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Abstract. We investigate compact operators between approximation spaces, paying
special attention to the limit case. Applications are given to embeddings between Besov
spaces.

1. Introduction. The theory of approximation spaces is a useful and
flexible tool which allows one to study not only problems in function spaces,
but also in spaces of operators and sequence spaces. For the classical theory
see, for example, the papers by Butzer and Scherer [5] and Pietsch [21], and
the books by Peetre [18], Triebel [24], Petrushev and Popov [20] and DeVore
and Lorentz [12]; while for the limiting theory see the papers by Cobos
and Resina [11], Cobos and Milman [9], Fehér and Grässler [14] and the
references cited there. Given a quasi-Banach space X and scalar parameters
0 < α < ∞, 0 < p, q ≤ ∞ and γ ∈ R, the classical theory deals with

spaces Xα
p , and the limiting theory with X

(0,γ)
q (see Section 2 for definitions

of approximation spaces).
Outstanding examples of spaces Xα

p are Besov spaces Bs
p,q, Lorentz se-

quence spaces `p,q and the spaces of operators L
(a)
p,q(E,F ) consisting of all

bounded linear operators between the Banach spaces E and F whose ap-

proximation numbers belong to `p,q. Examples of X
(0,γ)
q spaces are the Besov

spaces B0,γ
p,q with smoothness close to zero and the Lorentz–Zygmund oper-

ator spaces L
(a)
∞,q,γ(E,F ).

The study of compact operators is a natural question in this setting,
which was considered by Fugarolas [15] and Almira and Luther [1]. Results
of [15] characterize compact subsets of Xα

p for p < ∞, while results of [1]
refer to compact operators but just in the setting of Banach spaces, i.e. when
X is a Banach space and 1 ≤ p ≤ ∞.

Here we continue these investigations, focusing our attention mainly on
limiting approximation spaces. This is done in Section 3. Then, in Section 4,
we give applications of our results to embeddings between Besov spaces.
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2. Preliminaries. In what follows, (X, ‖·‖X) stands for a quasi-Banach
space. By an approximation family in X we mean a sequence (Gn)n∈N0 of
subsets of X satisfying the following conditions:

G0 = {0} and λGn ⊆ Gn for any scalar λ and n ∈ N,(2.1)

Gn ⊆ Gn+1 for any n ∈ N0 = N ∪ {0},(2.2)

Gn +Gm ⊆ Gn+m for any n,m ∈ N.(2.3)

For f ∈ X, we set

En(f) = En(f ;X) = inf{‖f − g‖X : g ∈ Gn−1}, n ∈ N.

Let α > 0 and 0 < p ≤ ∞. The (classical) approximation space Xα
p

consists of all f ∈ X which have a finite quasi-norm

‖f‖Xα
p

=
( ∞∑
n=1

(nαEn(f))p n−1
)1/p

(the sum should be replaced by a supremum if p = ∞). We refer to [21],
[20] and [12] for a general theory of these spaces.

Let 0 < q ≤ ∞ and γ ∈ R. The limiting approximation space X
(0,γ)
q is

formed by all those f ∈ X having a finite quasi-norm

‖f‖
X

(0,γ)
q

=
( ∞∑
n=1

(
(1 + log n)γEn(f)

)q
n−1

)1/q
(see [9] and [14]).

The spaces Xα
p and X

(0,γ)
q are complete. Moreover, it is not hard to check

that

(2.4) Xα
p ↪→ X(0,γ)

q for 0 < α <∞, 0 < p, q ≤ ∞, γ ∈ R,

where ↪→ means continuous embedding. Note that if γ < −1/q, then X
(0,γ)
q

= X. So the only case of interest for the limiting spaces is γ ≥ −1/q.

It is shown in [11] that, even when γ = 0, the theory of spaces X
(0,0)
q

does not follow by taking α = 0 in the theory of classical approximation
spaces.

Next we recall some important examples. Let X = Lp([0, 2π]) be the
Lebesgue space of periodic measurable functions, and let Gn be the set of
all trigonometric polynomials of degree less than or equal to n. Then Xα

q

coincides with the Besov space Bα
p,q (see [23]) and X

(0,γ)
q is the Besov space

of logarithmic smoothness B0,γ
p,q (see [13]).

Let X = `∞ be the space of bounded sequences, and let Gn be the subset
of sequences having at most n coordinates different from 0. It turns out that
(En(x; `∞)) is the non-increasing rearrangement of the sequence x. Hence
Xα
q coincides with the Lorentz sequence space `1/α,q (see [21]).
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If X = L(E,F ) is the Banach space of all bounded linear operators be-
tween the Banach spaces E and F , and we take Gn as the subset of operators
R ∈ L(E,F ) such that rank(R) ≤ n, then the sequence (En(T ;L(E,F )))
coincides with the sequence (an(T )) of the approximation numbers of T .

Thus Xα
q is the space L

(a)
1/α,q(E,F ) of all operators T ∈ L(E,F ) such that

(an(T )) ∈ `1/α,q (see [21]). The space X
(0,γ)
q coincides with the Lorentz–

Zygmund operator space

L(a)
∞,q,γ(E,F ) =

{
T ∈ L(E,F ) :

( ∞∑
n=1

(
(1 + log n)γan(T )

)q
n−1

)1/q
<∞

}
(see [7] and [11]).

3. Compact operators. We start with a consequence of the interpo-
lation properties of approximation spaces.

Theorem 3.1. Let X, Y be quasi-Banach spaces and let (Gn)n∈N0,
(Fn)n∈N0 be approximation families in X and Y , respectively. Suppose that
0 < α < ∞, 0 < q ≤ ∞ and γ > −1/q. Let T ∈ L(X,Y ) be such that for
some c > 0 we have

(3.1) T (Gn) ⊆ Fm whenever m ≥ cn.

If T : X → Y is compact, then the restrictions

T : X(0,γ)
q → Y (0,γ)

q and T : Xα
q → Y α

q

are also compact.

Proof. Let 0 < p ≤ ∞ and δ > −1/p, such that δ + 1/p > γ + 1/q. Set
θ = (γ + 1/q)/(δ + 1/p). It follows from [14, Theorem 4] that

(3.2) (X,X(0,δ)
p )θ,q = X(0,γ)

q .

On the other hand,

(3.3) (X,X2α
q )1/2 ,q = Xα

q

(see [19]).

Assumption (3.1) implies that for any f ∈ X,

Em(Tf ;Y ) ≤ ‖T‖X,Y En(f ;X)

whenever c(n− 1) + 1 ≤ m < cn+ 1, n = 1, 2, . . .

(see [21, Theorem 3.3]). Hence the restrictions

T : X(0,δ)
p → Y (0,δ)

p and T : X2α
q → Y 2α

q

are bounded. Now, using the compactness theorem for the real method in
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the quasi-Banach case (see [10, Theorem 3.1]), we derive that

T : X(0,γ)
q → Y (0,γ)

q and T : Xα
q → Y α

q

are compact.

Remark 3.2. Theorem 3.1 was established by Almira and Luther [1,
Corollary 7.5] in the particular case where q ≥ 1, and X, Y are Banach
spaces and the approximation families (Gn)n∈N0 , (Fn)n∈N0 are formed by
finite-dimensional subspaces.

The following result requires another type of assumptions. We set

µn = 22
n
, n = 0, 1, 2, . . . ,

and, as usual, UX stands for the closed unit ball of X.

Theorem 3.3. Let X, Y be quasi-Banach spaces and let (Gn)n∈N0 be an
approximation family in X. Let 0 < q ≤ ∞, γ > −1/q and let T ∈ L(X,Y ).

Then a necessary and sufficient condition for T : X
(0,γ)
q → Y to be compact

is that T (Gn ∩ UX) is precompact in Y for any n ∈ N.

Proof. Set

rn =
( n∑
k=1

(1 + log k)γqk−1
)1/q

, n ∈ N.

If f ∈ Gn ∩ UX , we have

‖f‖
X

(0,γ)
q

=
( n∑
k=1

(
(1 + log k)γEk(f)

)q
k−1

)1/q
≤
( n∑
k=1

(1 + log k)γq k−1
)1/q

= rn.

So Gn ∩ UX is bounded in X
(0,γ)
q . If T : X

(0,γ)
q → Y is compact, it follows

that T (Gn ∩ UX) is precompact in Y for any n ∈ N.
In order to show that the condition is sufficient, we recall that without

loss of generality we may assume that X and Y are ρ-normed for some
0 < ρ < q (see [4, Lemma 3.10.1]). Let 1/r = 1/ρ − 1/q. We shall also use

the following representation (see [11] and [14]): The space X
(0,γ)
q is formed

by all f ∈ X such that there is a representation f =
∑∞

n=0 gn (convergence
in X) with gn ∈ Gµn and( ∞∑

n=0

(
2n(γ+1/q)‖gn‖X

)q)1/q
<∞.

Furthermore,

(3.4) ‖f‖(0,γ),q = inf
{( ∞∑

n=0

(
2n(γ+1/q)‖gn‖X

)q)1/q
: f =

∞∑
n=0

gn, gn ∈ Gµn
}
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defines an equivalent quasi-norm to ‖ ·‖
X

(0,γ)
q

. We shall work with the quasi-
norm ‖ · ‖(0,γ),q.

Take any ε > 0. Since γ + 1/q > 0, there is N ∈ N such that

(3.5)
(∑
n>N

2−n(γ+1/q)r
)1/r

≤ ε

22+1/ρ‖T‖X,Y
.

Let ε0, . . . , εN be positive numbers such that (
∑N

n=0 ε
ρ
n)1/ρ = ε/21+1/ρ. By

the assumption on T , for any n = 0, 1, . . . , N , there is a finite set Vn ⊆ Y
such that

(3.6) T (Gµn ∩ 21−n(γ+1/q)UX) ⊆
⋃
v∈Vn

{v + εnUY }.

Put

W =
{ N∑
n=0

vn : vn ∈ Vn, 0 ≤ n ≤ N
}
.

It is clear that W is finite. Let us check that W is an ε-net of T (U
X

(0,γ)
q

)

in Y .

Given any f ∈ U
X

(0,γ)
q

, we can find a representation f =
∑∞

n=0 gn with
gn ∈ Gµn and ( ∞∑

n=0

(
2n(γ+1/q)‖gn‖X

)q)1/q ≤ 2.

Thus ‖gn‖X ≤ 21−n(γ+1/q), and so gn ∈ Gµn ∩ 21−n(γ+1/q)UX . Using (3.6),
for n = 0, 1, . . . , N , we can find vn ∈ Vn such that ‖Tgn − vn‖Y ≤ εn. Let

w =
∑N

n=0 vn ∈W . Applying the Hölder inequality and using (3.5), we get

‖Tf − w‖Y =
∥∥∥ ∞∑
n=0

Tgn −
N∑
n=0

vn

∥∥∥
Y

≤ 21/ρ
[( N∑

n=0

‖Tgn − vn‖ρY
)1/ρ

+
(∑
n>N

‖Tgn‖ρY
)1/ρ]

≤ 21/ρ
[( N∑

n=0

ερn

)1/ρ
+ ‖T‖X,Y

(∑
n>N

‖gn‖ρX
)1/ρ]

≤ ε

2
+ 21/ρ‖T‖X,Y

(∑
n>N

2−n(γ+1/q)r
)1/r(∑

n>N

(2n(γ+1/q)‖gn‖X)q
)1/q

≤ ε

2
+ 21/ρ‖T‖X,Y

ε

22+1/ρ‖T‖X,Y
2 = ε.

This shows that T (U
X

(0,γ)
q

) is precompact in Y and completes the proof.
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Since the closed unit ball of any finite-dimensional topological vector
space is compact (see [16, §15.5(1)]), as a direct consequence of Theorem 3.3
we obtain the following

Corollary 3.4. Let X be a quasi-Banach space and let (Gn)n∈N0 be an
approximation family in X. Let 0 < q ≤ ∞ and γ > −1/q.

If for each n ∈ N, the set Gn is a finite-dimensional linear subspace of X,

then the embedding X
(0,γ)
q ↪→ X is compact.

Remark 3.5. Let 0 < α < ∞ and 0 < p ≤ ∞. In the assumptions of
Corollary 3.4, it follows from (2.4) that Xα

p ↪→ X is also compact. This result

and also the corresponding ones for spaces X
(0,γ)
q were proved by Almira and

Luther [1, Theorem 2.1(ii)] in the special case where X is a Banach space
and p, q ≥ 1.

Corollary 3.6. Let X, Y be quasi-Banach spaces and let (Gn)n∈N0 be
an approximation family in X, formed by finite-dimensional subspaces. Let

0 < q ≤ ∞, γ > −1/q and ε > 0. If T ∈ L(X
(0,γ)
q , Y ), then T : X

(0,γ+ε)
q →

Y is compact.

Proof. Let δ = ε−1/q. By the reiteration theorem (see [14, Theorem 2]),

we have X
(0,γ+ε)
q = (X

(0,γ)
q )

(0,δ)
q . Since Corollary 3.4 shows that the embed-

ding (X
(0,γ)
q )

(0,δ)
q ↪→ X

(0,γ)
q is compact, we conclude that T : X

(0,γ+ε)
q → Y

is also compact.

A similar result to Corollary 3.6 is valid for spaces Xα
p . It is a consequence

of Remark 3.5 and [21, Theorem 3.2].

Corollary 3.7. Let X be a quasi-Banach space and let (Gn)n∈N0 be
an approximation family in X, formed by finite-dimensional subspaces. If

0 < q1, q2 ≤ ∞ and γ1 + 1/q1 > γ2 + 1/q2, then X
(0,γ1)
q1 ↪→ X

(0,γ2)
q2 is

compact.

Proof. Let ε > 0 be such that γ1−ε+1/q1 > γ2+1/q2. By [14, Lemma 2],

we have X
(0,γ1−ε)
q1 ↪→ X

(0,γ2)
q2 . Then the result follows from Corollary 3.6.

The next result concerns reflexivity of approximation spaces.

Corollary 3.8. Let X be a Banach space and let (Gn)n∈N0 be an
approximation family in X, formed by finite-dimensional subspaces. Let

1 < q < ∞, 0 < α < ∞ and γ > −1/q. Then the spaces X
(0,γ)
q and

Xα
q are reflexive.

Proof. Take 1 < p < ∞ and δ + 1/p > γ + 1/q. By Corollary 3.4, the

embedding X
(0,δ)
p ↪→ X is compact and therefore weakly compact. Conse-
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quently, reflexivity of X
(0,γ)
q follows from (3.2) and the interpolation prop-

erties of weakly compact operators (see [3, Proposition II.3.1]).
The proof for Xα

q is similar but using (3.3) and Remark 3.5.

The remaining part of this section is devoted to operators with image in
an approximation space.

Theorem 3.9. Let X, Y be quasi-Banach spaces and let (Fn)n∈N0 be an
approximation family in Y . Let 0 < α < ∞, 0 < p < ∞ and T ∈ L(X,Y ).
Then T : X → Y α

p is compact if and only if the following conditions hold:

(a) T : X → Y is compact,

(b) sup
{(∑∞

m=n(2mαE2m(Tf))p
)1/p

: ‖f‖X ≤ 1
}
→ 0 as n→∞.

Proof. First we show that (b) implies T ∈ L(X,Y α
p ). There is an N ∈ N

such that ( ∞∑
m=N

(2mαE2m(Tf))p
)1/p

≤ 1 for any f ∈ UX .

Hence, for any f ∈ X, we get

‖Tf‖Y αp ≤ c1
( ∞∑
m=0

(2mαE2m(Tf))p
)1/p

≤ c2
[(N−1∑

m=0

(2mαE2m(Tf))p
)1/p

+ ‖f‖X
]

≤ c2
[(N−1∑

m=0

2mαp
)1/p
‖T‖X,Y + 1

]
‖f‖X = c3‖f‖X .

Consequently, T ∈ L(X,Y α
p ).

Now the result follows by using [15, Theorem 1].

Recall that the approximation family (Fn)n∈N0 of Y is called linear if
there exists a uniformly bounded sequence of linear projections Pn mapping
Y onto Fn. If this is the case, we have

(3.7) ‖h− Pn−1h‖Y ≤ cEn(h), h ∈ Y, n ∈ N.
Next we show that condition (a) is not needed if the family (Fn)n∈N0 is
linear and finite-dimensional.

Theorem 3.10. Let X, Y be quasi-Banach spaces and let (Fn)n∈N0 be
a linear approximation family in Y , formed by finite-dimensional subspaces.
Let 0 < α < ∞, 0 < p < ∞ and T ∈ L(X,Y ). Then a necessary and
sufficient condition for T : X → Y α

p to be compact is

sup
{( ∞∑

m=n

(2mαE2m(Tf))p
)1/p

: ‖f‖X ≤ 1
}
→ 0 as n→∞.
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Proof. The argument is similar to [15, Theorem 2]. If the condition holds,
then T ∈ L(X,Y α

p ) as we showed in the proof of Theorem 3.9. We now take
any ε > 0 and construct an ε-net for T (UX) in Y .

Let Pn be the projection associated to Fn and let cY be the constant in
the triangle inequality of Y . By (3.7) and the assumption, we can find an
N ∈ N such that( ∞∑

m=N

(
2mα‖Tf − P2m−1(Tf)‖Y

)p)1/p ≤ ε

2cY
, f ∈ UX .

In particular, we have

‖Tf − P2N−1(Tf)‖Y ≤
ε

2cY
, f ∈ UX .

Moreover, by compactness of P2N−1T : X → Y there is a finite subset
V = {h1, . . . , hk} ⊆ Y such that

P2N−1T (UX) ⊆
k⋃
j=1

{
hj +

ε

2cY
UY

}
.

Therefore, for any f ∈ UX , if we choose hj ∈ V such that ‖P2N−1Tf−hj‖Y ≤
ε/2cY , we obtain

‖Tf − hj‖Y ≤ cY
(
‖Tf − P2N−1Tf‖Y + ‖P2N−1Tf − hj‖Y

)
≤ ε.

This shows that the condition is sufficient. Necessity follows from Theo-
rem 3.9.

Remark 3.11. It is not hard to check that the techniques used in The-
orems 3.9 and 3.10 also work to characterize compactness of operators with

image in Y
(0,γ)
q for 0 < q <∞ and γ > −1/q. The condition corresponding

to (b) of Theorem 3.9 reads now

(b′) sup
{(∑∞

m=n(2m(γ+1/q)Eµm(Tf))q
)1/q

: ‖f‖X ≤ 1
}
→ 0 as n→∞.

4. Besov spaces. In this final section we give applications of the pre-
vious results to Besov spaces. We start by writing down Corollary 3.4 for
Besov spaces.

Corollary 4.1. Let 0 < p, q ≤ ∞ and γ > −1/q. Then the embedding

B0,γ
p,q ↪→ Lp is compact.

The following result is a consequence of Corollary 3.7.

Corollary 4.2. Let 0 < p, q ≤ ∞, γ > −1/q and ε > 0. Then the
embedding

(4.1) B0,γ+ε
p,q ↪→ B0,γ

p,q

is compact.
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Let 1 ≤ p ≤ r ≤ ∞, 1 ≤ q ≤ ∞ and γ > −1/q. It is shown in [13,
Corollary 5.3(ii)] that

B1/p−1/r,γ+1
p,q ↪→ B0,γ

r,q .

Here

Bs,η
p,q = (Lp)

s,η
q

=
{
f ∈ Lp : ‖f‖Bs,ηp,q =

( ∞∑
n=1

(
ns(1 + log n)ηEn(f ;Lp)

)q
n−1

)1/q
<∞

}
.

Next we extend this result to the full range of parameters.

Subsequently, if W and Z are non-negative quantities depending on cer-
tain parameters, we write W . Z if there is a constant c > 0 independent
of the parameters in W and Z such that W ≤ cZ.

Theorem 4.3. Let 0 < p ≤ r ≤ ∞, 0 < q ≤ ∞ and γ > −1/q. Then

B1/p−1/r,γ+1/min(1,r,q)
p,q ↪→ B0,γ

r,q .

Proof. If p = r, the embedding is clear. Suppose then that p < r and
let σ = min(1, r, q). According to [22, Theorem 3.3], there is a constant

c > 0 such that given any f ∈ B
1/p−1/r,γ+1/σ
p,q there is a representation

f =
∑∞

k=0 gk (convergence in Lp) with gk ∈ G2k and

(4.2)
( ∞∑
k=0

(
2k(1/p−1/r)(1 + k)γ+1/σ‖gk‖Lp

)q)1/q ≤ c‖f‖
B

1/p−1/r,γ+1/σ
p,q

.

Set

h0 = h1 = 0 and hj =

2j−1−2∑
k=2j−2−1

gk for j = 2, 3, . . . .

Clearly hj ∈ Gµj . Using Nikol’skĭı’s inequality (see [17, 3.4.3] and [2]) and
the Hölder inequality, we obtain

‖hj‖Lr .
( 2j−1−2∑
k=2j−2−1

‖gk‖σLr
)1/σ

.
( 2j−1−2∑
k=2j−2−1

(
2k(1/p−1/r)‖gk‖Lp

)σ)1/σ
. 2j(1/σ−1/q)

( 2j−1−2∑
k=2j−2−1

(
2k(1/p−1/r)‖gk‖Lp

)q)1/q
.
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Consequently, by (3.4) and (4.2),

‖f‖
B0,γ
r,q

.
( ∞∑
j=0

(
2j(γ+1/q)‖hj‖Lr

)q)1/q
.
( ∞∑
j=2

2j(γ+1/σ)q
2j−1−2∑

k=2j−2−1

(
2k(1/p−1/r)‖gk‖Lp

)q)1/q
.
( ∞∑
j=2

2j−1−2∑
k=2j−2−1

(
2k(1/p−1/r)(1 + k)γ+1/σ‖gk‖Lp

)q)1/q
. ‖f‖

B
1/p−1/r,γ+1/σ
p,q

.

Combining Theorem 4.3 and Corollary 4.2, we get the following result.

Corollary 4.4. Let 0 < p ≤ r ≤ ∞, 0 < q ≤ ∞ and γ > η > −1/q.
Then the embedding

B1/p−1/r,γ+1/min(1,r,q)
p,q ↪→ B0,η

r,q

is compact.

Remark 4.5. Another kind of compact embeddings involving Besov
spaces of logarithmic smoothness can be found in [6] and [8]. There, the
authors work with spaces on Rn, defined by means of the modulus of conti-
nuity, and study their compact embeddings into Lorentz–Zygmund function
spaces by using different tools than those considered here.

We finish the paper with the following consequence of Corollary 3.8.

Corollary 4.6. Let 1 ≤ p ≤ ∞, 1 < q < ∞ and γ > −1/q. Then the

space B0,γ
p,q is reflexive.
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[16] G. Köthe, Topological Vector Spaces, Vol. I, Springer, New York, 1969.
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Universidad Complutense de Madrid
Plaza de Ciencias 3
28040 Madrid, Spain
E-mail: cobos@mat.ucm.es

oscar.dominguez@ucm.es

Antón Mart́ınez
Departamento de Matemática Aplicada I
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