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A QUANTITATIVE VERSION OF THE CONVERSE
TAYLOR THEOREM: Ck,ω-SMOOTHNESS

BY

MICHAL JOHANIS (Praha)

Abstract. We prove a uniform version of the converse Taylor theorem in infinite-
dimensional spaces with an explicit relation between the moduli of continuity for mappings
on a general open domain. We show that if the domain is convex and bounded, then we
can extend the estimate up to the boundary.

The converse to the Taylor theorem is a well-known result (see e.g. [LS]
or [AD]). We could not find in the literature a version of this theorem for
mappings with uniformly continuous derivatives that deals explicitly with
the moduli of continuity, so we prove such a version below (Theorem 9).
Usually when dealing with quantitative uniform estimates for derivatives of
mappings on general open domains there are troubles when we approach
the boundary. We show that if the domain is convex and bounded these
problems can be avoided.

All vector spaces considered are real. We denote by B(x, r), resp. U(x, r)
the closed, resp. open ball in a normed linear space centred at x with radius
r > 0. By BX we denote the closed unit ball of a normed linear space X,
i.e. BX = B(0, 1). Let X, Y be normed linear spaces and n ∈ N. We de-
note by Ls(nX;Y ) the space of symmetric n-linear mappings from X to Y
with the norm ‖M‖ = supx1,...,xn∈BX‖M(x1, . . . , xn)‖, and by P(nX;Y ) the
space of n-homogeneous polynomials from X to Y with the norm ‖P‖ =
supx∈BX‖P (x)‖. Further, Pn(X;Y ) denotes the space of polynomials of de-
gree at most n from X to Y with the norm ‖P‖ = supx∈BX‖P (x)‖. We will
use the following convention: for k ∈ N0 = N ∪ {0} and x ∈ X we denote

kx = x, . . . , x︸ ︷︷ ︸
k times

.

If P ∈ P(nX;Y ), then we denote by P̂ the uniquely determined symmetric
n-linear mapping that gives rise to the polynomial P , i.e. P (x) = P̂ (nx).
We start by recalling a few well-known results on polynomials that will be
needed later on. They can be found e.g. in [M].
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Lemma 1. Let X, Y be normed linear spaces, n ∈ N, P ∈ P(nX;Y ),
and x, y ∈ X. Then

P (x+ y) =
n∑
j=0

(
n

j

)
P̂ (jx, n−jy).

Theorem 2. Let n ∈ N0. There are numbers akj ∈ R, k, j = 0, . . . , n,
such that whenever X, Y are normed linear spaces, P ∈ Pn(X;Y ), and
Pk ∈ P(kX;Y ) are such that P =

∑n
k=0 Pk, then Pk(x) =

∑n
j=0 akjP

( j
nx
)

for every x ∈ X.

In particular, there are constants Kn,k > 0 such that

‖Qk(x)‖ ≤ Kn,k max
0≤j≤n

∥∥∥∥Q( jnx
)∥∥∥∥

whenever X, Y are normed linear spaces, Q ∈ Pn(X;Y ), x ∈ X, and
k ∈ {0, . . . , n}, where Qk is the k-homogeneous summand of Q.

The next lemma shows that the polarisation formula applied to a non-
homogeneous polynomial extracts its “leading term”.

Lemma 3 ([MO]). Let X, Y be normed linear spaces, n ∈ N, and let
P ∈ Pn(X;Y ) be such that P =

∑n
k=0 Pk where Pk ∈ P(kX;Y ). Then

Pn̂(x1, . . . , xn) =
1

2nn!

∑
εj=±1

ε1 · · · εnP
(
a+

n∑
j=1

εjxj

)
for every a, x1, . . . , xn ∈ X.

The following lemma is useful for estimating the norm of a homogeneous
polynomial using its values on an arbitrary ball.

Lemma 4. Let X, Y be normed linear spaces, n ∈ N, let P ∈ Pn(X;Y )
be such that P =

∑n
k=0 Pk, Pk ∈ P(kX;Y ), and let a ∈ X. Then

‖Pn(x)‖ ≤ nn

n!
sup

t∈[−1,1]
‖P (a+ tx)‖

for every x ∈ X. In particular, for any r > 0,

sup
x∈B(0,r)

‖Pn(x)‖ ≤ nn

n!
sup

x∈B(a,r)
‖P (x)‖.

Proof. By Lemma 3,

‖Pn(x)‖ = nn
∥∥∥∥Pn(xn

)∥∥∥∥ ≤ nn

2nn!

∑
εj=±1

∥∥∥∥P(a+
x

n

n∑
j=1

εj

)∥∥∥∥
≤ nn

n!
sup

t∈[−1,1]
‖P (a+ tx)‖.
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Let X, Y be normed linear spaces, U ⊂ X open, f : U → Y , and x ∈ U .
We denote by Df(x) the Fréchet derivative of f at x; and by Df(x)[h] the
evaluation of this derivative at the direction h ∈ X. Similarly we denote by
Dkf(x) the kth Fréchet derivative of f at x; by dkf(x) the k-homogeneous
polynomial corresponding to the symmetric k-linear mapping Dkf(x); and
by dkf(x)[h] its evaluation at h ∈ X, i.e. dkf(x)[h] = Dkf(x)[kh].

We say that f is Ck-smooth if Dkf (i.e. the mapping x 7→ Dkf(x))
is continuous in the domain. We denote by Ck(U ;Y ) the vector space
of all Ck-smooth mappings from U into Y . For convenience we also put
C0(U ;Y ) = C(U ;Y ), the continuous mappings.

Lemma 5. Let X, Y be normed linear spaces, U ⊂ X open, f : U → Y ,
k ∈ N, and a ∈ U . Then dkf(a) exists if and only if D(dk−1f)(a) exists.

Proof. Denote by I : P(k−1X;Y ) → Ls(k−1X;Y ) the canonical isomor-
phism I(P ) = P̂ from the polarisation formula. Then Dk−1f = I ◦dk−1f and
dk−1f = I−1 ◦Dk−1f and so the equivalence follows from the chain rule.

Notice that by the polarisation formula, f ∈ Ck(U ;Y ) if and only if
the mappings x 7→ djf(x), j = 1, . . . , k, are continuous on U . Recall the
following two versions of Taylor’s theorem:

Theorem 6 (Peano’s form of Taylor’s theorem). Let X, Y be normed
linear spaces, U ⊂ X an open set, f : U → Y , a ∈ U , k ∈ N, and suppose
that Dkf(a) exists. Then∥∥∥∥f(x)−

k∑
j=0

1

j!
djf(a)[x− a]

∥∥∥∥ = o(‖x− a‖k), x→ a.

Theorem 7. Let X, Y be normed linear spaces, U ⊂ X an open convex
set, k ∈ N, and f ∈ Ck(U ;Y ). Then for any x ∈ U and h ∈ X satisfying
x+ h ∈ U we have∥∥∥∥f(x+ h)−

k∑
j=0

1

j!
djf(x)[h]

∥∥∥∥ ≤ 1

k!

(
sup
t∈[0,1]

‖dkf(x+ th)− dkf(x)‖
)
· ‖h‖k.

Let X, Y be normed linear spaces, U ⊂ X an open set, f : U → Y , and
k ∈ N0. We say that f is T k-smooth at x ∈ U if there exists a polynomial
P ∈ Pk(X;Y ) satisfying P (0) = f(x) and

(1) f(x+ h)− P (h) = o(‖h‖k), h→ 0.

We say that f is T k-smooth on U if it is T k-smooth at every point x ∈ U .

We remark that the polynomial in (1) is uniquely determined. It is easy
to see that T k+1-smoothness implies T k-smoothness. If f is T 1-smooth at x,
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then f is Fréchet differentiable at x with Df(x) = P1, the 1-homogeneous
term of P .

Theorem 6 implies that a Ck-smooth mapping is also T k-smooth and

the approximating polynomial is given by
∑k

j=0
1
j!d

jf(x). The converse is

not true in general: consider f : R → R, f(x) = xk+1 sin 1
xk

, f(0) = 0.

Then f is T k-smooth but not even C1-smooth. Nevertheless, under certain
uniformity assumptions the converse does hold.

Theorem 8 (Converse Taylor theorem). Let X, Y be normed linear
spaces, U ⊂ X an open set, f : U → Y , and k ∈ N0. Then f ∈ Ck(U ;Y ) if
and only if f is a T k-smooth mapping satisfying

(2) lim
(y,h)→(x,0)

h6=0

‖R(y, h)‖
‖h‖k

= 0

for every x ∈ U , where R(x, h) = f(x + h) − P x(h) and the polynomials
P x ∈ Pk(X;Y ) come from the definition of T k-smoothness at x. In this

case P x =
∑k

j=0
1
j!d

jf(x).

The proof of the uniform version below reuses significant parts of the
proof of this theorem. For this reason (and also for the reader’s convenience)
we give our version of the proof. The main ideas are the same as in [AD].

Proof. ⇒ If f ∈ Ck(U ;Y ), then f is T k-smooth, and P x=
∑k

j=0
1
j!d

jf(x)
by the uniqueness of the Taylor polynomial. Fix x ∈ U and choose any
ε > 0. Let δ > 0 be such that B(x, 2δ) ⊂ U and ‖dkf(z) − dkf(x)‖ < ε for
z ∈ B(x, 2δ). By Theorem 7,

‖R(y, h)‖ ≤ 1

k!

(
sup

z∈B(y,δ)
‖dkf(z)− dkf(y)‖

)
· ‖h‖k ≤ 2ε

k!
‖h‖k

whenever y ∈ B(x, δ) and h ∈ B(0, δ), from which (2) follows.

⇐ We use induction on k. For k = 0 the assertion is obvious, since both
T 0-smoothness and C0-smoothness mean just the continuity of f . So assume
that k ∈ N and the theorem holds for k − 1.

Fix x ∈ U and let δ > 0 be such that U(x, 2δ) ⊂ U . We have

(3)
f(x+ h+ y) = P x(h+ y) +R(x, h+ y),

f(x+ h+ y) = P x+h(y) +R(x+ h, y),

for all h, y ∈ U(0, δ). Set q(h, y) = P x+h(y)− P x(h+ y). Denote by P zj the
j-homogeneous summands of P z, j = 0, . . . , k. By Lemma 1 we can write
q(h, y) =

∑k
j=0 qj(h, y), where

qj(h, y) = P x+hj (y)−
k∑
l=j

(
l

j

)
P xl̂ (l−jh, jy).
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Note that q(h, ·) ∈ Pk(X;Y ) and qj(h, ·) ∈ P(jX;Y ), j = 0, . . . , k, for
every h ∈ U(0, δ). By subtracting the equalities (3) we obtain q(h, y) =
R(x, h+ y)−R(x+ h, y). Thus for any h, y ∈ U(0, δ) such that ‖y‖ ≤ ‖h‖,
y 6= 0, and y 6= −h we obtain

‖q(h, y)‖ ≤ ‖R(x, h+ y)‖+ ‖R(x+ h, y)‖

≤
(

2k
‖R(x, h+ y)‖
‖h+ y‖k

+
‖R(x+ h, y)‖
‖y‖k

)
‖h‖k.

It follows (using also simpler versions of the above estimate if y = 0 or
y = −h) that

‖q(h, y)‖ = o(‖h‖k), (h, y)→ (0, 0), ‖y‖ ≤ ‖h‖.

Applying Theorem 2 we get ‖qj(h, y)‖ ≤ Kk,j max0≤l≤k
∥∥q(h, lky)∥∥ for

all h ∈ U(0, δ), y ∈ Y , and j ∈ {0, . . . , k}. Therefore

‖qj(h, y)‖ = o(‖h‖k), (h, y)→ (0, 0), ‖y‖ ≤ ‖h‖.

So finally by taking the supremum over y ∈ B(0, ‖h‖) and using the j-ho-
mogeneity of qj(h, ·) we obtain

‖qj(h, ·)‖ =
1

‖h‖j
sup
‖y‖≤‖h‖

‖qj(h, y)‖(4)

= sup
‖y‖≤‖h‖

‖qj(h, y)‖
‖h‖j

= o(‖h‖k−j), h→ 0,

for each j ∈ {0, . . . , k}.
Since qk(h, ·) = P x+hk − P xk , it follows that the mapping x 7→ P xk is

continuous on U . Further, since for h 6= 0,

‖f(y + h)−
∑k−1

j=0 P
y
j (h)‖

‖h‖k−1
≤
‖R(y, h)‖+ ‖P yk (h)‖

‖h‖k−1

≤
(
‖R(y, h)‖
‖h‖k

+ ‖P yk ‖
)
‖h‖,

the continuity of x 7→ P xk implies

lim
(y,h)→(x,0)

h6=0

‖f(y + h)−
∑k−1

j=0 P
y
j (h)‖

‖h‖k−1
= 0

and so by the inductive hypothesis f is Ck−1-smooth and P xj = 1
j!d

jf(x),
j = 0, . . . , k − 1. Thus

qk−1(h, y) =
1

(k − 1)!

(
dk−1f(x+ h)[y]− dk−1f(x)[y]

)
− kP xk̂ (h, k−1y)
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and from (4) we get

‖dk−1f(x+ h)− dk−1f(x)− k!P xk̂ (h, ·, . . . , ·)‖ = o(‖h‖), h→ 0.

Therefore dkf(x) exists by Lemma 5, and consequently dkf(x) = k!P xk by
Theorem 6, which finishes the proof.

A modulus is a non-decreasing function ω : [0,∞) → [0,∞] continuous
at 0 with ω(0) = 0. The set of all moduli will be denoted byM. An important
subset of all moduli consists of the subadditive moduli. A nice feature of a
subadditive modulus ω is that it is real-valued and uniformly continuous
with modulus of continuity ω. It is easy to check that the minimal modulus
of continuity of a uniformly continuous mapping defined on a convex subset
of a normed linear space is subadditive.

Let X, Y be normed linear spaces, U ⊂ X open, k ∈ N, f ∈ Ck(U ;Y ),
and let ω ∈ M. We say that f is Ck,ω-smooth on U if dkf is uniformly
continuous on U with modulus ω.

Let X, Y be normed linear spaces, V ⊂ X an open set, f : V → Y , and
k ∈ N0. We say that f is UT k-smooth on V if there exists ω ∈M such that
for each x ∈ V there is a polynomial P ∈ Pk(X;Y ) satisfying

‖f(x+ h)− P (h)‖ ≤ ω(‖h‖)‖h‖k for x+ h ∈ V .

We note that UT k+1-smoothness in general does not imply UT k-smooth-
ness—the function f(x) = x3 is UT 2-smooth on R but it is not UT 1-smooth
on R.

Theorem 7 implies that a Ck,ω-smooth mapping on a convex set U is
UT k-smooth on U with modulus (1/k!)ω. The converse is contained in the
next theorem. For a convex subset U of a normed linear space X we define
its “ellipticity” eU = inf{R/r : B(x, r) ⊂ U ⊂ B(x,R), x ∈ U} and we set
eX = 1.

Theorem 9. Let X, Y be normed linear spaces, U ⊂ X an open set,
f : U → Y , and k ∈ N. Suppose that f is UT k-smooth on U and the modu-
lus ω from the definition of UT k-smoothness is subadditive. If V ⊂ U is an
open bounded subset satisfying dist(V,X \ U) > 0, then f is Ck,mω-smooth
on V , where m > 0 is a constant depending on k, diamV , and dist(V,X\U).

Moreover, if U=X or U is a convex bounded set, then f is Ck,mω-smooth
on the whole of U , we do not need to assume that ω is subadditive, and
m = cke

k
U , where ck > 0 is a constant depending only on k.

Proof. First notice that f ∈ Ck(U ;Y ) by Theorem 8. Let V ⊂ U be a
non-empty bounded open set for which dist(V,X \U) > 0. Put ρ = diamV
and ε = min{ρ,dist(V,X \ U)}. Fix any x ∈ V and h ∈ X such that
x+h ∈ V . We use the notation from the proof of Theorem 8. For any y ∈ X
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satisfying ‖y‖ ≤ ‖h‖ and x+ h+ y ∈ U we have

‖q(h, y)‖ ≤ ‖R(x, h+ y)‖+ ‖R(x+ h, y)‖(5)

≤ ω(‖h+ y‖)‖h+ y‖k + ω(‖y‖)‖y‖k

≤ ω(2‖h‖)2k‖h‖k + ω(‖h‖)‖h‖k ≤ (2k+1 + 1)ω(‖h‖)‖h‖k.

Therefore by Theorem 2,

‖dkf(x+ h)[y]− dkf(x)[y]‖ = k!‖qk(h, y)‖ ≤ k!Kk,k max
0≤l≤k

∥∥q(h, lky)∥∥
≤ k!Kk,k(2

k+1 + 1)ω(‖h‖)‖h‖k

for all y ∈ X satisfying ‖y‖ ≤ ε
ρ‖h‖. Consequently, if h 6= 0,

‖dkf(x+ h)− dkf(x)‖ =
1(

ε
ρ‖h‖

)k sup
‖y‖≤ ε

ρ
‖h‖
‖dkf(x+ h)[y]− dkf(x)[y]‖

≤ ρk

εk
k!Kk,k(2

k+1 + 1)ω(‖h‖).

Note that if U = X we can take the supremum over ‖y‖ ≤ ‖h‖ (since
x+h+y always lies in the domain of f) and thus we do not need to restrict
to bounded sets. Also, if ω is not subadditive, then using (5) we obtain
‖q(h, y)‖ ≤ (2k + 1)ω(2‖h‖)‖h‖k, and thus ω1(t) ≤ k!Kk,k(2

k + 1)ω(2t),
where ω1 is the minimal modulus of continuity of dkf on X. But since
the modulus ω1 is subadditive in this case, we get ω1(t) ≤ 2ω1

(
1
2 t
)
≤

2k!Kk,k(2
k + 1)ω(t).

Finally, suppose that U is convex and bounded. Without loss of general-
ity we may assume that B(0, r) ⊂ U ⊂ B(0, 2eUr) for some r > 0. Fix any
x ∈ U and h ∈ X \ {0} such that x + h ∈ U . By switching the roles of x
and x + h if necessary, we may assume that ‖x‖ ≤ ‖x + h‖. It follows that
‖h‖ ≤ 2‖x+ h‖. Put

a = −‖h‖ x+ h

2‖x+ h‖
and s =

‖h‖
4eU

and note that by convexity,B(x+h+a, s) ⊂ U . Indeed, any z ∈ B(x+h+a, s)
can be expressed as a convex combination

z =

(
1− ‖h‖

2‖x+ h‖

)
(x+ h) +

‖h‖
2‖x+ h‖

w,

where w = 2‖x+h‖
‖h‖ (z − x − h − a) ∈ B(0, r). Now if y ∈ B(a, s), then

‖y‖ ≤ ‖a‖+ s ≤ ‖h‖ and hence

‖q(h, y)‖ ≤ (2k+1 + 1)ω(‖h‖)‖h‖k



64 M. JOHANIS

by (5). Thus using Lemma 4 we obtain

‖dkf(x+ h)− dkf(x)‖ =
1

sk
sup

y∈B(0,s)
‖dkf(x+ h)[y]− dkf(x)[y]‖

=
k!

sk
sup

y∈B(0,s)
‖qk(h, y)‖ ≤ kk

sk
sup

y∈B(a,s)
‖q(h, y)‖

≤ kk

sk
(2k+1 + 1)ω(‖h‖)‖h‖k

= (4k)k(2k+1 + 1)ekUω(‖h‖).
If ω is not subadditive, then analogously to the case U = X we obtain
ω1(t) ≤ 2(4k)k(2k+1 + 1)ekUω(t), where ω1 is the minimal modulus of conti-

nuity of dkf on U .
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