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QCH KAHLER MANIFOLDS WITH k=0

BY

WLODZIMIERZ JELONEK (Krakéw)

Abstract. The aim of this paper is to describe all Kidhler manifolds with quasi-con-
stant holomorphic sectional curvature with x = 0.

1. Introduction. The aim of the present paper is to describe all con-
nected Kéhler manifolds (M, g, J) admitting a global, 2-dimensional, J-
invariant distribution D having the following property: The holomorphic
curvature K(m) = R(X,JX,JX, X) of any J-invariant 2-plane = C T, M,
where X € 7 and g(X, X) = 1, depends only on the point = and the number
| Xp| = v/9(Xp, Xp), where Xp is the orthogonal projection of X on D. In
this case we have

R(X7 JX, JX7X) = ¢($7 |X'D|)

where ¢(x,t) = a(z) +b(x)t? +c(z)t* and a, b, ¢ are smooth functions on M.
Also R = all + b® + W for certain curvature tensors IT, &, ¥ € ®* X*(M)
of Kahler type. The investigation of such manifolds, called QCH Kdhler
manifolds, was started by G. Ganchev and V. Mihova |G-M-1|, [G-M-2]. In
[J-1] we partially classify QCH manifolds with non-vanishing invariant s
of the distribution D (see also [G-M-2|). In that case the distribution D is
integrable and the foliation induced by D turns out to be a holomorphic,
homothetic foliation by curves.

In the present paper we shall investigate QCH Ké&hler manifolds satisfying
the condition x = 0. It turns out that from the results in [G-M-1] it easily
follows that in that case a, b are constant, and if b # 0 and M is complete and
simply connected with dim M > 6 then M = M, x X where M, is a Kéhler
manifold of constant holomorphic curvature a # 0 and X is a Riemannian
surface.

If b = 0 then the situation is much more complicated and we shall mainly
investigate the case where the distribution D is integrable or M is complete.
If D is integrable then M is locally a manifold with constant holomorphic
sectional curvature or a product My x X where My has holomorphic sectional
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curvature 0 and X' is a Riemannian surface. If a = b =0, ¢ # 0 on M and
(M, g,J) is complete and simply connected then M is a product C*~! x X
where X' has non-vanishing scalar curvature. If @ > 0, b = 0 and (M, g)
is complete then (M, g,J) has constant holomorphic curvature. If a = 0,
b = 0 and M is complete then M is the union of a manifold of constant
holomorphic sectional curvature 0 and a manifold which is a local product
of a (2n — 2)-manifold of constant holomorphic sectional curvature 0 and a
Riemannian surface .

2. The invariant . Let (M, g, J) be a 2n-dimensional Kéhler manifold
with a 2-dimensional J-invariant distribution D. Let X(M) denote the alge-
bra of all differentiable vector fields on M, and I'(D) the set of local sections
of the distribution D. If X € X(M) then we shall denote by X° the 1-form
¢ € X*(M) dual to X with respect to g, i.e. p(Y) = X*(YV) = g(X,Y). By 12
we shall denote the Kdhler form of (M,g,J), i.e. 2(X,Y) =g(JX,Y). Let
& denote the distribution D+, which is a 2(n — 1)-dimensional, J-invariant
distribution.

By h, m we shall denote the tensors h = go (pp X pp), m = go (pe X pg),
where pp, pe are the orthogonal projections on D, £ respectively. It follows
that g = h + m. By w we shall denote the Kéhler form of D, i.e. w(X,Y) =
h(JX,Y), and by (2, the Kéhler form of &, i.e. 2,,(X,Y) =m(JX,Y).

For any local section X € I'(D) we define dive X = tr,, VX’ =
mijveiXb(ej) where {e1,...,ey;,—1)} is any basis of £ and [m¥] is a ma-
trix inverse to [m;;], where m;; = m(e;, e;). Note that if f € C°°(M) then
divg(fX) = fdive X for X € I'(D).

Let € € I'(D) be a unit local section of D. Then {&, J€} is an orthonormal
basis of D. Let n(X) = ¢g(§, X) and Jn = —noJ, which means that Jn(X) =
g9(J&, X). Let us denote by x the function

k= +/(dive £)2 + (dive JE)2.

Then x does not depend on the choice of the section £. Note that x = 0 if
and only if dive £ = 0 for all £ € I'(D).

3. Curvature tensor of a QCH Kihler manifold. We shall recall
some results from [G-M-1]. Let R(X,Y)Z = ([Vx, Vy]—V|xy])Z and write

R(X,Y,Z,W) = g(R(X,Y)Z,W).

If R is the curvature tensor of a QCH Kéhler manifold (M, g, J), then there
exist functions a, b, c € C°°(M) such that

(1) R =all +b® + c¥,
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where [T is the standard Kéhler tensor of constant holomorphic curvature,
ie.
I(X.Y,2,U) = 1(9(Y. 2)9(X,U) - g(X, Z)g(Y,U)
+9(JY, Z)g(JX,U) - 9(J X, Z)g(JY,U) — 29(JX,Y)g(JZ,U)),
the tensor @ is defined by
O(X,Y,Z,U) = %(g(Y, Z)h(X,U) — g(X, Z2)h(Y,U)
+9(X, )WY, Z) — g(Y,U)h(X,Z) + g(JY, Z)w(X,U)
—g9(JX, 2)w(Y,U)+ g(JX,U)w(Y,Z) — g(JY,U)w(X, Z)
—29(JX,Y)w(Z,U) - 29(JZ,U)w(X,Y)),
and finally
U(X,Y,Z,U)=—-wX,Y)wZU)=—-(wew)(X,Y,ZU).

If (M,g,J) is a QCH Kéhler manifold then one can show that the Ricci
tensor r of (M, g, J) satisfies the equation

r(X,Y) = m(X,Y)+ ph(X,Y)

where A = "THa + %,,u = ”THa + ”THb + c are eigenvalues of the Ricci

tensor (see [G-M-1, Corollary 2.1 and Remark 2.1]). In particular the distri-
butions &, D are eigendistributions of the Ricci tensor corresponding to the
eigenvalues A\, p.

Now let us assume that (M, g, J) is a QCH Kéhler manifold of dimension
2n > 6 and let £ be a local unit section of D and n(Z) = ¢(&, Z). Let us
define two 1-forms €, €* by

€(2) = g(pe(Ve), Z) = 9(Ve&, Z) — pIn(Z),
e (Z) = g(pe(VieJE), Z) = g(VyeJE, Z) — p™n(Z),
where p = g(V¢&, JE) . p* = g(V e JE, §) and pe denotes the orthogonal pro-

jection on £. Note that the distribution D is integrable if and only if e4€* = 0
(see [G-M-1, Lemma 3.3]). In fact for Z € I'(£) we have

g([é’Jf]vZ) :g(VEJf—ngf,Z) :g(Jvﬁjf_Jvaf’JZ)
= —g(Vel+ Ve JE, JZ) = —(e(JZ) + € (] Z)).

Let {Z)} be any complex basis of the complex subbundle &£ 1’070f the com-
plex tangent bundle T°M = C ® T'M. We also write Z5 = Z). Then the
Bianchi identity for the tensor R of the form gives in the case Kk = 0 and
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dim M > 6 the following relations (see |[G-M-1, Theorem 3.5]):

(2) Va=0, Vb=0,

(3) bWVzn(Z,) =0, cVgn(Z,) =0,
(4) bV zn(Zp) =0, Vzn(Zg) =0,
(5) be(Z)) =0, be*(Zy) =0,

(6) c(e(Zx) + €' (Zy)) = de(Z)y).

Hence we will obtain

THEOREM 1. Let (M,g,J) be a QCH Kdihler manifold with k = 0 and
dimM > 6. If b # 0 and M is complete and simply connected then M =
My x X where M, is a Kdhler manifold of constant holomorphic sectional cur-

vature a # 0 and X is a Riemannian surface. Conversely, every such product
1s a QCH manifold with k = 0 with respect to the distribution TX C TM.

Proof. From ([2]) we obtain a = const, b = const;. If b # 0 then Vz, n(Z,)
=0, Vzn(Zz) =0, e =0, €& = 0. It follows that the distribution D
is integrable and totally geodesic. In fact if € = 0, €* = 0 then V¢ = pJ§¢,
VjeJE = p*§ and consequently Ve J§ = —p€, V je§ = —p*JE Thusif X, Y €
I'(D) then h(X,Y) = pe(VxY) =0 and D is totally geodesic.

On the other hand since Vz,1n(Zz) = 0 and Vz,n(Z,) = 0 we obtain
9(Vx&Y) =0for X,Y € I'(€). Analogously ¢(VxJE,Y) =0 for X,Y €
I'(€). Hence g(§,VxY) = g(J§,VxY) = 0 and the foliation £ is totally
geodesic with leaves of constant holomorphic curvature a. Now the result
follows from the de Rham theorem (see [K-N|). Note that for M = M, x X
we have R = all — 2a® + (37 + a)¥ where 7 is the scalar curvature of X
(see [J-2]). =

Now we consider the case dim M > 6 and b = 0. Let My = {x € M :
c(x) = 0}. Then My is closed in M and let U = M — My = {x € M :
c(xz) # 0}. Note that — X\ = ¢ where A, p are eigenvalues of the Ricci tensor
of (M, g,J) corresponding respectively to eigensubbundles &, D.

T
T

In what follows we assume that the distribution D is integrable. From
(6) this means that Ve € I'(D). We will show that in U the distribution
D induces a holomorphic, homothetic foliation by curves (see [Ch-NJ|), and
moreover Ly g =0 on TD+ =TE and Ly J(TM) C D for every V € I'(D).

From (3)—() it follows that g(Vx&,Y) = 0 for every X,Y € I'(€) and
therefore Lgg = 0 on TE. Analogously Ljcg = 0 on T¢ and consequently
Lyg=0onTE for V e I'(D). Note that LyJ = JoVV = VVoJ = [J,T]
where TX = VxV. It is enough to show that L¢JTM C D. From (2.5) it
is clear that Vx§ € D for X € £ and L¢J(E) C D. We also have L¢J¢ =
IV =V & = [€,J€] € D if D is integrable. Hence the result follows.
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Let us define an almost complex structure J' on M by J' X = JX if
Xe&and JJX =—-JX if X € D. It is clear that J commutes with J’.

PROPOSITION 1. The manifold (U, g,J’) is an almost Kihler manifold
belonging to the class AKo, i.e.

(7)  R(X,Y,Z,W) - R(J'X,JY,Z,W)
= R(J'X,Y,J'Z,W)+ R(J'X,Y, Z, JW)

forall X, Y, Z, W € TU. The distribution & is included in the Kdhler nullity
of J'. If VJ' #0 then (U, g,J") is a normal almost Kdhler manifold.

Proof. The Ricci form p of (U, g, J) equals p = A2, +puw where A = ”Tﬂa
is constant and p = A + ¢. From dp = 0 we get (note that dw + df2,,, = 0)

dw = —dIn|A — p| Aw = —dn|c| A\ w.

Hence if D is integrable we obtain dw = df2,, = 0 and (U, g, J') is an almost
Kahler manifold. Since J commutes with .J’ it is easy to prove .

Now note that VxJ' = 0 for every X € £. Since J = J' on £ and the
foliation induced by & is totally geodesic we get VxJ'Y = 0 for every Y € £.
If £ € D then

(VxJ)E=Vx(J'€) - J(Vx&) = —Vx(JE) + J(VxE) =0

since Vx¢ e Dif X € €.

Now we show that (U,g,J’) is a normal almost Kahler manifold, i.e.
VJ o J(D,D) C £ (see [N]) assuming that V.J' £ 0. It is enough to show
that VeJ'n € € if §,n € D. Indeed,

Ved'n=—Ve(Jn) = T (Venp + Vene)
= —J(Ven) + J(Venp) — J(Vene) = —2J(Veng) €. m

THEOREM 2. Let (M,g,J) be a QCH manifold with dim M > 6, k = 0,
b =0 and integrable distribution D. If a = 0 then M is the union of a man-
ifold of constant holomorphic sectional curvature 0 and a manifold which is
a local product of a (2n — 2)-manifold of constant holomorphic sectional cur-
vature 0 and a Riemannian surface X. If a # 0 then (M, g,J) has constant
holomorphic sectional curvature a.

Proof. Write U = Uy U Uy where Uy = {z € U : VJ'(z) = 0} and
Uy={xe€U:VJ #0} If int Uy # 0 then in int Uy, g is locally a product
metric and consequently a = —b/2 = 0. Hence if a # 0 then int U; = (). The
manifold (Us, g, J’) is a normal almost Kéahler non-Kéhler manifold whose
opposite almost Kéhler structure is Kéahler. Such manifolds are described
in [N]. In particular D is spanned locally by two holomorphic Killing vector
fields &, n which commute, [{,n] = 0. It follows (see [Bes| for the proof in
the compact case, but the result also holds locally) that p(&,n) = pw(&,n) =
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—20(J[€,n]) = 0 and consequently p = 0, which means that ¢ = —2#1q and

1
¢ # 0 is constant. In particular a # 0. ’

The metric of the manifold (Us, g, J') can locally be described as follows
(see [N]). Let (Mg, ga, Ja) be a space of constant holomorphic curvature a # 0
and f : M, — C be a holomorphic function f = u + iv such that u > 0.
Then M = M, x R? with the metric

1
g = ga + udz®* + —(dy + vdx)®?
u

where z,y are standard coordinates on R?, and the complex structure J
which coincides with the complex structure J, of M, on M, and which is
given by J(dz) = 1(dy + vdz) on R% The Kéhler form is 2 = w, + dz A dy
where w, is the Kahler form of (Mg, gq, Jo). From Proposition 7.2 in [N] it
follows that a normal AKX manifold is locally a product of a Kéhler manifold
and a strictly normal AKs manifold. It follows that (M, g, J') is strictly
normal. On the other hand it follows from [N] that (M, g, J’) cannot be
strictly normal, since dim M, > 4 and no holomorphic function f : M, — C
can be immersive. =

COROLLARY. Let (M,g,J) be a QCH manifold with dim M > 6, Kk = 0
and constant scalar curvature. Then two cases are possible:

(a) (M,g,J) has constant holomorphic sectional curvature,

(b) (M,g,J) is locally a product M, x X where M, is a Kdhler manifold
of constant holomorphic sectional curvature a and X' is a Riemannian
surface of constant scalar curvature.

Proof. The scalar curvature is constant if and only if ¢ is constant. From
@ it follows that if ¢ # 0 is constant then D is integrable. =

REMARK. If we take X with non-zero scalar curvature 7 on X’ — V and
which vanishes on some closed set V' C X with non-empty interior then
C" ! x ¥ is a QCH manifold with x = 0,b = 0,a = 0 for which we have
My =C"1!'xVand Uy = C" ! x (¥ —V) where on C*"! there is the stan-
dard Euclidean metric. The curvature tensor is R = %TW. Note that QCH
manifolds with x = 0 and constant scalar curvature are locally symmetric
(if @ > 0 and M is compact this also follows from [O]).

Next we consider general QCH manifolds with a = b = 0.

THEOREM 3. A QCH-manifold with a = b = 0 and ¢ # 0 on M is
is a semi-symmetric manifold foliated with (2n — 2)-dimensional Euclidean
manifolds (see [Sz]). Conversely, every Kahler manifold foliated with (2n—2)-
dimensional Euclidean spaces is a QCH manifold with a = b =0 and ¢ # 0
for which D = V1, where V! is a subbundle of TM irreducible with respect
to the primitive holonomy group.
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Proof. A QCH-manifold with a = b = 0 satisfies R.R = (a + 3 )H R=0
(see [J-2]). If ¢ # 0 on M then (M, g,J) is a manifold foliated w1th (2n—2)-
dimensional Euclidean manifolds (see [Sz|). The primitive holonomy group
of (M,g,J) at a point z € M is K, = SO(2) = {costpp + sintJpp} and
VO=¢& VI=Dsince £ ={X : R{U, V)X =0 forall U,V € TM}.

Conversely, every Kéhler manifold foliated with (2n — 2)-dimensional
Euclidean spaces is a QCH manifold with a = b = 0 and ¢ # 0 for which
D = V! In fact since J o R(U,V) = R(U,V) o J it follows that JV% = V°
and JV! =V! Set D=V"!andlet X € TM with | X|| =1,X = X¢ + Xp.
Then

R(X,JX,JX,X) = R(Xp,JXp, JXp, Xp) = | Xp|*c

where ¢ is the sectional curvature of D. It follows that R = ¢ with respect
toD=V' u

THEOREM 4. Let (M,g,J) be a complete, simply connected Kdhler semi-
symmetric manifold foliated with (2n — 2)-dimensional Fuclidean spaces.
Then (M, g) is the product of (2n — 2)-dimensional Euclidean space and a
Riemannian surface with non-vanishing scalar curvature.

Proof. From [S7] it follows that the space S =span{ps(VxY): X,Y €D}
is at most 1-dimensional. We have to show that the hyperbolic and parabolic
parts My, and M, of M are empty. We shall show that in the Kéahler case
JS = 8. Infact, if ps(VxY) =€ € Sthenpe(VxJY) = Jpe(VxY) = JE €
S and consequently JS = S. It follows that S cannot be 1-dimensional and
S = 0. Thus D is totally geodesic. Since V? = £ is also totally geodesic, it
follows from the de Rham theorem that (M, g) is the product of (2n — 2)-
dimensional Euclidean space and a Riemannian surface with non-vanishing
scalar curvature. m

THEOREM 5. Let (M,g,J) be a QCH Kdhler manifold with k = 0, and
dimM > 6 and U = {z : c(x) # 0}. Let xy € U and my, € TyyM N E,, be a
unit vector. Then there exists a neighbourhood V- C U of xg and a unit field
m € I'(Ey) such that Vyym =0 and m(zg) = my,.

Proof. Let X' C U be a hypersurface perpendicular to mg, and let m be a
unit vector field on X' with values in £. Let E C T'M|x; be the 1-dimensional
vector bundle spanned by m. Let us consider the map ¢ : E — M defined by
P(X) = expy x)X. There exists a neighbourhood W of 0z, in E such that
¢y is a diffeomorphism and ¢(W) C U. Define m(¢(X)) = dp((X)) Mip(X)
where d is parallel translation along the curve d(t) = exp,(x) tX. Note that
Vimm =0 and m € I'(€) since £ is totally geodesic. m

Define on U the operator By, (X) = pp(Vxm). Note that B,,(Y) = 0 if
Y € £. Let m be as in Theorem 4. Then (V,,B,,)(Y) =0if Y € £ and to
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find B, it is sufficient to consider B,,p. We get, for X € I'(D),

VmBm(‘X) + B, (VmX) = vmpD(va) = pD(VmVXm)
= pp(R(m, X)m + VxVymm + Vix mym)

— aX + pp(Vv,.xm) — pp(Vymm)

—YaX — B2 (X) + B (Vi X).
Let X, Y be a parallel basis of unit vectors along d(t) = exp, tm. Such a basis
exists in U. If m(t) = d then B,,(t) can be considered as a 2 x 2 matrix B(t)
by the choice of parallel basis. This matrix satisfies the ordinary differential
equation

(8) B+ B*=-1lal.

Now let ¢ be a section of the bundle £. Then R(X,{)Y = all(X,{)Y.
Let X,Y,Z € TM. Then for B(X) = pp(Vx&) we get

VzR(X,§)Y + R(X,B(Z))Y + R(X,pe(Vz£))
= all (X, B(Z))Y + all (X, pe(V 2€))Y.
Consequently,
VzR(X,8)Y = —c¥ (X, B(Z))Y.
Hence
VeR(X,Y)Z = -VyR(,X)Z - VxR(Y,§)Z

=c¥(B(Y),X)Z+ ¥ (Y,B(X))Z
=—-c¥(BX),Y)Z—-c¥(X,B(Y))Z
= —ctrBY(X,Y)Z.

Now let zg € U and mg, € &, be a unit vector. Let d(t) = exp,, (tmy,)
and m(t) = d(t). Then

(9) % = —ctr Bm(t)

and consequently
t

(10) c(d(t)) = e(zo) exp (— S tr By (s) ds) .
0

It follows that if (M, g, J) is complete and d is a geodesic such that d(0) € U,
d(0) € &z, then imd C U. In particular & is integrable and its leaves X
are complete and contained in U if M is complete.

Let S be the distribution defined by
S = span{peVx X, psVxY,psVy X, psVyY'}
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where X,Y = JX is an orthonormal local basis of D. The dimension of S
cannot be constant. Note that dim S < 4. It is easy to see that pg(Vc) € 5,
Jpe(Ve) € S and JS = S. Note also that pe([X, JX]) = Jpe(Vinc).

THEOREM 6. Let (M,g,J) be a QCH Kdhler manifold with k = 0 and
dimM > 6. If b =0 and a > 0 then M cannot be complete unless it is of
constant holomorphic curvature. If M is complete and a = 0, b = 0 then
M is the union of a manifold of constant holomorphic sectional curvature 0O
and a manifold which is a local product of a (2n — 2)-manifold of constant
holomorphic sectional curvature 0 and a Riemannian surface ..

Proof. Let x € U = {z : c¢(x) # 0}. Let mg € Sy N &, Let m be
constructed as in Theorem 5, m(x) = mp and let d(t) = exp,(tmp). Let
m(t) = d(t) and B(t) be the 2 x 2 matrix corresponding to B,, by choosing a
parallel orthonormal basis of D along d. Then B(0) = 0 and B'+B? = —1al.
Consequently, B(t) = —ytan(yt)I if a = 442 > 0, B(t) = 0 if a = 0, and
B(t) = ytanh(yt)I if a = —4% < 0 where v > 0.

Hence if dim M > 8 and U # () then M cannot be complete if a > 0
since the solution B(t) = —vtan(vt)I of equation with initial condition
B(0) = 0 is defined only on (—ﬂw, %W)

If dim M = 6 and a = 4y% > 0 note that the solution of with initial
condition B(0) = By is

B(t) = y(cos(vt) By — v sin(yt)I)(sin(yt) By 4 cos(vt)I) .

If By has a real eigenvalue different from 0 then B(¢) is not defined on the
whole of R. On the other hand if dim S; > 2 then as in [Sz| one can prove
that there exists mg € Sy N &, such that B,,, = By has a nonzero real
eigenvalue. It follows that S = 0 and consequently D is totally geodesic and
in particular integrable. Thus (M, g, J) is a complete manifold of constant
holomorphic curvature. If @ = 0 we prove as in Theorem 3 that S = 0
in U = {x : ¢(z) # 0} and consequently D|U is totally geodesic, and the
theorem follows. m

We finish by giving a second proof of Theorem 2. Let U = {z : ¢(x) # 0}
and let x € U. First we assume that a # 0. Since pg(Ve) = 0 we have
dim S, < 2. Let mg € Sy N &, with ||mg| = 1. Then B,,, = 0 and we
deduce from that along the geodesic d(t) = exp, (tmg) we get c(d(t)) =
c(z)/ cos(yt)? if a = 492 and c(d(t)) = c(z)/cosh(yt)? if a = —4+? where
v > 0. On the other hand, since pg(Ve) = 0 the function c¢ is constant on the
leaves of the foliation £. The geodesic d is contained in a leaf of the foliation
& and c is not constant on d, which gives a contradiction. Hence U = () and
(M, g,J) has constant holomorphic curvature. If @ = 0, S # 0 then since
Bjm, = J o B, using the results of [Sz| one can easily prove that there
exists mg € S such that tr B,,;) # 0 for ¢ close to 0. Consequently, from (9)
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we again infer that ¢ is not constant on d, a contradiction. Hence S = 0 and
D is totally geodesic in U, which finishes the proof.
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