VOL. 106

2006

NO. 1

OUTER AUTOMORPHISMS OF ENDOMORPHISM ALGEBRAS

ВY

WARREN MAY (Tucson, AZ)

Abstract. Commutative rings over which no endomorphism algebra has an outer automorphism are studied.

Let R always denote a nontrivial commutative ring with identity. If R is a field, then it is well known that the endomorphism algebra of any vector space over R has only inner automorphisms. Is it reasonable to expect that this, with minor variations, is the only such occurrence of this property? More precisely, what are the commutative rings R such that for every R-module M, the endomorphism algebra $\operatorname{End}_R M$ has no outer automorphisms?

Let \mathcal{INN} denote the class of all such R. Thus $R \in \mathcal{INN}$ if and only if for every R-module M, $\operatorname{End}_R M$ has only inner automorphisms. In this paper, we shall see that the noetherian rings R which belong to \mathcal{INN} are precisely the principal ideal rings of dimension 0, and that no ring of dimension > 0belongs to \mathcal{INN} . Moreover, whenever we establish that a ring R does not belong to \mathcal{INN} , then we shall see that there exist arbitrarily large modules M for which $\operatorname{End}_R M$ has outer automorphisms. However, we cannot give a complete description of \mathcal{INN} ; it remains a question whether or not there is any nonnoetherian ring R belonging to \mathcal{INN} . For results when only certain modules are considered, see the discussions for complete discrete valuation rings in [5, 6].

It will be useful to consider two subclasses of \mathcal{INN} . Let \mathcal{ISO} consist of all R such that every isomorphism of the endomorphism algebras of two R-modules must be induced by an isomorphism of the modules. Clearly \mathcal{ISO} is a subclass of \mathcal{INN} . The relationship of the second class to \mathcal{INN} will not be so apparent. Let \mathcal{SUM} be the class of all R such that for every R-module M, there exists $x \in M$ such that the cyclic submodule generated by x is a direct summand of M, and such that the annihilators $\operatorname{Ann}_R(x)$ and $\operatorname{Ann}_R M$ are equal. To see that \mathcal{SUM} is a subclass of \mathcal{ISO} , one can

²⁰⁰⁰ Mathematics Subject Classification: Primary 16S50; Secondary 13C99.

Key words and phrases: endomorphism algebra, outer automorphism, module.

easily adapt part of Kaplansky's arguments in [4, Theorem 28] applying to bounded modules. We sketch this in a lemma.

LEMMA 1. SUM is contained in ISO.

Proof. Let $R \in SUM$, let M and N be two R-modules, and let Φ : End_R $M \to \operatorname{End}_R N$ be an algebra isomorphism. Let I denote the common annihilator $I = \operatorname{Ann}_R M = \operatorname{Ann}_R N$. Choose $m_0 \in M$ and an idempotent $\varepsilon \in \operatorname{End}_R M$ such that $\operatorname{Ann}_R(m_0) = I$ and $\varepsilon(M) = \langle m_0 \rangle$. Put $\varepsilon^* = \Phi(\varepsilon)$. Then $\varepsilon^*(N)$ is a direct summand of N with annihilator I. By our assumption on R, we see that $\varepsilon^*(N)$ has a cyclic summand $\langle n_0 \rangle$ with annihilator I. But if $\langle n_0 \rangle$ had a nonzero complement in $\varepsilon^*(N)$, then there would be a nonzero map of $\langle n_0 \rangle$ into that complement, hence $\operatorname{End}_R \varepsilon^*(N)$ would be noncommutative. This is contrary to $\operatorname{End}_R \varepsilon^*(N) \cong \operatorname{End}_R \varepsilon(M) = R/I$, thus $\varepsilon^*(N) = \langle n_0 \rangle$.

We now define $\phi: M \to N$ in the usual fashion. Given $m \in M$, we may choose $\alpha_m \in \operatorname{End}_R M$ with $\alpha_m(m_0) = m$. If we put $\phi(m) = \Phi(\alpha_m)(n_0)$, then ϕ is well defined, and is an *R*-homomorphism since we may take $r\alpha_{m_1} + \alpha_{m_2}$ for $\alpha_{rm_1+m_2}$. Moreover, ϕ is an isomorphism since Φ^{-1} , n_0 and m_0 can be used to construct an inverse.

Finally, if $\alpha \in \operatorname{End}_R M$, then $\Phi(\alpha)\phi(m) = \Phi(\alpha)\Phi(\alpha_m)(n_0) = \Phi(\alpha\alpha_m)(n_0) = \phi(\alpha(m))$ since $\alpha\alpha_m(m_0) = \alpha(m)$. Thus, $\Phi(\alpha) = \phi\alpha\phi^{-1}$.

To give an example of a ring in SUM, we mimic the proof that a pure cyclic *p*-subgroup of an abelian group is a direct summand.

LEMMA 2. Let R be a local ring with a maximal ideal which is principal and nilpotent. Then $R \in SUM$, thus $R \in ISO$.

Proof. Let *M* be an *R*-module. Passing to *R*/Ann_{*R*}*M*, we may assume that *M* is faithful. Let *P* = $\langle p \rangle$ be the maximal ideal of *R*. Since the result is clear for fields, we may assume that *P* ≠ 0. Thus, there exists $k \geq 2$ such that the distinct ideals of *R* are $R \supset \langle p \rangle \supset \cdots \supset \langle p^k \rangle = 0$. Since *M* is faithful, we may choose $m_0 \in M$ such that $\operatorname{Ann}_R(m_0) = 0$. It suffices to show that $\langle m_0 \rangle$ is a direct summand of *M*. Choose a submodule *N* maximal with respect to $\langle m_0 \rangle \cap N = 0$. To show that $M = \langle m_0 \rangle \oplus N$, for the sake of contradiction we may assume there exists $m \in M \setminus (\langle m_0 \rangle \oplus N)$. We may further assume that $pm \in \langle m_0 \rangle \oplus N$, say $pm = rm_0 + n$ ($r \in R, n \in N$). Then $0 = p^k m = p^{k-1} rm_0 + p^{k-1} n$, thus $p^{k-1} rm_0 = 0$ and we conclude that $r = pr_1$ for some $r_1 \in R$. Hence $p(m - r_1m_0) = n$. But $m - r_1m_0 \notin N$, thus $\langle m_0 \rangle \cap (N + \langle m - r_1m_0 \rangle) \neq 0$ by maximality, say $r_2m_0 = n_0 + r_3(m - r_1m_0) \neq 0$. We cannot have $p \mid r_3$ since $\langle m_0 \rangle \cap N = 0$. Thus r_3 is a unit, giving the contradiction $m \in \langle m_0 \rangle \oplus N$.

We take note of some relevant behavior under the formation of quotient ring. Let I be an ideal of R. Regarding (R/I)-modules as R-modules via the natural map identifies the category of (R/I)-modules with a full subcategory of the category of *R*-modules. Thus we see

LEMMA 3. In the setting just mentioned, if an (R/I)-module shows that R/I does not belong to INN or to ISO, then it has the same property for R.

By using standard results on split realization of R-algebras, we prove that any R in \mathcal{INN} must have dimension 0.

PROPOSITION 1. If R has dimension greater than 0, then there exist arbitrarily large R-modules M such that $\operatorname{End}_R M$ has outer automorphisms.

Proof. Passing to R modulo a nonmaximal prime ideal, by Lemma 3 we may assume that R is an integral domain of dimension > 0. We may choose a nonzero nonunit $p \in R$ and put $I = \bigcap_{i < \omega} p^i R$. It suffices to find arbitrarily large (R/I)-modules. It is easy to verify that the image of p in R/I is a nonunit which is not a zero divisor, thus we may assume that I = 0 and that p is a nonunit which is not a zero divisor. Put $S = \{p^i \mid i < \omega\}$. Then R is S-separable and S-torsion-free.

We may apply results of [2] or [1] to obtain an arbitrarily large R-module M with an S-torsion submodule T such that T is a direct sum of cyclic modules of form $R/\langle p^k \rangle$ for unbounded k, M is S-separable, M/T is S-divisible, and $\operatorname{End}_R M$ has the form which we now describe. The restriction of endomorphisms from M to T gives an algebra homomorphism $\operatorname{End}_R M \to \operatorname{End}_R T$ which is injective since M/T is S-divisible and M is S-separable. Regarding $\operatorname{End}_R M$ as embedded in $\operatorname{End}_R T$, if $\operatorname{Bd}(T)$ denotes the ideal in $\operatorname{End}_R T$ of S-bounded endomorphisms, then $\operatorname{End}_R M = R \oplus \operatorname{Bd}(T)$.

We claim that there exists an automorphism γ of T such that for every $k < \omega$, there exists a cyclic summand of T which is not invariant under $p^k \gamma$. Since T is unbounded, we may choose a summand of T of form $\bigoplus_{i < \omega} \langle m_i \rangle$, where $\langle m_i \rangle \cong R/\langle p^{k_i} \rangle$ $(i < \omega)$, and $\{k_i\}$ is an unbounded increasing sequence of positive integers. Then there exists an automorphism γ of T such that $\gamma(m_0) = m_0$ and $\gamma(m_i) = m_i + m_{i-1}$ for $i \geq 1$. If $k < k_{i-1}$, then $p^k \gamma$ does not map $\langle m_i \rangle$ into itself.

Now define $\Phi : \operatorname{End}_R M \to \operatorname{End}_R T$ by $\Phi(\alpha) = \gamma \alpha \gamma^{-1}$ for every $\alpha \in \operatorname{End}_R M$. Since $\operatorname{Bd}(T)$ is an ideal of $\operatorname{End}_R T$, we see that Φ is an algebra automorphism of $\operatorname{End}_R M$. To show that Φ is outer, we shall assume that Φ is conjugation by a unit $\theta \in \operatorname{End}_R M$ and derive a contradiction. The automorphism $\theta^{-1}\gamma$ must centralize $\operatorname{End}_R M$. Since $\langle m_i \rangle$ is a direct summand, $\langle m_i \rangle$ is invariant under $\theta^{-1}\gamma$ for every *i*. But $\theta^{-1} = u + \beta$ for some unit $u \in R$ and $\beta \in \operatorname{Bd}(T)$. Let *k* be such that $p^k\beta = 0$. Then $p^k\theta^{-1}\gamma = p^k u\gamma$ maps every $\langle m_i \rangle$ into itself, contrary to the choice of γ .

COROLLARY. If R belongs to INN, then R has dimension 0.

Now we show that certain local rings do not belong to \mathcal{INN} .

PROPOSITION 2. Let R be a local ring with maximal ideal P. Assume that the dimension of P/P^2 over R/P is ≥ 2 . Then there exist arbitrarily large R-modules M such that $\operatorname{End}_R M$ has outer automorphisms.

Proof. We may choose an ideal I with $P \supseteq I \supseteq P^2$ such that the dimension of P/I over R/P is 2. Thus, by Lemma 3 we may assume that $P^2 = 0$ and that P has dimension 2 over R/P. Choosing a basis $\{x, y\}$ for P, we find that x and y are annihilated by P and $P = Rx \oplus Ry$.

To begin, we shall construct a small R-module M. Let C be the cyclic submodule of $R \oplus R$ generated by (x, y) and put $M = (R \oplus R)/C$. Next, we construct an algebra of 2×2 matrices over R. Let $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ denote a generic 2×2 matrix over R. Define A to be the set of all σ such that $a - d, b, c \in P$. Then A is an R-algebra. Let J consist of all σ such that $a, b, c, d \in P$. Then J is an ideal of A such that A = R + J. Moreover, A is commutative since $J^2 = 0$. Regarding $R \oplus R$ as a left module over the R-algebra A, we see that C is an A-submodule since JC = 0, hence we obtain an R-algebra homomorphism $\Psi : A \to \operatorname{End}_R M$.

We claim that Ψ is onto. Any element of $\operatorname{End}_R M$ is induced by a matrix σ acting on $R \oplus R$ and mapping C into itself. Consequently, there exists $r \in R$ such that ax + by = rx and cx + dy = ry. Thus $a - r, b, c, d - r \in P$, and hence $\sigma \in A$. Since Ψ is onto, $\operatorname{End}_R M$ is commutative, so any nontrivial algebra automorphism that we construct will be outer, as desired. Let K denote the kernel of Ψ . Since A = R + J and $J^2 = 0$, any R-module automorphism $\Phi : A \to A$ which is the identity on R and satisfies $\Phi(J) \subseteq J$ will be an R-algebra automorphism of A. If, in addition, $\Phi(K) = K$, then Φ will induce an R-algebra automorphism of $\operatorname{End}_R M$.

Before defining Φ , we compute K. Clearly, $\sigma \in K$ if and only if $\sigma(R \oplus R) \subseteq C$, thus $\sigma = \begin{pmatrix} ux & vx \\ uy & vy \end{pmatrix}$, $(u, v \in R)$. To define Φ on A, the entries b and c of σ may be written as b = vx + sy, c = tx + uy. Now put

$$\Phi\left(\begin{array}{cc}a & vx+sy\\tx+uy & d\end{array}\right) = \left(\begin{array}{cc}a & vx+ty\\sx+uy & d\end{array}\right).$$

Then Φ is an *R*-module automorphism of *A* which is the identity on *R* and *K*, and maps *J* into itself. The algebra automorphism induced on $\operatorname{End}_R M$ is not the identity since if σ is given by a = c = d = 0, b = y, then $\Phi(\sigma) - \sigma \notin K$.

To obtain arbitrarily large modules, let λ be a cardinal number and put $N = \bigoplus_{i < \lambda} M$. Since M is finitely generated, $\operatorname{End}_R N$ can be identified with the column-finite matrices (α_{ij}) $(i, j < \lambda, \alpha_{ij} \in \operatorname{End}_R M)$. If ϕ denotes the outer automorphism of $\operatorname{End}_R M$ that we have just obtained, then $(\alpha_{ij}) \mapsto (\phi(\alpha_{ij}))$ is an algebra automorphism of $\operatorname{End}_R N$. Suppose that it is inner, say $(\beta_{ij}) \in \operatorname{End}_R N$ is a unit such that $(\beta_{ij})(\alpha_{ij}) = (\phi(\alpha_{ij}))(\beta_{ij})$ for all (α_{ij}) . Taking (α_{ij}) with all zero entries except for a single off-diagonal entry of 1,

we see that (β_{ij}) must commute with all such (α_{ij}) , hence must be diagonal. Therefore β_{00} is a unit, giving the contradiction $\beta_{00}\alpha_{00} = \phi(\alpha_{00})\beta_{00}$.

The case for noetherian R can now be settled.

THEOREM. Let R be noetherian. Then membership in the classes SUM, ISO and INN are all equivalent. This occurs if and only if $R \cong R_1 \times \cdots$ $\cdots \times R_m$ for some m, where each R_i is a local ring with a principal nilpotent maximal ideal; equivalently, R is a principal ideal ring of dimension 0. If $R \notin INN$, then there exist arbitrarily large R-modules M such that $End_R M$ has outer automorphisms.

Proof. Assume R is noetherian. If dim R > 0, then Proposition 1 implies that $R \notin INN$, and there exist arbitrarily large M such that $\operatorname{End}_R M$ has outer automorphisms. Now assume dim R = 0. Then $R \cong R_1 \times \cdots \times R_m$, where each R_i is indecomposable and of dimension 0, hence each R_i is local with finitely generated nilpotent maximal ideal. If R is not a principal ideal ring, then some R_i is not, hence by Proposition 2 and Lemma 3, $R \notin INN$ and there exist arbitrarily large M such that $\operatorname{End}_R M$ has outer automorphisms. If R is a principal ideal ring, then so is each R_i , and Lemma 2 implies that each $R_i \in SUM$, thus clearly $R \in SUM$, therefore $R \in INN$.

As mentioned at the beginning, we do not know an example of a nonnoetherian ring R belonging to \mathcal{INN} ; if such exists, it must of course have dimension 0. We can say something about \mathcal{SUM} and \mathcal{ISO} . The case of the class \mathcal{SUM} is easily taken care of.

PROPOSITION 3. If $R \in SUM$, then R is noetherian and thus described by the Theorem.

Proof. If R is not noetherian, then there exists a strictly descending chain $I_0 \supset I_1 \supset \cdots$ of ideals. Put $M = \bigoplus_{i < \omega} R/I_i$. Then $\operatorname{Ann}_R M = \bigcap_{i < \omega} I_i$, while for every $x \in M$, $\operatorname{Ann}_R(x) \supseteq I_k$ for some k, thus $\operatorname{Ann}_R M \neq \operatorname{Ann}_R(x)$.

Motivated by the result for the noetherian case, a reasonable nonnoetherian ring to consider might be a local ring of dimension 0 in which every finitely generated ideal is principal, in particular, a dimension 0 valuation ring. In the final proposition, we consider this for the class \mathcal{ISO} , and also the case of a direct product of infinitely many fields.

PROPOSITION 4.

- (1) Let $R = \prod_{i \in I} F_i$ be a direct product of an infinite family of fields F_i . Then $R \notin ISO$.
- (2) Let R be a nonnoetherian valuation ring. Then $R \notin ISO$.

Proof. (1) Let N be the ideal $\bigoplus_{i \in I} F_i$ in R. The natural map $R \to \operatorname{End}_R N$ is injective. It is surjective since $\operatorname{End}_R N = \prod_{i \in I} \operatorname{End}_{F_i} F_i$, hence $\operatorname{End}_R R \cong \operatorname{End}_R N$. Clearly R and N are not isomorphic since N is not cyclic.

(2) Let R be a nonnoetherian valuation ring with maximal ideal P. By Proposition 2, we may assume that the dimension of P/P^2 over R/P is < 2. If the dimension is 1, then modulo an appropriate principal ideal, and taking Lemma 3 into account, we may assume that $P = P^2$, and that $P \neq 0$ since R is nonnoetherian. Moreover, we claim we may assume that P is a faithful ideal. Let $I = \operatorname{Ann}_R P$ and put $\overline{R} = R/I$ and $\overline{P} = P/I$. If $x \in R$ is such that $\overline{x}\overline{P} = 0$, then $xP \subseteq I$, hence $xP = xP^2 = 0$. Thus $\overline{x} = 0$, and we see that \overline{P} is faithful for \overline{R} . By Lemma 3, we may thus assume that $P = P^2$ is faithful. By the Corollary to Proposition 1, we may assume that R has dimension 0.

One could fashion a proof utilizing Proposition I.4.11 of [3], but for our special case a direct and self-contained argument may be desirable. The principal ideals of R are linearly ordered, therefore so is $\{\operatorname{Ann}_R(x) \mid x \in P\}$, which defines a topology on R. To see this topology is Hausdorff, note that if $x \neq 0$, then $xP \neq 0$, hence there exists $y \in P$ such that $xy \neq 0$. Thus $x \notin \operatorname{Ann}_R(y)$. Now let \widehat{R} be the completion of R in this topology, regarded as the inverse limit $\widehat{R} = \varprojlim(R/\operatorname{Ann}_R(x))$ taken over all $x \in P$. Then R embeds naturally as a subring of \widehat{R} .

We claim that $\operatorname{End}_R P \cong \widehat{R}$. First we show that if $\alpha \in \operatorname{End}_R P$, then $\alpha(x) \in \langle x \rangle$ for every $x \in P$. If not, then for some $x \neq 0$ and some $p \in P$ we have $x = p\alpha(x)$ since R is a valuation ring. Thus, $x = p^k \alpha^k(x)$ for all $k \geq 1$. But P is a nil ideal, hence $p^k = 0$ for some k, giving the contradiction x = 0. Consequently, each $\alpha \in \operatorname{End}_R P$ maps each cyclic submodule $\langle x \rangle$ into itself, hence is equivalent to a coherent family of endomorphisms on each $\langle x \rangle$. Since $\operatorname{End}_R \langle x \rangle$ is naturally isomorphic to $R/\operatorname{Ann}_R(x)$, we obtain \widehat{R} as $\operatorname{End}_R P$.

Next we show that every *R*-endomorphism of \widehat{R} is an \widehat{R} -endomorphism. Since *R* is dense in \widehat{R} , it will suffice to show that every *R*-endomorphism of \widehat{R} is continuous. For this, it is enough to show that the topology on \widehat{R} is given by $\{\operatorname{Ann}_{\widehat{R}}(x) \mid x \in P\}$ since $\operatorname{Ann}_{\widehat{R}}(x)$ is invariant under *R*-endomorphisms. Regarding \widehat{R} as a submodule of $\prod_{y \in P} R/\operatorname{Ann}_R(y)$, an element $\widehat{r} \in \widehat{R}$ has form $\widehat{r} = (r_y + \operatorname{Ann}_R(y))_{y \in P}$ such that for all $\langle y \rangle \subseteq \langle z \rangle \subseteq P$, we have $r_y - r_z \in \operatorname{Ann}_R(y)$. Note that if $x, y \in P$, then regardless of containment of the principal ideals, we have $(r_x - r_y)xy = 0$, thus $r_xxy = r_yxy$. Fix $x \in P$ and let $\widehat{r} \in \widehat{R}$. Then $\widehat{r}x = 0 \Leftrightarrow r_yx \in \operatorname{Ann}_R(y)$ for all $y \in P \Leftrightarrow r_yxy = 0 \Leftrightarrow r_xxy = 0 \Leftrightarrow r_xxP = 0 \Leftrightarrow r_xx = 0$ since *P* is faithful $\Leftrightarrow r_x \in \operatorname{Ann}_R(x)$. This last condition is that \widehat{r} belongs to the kernel of the projection of \widehat{R} to $R/\operatorname{Ann}_R(x)$, thus the topologies agree. We conclude that $\operatorname{End}_R \widehat{R} = \operatorname{End}_{\widehat{R}} \widehat{R} = \widehat{R} \cong \operatorname{End}_R P$. But \widehat{R} is not isomorphic to P since $\widehat{R} \neq P\widehat{R}$, while $P = P^2$. Therefore, R is not in \mathcal{ISO} .

REFERENCES

- A. L. S. Corner and R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3) 50 (1985), 447–479.
- [2] M. Dugas, On the existence of large mixed modules, in: Abelian Group Theory (Honolulu, 1983), Lecture Notes in Math. 1006, Springer, Berlin, 1983, 412–424.
- [3] L. Fuchs and L. Salce, Modules over Valuation Domains, Dekker, New York, 1985.
- [4] I. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, MI, 1954.
- W. May, Isomorphism of endomorphism algebras over complete discrete valuation rings, Math. Z. 204 (1990), 485–499.
- [6] —, The theorem of Baer and Kaplansky for mixed modules, J. Algebra 177 (1995), 255–263.

Department of Mathematics University of Arizona Tucson, AZ 85721, U.S.A. E-mail: may@math.arizona.edu

Received 7 November 2005

(4692)