+\cdots+l_{n} \gamma_{n}\right) \cdot x_{1}^{l_{1}} \cdots x_{n}^{l_{n}},
$$

so a polynomial f is a γ-form of degree r if and only if $E^{\gamma}(f)=r f$. This is a weight analog of the Euler formula (compare [3, 2.1.1], [1, 1.4]). In particular, $k[x, y]_{(0)}^{\gamma}$ is the ring of constants of E^{γ}.

For every $f \in k[X]$ let

$$
C_{k}(f)=k\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)[f] \cap k[X],
$$

where $k\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$ is the subfield of $k\left(x_{1}, \ldots, x_{n}\right)$ generated by $x_{1}^{p}, \ldots, x_{n}^{p}$. The following fact immediately follows from [4, Proposition 1.2].

Proposition 1. If d is a nonzero k-derivation of $k[x, y]$ such that $k[x, y]^{d} \neq k\left[x^{p}, y^{p}\right]$, then $k[x, y]^{d}=C_{k}(f)$ for some (and then for any) $f \in k[x, y]^{d} \backslash k\left[x^{p}, y^{p}\right]$.

We denote by \bar{f} the greatest common divisor of $\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}$ (defined up to a nonzero scalar factor). We write $f \sim g$, where f, g are polynomials, if $f=a g$ for some $a \in k \backslash\{0\}$. We use the same convention for derivations, i.e. we write $d_{1} \sim d_{2}$ if $d_{1}=a d_{2}$ for some $a \in k \backslash\{0\}$.

It is easy to verify that Corollary 2.4, Proposition 2.6, Theorem 3.2 and Corollary 3.3 from [1] hold true for γ-forms, so we obtain the following result.

Proposition 2. If $f \in k[X] \backslash k\left[X^{p}\right]$ is a γ-form of a nonzero degree, then the following conditions are equivalent:
(i) $C_{k}(f)=k\left[X^{p}\right][f]$,
(ii) f has no multiple factors and no factors from $k\left[X^{p}\right] \backslash k$,
(iii) $\bar{f} \sim 1$.
2. γ-homogeneous derivations of $k[x, y]$. For a polynomial $f \in k[x, y]$ we denote by d_{f} the jacobian derivation with respect to f :

$$
d_{f}=\frac{\partial f}{\partial x} \cdot \frac{\partial}{\partial y}-\frac{\partial f}{\partial y} \cdot \frac{\partial}{\partial x}
$$

If f is a γ-form of degree r, where $\gamma=(\lambda, \mu)$, then d_{f} is a γ-homogeneous derivation of degree $r-\lambda-\mu$. Note that $d_{f}=d_{g}$ if and only if $f-g \in k\left[x^{p}, y^{p}\right]$.

We can reformulate Proposition 4.1 and generalize Proposition 4.3 from [1] in the following way.

Proposition 3. Let d be a nonzero k-derivation of $k[x, y]$ such that $k[x, y]^{d} \neq k\left[x^{p}, y^{p}\right]$, and let $f \in k[x, y]^{d} \backslash k\left[x^{p}, y^{p}\right]$. Then

$$
\bar{f} \cdot d \sim \operatorname{gcd}(d(x), d(y)) \cdot d_{f}
$$

where $\bar{f}=\operatorname{gcd}(\partial f / \partial x, \partial f / \partial y)$. In particular, if $d(x), d(y)$ are coprime and $\bar{f} \sim 1$, then $d \sim d_{f}$.

Corollary 4. Let d be a nonzero k-derivation of $k[x, y]$. If $d(f)=0$ for some $f \in k[x, y]_{(0)}^{\gamma} \backslash k\left[x^{p}, y^{p}\right]$, then $k[x, y]^{d}=k[x, y]_{(0)}^{\gamma}$.

Proof. If $f \in[x, y]_{(0)}^{\gamma}$, then $E^{\gamma}(f)=0$, so $k[x, y]^{d}=k[x, y]^{E^{\gamma}}=k[x, y]_{(0)}^{\gamma}$, by Proposition 1.

Corollary 5. Let $\gamma=(\lambda, \mu)$ and let $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$ be a γ-form of degree 0 such that $\bar{f} \sim 1$.
(a) If $\lambda, \mu \neq 0$, then $d_{f} \sim E^{\gamma}$.
(b) If $\lambda=0, \mu \neq 0$, then $y d_{f} \sim E^{\gamma}$.
(c) If $\lambda \neq 0, \mu=0$, then $x d_{f} \sim E^{\gamma}$.

Proof. Applying Proposition 3 to $d=E^{\gamma}$, we obtain the following formula:

$$
\operatorname{gcd}(\lambda x, \mu y) \cdot d_{f} \sim \bar{f} \cdot E^{\gamma}
$$

Recall Proposition 2.7 from [1] in the case of two variables.
Proposition 6. Let $f, g \in k[x, y]$. Then $k\left[x^{p}, y^{p}, f\right]=k\left[x^{p}, y^{p}, g\right]$ if and only if $f-a g \in k\left[x^{p}, y^{p}\right]$ for some $a \in k \backslash\{0\}$.

The following proposition is a generalization of Proposition 4.4 from [1]. This proof is new; the proof in [1] was partially specific to homogeneity without weights.

Proposition 7. Let $f \in k[x, y]_{(0)}^{\gamma} \backslash k\left[x^{p}, y^{p}\right]$, where $\gamma=(\lambda, \mu)$. Then the following conditions are equivalent:
(i) $k[x, y]_{(0)}^{\gamma}=k\left[x^{p}, y^{p}, f\right]$,

$$
\lambda+\mu=0, f=a x y+g
$$

(ii) or $\lambda=0, f=a x+g \quad$ for some $a \in k \backslash\{0\}$ and $g \in k\left[x^{p}, y^{p}\right]$, or $\mu=0, f=a y+g$
(iii) $\bar{f} \sim 1$.

Proof. (i) \Rightarrow (ii). Assume that $k[x, y]_{(0)}^{\gamma}=k\left[x^{p}, y^{p}, f\right]$. If $\lambda+\mu=0$, then all monomials of degree 0 are of the form $x^{m p+l} y^{n p+l}$, where $m, n, l \geq 0$, so $k[x, y]_{(0)}^{\gamma}=k\left[x^{p}, y^{p}, x y\right]$, and, by Proposition $6, f-a x y \in k\left[x^{p}, y^{p}\right]$ for some $a \in k \backslash\{0\}$. If $\lambda=0, \mu \neq 0$, then all monomials of degree 0 are of the form $x^{l} y^{n p}$, where $l, n \geq 0$, and we have $k[x, y]_{(0)}^{\gamma}=k\left[x^{p}, y^{p}, x\right]$, so (Proposition 6) $f-a x \in k\left[x^{p}, y^{p}\right]$ for some $a \in k \backslash\{0\}$. Analogously, if $\lambda \neq 0, \mu=0$, then $k[x, y]_{(0)}^{\gamma}=k\left[x^{p}, y^{p}, y\right]$, so $f-a y \in k\left[x^{p}, y^{p}\right]$ for some $a \in k \backslash\{0\}$.

Now, let $\lambda, \mu \neq 0$ and $\lambda+\mu \neq 0$. Note that λ, μ are linearly dependent over the prime subfield \mathbb{F}_{p} of k, because $k[x, y]_{(0)}^{\gamma} \neq k\left[x^{p}, y^{p}\right]$. Consider integers $j, l \in\{2, \ldots, p-1\}$ such that $j \lambda+\mu=0$ and $\lambda+l \mu=0$. In this case the monomials $x^{j} y$ and $x y^{l}$ are γ-homogeneous of degree 0 , so $x^{j} y, x y^{l} \in k\left[x^{p}, y^{p}, f\right]$. Following the method from Example 4.3 in [4], we consider polynomials $u(T), v(T) \in k\left[x^{p}, y^{p}\right][T]$ such that $x^{j} y=u(f), x y^{l}=v(f)$. We obtain the following equalities:

$$
j x^{j-1} y=u^{\prime}(f) \cdot \frac{\partial f}{\partial x}, \quad x^{j}=u^{\prime}(f) \cdot \frac{\partial f}{\partial y}, \quad y^{l}=v^{\prime}(f) \cdot \frac{\partial f}{\partial x}
$$

from which we deduce that $u^{\prime}(f)=c x^{j-1}$ for some $c \in k \backslash\{0\}$, so $x^{j-1} \in$ $k\left[x^{p}, y^{p}, f\right]$. This is a contradiction, because $E^{\gamma}\left(x^{j-1}\right) \neq 0$.
(ii) \Rightarrow (i). Consider arbitrary $a \in k \backslash\{0\}$ and $g \in k\left[x^{p}, y^{p}\right]$. If $\lambda+\mu=0$, then $k[x, y]_{(0)}^{\gamma}=k\left[x^{p}, y^{p}, x y\right]=k\left[x^{p}, y^{p}, f\right]$ for $f=a x y+g$. If $\lambda=0$ and $f=a x+g$, then $k[x, y]_{(0)}^{\gamma}=k\left[x^{p}, y^{p}, x\right]=k\left[x^{p}, y^{p}, f\right]$. Analogously, if $\mu=0$ and $f=a y+g$, then $k[x, y]_{(0)}^{\gamma}=k\left[x^{p}, y^{p}, y\right]=k\left[x^{p}, y^{p}, f\right]$.
(ii) \Rightarrow (iii). Obviously, in each case f belongs to $k[x, y]_{(0)}^{\gamma} \backslash k\left[x^{p}, y^{p}\right]$ and $\partial f / \partial x, \partial f / \partial y$ are coprime.
(iii) \Rightarrow (ii). If $\lambda, \mu \neq 0$, then, by Corollary $5, d_{f}=c E^{\gamma}$ for some $c \in k \backslash\{0\}$, so we obtain a system of partial differential equations $\partial f / \partial x=c \mu y$ and $\partial f / \partial y=-c \lambda x$. Note that

$$
c \mu=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=-c \lambda
$$

so $\lambda+\mu=0$. In this case the general solution is of the form $f=c \mu x y+g$, where $g \in k\left[x^{p}, y^{p}\right]$.

If $\lambda=0$, then (Corollary 5) $y d_{f}=c E^{\gamma}$ for some $c \in k \backslash\{0\}$, we have a system $\partial f / \partial x=c \mu, \partial f / \partial y=0$, and the solution is $f=c \mu x+g$, where $g \in k\left[x^{p}, y^{p}\right]$. Analogously, if $\mu=0$, then $\partial f / \partial x=0$ and $\partial f / \partial y=-c \lambda$, so $f=-c \lambda y+g$, where $g \in k\left[x^{p}, y^{p}\right]$.

Corollary 8. Let d be a nonzero k-derivation of $k[x, y]$ such that $k[x, y]^{d} \neq k\left[x^{p}, y^{p}\right]$, and let $f \in k[x, y]^{d} \backslash k\left[x^{p}, y^{p}\right]$ be a γ-form. Then $k[x, y]^{d}=$ $k\left[x^{p}, y^{p}, f\right]$ if and only if $\bar{f} \sim 1$.

Proof. This follows from Propositions 1 and 2 if f is a γ-form of a nonzero degree, and from Proposition 7 and Corollary 4 if f is a γ-form of degree 0 .

The next two propositions explain some relations between γ-homogeneity of derivations and γ-homogeneity of polynomials.

Lemma 9. Let $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$. If d_{f} is a γ-homogeneous k-derivation of $k[x, y]$, then there exists a γ-form $h \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$ such that $f-h \in k\left[x^{p}, y^{p}\right]$.

Proof. Assume that d_{f} is γ-homogeneous of degree s. This means that $\partial f / \partial x$ and $\partial f / \partial y$ are γ-forms of degrees $s+\mu$ and $s+\lambda$, respectively.

If f_{r} is the γ-homogeneous component of f of degree $r \in k$, then $\partial f_{r} / \partial x$ is the γ-homogeneous component of $\partial f / \partial x$ of degree $r-\lambda$, so $\partial f_{r} / \partial x=0$ for $r \neq s+\lambda+\mu$. Analogously, $\partial f_{r} / \partial y$ is the γ-homogeneous component of $\partial f / \partial y$ of degree $r-\mu$, so $\partial f_{r} / \partial y=0$ for $r \neq s+\lambda+\mu$. This implies that $f_{r} \in k\left[x^{p}, y^{p}\right]$ for $r \neq s+\lambda+\mu$, and we may put $h=f_{s+\lambda+\mu}$..

LEMMA 10. If d is a nonzero γ-homogeneous k-derivation of $k[x, y]$ such that $k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]$, where $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$, then there exists a γ-form $h \in k[x, y]^{d} \backslash k\left[x^{p}, y^{p}\right]$ such that $f-h \in k\left[x^{p}, y^{p}\right]$.

Proof. By γ-homogeneity of d, all γ-homogeneous components of f belong to $k[x, y]^{d}$. If the γ-homogeneous component of f of degree 0 does not belong to $k\left[x^{p}, y^{p}\right]$, then $k[x, y]^{d}=k[x, y]_{(0)}^{\gamma}$ by Corollary 4, so $f \in k[x, y]_{(0)}^{\gamma}$, and we may apply the implication (i) \Rightarrow (ii) from Proposition 7.

Now assume that the γ-homogeneous component of f of degree 0 belongs to $k\left[x^{p}, y^{p}\right]$. Let f_{r} be the γ-homogeneous component of f of degree $r \neq 0$, so $f_{r} \in k[x, y]^{d}$, and, by the assumption, $f_{r}=u(f)$ for some polynomial $u(T) \in k\left[x^{p}, y^{p}\right][T]$. Then $r f_{r}=E^{\gamma}\left(f_{r}\right)=E^{\gamma}(f) \cdot u^{\prime}(f)$.

Assume that $f_{r} \neq 0$. Then $\operatorname{deg} f_{r} \leq \operatorname{deg} E^{\gamma}(f)$, where deg denotes the ordinary degree of a polynomial, so the above equality implies that $r f_{r}=$ $c E^{\gamma}(f)$ for some $c \in k \backslash\{0\}$. Hence $E^{\gamma}(f)$ is a γ-form of degree r and f_{r} is the only nonzero γ-homogeneous component of f of a nonzero degree, so we may put $h=f_{r}$.

Now we are ready to prove the following theorem.

THEOREM 11. Let k be a field of characteristic $p>0$, let d be a nonzero γ-homogeneous k-derivation of $k[x, y]$ such that $d(x)$ and $d(y)$ are coprime, and let $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$. Then

$$
k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]
$$

if and only if $d \sim d_{f}$.
Proof. (\Rightarrow) If $k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]$ for some $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$, then (Lemma 10) there exists a γ-form $h \in k[x, y]$ such that $f-h \in k\left[x^{p}, y^{p}\right]$, that is, $k[x, y]^{d}=k\left[x^{p}, y^{p}, h\right]$. Then $\bar{h} \sim 1$ by Corollary 8 , so, by Proposition 3 , $d \sim d_{h} \sim d_{f}$.
(\Leftarrow) If $d \sim d_{f}$, then (Lemma 9) $d \sim d_{h}$ for some γ-form $h \in k[x, y] \backslash$ $k\left[x^{p}, y^{p}\right]$ such that $f-h \in k\left[x^{p}, y^{p}\right]$. Since $d(x)$ and $d(y)$ are coprime, that is, $\bar{h} \sim 1$, we deduce by Corollary 8 that $k[x, y]^{d}=k\left[x^{p}, y^{p}, h\right]=k\left[x^{p}, y^{p}, f\right]$.

Corollary 12. Let d be a nonzero γ-homogeneous k-derivation of $k[x, y]$ such that $d(x)$ and $d(y)$ are coprime. Then $k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]$ for some $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$ if and only if d is a jacobian derivation.
3. Monomial derivations of $k[x, y]$. A k-derivation $d: k[x, y] \rightarrow k[x, y]$ is called monomial if $d(x)=x^{t} y^{u}$ and $d(y)=x^{v} y^{w}$ for some integers $t, u, v, w \geq 0$. We will consider a slightly more general case:

$$
\left\{\begin{array}{l}
d(x)=\alpha x^{t} y^{u} \tag{*}\\
d(y)=\beta x^{v} y^{w}
\end{array}\right.
$$

where $\alpha, \beta \in k$.
Now consider an arbitrary nonzero k-derivation d of $k[x, y]$ and a polynomial $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$. By Corollary 8 , if $\partial f / \partial x$ and $\partial f / \partial y$ are coprime, $d(f)=0$ and f is a γ-form for some γ, then $k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]$. This is the way one can easily verify the following fact.

EXAMPLE 13. Let m, n, r, s be nonnegative integers, $m, n \not \equiv-1(\bmod p)$, let $\alpha, \beta \in k \backslash\{0\}$. The following k-derivations of $k[x, y]$ have the rings of contants of the form $k\left[x^{p}, y^{p}, f\right]$, where $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$:

$$
\begin{aligned}
& \begin{cases}d_{1}(x)=\alpha x^{r p}, & k[x, y]^{d_{1}}=k\left[x^{p}, y^{p}, \beta x y^{s p}-\alpha x^{r p} y\right] \\
d_{1}(y)=\beta y^{s p},\end{cases} \\
& \begin{cases}d_{2}(x)=\alpha x, \\
d_{2}(y)=-\alpha y, & k[x, y]^{d_{2}}=k\left[x^{p}, y^{p}, x y\right],\end{cases} \\
& \begin{cases}d_{3}(x)=\alpha y^{n}, & k[x, y]^{d_{3}}=k\left[x^{p}, y^{p},(n+1) \beta x^{m+1}-(m+1) \alpha y^{n+1}\right], \\
d_{3}(y)=\beta x^{m}, & k[x, y]^{d_{4}}=k\left[x^{p}, y^{p},(n+1) \beta x-\alpha x^{r p} y^{n+1}\right]\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{cases}d_{5}(x)=0, & k[x, y]^{d_{5}}=k\left[x^{p}, y^{p}, x\right] \\
d_{5}(y)=\beta,\end{cases} \\
& \begin{cases}d_{6}(x)=\alpha, \\
d_{6}(y) & =\beta x^{m} y^{s p},\end{cases} \\
& \begin{cases}d_{7}(x) & =\alpha, y]^{d_{6}}=k\left[x^{p}, y^{p}, \beta x^{m+1} y^{s p}-(m+1) \alpha y\right] \\
d_{7}(y) & =0,\end{cases} \\
&
\end{aligned}
$$

We will show in Theorem 16 that the above derivations are, up to multiplication by a monomial, all derivations of the form $(*)$ such that $k[x, y]^{d}=$ $k\left[x^{p}, y^{p}, f\right]$, where $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$. Note the following adaptation of Proposition 2.1.6 from [3]. The original proof remains valid in our situation.

Lemma 14. Let d be a k-derivation of $k[x, y]$ of the form $(*)$. Then there exists a vector $\gamma \in k^{2} \backslash\{(0,0)\}$ such that d is a γ-homogeneous derivation.

Recall that if d is a k-derivation of $k[x, y]$, then the polynomial

$$
d^{*}=\frac{\partial(d(x))}{\partial x}+\frac{\partial(d(y))}{\partial y}
$$

is called the divergence of d, and recall Lemma 5.1 from [1].
Lemma 15. Let d be a k-derivation of $k[x, y]$ and let

$$
d(x)=\sum_{0 \leq j, l<p} a_{j l} x^{j} y^{l}, \quad d(y)=\sum_{0 \leq j, l<p} b_{j l} x^{j} y^{l},
$$

where $a_{j l}, b_{j l} \in k\left[x^{p}, y^{p}\right]$. Then d is a jacobian derivation if and only if

$$
\begin{equation*}
d^{*}=0, \quad a_{0, p-1}=0, \quad b_{p-1,0}=0 \tag{**}
\end{equation*}
$$

Finally, we can prove the following theorem.
THEOREM 16. Let k be a field of characteristic $p>0$, and let d be a k-derivation of $k[x, y]$ of the form $(*)$. Then

$$
k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]
$$

for some $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$ if and only if $d=x^{j} y^{l} \cdot d_{i}$, where $j, l \geq 0$, $i \in\{1, \ldots, 7\}$ and d_{i} is a derivation from Example 13 with $m, n, r, s \geq 0$, $m, n \not \equiv-1(\bmod p), \alpha, \beta \in k \backslash\{0\}$.

Proof. We may assume that d is a nonzero derivation. If $\alpha, \beta \neq 0$, we put $j=\min (t, v)$ and $l=\min (u, w)$, if $\alpha=0$, we put $j=v, l=w$, and if $\beta=0$, we put $j=t, l=u$. Then $d=x^{j} y^{l} \cdot d_{0}$, where d_{0} is a k-derivation of $k[x, y]$ such that $d_{0}(x)$ and $d_{0}(y)$ are coprime. By Lemma 14 the derivation d_{0} is γ-homogeneous for some $\gamma \in k^{2} \backslash\{(0,0)\}$, so, by Corollary 12, the ring of constants of d is of the form $k\left[x^{p}, y^{p}, f\right]$, where $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$, if and only if d_{0} is a jacobian derivation. We verify the conditions ($* *$) from

Lemma 15 for all possible forms of d_{0} :

$$
\left\{\begin{array}{l}
d_{0}(x)=\alpha x^{m} \tag{a}\\
d_{0}(y)=\beta y^{n}
\end{array}\right.
$$

where $m, n \geq 0, \alpha, \beta \neq 0$. We have $d_{0}^{*}=m \alpha x^{m-1}+n \beta y^{n-1}, a_{0, p-1}=0$ and $b_{p-1,0}=0$. The conditions $(* *)$ hold in two cases:

- $m \equiv 0(\bmod p)$ and $n \equiv 0(\bmod p)$, that is, $d_{0}=d_{1}$,
- $m=1, n=1$ and $\alpha+\beta=0$, that is, $d=d_{2}$.

$$
\left\{\begin{array}{l}
d_{0}(x)=\alpha y^{n} \tag{b}\\
d_{0}(y)=\beta x^{m}
\end{array}\right.
$$

where $m, n \geq 0, \alpha, \beta \neq 0$. In this case $d_{0}^{*}=0$. The conditions ($* *$) are equivalent to $m, n \not \equiv-1(\bmod p)$, that is, $d_{0}=d_{3}$.

$$
\left\{\begin{array}{l}
d_{0}(x)=\alpha x^{m} y^{n} \tag{c}\\
d_{0}(y)=\beta
\end{array}\right.
$$

where $m, n \geq 0, \beta \neq 0$. We have $d_{0}^{*}=m \alpha x^{m-1} y^{n}, b_{p-1,0}=0$. The conditions $(* *)$ hold in two cases:

- $m \equiv 0(\bmod p)$ and $n \not \equiv-1(\bmod p)$, when $d_{0}=d_{4}$,
- $\alpha=0$, when $d_{0}=d_{5}$.

$$
\left\{\begin{array}{l}
d_{0}(x)=\alpha \tag{d}\\
d_{0}(y)=\beta x^{m} y^{n}
\end{array}\right.
$$

where $m, n \geq 0, \alpha \neq 0$. We have $d_{0}^{*}=n \beta x^{m} y^{n-1}, a_{0, p-1}=0$. The conditions $(* *)$ hold in two cases:

- $m \not \equiv-1(\bmod p)$ and $n \equiv 0(\bmod p)$, when $d_{0}=d_{6}$,
- $\beta=0$, when $d_{0}=d_{7}$.

Note that in each case a polynomial f such that $k[x, y]^{d}=k\left[x^{p}, y^{p}, f\right]$ can be easily obtained from the condition $d_{0}=d_{f}$, that is, $\partial f / \partial x=d_{0}(y)$ and $\partial f / \partial y=-d_{0}(x)$.

Corollary 17. All monomial k-derivations of $k[x, y]$ such that $k[x, y]^{d}$ $=k\left[x^{p}, y^{p}, f\right]$ for some $f \in k[x, y] \backslash k\left[x^{p}, y^{p}\right]$ are of the form $x^{j} y^{l} \cdot d_{i}$, where:
(1) $j, l \geq 0$,
(2) $i \in\{1, \ldots, 7\}$, but $i=2$ only in the case of $p=2$,
(3) d_{1}, \ldots, d_{7} are derivations from Example 13 with $m, n, r, s \geq 0, m, n \not \equiv$ $-1(\bmod p)$ and $\alpha=\beta=1$.

REFERENCES

[1] P. Jędrzejewicz, Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra 31 (2003), 5501-5511.
[2] W. Li, Remarks on rings of constants of derivations, Proc. Amer. Math. Soc. 107 (1989), 337-340.
[3] A. Nowicki, Polynomial Derivations and Their Rings of Constants, UMK, Toruń, 1994.
[4] A. Nowicki and M. Nagata, Rings of constants for k-derivations in $k\left[x_{1}, \ldots, x_{n}\right]$, J. Math. Kyoto Univ. 28 (1988), 111-118.
[5] S.-I. Okuda, Kernels of derivations in positive characteristic, Hiroshima Math. J. 34 (2004), 1-19.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: pjedrzej@mat.uni.torun.pl

[^0]: 2000 Mathematics Subject Classification: Primary 12H05; Secondary 13N15.
 Key words and phrases: derivation, ring of constants.

