COLLOQUIUM MATHEMATICUM

OUTER AUTOMORPHISMS OF ENDOMORPHISM ALGEBRAS

BY
WARREN MAY (Tucson, AZ)

Abstract

Commutative rings over which no endomorphism algebra has an outer automorphism are studied.

Let R always denote a nontrivial commutative ring with identity. If R is a field, then it is well known that the endomorphism algebra of any vector space over R has only inner automorphisms. Is it reasonable to expect that this, with minor variations, is the only such occurrence of this property? More precisely, what are the commutative rings R such that for every R-module M, the endomorphism algebra $\operatorname{End}_{R} M$ has no outer automorphisms?

Let $\mathcal{I N N}$ denote the class of all such R. Thus $R \in \mathcal{I N N}$ if and only if for every R-module $M, \operatorname{End}_{R} M$ has only inner automorphisms. In this paper, we shall see that the noetherian rings R which belong to $\mathcal{I N N}$ are precisely the principal ideal rings of dimension 0 , and that no ring of dimension >0 belongs to $\mathcal{I N N}$. Moreover, whenever we establish that a ring R does not belong to $\mathcal{I N N}$, then we shall see that there exist arbitrarily large modules M for which $\operatorname{End}_{R} M$ has outer automorphisms. However, we cannot give a complete description of $\mathcal{I N N}$; it remains a question whether or not there is any nonnoetherian ring R belonging to $\mathcal{I N} \mathcal{N}$. For results when only certain modules are considered, see the discussions for complete discrete valuation rings in $[5,6]$.

It will be useful to consider two subclasses of $\mathcal{I N N}$. Let $\mathcal{I S O}$ consist of all R such that every isomorphism of the endomorphism algebras of two R-modules must be induced by an isomorphism of the modules. Clearly $\mathcal{I S O}$ is a subclass of $\mathcal{I N N}$. The relationship of the second class to $\mathcal{I N N}$ will not be so apparent. Let $\mathcal{S U M}$ be the class of all R such that for every R-module M, there exists $x \in M$ such that the cyclic submodule generated by x is a direct summand of M, and such that the annihilators $\operatorname{Ann}_{R}(x)$ and $\operatorname{Ann}_{R} M$ are equal. To see that $\mathcal{S U M}$ is a subclass of $\mathcal{I S O}$, one can

[^0]easily adapt part of Kaplansky's arguments in [4, Theorem 28] applying to bounded modules. We sketch this in a lemma.

Lemma 1. $\mathcal{S U M}$ is contained in $\mathcal{I S O}$.
Proof. Let $R \in \mathcal{S U M}$, let M and N be two R-modules, and let Φ : $\operatorname{End}_{R} M \rightarrow \operatorname{End}_{R} N$ be an algebra isomorphism. Let I denote the common annihilator $I=\operatorname{Ann}_{R} M=\operatorname{Ann}_{R} N$. Choose $m_{0} \in M$ and an idempotent $\varepsilon \in \operatorname{End}_{R} M$ such that $\operatorname{Ann}_{R}\left(m_{0}\right)=I$ and $\varepsilon(M)=\left\langle m_{0}\right\rangle$. Put $\varepsilon^{*}=\Phi(\varepsilon)$. Then $\varepsilon^{*}(N)$ is a direct summand of N with annihilator I. By our assumption on R, we see that $\varepsilon^{*}(N)$ has a cyclic summand $\left\langle n_{0}\right\rangle$ with annihilator I. But if $\left\langle n_{0}\right\rangle$ had a nonzero complement in $\varepsilon^{*}(N)$, then there would be a nonzero map of $\left\langle n_{0}\right\rangle$ into that complement, hence $\operatorname{End}_{R} \varepsilon^{*}(N)$ would be noncommutative. This is contrary to $\operatorname{End}_{R} \varepsilon^{*}(N) \cong \operatorname{End}_{R} \varepsilon(M)=R / I$, thus $\varepsilon^{*}(N)=\left\langle n_{0}\right\rangle$.

We now define $\phi: M \rightarrow N$ in the usual fashion. Given $m \in M$, we may choose $\alpha_{m} \in \operatorname{End}_{R} M$ with $\alpha_{m}\left(m_{0}\right)=m$. If we put $\phi(m)=\Phi\left(\alpha_{m}\right)\left(n_{0}\right)$, then ϕ is well defined, and is an R-homomorphism since we may take $r \alpha_{m_{1}}+\alpha_{m_{2}}$ for $\alpha_{r m_{1}+m_{2}}$. Moreover, ϕ is an isomorphism since Φ^{-1}, n_{0} and m_{0} can be used to construct an inverse.

Finally, if $\alpha \in \operatorname{End}_{R} M$, then $\Phi(\alpha) \phi(m)=\Phi(\alpha) \Phi\left(\alpha_{m}\right)\left(n_{0}\right)=\Phi\left(\alpha \alpha_{m}\right)\left(n_{0}\right)$ $=\phi(\alpha(m))$ since $\alpha \alpha_{m}\left(m_{0}\right)=\alpha(m)$. Thus, $\Phi(\alpha)=\phi \alpha \phi^{-1}$.

To give an example of a ring in $\mathcal{S U M}$, we mimic the proof that a pure cyclic p-subgroup of an abelian group is a direct summand.

Lemma 2. Let R be a local ring with a maximal ideal which is principal and nilpotent. Then $R \in \mathcal{S U M}$, thus $R \in \mathcal{I S O}$.

Proof. Let M be an R-module. Passing to $R / \operatorname{Ann}_{R} M$, we may assume that M is faithful. Let $P=\langle p\rangle$ be the maximal ideal of R. Since the result is clear for fields, we may assume that $P \neq 0$. Thus, there exists $k \geq 2$ such that the distinct ideals of R are $R \supset\langle p\rangle \supset \cdots \supset\left\langle p^{k}\right\rangle=0$. Since M is faithful, we may choose $m_{0} \in M$ such that $\operatorname{Ann}_{R}\left(m_{0}\right)=0$. It suffices to show that $\left\langle m_{0}\right\rangle$ is a direct summand of M. Choose a submodule N maximal with respect to $\left\langle m_{0}\right\rangle \cap N=0$. To show that $M=\left\langle m_{0}\right\rangle \oplus N$, for the sake of contradiction we may assume there exists $m \in M \backslash\left(\left\langle m_{0}\right\rangle \oplus N\right)$. We may further assume that $p m \in\left\langle m_{0}\right\rangle \oplus N$, say $p m=r m_{0}+n(r \in R, n \in N)$. Then $0=p^{k} m=p^{k-1} r m_{0}+p^{k-1} n$, thus $p^{k-1} r m_{0}=0$ and we conclude that $r=p r_{1}$ for some $r_{1} \in R$. Hence $p\left(m-r_{1} m_{0}\right)=n$. But $m-r_{1} m_{0} \notin N$, thus $\left\langle m_{0}\right\rangle \cap\left(N+\left\langle m-r_{1} m_{0}\right\rangle\right) \neq 0$ by maximality, say $r_{2} m_{0}=n_{0}+r_{3}\left(m-r_{1} m_{0}\right)$ $\neq 0$. We cannot have $p \mid r_{3}$ since $\left\langle m_{0}\right\rangle \cap N=0$. Thus r_{3} is a unit, giving the contradiction $m \in\left\langle m_{0}\right\rangle \oplus N$.

We take note of some relevant behavior under the formation of quotient ring. Let I be an ideal of R. Regarding (R / I)-modules as R-modules via the
natural map identifies the category of (R / I)-modules with a full subcategory of the category of R-modules. Thus we see

Lemma 3. In the setting just mentioned, if an (R / I)-module shows that R / I does not belong to $\mathcal{I N N}$ or to $\mathcal{I S O}$, then it has the same property for R.

By using standard results on split realization of R-algebras, we prove that any R in $\mathcal{I N N}$ must have dimension 0 .

Proposition 1. If R has dimension greater than 0 , then there exist arbitrarily large R-modules M such that $\operatorname{End}_{R} M$ has outer automorphisms.

Proof. Passing to R modulo a nonmaximal prime ideal, by Lemma 3 we may assume that R is an integral domain of dimension >0. We may choose a nonzero nonunit $p \in R$ and put $I=\bigcap_{i<\omega} p^{i} R$. It suffices to find arbitrarily large (R / I)-modules. It is easy to verify that the image of p in R / I is a nonunit which is not a zero divisor, thus we may assume that $I=0$ and that p is a nonunit which is not a zero divisor. Put $S=\left\{p^{i} \mid i<\omega\right\}$. Then R is S-separable and S-torsion-free.

We may apply results of [2] or [1] to obtain an arbitrarily large R-module M with an S-torsion submodule T such that T is a direct sum of cyclic modules of form $R /\left\langle p^{k}\right\rangle$ for unbounded k, M is S-separable, M / T is S divisible, and $\operatorname{End}_{R} M$ has the form which we now describe. The restriction of endomorphisms from M to T gives an algebra homomorphism $\operatorname{End}_{R} M \rightarrow$ $\operatorname{End}_{R} T$ which is injective since M / T is S-divisible and M is S-separable. Regarding $\operatorname{End}_{R} M$ as embedded in $\operatorname{End}_{R} T$, if $\operatorname{Bd}(T)$ denotes the ideal in $\operatorname{End}_{R} T$ of S-bounded endomorphisms, then $\operatorname{End}_{R} M=R \oplus \operatorname{Bd}(T)$.

We claim that there exists an automorphism γ of T such that for every $k<\omega$, there exists a cyclic summand of T which is not invariant under $p^{k} \gamma$. Since T is unbounded, we may choose a summand of T of form $\bigoplus_{i<\omega}\left\langle m_{i}\right\rangle$, where $\left\langle m_{i}\right\rangle \cong R /\left\langle p^{k_{i}}\right\rangle(i<\omega)$, and $\left\{k_{i}\right\}$ is an unbounded increasing sequence of positive integers. Then there exists an automorphism γ of T such that $\gamma\left(m_{0}\right)=m_{0}$ and $\gamma\left(m_{i}\right)=m_{i}+m_{i-1}$ for $i \geq 1$. If $k<k_{i-1}$, then $p^{k} \gamma$ does not map $\left\langle m_{i}\right\rangle$ into itself.

Now define $\Phi: \operatorname{End}_{R} M \rightarrow \operatorname{End}_{R} T$ by $\Phi(\alpha)=\gamma \alpha \gamma^{-1}$ for every $\alpha \in$ $\operatorname{End}_{R} M$. Since $\operatorname{Bd}(T)$ is an ideal of $\operatorname{End}_{R} T$, we see that Φ is an algebra automorphism of $\operatorname{End}_{R} M$. To show that Φ is outer, we shall assume that Φ is conjugation by a unit $\theta \in \operatorname{End}_{R} M$ and derive a contradiction. The automorphism $\theta^{-1} \gamma$ must centralize $\operatorname{End}_{R} M$. Since $\left\langle m_{i}\right\rangle$ is a direct summand, $\left\langle m_{i}\right\rangle$ is invariant under $\theta^{-1} \gamma$ for every i. But $\theta^{-1}=u+\beta$ for some unit $u \in R$ and $\beta \in \operatorname{Bd}(T)$. Let k be such that $p^{k} \beta=0$. Then $p^{k} \theta^{-1} \gamma=p^{k} u \gamma$ maps every $\left\langle m_{i}\right\rangle$ into itself, contrary to the choice of γ.

Corollary. If R belongs to $\mathcal{I N N}$, then R has dimension 0 .
Now we show that certain local rings do not belong to $\mathcal{I N N}$.

Proposition 2. Let R be a local ring with maximal ideal P. Assume that the dimension of P / P^{2} over R / P is ≥ 2. Then there exist arbitrarily large R-modules M such that $\operatorname{End}_{R} M$ has outer automorphisms.

Proof. We may choose an ideal I with $P \supseteq I \supseteq P^{2}$ such that the dimension of P / I over R / P is 2 . Thus, by Lemma 3 we may assume that $P^{2}=0$ and that P has dimension 2 over R / P. Choosing a basis $\{x, y\}$ for P, we find that x and y are annihilated by P and $P=R x \oplus R y$.

To begin, we shall construct a small R-module M. Let C be the cyclic submodule of $R \oplus R$ generated by (x, y) and put $M=(R \oplus R) / C$. Next, we construct an algebra of 2×2 matrices over R. Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ denote a generic 2×2 matrix over R. Define A to be the set of all σ such that $a-d, b, c \in P$. Then A is an R-algebra. Let J consist of all σ such that $a, b, c, d \in P$. Then J is an ideal of A such that $A=R+J$. Moreover, A is commutative since $J^{2}=0$. Regarding $R \oplus R$ as a left module over the R-algebra A, we see that C is an A-submodule since $J C=0$, hence we obtain an R-algebra homomorphism $\Psi: A \rightarrow \operatorname{End}_{R} M$.

We claim that Ψ is onto. Any element of $\operatorname{End}_{R} M$ is induced by a matrix σ acting on $R \oplus R$ and mapping C into itself. Consequently, there exists $r \in R$ such that $a x+b y=r x$ and $c x+d y=r y$. Thus $a-r, b, c, d-r \in P$, and hence $\sigma \in A$. Since Ψ is onto, $\operatorname{End}_{R} M$ is commutative, so any nontrivial algebra automorphism that we construct will be outer, as desired. Let K denote the kernel of Ψ. Since $A=R+J$ and $J^{2}=0$, any R-module automorphism $\Phi: A \rightarrow A$ which is the identity on R and satisfies $\Phi(J) \subseteq J$ will be an R-algebra automorphism of A. If, in addition, $\Phi(K)=K$, then Φ will induce an R-algebra automorphism of $\operatorname{End}_{R} M$.

Before defining Φ, we compute K. Clearly, $\sigma \in K$ if and only if $\sigma(R \oplus R)$ $\subseteq C$, thus $\sigma=\left(\begin{array}{cc}u x & v x \\ u y & v y\end{array}\right),(u, v \in R)$. To define Φ on A, the entries b and c of σ may be written as $b=v x+s y, c=t x+u y$. Now put

$$
\Phi\left(\begin{array}{cc}
a & v x+s y \\
t x+u y & d
\end{array}\right)=\left(\begin{array}{cc}
a & v x+t y \\
s x+u y & d
\end{array}\right)
$$

Then Φ is an R-module automorphism of A which is the identity on R and K, and maps J into itself. The algebra automorphism induced on End ${ }_{R} M$ is not the identity since if σ is given by $a=c=d=0, b=y$, then $\Phi(\sigma)-\sigma \notin K$.

To obtain arbitrarily large modules, let λ be a cardinal number and put $N=\bigoplus_{i<\lambda} M$. Since M is finitely generated, $\operatorname{End}_{R} N$ can be identified with the column-finite matrices $\left(\alpha_{i j}\right)\left(i, j<\lambda, \alpha_{i j} \in \operatorname{End}_{R} M\right)$. If ϕ denotes the outer automorphism of $\operatorname{End}_{R} M$ that we have just obtained, then $\left(\alpha_{i j}\right) \mapsto$ $\left(\phi\left(\alpha_{i j}\right)\right)$ is an algebra automorphism of $\operatorname{End}_{R} N$. Suppose that it is inner, say $\left(\beta_{i j}\right) \in \operatorname{End}_{R} N$ is a unit such that $\left(\beta_{i j}\right)\left(\alpha_{i j}\right)=\left(\phi\left(\alpha_{i j}\right)\right)\left(\beta_{i j}\right)$ for all $\left(\alpha_{i j}\right)$. Taking $\left(\alpha_{i j}\right)$ with all zero entries except for a single off-diagonal entry of 1 ,
we see that $\left(\beta_{i j}\right)$ must commute with all such $\left(\alpha_{i j}\right)$, hence must be diagonal. Therefore β_{00} is a unit, giving the contradiction $\beta_{00} \alpha_{00}=\phi\left(\alpha_{00}\right) \beta_{00}$.

The case for noetherian R can now be settled.
Theorem. Let R be noetherian. Then membership in the classes $\mathcal{S U M}$, $\mathcal{I S O}$ and $\mathcal{I N N}$ are all equivalent. This occurs if and only if $R \cong R_{1} \times \cdots$ $\cdots \times R_{m}$ for some m, where each R_{i} is a local ring with a principal nilpotent maximal ideal; equivalently, R is a principal ideal ring of dimension 0 . If $R \notin \mathcal{I N N}$, then there exist arbitrarily large R-modules M such that $\operatorname{End}_{R} M$ has outer automorphisms.

Proof. Assume R is noetherian. If $\operatorname{dim} R>0$, then Proposition 1 implies that $R \notin \mathcal{I N N}$, and there exist arbitrarily large M such that $\operatorname{End}_{R} M$ has outer automorphisms. Now assume $\operatorname{dim} R=0$. Then $R \cong R_{1} \times \cdots \times R_{m}$, where each R_{i} is indecomposable and of dimension 0 , hence each R_{i} is local with finitely generated nilpotent maximal ideal. If R is not a principal ideal ring, then some R_{i} is not, hence by Proposition 2 and Lemma $3, R \notin \mathcal{I N N}$ and there exist arbitrarily large M such that $\operatorname{End}_{R} M$ has outer automorphisms. If R is a principal ideal ring, then so is each R_{i}, and Lemma 2 implies that each $R_{i} \in \mathcal{S U} \mathcal{M}$, thus clearly $R \in \mathcal{S U} \mathcal{M}$, therefore $R \in \mathcal{I N N}$.

As mentioned at the beginning, we do not know an example of a nonnoetherian ring R belonging to $\mathcal{I N N}$; if such exists, it must of course have dimension 0 . We can say something about $\mathcal{S U M}$ and $\mathcal{I S O}$. The case of the class $\mathcal{S U M}$ is easily taken care of.

Proposition 3. If $R \in \mathcal{S U M}$, then R is noetherian and thus described by the Theorem.

Proof. If R is not noetherian, then there exists a strictly descending chain $I_{0} \supset I_{1} \supset \cdots$ of ideals. Put $M=\bigoplus_{i<\omega} R / I_{i}$. Then $\operatorname{Ann}_{R} M=$ $\bigcap_{i<\omega} I_{i}$, while for every $x \in M, \operatorname{Ann}_{R}(x) \supseteq I_{k}$ for some k, thus $\operatorname{Ann}_{R} M \neq$ $\operatorname{Ann}_{R}(x)$.

Motivated by the result for the noetherian case, a reasonable nonnoetherian ring to consider might be a local ring of dimension 0 in which every finitely generated ideal is principal, in particular, a dimension 0 valuation ring. In the final proposition, we consider this for the class $\mathcal{I S O}$, and also the case of a direct product of infinitely many fields.

Proposition 4.

(1) Let $R=\prod_{i \in I} F_{i}$ be a direct product of an infinite family of fields F_{i}. Then $R \notin \mathcal{I S O}$.
(2) Let R be a nonnoetherian valuation ring. Then $R \notin \mathcal{I S O}$.

Proof. (1) Let N be the ideal $\bigoplus_{i \in I} F_{i}$ in R. The natural map $R \rightarrow$ $\operatorname{End}_{R} N$ is injective. It is surjective since $\operatorname{End}_{R} N=\prod_{i \in I} \operatorname{End}_{F_{i}} F_{i}$, hence $\operatorname{End}_{R} R \cong \operatorname{End}_{R} N$. Clearly R and N are not isomorphic since N is not cyclic.
(2) Let R be a nonnoetherian valuation ring with maximal ideal P. By Proposition 2, we may assume that the dimension of P / P^{2} over R / P is <2. If the dimension is 1 , then modulo an appropriate principal ideal, and taking Lemma 3 into account, we may assume that $P=P^{2}$, and that $P \neq 0$ since R is nonnoetherian. Moreover, we claim we may assume that P is a faithful ideal. Let $I=\operatorname{Ann}_{R} P$ and put $\bar{R}=R / I$ and $\bar{P}=P / I$. If $x \in R$ is such that $\bar{x} \bar{P}=0$, then $x P \subseteq I$, hence $x P=x P^{2}=0$. Thus $\bar{x}=0$, and we see that \bar{P} is faithful for \bar{R}. By Lemma 3, we may thus assume that $P=P^{2}$ is faithful. By the Corollary to Proposition 1, we may assume that R has dimension 0 .

One could fashion a proof utilizing Proposition I.4.11 of [3], but for our special case a direct and self-contained argument may be desirable. The principal ideals of R are linearly ordered, therefore so is $\left\{\operatorname{Ann}_{R}(x) \mid x \in P\right\}$, which defines a topology on R. To see this topology is Hausdorff, note that if $x \neq 0$, then $x P \neq 0$, hence there exists $y \in P$ such that $x y \neq 0$. Thus $x \notin \operatorname{Ann}_{R}(y)$. Now let \widehat{R} be the completion of R in this topology, regarded as the inverse limit $\widehat{R}=\lim \left(R / \operatorname{Ann}_{R}(x)\right)$ taken over all $x \in P$. Then R embeds naturally as a subring of \widehat{R}.

We claim that $\operatorname{End}_{R} P \cong \widehat{R}$. First we show that if $\alpha \in \operatorname{End}_{R} P$, then $\alpha(x) \in\langle x\rangle$ for every $x \in P$. If not, then for some $x \neq 0$ and some $p \in P$ we have $x=p \alpha(x)$ since R is a valuation ring. Thus, $x=p^{k} \alpha^{k}(x)$ for all $k \geq 1$. But P is a nil ideal, hence $p^{k}=0$ for some k, giving the contradiction $x=0$. Consequently, each $\alpha \in \operatorname{End}_{R} P$ maps each cyclic submodule $\langle x\rangle$ into itself, hence is equivalent to a coherent family of endomorphisms on each $\langle x\rangle$. Since $\operatorname{End}_{R}\langle x\rangle$ is naturally isomorphic to $R / \operatorname{Ann}_{R}(x)$, we obtain \widehat{R} as $\operatorname{End}_{R} P$.

Next we show that every R-endomorphism of \widehat{R} is an \widehat{R}-endomorphism. Since R is dense in \widehat{R}, it will suffice to show that every R-endomorphism of \widehat{R} is continuous. For this, it is enough to show that the topology on \widehat{R} is given by $\left\{\operatorname{Ann}_{\hat{R}}(x) \mid x \in P\right\}$ since $\operatorname{Ann}_{\hat{R}}(x)$ is invariant under R-endomorphisms. Regarding \widehat{R} as a submodule of $\prod_{y \in P} R / \operatorname{Ann}_{R}(y)$, an element $\widehat{r} \in \widehat{R}$ has form $\widehat{r}=\left(r_{y}+\operatorname{Ann}_{R}(y)\right)_{y \in P}$ such that for all $\langle y\rangle \subseteq\langle z\rangle \subseteq P$, we have $r_{y}-r_{z} \in \operatorname{Ann}_{R}(y)$. Note that if $x, y \in P$, then regardless of containment of the principal ideals, we have $\left(r_{x}-r_{y}\right) x y=0$, thus $r_{x} x y=r_{y} x y$. Fix $x \in P$ and let $\widehat{r} \in \widehat{R}$. Then $\widehat{r} x=0 \Leftrightarrow r_{y} x \in \operatorname{Ann}_{R}(y)$ for all $y \in P \Leftrightarrow$ $r_{y} x y=0 \Leftrightarrow r_{x} x y=0 \Leftrightarrow r_{x} x P=0 \Leftrightarrow r_{x} x=0$ since P is faithful $\Leftrightarrow r_{x} \in$ $\operatorname{Ann}_{R}(x)$. This last condition is that \widehat{r} belongs to the kernel of the projection of \widehat{R} to $R / \operatorname{Ann}_{R}(x)$, thus the topologies agree.

We conclude that $\operatorname{End}_{R} \widehat{R}=\operatorname{End}_{\widehat{R}} \widehat{R}=\widehat{R} \cong \operatorname{End}_{R} P$. But \widehat{R} is not isomorphic to P since $\widehat{R} \neq P \widehat{R}$, while $P=P^{2}$. Therefore, R is not in $\mathcal{I S O}$.

REFERENCES

[1] A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447-479.
[2] M. Dugas, On the existence of large mixed modules, in: Abelian Group Theory (Honolulu, 1983), Lecture Notes in Math. 1006, Springer, Berlin, 1983, 412-424.
[3] L. Fuchs and L. Salce, Modules over Valuation Domains, Dekker, New York, 1985.
[4] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, MI, 1954.
[5] W. May, Isomorphism of endomorphism algebras over complete discrete valuation rings, Math. Z. 204 (1990), 485-499.
[6] -, The theorem of Baer and Kaplansky for mixed modules, J. Algebra 177 (1995), 255-263.

Department of Mathematics
University of Arizona
Tucson, AZ 85721, U.S.A.
E-mail: may@math.arizona.edu

[^0]: 2000 Mathematics Subject Classification: Primary 16S50; Secondary 13C99.
 Key words and phrases: endomorphism algebra, outer automorphism, module.

