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OUTER AUTOMORPHISMS OF ENDOMORPHISM ALGEBRAS

BY

WARREN MAY (Tucson, AZ)

Abstract. Commutative rings over which no endomorphism algebra has an outer
automorphism are studied.

Let R always denote a nontrivial commutative ring with identity. If R
is a field, then it is well known that the endomorphism algebra of any vec-
tor space over R has only inner automorphisms. Is it reasonable to expect
that this, with minor variations, is the only such occurrence of this prop-
erty? More precisely, what are the commutative rings R such that for every
R-module M , the endomorphism algebra EndR M has no outer automor-
phisms?

Let INN denote the class of all such R. Thus R ∈ INN if and only if for
every R-module M , EndR M has only inner automorphisms. In this paper,
we shall see that the noetherian rings R which belong to INN are precisely
the principal ideal rings of dimension 0, and that no ring of dimension > 0
belongs to INN . Moreover, whenever we establish that a ring R does not
belong to INN , then we shall see that there exist arbitrarily large modules
M for which EndR M has outer automorphisms. However, we cannot give a
complete description of INN ; it remains a question whether or not there is
any nonnoetherian ring R belonging to INN . For results when only certain
modules are considered, see the discussions for complete discrete valuation
rings in [5, 6].

It will be useful to consider two subclasses of INN . Let ISO consist
of all R such that every isomorphism of the endomorphism algebras of two
R-modules must be induced by an isomorphism of the modules. Clearly
ISO is a subclass of INN . The relationship of the second class to INN
will not be so apparent. Let SUM be the class of all R such that for every
R-module M , there exists x ∈M such that the cyclic submodule generated
by x is a direct summand of M , and such that the annihilators AnnR(x)
and AnnR M are equal. To see that SUM is a subclass of ISO, one can
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easily adapt part of Kaplansky’s arguments in [4, Theorem 28] applying to
bounded modules. We sketch this in a lemma.

Lemma 1. SUM is contained in ISO.

Proof. Let R ∈ SUM, let M and N be two R-modules, and let Φ :
EndR M → EndR N be an algebra isomorphism. Let I denote the common
annihilator I = AnnR M = AnnR N . Choose m0 ∈ M and an idempotent
ε ∈ EndR M such that AnnR(m0) = I and ε(M) = 〈m0〉. Put ε∗ = Φ(ε).
Then ε∗(N) is a direct summand of N with annihilator I. By our assumption
on R, we see that ε∗(N) has a cyclic summand 〈n0〉 with annihilator I. But if
〈n0〉 had a nonzero complement in ε∗(N), then there would be a nonzero map
of 〈n0〉 into that complement, hence EndR ε∗(N) would be noncommutative.
This is contrary to EndR ε∗(N) ∼= EndR ε(M) = R/I, thus ε∗(N) = 〈n0〉.

We now define φ : M → N in the usual fashion. Given m ∈M , we may
choose αm ∈ EndR M with αm(m0) = m. If we put φ(m) = Φ(αm)(n0), then
φ is well defined, and is an R-homomorphism since we may take rαm1

+αm2

for αrm1+m2
. Moreover, φ is an isomorphism since Φ−1, n0 and m0 can be

used to construct an inverse.

Finally, if α∈EndR M , then Φ(α)φ(m) = Φ(α)Φ(αm)(n0) = Φ(ααm)(n0)
= φ(α(m)) since ααm(m0) = α(m). Thus, Φ(α) = φαφ−1.

To give an example of a ring in SUM, we mimic the proof that a pure
cyclic p-subgroup of an abelian group is a direct summand.

Lemma 2. Let R be a local ring with a maximal ideal which is principal

and nilpotent. Then R ∈ SUM, thus R ∈ ISO.

Proof. Let M be an R-module. Passing to R/AnnR M , we may assume
that M is faithful. Let P = 〈p〉 be the maximal ideal of R. Since the result
is clear for fields, we may assume that P 6= 0. Thus, there exists k ≥ 2
such that the distinct ideals of R are R ⊃ 〈p〉 ⊃ · · · ⊃ 〈pk〉 = 0. Since M
is faithful, we may choose m0 ∈ M such that AnnR(m0) = 0. It suffices to
show that 〈m0〉 is a direct summand of M . Choose a submodule N maximal
with respect to 〈m0〉 ∩ N = 0. To show that M = 〈m0〉 ⊕ N , for the sake
of contradiction we may assume there exists m ∈M \ (〈m0〉 ⊕N). We may
further assume that pm ∈ 〈m0〉 ⊕ N , say pm = rm0 + n (r ∈ R, n ∈ N).
Then 0 = pkm = pk−1rm0 +pk−1n, thus pk−1rm0 = 0 and we conclude that
r = pr1 for some r1 ∈ R. Hence p(m− r1m0) = n. But m− r1m0 /∈ N , thus
〈m0〉∩ (N + 〈m− r1m0〉) 6= 0 by maximality, say r2m0 = n0 + r3(m− r1m0)
6= 0. We cannot have p | r3 since 〈m0〉 ∩N = 0. Thus r3 is a unit, giving the
contradiction m ∈ 〈m0〉 ⊕N .

We take note of some relevant behavior under the formation of quotient
ring. Let I be an ideal of R. Regarding (R/I)-modules as R-modules via the
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natural map identifies the category of (R/I)-modules with a full subcategory
of the category of R-modules. Thus we see

Lemma 3. In the setting just mentioned , if an (R/I)-module shows that

R/I does not belong to INN or to ISO, then it has the same property for R.

By using standard results on split realization of R-algebras, we prove
that any R in INN must have dimension 0.

Proposition 1. If R has dimension greater than 0, then there exist

arbitrarily large R-modules M such that EndR M has outer automorphisms.

Proof. Passing to R modulo a nonmaximal prime ideal, by Lemma 3
we may assume that R is an integral domain of dimension > 0. We may
choose a nonzero nonunit p ∈ R and put I =

⋂
i<ω piR. It suffices to find

arbitrarily large (R/I)-modules. It is easy to verify that the image of p in
R/I is a nonunit which is not a zero divisor, thus we may assume that I = 0
and that p is a nonunit which is not a zero divisor. Put S = {pi | i < ω}.
Then R is S-separable and S-torsion-free.

We may apply results of [2] or [1] to obtain an arbitrarily large R-module
M with an S-torsion submodule T such that T is a direct sum of cyclic
modules of form R/〈pk〉 for unbounded k, M is S-separable, M/T is S-
divisible, and EndR M has the form which we now describe. The restriction
of endomorphisms from M to T gives an algebra homomorphism EndR M →
EndR T which is injective since M/T is S-divisible and M is S-separable.
Regarding EndR M as embedded in EndR T , if Bd(T ) denotes the ideal in
EndR T of S-bounded endomorphisms, then EndR M = R⊕ Bd(T ).

We claim that there exists an automorphism γ of T such that for every
k < ω, there exists a cyclic summand of T which is not invariant under pkγ.
Since T is unbounded, we may choose a summand of T of form

⊕
i<ω〈mi〉,

where 〈mi〉 ∼= R/〈pki〉 (i < ω), and {ki} is an unbounded increasing sequence
of positive integers. Then there exists an automorphism γ of T such that
γ(m0) = m0 and γ(mi) = mi + mi−1 for i ≥ 1. If k < ki−1, then pkγ does
not map 〈mi〉 into itself.

Now define Φ : EndR M → EndR T by Φ(α) = γαγ−1 for every α ∈
EndR M . Since Bd(T ) is an ideal of EndR T , we see that Φ is an algebra
automorphism of EndR M . To show that Φ is outer, we shall assume that Φ
is conjugation by a unit θ ∈ EndR M and derive a contradiction. The auto-
morphism θ−1γ must centralize EndR M . Since 〈mi〉 is a direct summand,
〈mi〉 is invariant under θ−1γ for every i. But θ−1 = u + β for some unit
u ∈ R and β ∈ Bd(T ). Let k be such that pkβ = 0. Then pkθ−1γ = pkuγ
maps every 〈mi〉 into itself, contrary to the choice of γ.

Corollary. If R belongs to INN , then R has dimension 0.

Now we show that certain local rings do not belong to INN .
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Proposition 2. Let R be a local ring with maximal ideal P . Assume

that the dimension of P/P 2 over R/P is ≥ 2. Then there exist arbitrarily

large R-modules M such that EndR M has outer automorphisms.

Proof. We may choose an ideal I with P ⊇ I ⊇ P 2 such that the dimen-
sion of P/I over R/P is 2. Thus, by Lemma 3 we may assume that P 2 = 0
and that P has dimension 2 over R/P . Choosing a basis {x, y} for P , we
find that x and y are annihilated by P and P = Rx⊕Ry.

To begin, we shall construct a small R-module M . Let C be the cyclic
submodule of R⊕R generated by (x, y) and put M = (R⊕R)/C. Next, we
construct an algebra of 2×2 matrices over R. Let σ =

(
a b
c d

)
denote a generic

2× 2 matrix over R. Define A to be the set of all σ such that a− d, b, c ∈ P .
Then A is an R-algebra. Let J consist of all σ such that a, b, c, d ∈ P . Then
J is an ideal of A such that A = R + J . Moreover, A is commutative since
J2 = 0. Regarding R ⊕ R as a left module over the R-algebra A, we see
that C is an A-submodule since JC = 0, hence we obtain an R-algebra
homomorphism Ψ : A→ EndR M .

We claim that Ψ is onto. Any element of EndR M is induced by a matrix
σ acting on R⊕R and mapping C into itself. Consequently, there exists r ∈ R
such that ax+by = rx and cx+dy = ry. Thus a−r, b, c, d−r ∈ P , and hence
σ ∈ A. Since Ψ is onto, EndR M is commutative, so any nontrivial algebra
automorphism that we construct will be outer, as desired. Let K denote the
kernel of Ψ . Since A = R + J and J2 = 0, any R-module automorphism
Φ : A → A which is the identity on R and satisfies Φ(J) ⊆ J will be an
R-algebra automorphism of A. If, in addition, Φ(K) = K, then Φ will induce
an R-algebra automorphism of EndR M .

Before defining Φ, we compute K. Clearly, σ ∈ K if and only if σ(R⊕R)
⊆ C, thus σ =

(
ux vx
uy vy

)
, (u, v ∈ R). To define Φ on A, the entries b and c of

σ may be written as b = vx + sy, c = tx + uy. Now put

Φ

(
a vx + sy

tx + uy d

)
=

(
a vx + ty

sx + uy d

)
.

Then Φ is an R-module automorphism of A which is the identity on R and K,
and maps J into itself. The algebra automorphism induced on EndR M is not
the identity since if σ is given by a = c = d = 0, b = y, then Φ(σ)− σ /∈ K.

To obtain arbitrarily large modules, let λ be a cardinal number and put
N =

⊕
i<λ M . Since M is finitely generated, EndR N can be identified with

the column-finite matrices (αij) (i, j < λ, αij ∈ EndR M). If φ denotes the
outer automorphism of EndR M that we have just obtained, then (αij) 7→
(φ(αij)) is an algebra automorphism of EndR N . Suppose that it is inner,
say (βij) ∈ EndR N is a unit such that (βij)(αij) = (φ(αij))(βij) for all (αij).
Taking (αij) with all zero entries except for a single off-diagonal entry of 1,
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we see that (βij) must commute with all such (αij), hence must be diagonal.
Therefore β00 is a unit, giving the contradiction β00α00 = φ(α00)β00.

The case for noetherian R can now be settled.

Theorem. Let R be noetherian. Then membership in the classes SUM,
ISO and INN are all equivalent. This occurs if and only if R ∼= R1 × · · ·
· · ·×Rm for some m, where each Ri is a local ring with a principal nilpotent

maximal ideal ; equivalently , R is a principal ideal ring of dimension 0. If

R /∈ INN , then there exist arbitrarily large R-modules M such that EndR M
has outer automorphisms.

Proof. Assume R is noetherian. If dimR > 0, then Proposition 1 implies
that R /∈ INN , and there exist arbitrarily large M such that EndR M has
outer automorphisms. Now assume dimR = 0. Then R ∼= R1 × · · · × Rm,
where each Ri is indecomposable and of dimension 0, hence each Ri is local
with finitely generated nilpotent maximal ideal. If R is not a principal ideal
ring, then some Ri is not, hence by Proposition 2 and Lemma 3, R /∈ INN
and there exist arbitrarily large M such that EndR M has outer automor-
phisms. If R is a principal ideal ring, then so is each Ri, and Lemma 2
implies that each Ri ∈ SUM, thus clearly R ∈ SUM, therefore R ∈ INN .

As mentioned at the beginning, we do not know an example of a non-
noetherian ring R belonging to INN ; if such exists, it must of course have
dimension 0. We can say something about SUM and ISO. The case of the
class SUM is easily taken care of.

Proposition 3. If R ∈ SUM, then R is noetherian and thus described

by the Theorem.

Proof. If R is not noetherian, then there exists a strictly descending
chain I0 ⊃ I1 ⊃ · · · of ideals. Put M =

⊕
i<ω R/Ii. Then AnnR M =⋂

i<ω Ii, while for every x ∈M , AnnR(x) ⊇ Ik for some k, thus AnnR M 6=
AnnR(x).

Motivated by the result for the noetherian case, a reasonable nonnoethe-
rian ring to consider might be a local ring of dimension 0 in which every
finitely generated ideal is principal, in particular, a dimension 0 valuation
ring. In the final proposition, we consider this for the class ISO, and also
the case of a direct product of infinitely many fields.

Proposition 4.

(1) Let R =
∏

i∈I Fi be a direct product of an infinite family of fields Fi.

Then R /∈ ISO.

(2) Let R be a nonnoetherian valuation ring. Then R /∈ ISO.
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Proof. (1) Let N be the ideal
⊕

i∈I Fi in R. The natural map R →
EndR N is injective. It is surjective since EndR N =

∏
i∈I EndFi

Fi, hence
EndR R ∼= EndR N . Clearly R and N are not isomorphic since N is not
cyclic.

(2) Let R be a nonnoetherian valuation ring with maximal ideal P . By
Proposition 2, we may assume that the dimension of P/P 2 over R/P is < 2.
If the dimension is 1, then modulo an appropriate principal ideal, and taking
Lemma 3 into account, we may assume that P = P 2, and that P 6= 0 since
R is nonnoetherian. Moreover, we claim we may assume that P is a faithful
ideal. Let I = AnnR P and put R = R/I and P = P/I. If x ∈ R is such that
xP = 0, then xP ⊆ I, hence xP = xP 2 = 0. Thus x = 0, and we see that P
is faithful for R. By Lemma 3, we may thus assume that P = P 2 is faithful.
By the Corollary to Proposition 1, we may assume that R has dimension 0.

One could fashion a proof utilizing Proposition I.4.11 of [3], but for our
special case a direct and self-contained argument may be desirable. The
principal ideals of R are linearly ordered, therefore so is {AnnR(x) | x ∈ P},
which defines a topology on R. To see this topology is Hausdorff, note that
if x 6= 0, then xP 6= 0, hence there exists y ∈ P such that xy 6= 0. Thus
x /∈ AnnR(y). Now let R̂ be the completion of R in this topology, regarded

as the inverse limit R̂ = lim←−(R/AnnR(x)) taken over all x ∈ P . Then R

embeds naturally as a subring of R̂.

We claim that EndR P ∼= R̂. First we show that if α ∈ EndR P , then
α(x) ∈ 〈x〉 for every x ∈ P . If not, then for some x 6= 0 and some p ∈ P
we have x = pα(x) since R is a valuation ring. Thus, x = pkαk(x) for all
k ≥ 1. But P is a nil ideal, hence pk = 0 for some k, giving the contradiction
x = 0. Consequently, each α ∈ EndR P maps each cyclic submodule 〈x〉
into itself, hence is equivalent to a coherent family of endomorphisms on
each 〈x〉. Since EndR〈x〉 is naturally isomorphic to R/AnnR(x), we obtain

R̂ as EndR P .

Next we show that every R-endomorphism of R̂ is an R̂-endomorphism.
Since R is dense in R̂, it will suffice to show that every R-endomorphism of R̂
is continuous. For this, it is enough to show that the topology on R̂ is given
by {Ann

R̂
(x) | x ∈ P} since Ann

R̂
(x) is invariant under R-endomorphisms.

Regarding R̂ as a submodule of
∏

y∈P R/AnnR(y), an element r̂ ∈ R̂ has
form r̂ = (ry + AnnR(y))y∈P such that for all 〈y〉 ⊆ 〈z〉 ⊆ P , we have
ry − rz ∈ AnnR(y). Note that if x, y ∈ P , then regardless of containment
of the principal ideals, we have (rx − ry)xy = 0, thus rxxy = ryxy. Fix

x ∈ P and let r̂ ∈ R̂. Then r̂x = 0 ⇔ ryx ∈ AnnR(y) for all y ∈ P ⇔
ryxy = 0 ⇔ rxxy = 0 ⇔ rxxP = 0 ⇔ rxx = 0 since P is faithful ⇔ rx ∈
AnnR(x). This last condition is that r̂ belongs to the kernel of the projection

of R̂ to R/AnnR(x), thus the topologies agree.
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We conclude that EndR R̂ = End
R̂

R̂ = R̂ ∼= EndR P . But R̂ is not iso-

morphic to P since R̂ 6= PR̂, while P = P 2. Therefore, R is not in ISO.
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