PRODUCTS OF DISJOINT BLOCKS OF CONSECUTIVE INTEGERS WHICH ARE POWERS

BY

MARIUSZ SKAŁBA (Warszawa)

Abstract. The product of consecutive integers cannot be a power (after Erdős and Selfridge), but products of disjoint blocks of consecutive integers can be powers. Even if the blocks have a fixed length \(l \geq 4 \) there are many solutions. We give the bound for the smallest solution and an estimate for the number of solutions below \(x \).

Our starting point is the celebrated theorem of Erdős and Selfridge stating that the product of consecutive integers is never a power ([3], [4]). On the other hand, the product of disjoint blocks of consecutive integers can be a power ([4]). Let us first consider the case of three consecutive integers. Let \(f(x) = x^3 - x \), fix \(k \geq 2 \) and consider the diophantine equation

\[
\prod_{i=1}^{k} f(x_i) = y^2.
\]

We look for solutions in natural numbers \(x_1, \ldots, x_k, y \) which satisfy

\[
2 \leq x_1 < \ldots < x_k, \quad x_{j+1} \geq x_j + 3.
\]

For \(k = 2 \), K. R. S. Sastry takes

\[x_1 = n, \quad x_2 = 2n - 1, \]

where \(n, m \in \mathbb{N} \) satisfy the equation

\[
(n + 1)(2n - 1) = m^2
\]

of the Pellian type with infinitely many solutions ([4]). For \(k = 3 \) one can take

\[x_1 = F_{2u-1}, \quad x_2 = F_{2u+1}, \quad x_3 = F_{2u}^2, \quad u \geq 2, \]

where \(F_u \) is the \(u \)th term of Fibonacci sequence.

Since each \(k \geq 2 \) is of the form \(3a + 2b \) with nonnegative \(a, b \) and we can combine solutions we obtain

Theorem 1. For any fixed \(k \geq 2 \) the equation (1) has infinitely many natural solutions satisfying (2).

2000 Mathematics Subject Classification: 11A05, 11D57.
From now on, we will consider a more general problem. Let \(l \geq 2 \) be a fixed natural number and
\[
f(x) = (x + 1)(x + 2) \cdot \ldots \cdot (x + l).
\]
Moreover let \(q \geq 2 \) be a fixed prime and consider the equation
\[
\prod_{i=1}^{k} f(x_i) = y^q.
\]
We are interested in nonnegative integral solutions which satisfy
\[
x_1 < \ldots < x_k, \quad x_{j+1} \geq x_j + l.
\]
Erdős and Graham [2, p. 67] suggest that if \(l \geq 4, q = 2 \), then (4) has only finitely many solutions satisfying (5) (cf. [4, Problem D.17]).

If we allow \(k \) to vary, the above suggestion is not true, because we have

Theorem 2. (a) There exist nonnegative integers \(x_1, \ldots, x_k, y \) satisfying (4), (5) and
\[
x_k + l < e^{q l},
\]
where
\[
c = \sup_{n \geq 1} \frac{\pi(n) \log n}{n} = \frac{30 \log 113}{113} < 1.25506.
\]
(b) Let \(N(x) \) denote the number of solutions of (4) satisfying (5) and \(x_k + l \leq x \). Then
\[
N(x) \gg 2^{\pi(1+o(1))} \quad \text{as } x \to \infty.
\]

Proof. (a) Let \(G = \mathbb{Q}_+ \otimes \mathbb{Q}_+^q \) and \(G(x) = \langle \overline{p_1}, \ldots, \overline{p_{\pi(x)}} \rangle \), where \(\overline{m} \) denotes the image of \(m \in \mathbb{Q}_+ \) in \(G, x \geq 1 \). Obviously \(G(x) \simeq C_q^{\pi(x)} \), where \(C_q \) stands for a cyclic group of order \(q \). Now define
\[
g_j = \overline{f((j-1)l)} \quad \text{for } j = 1, \ldots, [x/l].
\]
The elements \(g_j \) belong to \(G(x) \). We recall the definition of the Davenport constant of a finite Abelian group \(H \) ([1]). It is the smallest natural number \(D(H) \) such that for any sequence \(g_1, \ldots, g_k \) of \(k \) elements of \(H \) with \(k \geq D(H) \) one can choose a subsequence \(g_{j_1}, \ldots, g_{j_u} \) with \(g_{j_1} \cdot \ldots \cdot g_{j_u} = 1 \).

It can be proved ([6], [5]) that
\[
D(C_q^{\pi(x)}) = (q - 1) t + 1.
\]
By the above definition, in order to prove part (a) it is sufficient to show that
\[
\left\lfloor \frac{x}{l} \right\rfloor \geq (q - 1) \pi(x) + 1
\]
for $x = e^{cql}$. For $x \geq 2$, we have $\pi(x) \geq 1$, hence (8) will follow from

$$\frac{x}{l} \geq q \cdot \frac{c x}{\log x},$$

which is equality for $x = e^{cql}$.

(b) We apply the following theorem of J. E. Olson [6]:

For each sequence (g_1, \ldots, g_k), $g_i \in H$, let $N(g_1, \ldots, g_k)$ be the number of solutions (e_1, \ldots, e_k), $e_i = 0$ or 1, of the equation

$$g_1^{e_1} \cdot \cdots \cdot g_k^{e_k} = 1.$$

Let $N(H, k)$ be the minimum value of $N(g_1, \ldots, g_k)$. Then

$$N(H, k) = \max(1, 2^{k+1-D(H)}).$$

Our result follows now immediately:

$$N(x) \gg 2^{\frac{c}{l} - (q-1)\frac{\pi}{\log x}} \gg 2^{\frac{c}{l}(1+o(1))} \text{ as } x \to \infty.$$

Remark. The numerical value of c is taken from [7].

Acknowledgments. I would like to thank Prof. J. Browkin for very stimulating examples of nontrivial solutions of (4) for $l \leq 4$. I thank also Prof. A. Schinzel for his kind interest, remarks improving presentation and bibliographical hints.

REFERENCES

Department of Mathematics, Computer Science and Mechanics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: skalba@mimuw.edu.pl

Received 19 December 2002