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Abstract. We give a generalization of poly-Cauchy polynomials and investigate their
arithmetical and combinatorial properties. We also study the zeta functions which inter-
polate the generalized poly-Cauchy polynomials.

1. Introduction. Let n > 0, £ > 1 be integers. The poly-Cauchy poly-
nomials of the first kind c%k)(z) are defined by
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(see [13]). If z = 0, then R (0) = ¢ are the poly-Cauchy numbers of the
first kind introduced in [I5]. If £ = 1, then cgll)(z) = ¢p(z) are the classical
Cauchy polynomials (see e.g. [0]). If z =0 and k = 1, then CS)(O) = ¢y are
the classical Cauchy numbers defined by

1
cnzgx(x—1)~--($—n—|—1)dz
0

(see e.g. [7, 20]). We remark that b, := ¢,/n! are also called Bernoulli
numbers of the second kind (see e.g. [1], [10]).

Before the terminology of Cauchy numbers appeared in Comtet’s book
[7], the concept was first introduced by Norlund [21, pp. 146-147] in 1924.
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There, the higher order Bernoulli numbers BT(LT)

T " SN
(557) =X BL (el <2

were defined by

n=0
or
In(1+2z)\" >, Bt gn
—_— pr— — 1 .
( x ) T% r+n n! (2] <1)

See also [9], pp. 257, 259]. Then
1
B = S(:U—l)-"(x—n)dx,

n

or

Hence, ¢, = —B,(ln_l)/(n —1).

The concept of the Cauchy polynomials was first introduced by Ch.
Jordan [12], p. 130] in 1928. There, the Bernoulli polynomials of the second
kind were defined by the derivative of the binomial coefficient:

Dy () = (nf1>

Hence, 1, () = cp(—z)/n!. The Bernoulli numbers of the second kind b,
(see [12), p. 131]) were also defined by

b = Ynr1(1) = ny1(0) = | (2) da.

0

Hence, as stated above, b, = ¢, /n!.
A relation between the Bernoulli polynomials of the second kind and the
higher order Bernoulli polynomials was pointed out by Carlitz [4] in 1961.

Define f,, and B,(f)

= a" x
= S — )
2 Py wnd <ln<1 +:r)> ter Zﬁ
That is, 8, = ¢,. Then Carlitz showed that
BY(2) = BU D (2 + 1)

(see [4, (2.11)]). See also [24] 19]. We remark that B,gl)(z) are also called
Bernoulli polynomials of the second kind (see e.g. [10], [23], §4.3.2]).
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The generating function of poly-Cauchy polynomials [I3, Theorem 2] is
given by
77/

(1 + x)® Lifx(In(1 4+ z)) Z

where
oo
Zm

is the kth polylogarithm factorial function [15] or simply the polyfactorial
function. An explicit formula for cq(lk)(z) (see [13l Theorem 1]) is

o @e=X ey (V) e

m=0

where [;:L] are the (unsigned) Stirling numbers of the first kind, arising as
coefficients of the rising factorial

z(z+1)---(x+n-—-1)= Z[n}xm
m=0
(see e.g. [11]).
The concept of poly-Cauchy numbers is an analogue of that of poly-
Bernoulli numbers B (see [14]) defined by

lel—@x ZBk)x

1—e2
where
oo Zm
Li = —
ir(2) Z mk
m=1

is the kth polylogarithm function. When k& = 1, B, = B,(ll) is the classical
1)

Bernoulli number with B§ = 1/2, whose generating function is

ze® N "
et —1 Z B"F
n=0
An explicit formula for By (see [14, Theorem 1]) is

12 BW = (-1 Z{ VR !

= lm (m+1)

where {:1} are the Stirling numbers of the second kind, determined by

()= ()
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(see e.g. [I1]). A relation between the denominator of Bs, and the Stirling
numbers of the second kind via the greatest common divisor is investigated
in [1§].

In this paper, we give a generalization of the poly-Cauchy polynomials
and investigate several of their arithmetical and combinatorial properties.
We also study the zeta functions which interpolate the generalized poly-
Cauchy polynomials.

2. Definitions and basic properties. Let n > 0, kK > 1 be integers,

and g and lq,...,l; be non-zero real numbers. Define
Lo L
k
027;7(11’._@)(2) = S e S(ml ezt z2) (T —q+ 2)
0 0
K vz — (n—1)g + 2) doy - dy,
Ifiy =--- =1 =1, then 67(12,(17...,1)(_2) = ¢pq(z) are the poly-Cauchy

polynomials (of the first kind) with parameter q. Note that z is replaced by
—z in [16]. By the definition, we can see that

k k k
(2.1) C,EU)LL(Z +q) — CEM)LL(Z) = nqcfl_)lvq’L(z).

(k)
n,q,(l1,...,lg)
numbers of the first kind [:ﬂ . For simplicity, from now on, we write 052, 1 (2)
=W (2) with L = (I1,...,1;) and L =1y - - - I,

n)‘]u(llr'wlk)

The polynomials ¢ (z) can be expressed in terms of Stirling

THEOREM 2.1. For integers n >0 and k > 1, we have
n m —it1 i
(k) _ nl. o nem m\ 1"
Cn,q,L(Z)—mz::O[m]( Q) §<Z>(m—z—|—1)k

REMARK. The integer & must be positive in the definition of cflk; (%),

but £ can be 0 or a negative integer in the above expression. If [ =11 - - - =1,
then Theorem [2.1| reduces to [16, Theorem 5(1)].

Proof of Theorem 2.1. Since

ol —1)(@—n+1)= n [”](—1)’1—%’”,
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:miim]<q>”—m;; ()(m) .

The generating function of the polynomial cék; 1(2) (¢ # 0) is given by
using the polyfactorial function.

THEOREM 2.2. For integers n and k with n > 0, we have

. ((UIn(1+ gx) "
z/ _ (k)
(1 + gx)*/ 9 Lify, (q > = 2 g (%) e

REMARK. If [ = 1, then Theorem reduces to [16, Theorem 6(1)].
Note that z is changed to —z in [16].

Proof of Theorem 2.2. Since

(In(1 +2z))™ e [0 ] (—2)"
m! = (1) nz:;n m| n! '
by Theorem [2.1] we have
) N "
ch();L( )

n=0

=

O

n n o m m lmfi+1zz' "
[m}(_q) ;(i)(m—i—i—l)kn!

n=0m=0 ) . 0o n
<SS (e ]

p'qg

1 (In(1 +gx)\"™ in: m\ [Tl
m! q =\ (m—i+1)k
1 <z1n(1 + qa;)>’ > it <1n(1 + qx))’”‘i

il q - (m—i)l(m —i+1)F q
_ Z1'<zln(1q+ qa;)> Z V!(l:rl)k <ln(1;—qm))

=0 v=0
= (1 + qz)*/ Lif,, <lln(1+qaz)> .

0

3
I

Noll

m=1

8”818
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(k )

The generating function of the polynomial ¢,
form of iterated integrals.

gL Can be written in the

COROLLARY 2.3. Let q be a real number with ¢ # 0. For k = 1, we have
q((1 4 qz)h/1 1) B = 1) "

1 z/q = i
( + qx) 111(1 + qa:) ~ cn,q,ll (Z) n
For k > 1, we have (with k — 1 integrals)
x x q
1 z/q .
(1+ar) 1+q:c (S) (14 qx) 1111+qx)S (14 gz)In(1+ qx)

q((l + qa:)l/q — 1) B > (k) z"
. (S) In(1 + qx) d“’—'xk 4y = HZ:OC"’Q’L(Z) n!’

REMARK. If [ = 1, then Corollary reduces to [16, Corollary 3(1)].
Note that z is changed to —z in [16].

Proof of Corollary 2.3. For k =1,

e? —1
Lif = .
if1(2) .
For k > 1, we have
1 — Zm L 17 — 2m 17
Lif == _— = ———dz = -\ Lif._
ifi(2) zzzm!(m—i—l)’C ZSZ:m!(m—i—l)’f_1 : zS ifi-1(2)
m=0 0m=0 0
171 1 er—1
:7878 786 dZ"‘dZ.
z)z z z S~
070 0 k—1
—_——
k—1

Setting z = I In(1+¢x)/q and multiplying by (1+qx)*/91, we get the result. u

3. Poly-Cauchy polynomials of the second kind. In [I5], the con-
cept of poly-Cauchy numbers of the second kind ’c\%k) is also introduced. They

are defined by

11
40§ a1

0 0

"\k/-’ coo(=mporxp—n41)dry - - dog

and their generating function is given by

n

Lifp(— In(1 + 2)) = Zd{ﬂ%

n=0
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A(

The poly-Cauchy numbers of the second kind an) can also be expressed
in terms of Stirling numbers of the first kind (see [I5, Theorem 4]).

ProrosITION 3.1. We have

m=0

Similarly to generalized poly-Cauchy polynomials of the first kind cq(f()]’ 1 (2),

we define the poly-Cauchy polynomials of the second kind ’c{nk;L(z) (n >0,
k> 1) by

s
0 0
c(=z1rxp — (n—1)qg — 2)dxy - - - dxy,.
When z = 0and ¢ =13 = -+ = [, = 1, then /cflk%L(O) = &% are the
poly-Cauchy numbers of the second kind. By the definition, we can see that

(3.1) )= )= 0@, ().

Similarly to Theorem /cflkt)] ;, can also be expressed in terms of Stirling
numbers of the first kind [ ]:
THEOREM 3.2. Forn >0 and k > 1, we have
n m —it1 i
~(k) n n n—m m [ty
= (-1 S -
i () = (1) %Mq §<i><m—i+1>k

REMARK. The integer k£ must be positive in the definition of 552 1 (2),

but £ can be 0 or a negative integer in the above expression. If [ =11 - - - [, =1,
then Theorem reduces to [16, Theorem 5(2)].
oy

THEOREM 3.3. The generating function of the polynomial q,L(z) i

given by
;Lif/ﬂ _!In(1 +gz) — .- k) (z)ﬁ
(1+ qz)*/a q Ll

REMARK. If [ = 1, then Theorem reduces to [16, Theorem 6(2)].
Note that z is changed to —z in [16].

The generating function of the polynomial Eilk()l (%) can be written in the
form of iterated integrals.
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COROLLARY 3.4. For k=1, we have

1 q(1— (1 +qa)™/1) & O
(1 + qx)?/4 In(1 + qx) N o el )
For k > 1, we have (with k — 1 integrals)
1 q QSC q 9§ q
(1+gz)*/1In(1+qz) ; (1+q2)In(1+qz); (1 +qz)In(l +qz)

r — —l/q n
ngl (L+g7) )dx-~-dx— ’(k) x|.
5 n!

n q7
In(1 + qx) Hf—’k_l o

REMARK. If [ = 1, then Corollary reduces to [16, Corollary 3(2)].
Note that z is changed to —z in [16].

4. Properties of poly-Cauchy numbers. There are relations be-
tween both kinds of poly-Cauchy polynomials if ¢ = 1.

THEOREM 4.1. Let k be an integer. Then for n > 1, we have

(k) n k)
n 1,0 (%) n—1\ Cn1,(2)
R RS

— m!
k n k
(- l)nAfz % L(Z) B Z n—1 07(71,)1,L(Z)
nl L= \m—1 m!

Proof. We prove the second identity. The first one can be proved simi-
larly and its proof is omitted. By using the identity (see e.g. [T, Chapter 6])

(-1)'[n] (-1 (n—1\[m
n! |i] Z:l m! \m-—1/]1
and Theorems [2.1] and [3.2] we have

" n—1\ 1 [m ym- A il
RHSZZ_:l(m—Jm;[ } AZ A—i+ 1)k
n—1 m A A l/\—l—i-lzz
2 SO Qs

1 n A l/\71+1zz
== > ——_~ __LHS.
n! HN var: <z> A —i+1)F -

By differentiating cfl 6)1 1 (2) or /C\’Ezk()],L(z)’ we have the following:
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PROPOSITION 4.2. For integers n, k with n > 0 and a real number g # 0,
we have

d( n>\1)
_ __|

dz nzn— A)A! ()
1

dA(k (qn/\
,q,L*n'Z (n— X\ )\l

Proof. We prove the first identity. Differentiating both sides of the for-
mula in Theorem [2.2 with respect to z, we have

_In ) ey, <l In(L + qx)) (S ki
q q o

a0 L),

= n!
Then
B o0 (_1)mqm lxm o0 (k) T
LHS = (Z - > a2 537
m=1 A=0
0o n— n—-\ n—-x—1 (k
NS LA e ()
n=1A=0 (n = X)Al
Sy S GO s
— =~ (n—A)A! n!
and
4w "
RHS = ‘ dicn,q,L( )ﬁ

The second identity is proven similarly. m

In some special cases we have simpler results. If ¢ =1 = k = 1, then by
Theorems [2.1] and [3.2) we get simplified products.

PROPOSITION 4.3. Forn > 1, we have

da (z)—dc(l)(z):nﬁ(z—z)

dz ™1 dz ™" Pl ’
L 4 A,

L5000 = 0 = o [T ),
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Proof. By Theorem we have

d " n] " /m izt
4y = _ynem gt
F0 =3 e (Tt
n n— m—1 m
:Z (_1)n—m >ZZ
m:l-m- =0 t
n ]
— 1)n—m 1) — ,m
m:1_m_( (2 1) 2T

Since

k=0
with (2)y =2(z —1)--- (2 —k+1) and

s ()

m=k

(see e.g. [11], Ch. 6]), we get

icg)(z):znj [ ];:{m} (= + Vi — (2)1)
>{n

1 if k=n,
0 ifk#n

S {:;;L:
BE LM

The second identity can be proven similarly because
m m k—1
i) =T+

The derivative of cgf; . (2) or 65531, (%) with respect to the parameter ;
is the following.

PROPOSITION 4.4. For each j =1,...,k, we have
(k=1) olk=1)
z z
AR (z):%().

I PR TR l;
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Proof. By Theorem

881 ™ () = En: [:J (=g)"™ f: <T> (- "lk<)7:_i Z (Jlrll')'];_lli)/lj %

m=0 i=0

= D).

The second identity is proven similarly. =

5. Functions interpolating generalized poly-Cauchy polynomi-
als. Let k be a positive integer. For s € C with (s) > 0 and z > —1
define

1
In(1 —
(5.1) Ziq,1(5,2) Sts L(1 — qt)?/9 Lif), (ln(qqt)) dt.
0

By the change of the variables t = (1 — e~7%/!) /g, this can be written as

o sy —qu/lN s—1
(5.2)  Zpgn(s.z) = 1)§<1 eq ) =GO Lif, (—u) du,

F(so

THEOREM 5.1. The function Zy 4 1.(—n,z) can be extended to an entire
function, and its values at non-positive integers are given by

Zpgr(—n,2)=c¥) (z) (n=0,1,2,...).

REMARK. If ¢ =1 and l;---{; = 1, then Theorem reduces to [13,
Proposition 6.2].

Proof of Theorem 5.1. The proof of the analytic continuation is similar
to that of [I3, Proposition 6.2]. By (5.1) and Theorem[2.2] for n = 0,1,2,.. ..
we have

1
1 In(1 — gt

s——mn F(s) 3
o0 m (k) 1
1 (=1)™c L
= lim mq tmfnfl dt
T |
oo m (k
— lim 1 Z (_1) ;7,7)%[/(2) 1
s——n ['(s) m! m+ s
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Theorem gives the values of Zj,1(s,2) at negative integers. The
values at positive integers are expressed by using values of the polylogarithm
functions Liy(2).

THEOREM 5.2. Let n and k be positive integers. For z > 0, we have

st~ it 5 ()0 ()

REMARK. If ¢ = | = 1, Theorem [5.2| reduces to [13, Proposition 6.3].
Proof of Theorem 5.2. By (5.2)), we have

Zk,q,L(n, Z)
1 n—1 )m
_ z f(qz+q+z)u/l d
The change of varlables u= lv /(qi + q + z) shows that
Zk,q,L(na Z)
n—1 00 00
1 n—1 : )m mymtl
(n—1)lgn1 iz:% ( i )( S E:O m! m+1 ((i+1)g+z)mt! v

Since m! = SSO e Yv™ dv, we obtain

1 n—1 n—1 0 )mlm+1
7 i
kgL (M, 2) = n—l)!q”* : ( i > Z m+1 ((1+1)g+2z)m+t

mO

~ 1) n12<n_1> U ()

The values at positive integers are also expressed by using multiple zeta
star values defined by

N 1
Cn(kl,...,kr): Z W

n>my>e>me>1 "

THEOREM b5.3. Let |l/q| < 1. Then, fork > 1, n>1 and 0 < z < |q|,
we have

o0 m+1lym m ;o * i —2)
Sraatn)= & 3 IS (1) Gl (o

n! m—1 gnrmti—1 )
m=1

where

1
o

0 (r=0).
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In particular, when z =0, we have

m+1lm 1 m—
Dol = Z G )

qn+m 1

REMARK. If ¢ =1 =1, then Theorem E reduces to [13, Theorem 6.5].
Proof of Theorem 5.3. By Theorem we have
( 1)i+m+1

Zyyqr(n,z) = —— = 1Z<n_1> > mk ((z’+1l)q+2)m'

m=1

Since for 0 < z < \q|,

((i+1)161+z)m: mmq Y <m$"_1><—(ijl)q)j,

we get

o] 00 m ‘|‘] 1
Zuasln?) = gy o> (M ) s

m:l 7=0
n z—l—m( Z)j
X —.
gm+j—1
=1

= n (_1)i_1 *
) =G({1})
% (0)"
(see [22, (2)]) and so lim, 00 () ({1}) =n (n =1,2,...), we have
m+1lm°° m i1 ;; i — )
n'z Z( +J )C({}ﬂ 1)( )

m—1 gnrmTi—1

M

lm

??‘

Since for r > 0,

Zigr(n,z) =

— j=0
6. The second case. For s € C with (s) > 0 and z > —1 define

1
R 1 51 ) IIn(1 — qt)
(6.1) Zk,q,L(Sa z) = S (1— qt)Z/qlLlfk (_Q> a

T(s))

or equivalently,

N 1 T(1—e /!
(6.2) Zhgr(5,2) = g( ) =Dty (u) du.
I'(s) 3 q

THEOREM 6.1. The function Zk,q’L(—n, z) can be extended to an entire
function, and its values at non-positive integers are given by

Zygr(-n,z2) =2 1(2) (n=0,1,2,...).
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Proof. By (6.1]) and Theorem forn=0,1,2,..., we have

I'(=n) ) (1 — qt)?/a
oo k m
_ Z E(m?q,L(Z)(_l) 1 itmnl dt
= m! I'(—n) 5
(k) n
. Cn,q,L(z)(il) n!(—l)n -
= py " 2mi = Cpy g p(2). m

REMARK. If ¢ =1=1, then Theorem|6.1]reduces to [I3, Proposition 7.2].

The function Zk,q’L(s, z) has similar properties to those of Zj , .(n, 2).
They are proven in the same manner, so we only state the results and omit
their proofs.

THEOREM 6.2. Let n and k be positive integers. For z > 0, we have

Ziar(n:2) = o=, nlz( ) L(<+1%—>

REMARK. If ¢=1=1, then Theorem|[6.2reduces to [13, Proposition 7.3].

THEOREM 6.3. Let |l/q] < 1. Then fork>1,n>1and 0 < z < |q|, we
have

m & m+j— ;
rann )= Y w2 g (1 )G W

In particular, when z =0, we have

Lo " G({1hm-1)

Zk7q7 (n O) n' mk qn+m_1
m=1

(k > 2).
REMARK. If ¢ =1 =1, then Theorem reduces to [13, Theorem 7.4].

7. Poly-Bernoulli polynomials with parameter ¢q. Throughout this
section, [ =11 -+l = 1.

In [I7], the first author and Cencki defined the Bernoulli numbers corre-
sponding to the poly-Cauchy numbers with parameter ¢ (see [16]) by

qLix((1 —e"%)/q) ZB(k) &

1 — e—at a0

Hence, if ¢ = 1, then BS,? = BT(Lk) are the poly-Bernoulli numbers [14].
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As a general case of poly-Bernoulli numbers, the poly-Bernoulli numbers

ijf,} with parameter ¢ can be expressed in terms of Stirling numbers of the
second kind {;}1 }

LEMMA 7.1. We have
n _\n—m,,|
Bk _ n\ (—q) m!
CRPI I St

We define the poly-Bernoulli polynomials with parameter g by

quk((l—eqt)/q) tr N p®)
(e = S ny

If ¢ =1, then B,(Lk% (x) = B (x) are the poly-Bernoulli polynomials [§]. Note
that we also have a different definition, where x and —z are interchanged
(see [3]). If z = 0, then B(k)(O) = Bgfg are the poly-Bernoulli numbers with
parameter q.

Weighted Stirling numbers of the first kind and of the second kind (cf. [5]
in slightly different meanings) are defined by the generating functions

(1—1)7(~In(1 —t)) =Y S, )%’:

1 n,m,z
m. o
e?t(et — 1)™ 0 n
(m' ) - ZSQ(n7m7z) 1’
’ n=0

respectively, so that S1(n,m,0) =[] and S2(n,m,0) = { }.Poly-Bernoulli
polynomials with parameter q are expressed expllcltly by weighted Stirling
numbers of the second kind Sy (n,m,x).

LEMMA 7.2. For poly-Bernoulli polynomials with parameter q, we have
n—m,,|
B Sy (mm, &) Ot
r Z < ) (m -+ 1)F

There are relations between B,(M),( ) and c(k)( ) (or ’cﬁ%(m)) Note that

x in c%kg,(:z:) and 55“)1(95) is changed to —z in [16].

LEMMA 7.3. For any x and y, we have

B = 3 3 i t5s (o, ) (L) ¥ ),

=0 m=0

- - n n— X Y
(o) = 32 Sty mi sy (o ) sa(m, )

=0 m=0
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e VA
55 ) 20
=0 m=0 )
n n _1 n _ x€X
ot =323 e (o L) (e ) )
1=0 m=0 '

As a general case of the Arakawa—Kaneko zeta function [2, ]], define

1 T Llr((l _ 6_qt)/Q) efzt s—1
I'(s) §) (1—e)/q v

THEOREM 7.4. The function &k 4(s, 2) can be extended to an entire func-
tion, and its values at non-positive integers are given by

Erg(—n,2) = (~1)"B{9(z)  (n=0,1,2,...).
Proof. We split & 4(s, ) into two integrals:

€k74(37 Z) =

1

1 Llr 1—e qt)/Q) e—#tys—1
_ 7 dt
§-nals2) = F(S(S) 1—e‘1t/q
+ 1 Ll?”((l — e_qt)/Q) efzttsfl dt.

I'(s) S (1—e)/q

1

The second integral converges absolutely for an arbitrary s € C and vanishes
at non-positive integers. For R(s) > 0, the first integral can be written as

1 oo m 0 (k)
1 o 1 Brig(z) 1
(k) (NZ_ys—1 g4 — a\Z)
I'(s) sz Bm’q<z)m!t dt I'(s) Z m! m+ s

0 m—0 m=0
Therefore,
(k) (k)
L o Bng(z) _ n! Bng(2)
gk,q( n, Z) = hm gk,q(saz) —51_1311” F(S) . (TZ—I-S) n! B (—1)" n!

= (-1)"B%¥)(2). =

For simplicity, we write Zj ¢(n,2) = Ziq1(n,2) when [ = 1; -1
We can show a duality formula between Zj, 4(n, z) and & 4(s, 2).

THEOREM 7.5. For integers k > 2 and r > 2 and a real number z with
1—q<2<2—q, we have

i st) Ziq(n,z) = i (—1)m+1w .

mk

n=1 m=1

REMARK. If ¢ = 1, then Theorem reduces to [13 Corollary 6.6].
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Proof of Theorem 7.5. We shall calculate
oo e " Li, ((1 — e 1) /q) Lif (—u)
(7.1) | k du
5 edv — 1
in two ways. Firstly, (7.1]) is equal to

T e L, (1 — eI > —u
S (( )/q) > ((

— — 1)k
5 v—1 = (m 1)Im

(=)™t 1 Terwrym L (1 — e %) /q)
Z mF T(m) eqv — 1

)m—l

du

du

=S (caymn Granlma+2)

mkq
On the other hand, m ) is equal to

o (o4 —e qu)n 1
—ul(z
(S) e 7) Lify(— E_ o du

—u(z 1 —e et . > F(n)
= Z o S +4q) <q> Lifg(—u) du = Z o Zk7q,L(n, z).

n=1

Comblmng the two expressions, we get the result. m

__ Similarly, when [ = l3---l = 1, we have a duality formula between
Zig(n,2) = Z q.1.(n, z) and & 4(s, 2).

THEOREM 7.6. For integers k > 2 and r > 2 and a real number z with
q—2<z<q-—1, we have

> D itn )= 3 Saltd =)

n=1

REMARK. If ¢ = 1, then Theorem reduces to [13, Corollary 7.5].
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