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RATIONAL FUNCTIONS WITHOUT POLES IN A COMPACT SET

BY

W. KUCHARZ (Bonn and Albuquerque, NM)

Abstract. Let X be an irreducible nonsingular complex algebraic set and let K be a
compact subset of X. We study algebraic properties of the ring of rational functions on X

without poles in K. We give simple necessary conditions for this ring to be a regular ring
or a unique factorization domain.

1. Introduction and main results. Throughout this note X stands
for an irreducible nonsingular algebraic set in C

N , for some N . We write O
for the sheaf of regular functions on X and regard O(X) and Ox, for any
point x in X, as subrings of the field K(X) of rational functions on X. Thus

O(X) =
⋂

x∈X

Ox ⊆ K(X),

and K(X) is the field of fractions of O(X).

Unless explicitly stated otherwise, henceforth we consider X endowed
with the topology induced by the usual metric topology on C. Given a
compact subset K of X, let O(K) denote the subring of K(X) consisting of
all rational functions on X with no poles in K. In other words,

O(K) =
⋂

x∈K

Ox.

Hence O(X) ⊆ O(K) ⊆ K(X), and K(X) is the field of fractions of O(K).
In particular, O(K) has no zero divisors.

In this note we investigate algebraic properties of the ring O(K), ad-
dressing the following questions: Is it a ring of fractions, with suitable de-
nominators, of O(X)? Is it Noetherian? Under what assumptions is it a
unique factorization domain?

We give complete answers for a large class of compact subsets of X.
However, we do not know, for example, if for every compact subset K of X,
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the answer is “yes” to the first or second question. In order to state our
results we need some preparation.

Let us put

K̂ = {x ∈ X | |f(x)| ≤ sup
y∈K

|f(y)| for every f in O(X)}.

The set K̂ is compact and K ⊆ K̂. We say that K is algebraically convex if
K = K̂. Of course, K̂ is algebraically convex.

We write H∗(−, Z) to denote the Čech cohomology with coefficients
in Z. Let H2

alg(X, Z) be the subgroup of H2(X, Z) generated by the co-
homology classes represented by irreducible algebraic hypersurfaces of X.
Equivalently, H2

alg(X, Z) consists precisely of the first Chern classes of al-

gebraic line bundles on X. We write D(K) for the image of H2
alg(X, Z)

under the restriction homomorphism H2(X, Z) → H2(K, Z) (that is, the
homomorphism induced by the inclusion map K →֒ X). The restriction ho-

momorphism H2(K̂, Z) → H2(K, Z) gives rise to a homomorphism from

D(K̂) into D(K) written

αK : D(K̂) → D(K).

By construction, αK is surjective. We set D̂(K) = Ker αK .

Most of our results will concern compact subsets K of X with D̂(K) = 0,

while the group D̂(K) = 0 if K is algebraically convex. Moreover, H2
alg(X, Z)

= 0 (which is satisfied if H2(X, Z) = 0) implies D̂(K) = 0 and D(K) = 0
for every K.

The set
S(K) = {h ∈ O(X) | h−1(0) ⊆ X \ K}

is a multiplicatively closed subset of O(X); furthermore, the ring of fractions
S(K)−1O(X), regarded as a subring of K(X), satisfies

S(K)−1O(X) ⊆ O(K).

We do not know whether or not these two rings are always equal. Note
that S(K)−1O(X) shares with O(X) some nice algebraic properties. For
example, since O(X) is a regular ring (a Noetherian ring whose local-
ization with respect to each maximal ideal is a regular local ring), so is
S(K)−1O(X) [8, Corollary 2.6, p. 209]. Below we give a criterion for the
equality S(K)−1O(X) = O(K).

Theorem 1.1. Let K be a compact subset of X with D̂(K) = 0. Then

S(K)−1O(X) = O(K) and , in particular , O(K) is a regular ring.

Given a ring A (commutative with identity), we denote by Pic(A) the
Picard group of A (that is, the group of isomorphism classes of finitely
generated projective A-modules of rank 1). Assuming A is a regular ring
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with no zero divisors, one has Pic(A) = 0 if and only if A is a unique
factorization domain [3] (more precisely, see the references to [3] given in [2,
pp. 306, 307] and [1, Theorem 7.2.1, p. 147].

Theorem 1.2. Let K be a compact subset of X with D̂(K) = 0. Then

the groups Pic(O(K)) and D(K) are canonically isomorphic. The ring O(K)
is a unique factorization domain if and only if D(K) = 0.

Theorem 1.2 is essential in the proof of our next result.

Theorem 1.3. The following conditions are equivalent :

(a) For every compact subset K of X, the ring O(K) is a unique fac-

torization domain.

(b) For every algebraically convex compact subset K of X, the ring O(K)
is a unique factorization domain.

(c) H2
alg(X, Z) = 0.

Let us now specialize to dimX = 1.

Corollary 1.4. If dimX = 1, then for every compact subset K of X,
the ring O(K) is regular and a unique factorization domain.

Proof. Since dimX = 1, we have H2(X, Z) = 0. Hence for every compact

subset K of X, the groups D̂(K) and D(K) are 0. The conclusion follows
from Theorems 1.1 and 1.2.

Remark 1.5. In connection with Corollary 1.4 let us mention that, as-
suming dimX = 1, the ring O(X) is a unique factorization domain if and
only if X is of genus 0 (by the genus of X we mean the genus of its unique,
up to isomorphism, nonsingular projectivization).

Remark 1.5 is certainly well known, but we give a short proof of the
assertion contained in it at the end of Section 2. Proofs of Theorems 1.1,
1.2, and 1.3 are also given in Section 2. The reader may consult [2, Section
12.2, Propositions 12.4.14 and 12.6.2] and [11] for related results concerning
functions on real algebraic varieties.

2. Proofs. The following fact will be useful.

Proposition 2.1 (see [7, Corollary 5]). Let E be an algebraic vector

bundle on X. Let K be a compact subset of X and let s be a holomorphic

section of E defined in some neighborhood of K in X. If K is algebraically

convex , then s can be approximated on K by global algebraic sections of E
(the approximation is with respect to the compact-open topology on the space

of continuous sections of E over K).

Lemma 2.2. Let E be an algebraic line bundle on X and let K be an

algebraically convex compact subset of X. If the restriction E|K is topolog-
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ically trivial on K, then there exists an algebraic section v : X → E with

v(x) 6= 0 for all x in K.

Proof. One can find an open neighborhood U of K in X such that E|U
is topologically trivial. Since K is algebraically convex, it is also holomor-
phically convex in X, and hence there exists a Stein neighborhood of K in U
[5, Proposition 3, p. 211]. Shrinking U if necessary, we may assume that U
itself is a Stein neighborhood. It follows from Grauert’s theorem [4] that
E|U is holomorphically trivial. Thus one can choose a holomorphic section
u : U → E with u(x) 6= 0 for all x in U . The existence of v with the required
properties is now a consequence of Proposition 2.1.

Proof of Theorem 1.1. It suffices to show that O(K) is contained in
S(K)−1O(X). Let ϕ be a nonzero element of O(K) and let V be the set of
poles of ϕ. One can find an algebraic line bundle L on X and an algebraic
section s : X → L such that s−1(0) = V (just take the algebraic line bundle
corresponding to the divisor of poles of ϕ and the section determined by
some local equations of this divisor). We have

K ⊆ X \ V = X \ s−1(0).

We claim that there is an algebraic section v : X → L∨, of the dual
bundle L∨ of L, with v(x) 6= 0 for all x in K.

Indeed, note that L|X\V is algebraically trivial, and hence so is L∨|X\V .
In particular, L∨ is topologically trivial on K and therefore c1(L

∨|K) = 0

in H2(K, Z), where c1(−) stands for the first Chern class. Since c1(L
∨|K̂)

is in D(K̂), αK(c1(L
∨|K̂) = c1(L

∨|K), and Ker αK = D̂(K) = 0, we ob-

tain c1(L
∨|K̂) = 0. The last equality implies that L∨|K̂ is topologically

trivial. Since K̂ is algebraically convex and K ⊆ K̂, the claim follows from
Lemma 2.2.

Define h : X → C by

h(x) = v(x)(s(x)) for all x in X.

By construction, h is a regular function satisfying

K ⊆ X \ h−1(0) ⊆ X \ V.

It follows that ϕ is a regular function on X \h−1(0), and hence ϕ = f/hn in
K(X) for some regular function f : X → C and some nonnegative integer n
[10, p. 50]. Thus ϕ is in S(K)−1O(X) and the proof is complete.

Given an algebraic line bundle L on X, we let L(X) denote the O(X)-
module of global algebraic sections of L. It is well known that L(X) is a
finitely generated projective O(X)-module of rank 1, and the correspondence
L → L(X) gives rise to an isomorphism from the Picard group Pic(X) of
X onto Pic(O(X)) (cf. [9]). In turn the correspondence L → S(K)−1L(X)
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determines a homomorphism from Pic(X) into Pic(S(K)−1O(X)), written

βK : Pic(X) → Pic(S(K)−1O(X)).

By [1, Proposition 7.17, p. 144, Theorem 7.2.1, p. 147], βK is surjective.
Henceforth we will slightly abuse notation and make no distinction be-

tween an algebraic line bundle on X and its isomorphism class in Pic(X).

Lemma 2.3. For any compact subset K of X, there is a unique homo-

morphism

γK : Pic(S(K)−1O(X)) → D(K)

such that γK(βK(L)) = c1(L|K) for all L in Pic(X). The homomorphism

γK is surjective and Ker γK consists precisely of all elements of the form

βK(L), where L is in Pic(X) and c1(L|K) = 0.

Proof. Since βK is surjective, in order to prove the existence and unique-
ness of γK it suffices to show that c1(L|K) = 0 for every L in Ker βK .
Suppose then that L is in Ker βK . This means that there is an isomorphism

λ : S(K)−1O(X) → S(K)−1L(X)

of S(K)−1O(X)-modules. Write λ(1) and λ(1) = s/h for some s in L(X)
and h in S(K). We claim that

K ⊆ X \ s−1(0).

Indeed, let x be a point in K. Choose a section u in L(X) with u(x) 6= 0.
We have u/1 = λ(f/g) = fs/gh in S(K)−1L(X) for some f in O(X) and
g in S(K). Then there is ℓ in S(K) for which ℓghu = ℓfs in L(X). Since
(ℓghu)(x) 6= 0, we get s(x) 6= 0, that is, x belongs to X \ s−1(0) as claimed.
The claim implies that L|K is topologically trivial, and hence c1(L|K) = 0
as required.

It follows from the definition of D(K) that the homomorphism γK is
surjective. The assertion about Ker γK is obvious.

Proof of Theorem 1.2. We first show that D̂(K) = 0 implies that the
canonical homomorphism

γK : Pic(S(K)−1O(X)) → D(K)

of Lemma 2.3 is an isomorphism. Since γK is always surjective, we only
have to prove that γK is injective. This can be done as follows. Every ele-
ment of Ker γK is of the form βK(L) = S(K)−1L(X) for some L in Pic(X)

with c1(L|K) = 0. Recalling that the homomorphism αK : D(K̂) → D(K)
satisfies

αK(c1(L|K̂)) = c1(L|K) and KerαK = D̂(K) = 0,

we get c1(L|K̂) = 0. The last equality implies that L|K̂ is topologically

trivial. In view of Lemma 2.2 and the fact that K̂ is algebraically convex,
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there is a section s in L(X) with s(x) 6= 0 for all x in K. Define

µ : S(K)−1O(X) → S(K)−1L(X)

by µ(f/g) = fs/g. Clearly, µ is a homomorphism of S(K)−1O(X)-modules.
Our goal now is to prove that µ is an isomorphism, thereby demonstrating
βK(L) = 0 in Pic(S(K)−1O(X)), as required.

Suppose µ(f/g) = fs/g = 0 in S(K)−1L(X). Then pfs = 0 in L(X) for
some p in S(K). Hence f(x) = 0 for all x in X \ (ps)−1(0), which in turn
implies f = 0 in O(X) (recall that X is irreducible). It follows that f/g = 0
in S(K)−1O(X), and therefore µ is injective.

In order to show that µ is surjective, let us take any element u/h in
S(K)−1L(X), where u is in L(X) and h is in S(K). There is a unique
rational function ϕ in K(X) such that ϕs = u/h as rational sections of L.
Since s(x) 6= 0 for all x in K, it follows that ϕ is in O(K). By Theorem 1.1,
ϕ belongs to S(K)−1O(X). We have µ(ϕ) = u/h, and hence µ is surjective.

We have just finished the proof that γK is an isomorphism. Since, by
Theorem 1.1,

S(K)−1O(X) = O(K),

the groups Pic(O(K)) and D(K) are canonically isomorphic. The ring O(K)
is regular (Theorem 1.1 again), and hence it is a unique factorization domain
if and only if Pic(O(K)) = 0. The proof is complete, the last equality being
equivalent to D(K) = 0.

Proof of Theorem 1.3. If (c) holds, then D̂(K) = 0 and D(K) = 0 for
every compact subset K of X, and hence (a) is satisfied in view of Theorem
1.2. It is obvious that (a) implies (b). It remains then to show that (b)
implies (c).

Suppose (b) holds. Choose a compact subset C of X such that the in-
clusion map C →֒ X is a homotopy equivalence (cf. for example [2, Corol-
lary 9.3.7]). The restriction homomorphism H2(X, Z) → H2(C, Z) is an

isomorphism. It follows that for K = Ĉ, the restriction homomorphism
H2(X, Z)→H2(K, Z) is injective (note C⊆K). This implies that H2

alg(X, Z)
is isomorphic to a subgroup of D(K). Since K is algebraically convex, we

have D̂(K) = 0 and hence, by Theorem 1.2 and condition (b), D(K) = 0.
Therefore H2

alg(X, Z) = 0 and (c) is satisfied. The proof is complete.

Justification of Remark 1.5. Let X be a nonsingular projectivization
of X. The restriction homomorphism Pic(X) → Pic(X) is surjective, and
since X \ X is a finite set, its kernel is a finitely generated Abelian group
(cf. [6, Proposition 6.5, p. 133, Corollary 6.16, p. 145]). Write g(X) for the
genus of X. If g(X) ≥ 1, then Pic(X) is not finitely generated, and hence
Pic(X) 6= 0. If g(X) = 0, then Pic(X) = 0. Since Pic(X) is isomorphic to
Pic(O(X)), we have Pic(O(X)) = 0 if and only if g(X) = 0. The argument
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is complete since Pic(O(X)) = 0 is equivalent to O(X) being a unique
factorization domain.
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