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Abstract. We discuss the spectral properties of the operator

hM(α) := − d2

dt2
+

„
1

2
t2 − α

«2

on the line. We first briefly describe how this operator appears in various problems in the
analysis of operators on nilpotent Lie groups, in the spectral properties of a Schrödinger
operator with magnetic field and in superconductivity. We then give a new proof that the
minimum over α of the groundstate energy is attained at a unique point and also prove
that the minimum is non-degenerate. Our study can also be seen as a refinement for a
specific nilpotent group of a general analysis proposed by J. Dziubański, A. Hulanicki and
J. Jenkins.

1. Historical context and main result

1.1. Sublaplacians on nilpotent groups. In the seventies the oper-
ator

(1.1) hM(α) := − d2

dt2
+

(
1
2
t2 − α

)2

appears in the analysis of the analytic hypoellipticity of left invariant opera-
tors on stratified nilpotent groups. When considering the stratified nilpotent
Lie algebra N4 of rank 3 and dimension 4 (called the Engel algebra) with two
generators X1 and X2, the Hörmander Laplacian P on the corresponding
nilpotent group reads in exponential coordinates

(1.2) P := −(X2
1 +X2

2 ) = −∂2
t −

(
∂x + t∂y +

t2

2
∂z

)2

.

Although the hypoellipticity of this operator was well known, the ques-
tion of its hypoanalyticity was open in 1979. The author, inspired by re-
sults of G. Métivier on nilpotent groups of rank 2 and by the celebrated
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example of Baouendi–Goulaouic D2
t + t2D2

x + D2
y on R3, shows that the

non-hypoanalyticity of this operator will result from the property that, for
some α ∈ C, the operator dπα(P), where πα corresponds to a family of com-
plexified representations of N4, becomes non-injective on the space Sπα of
C∞-vectors of the representation. If one has in mind that

dπα(P) = hM(α),

and that Sπα =S(R), one recognizes the operator which is of interest for us.
Note that a positive answer to the question of non-injectivity for some

complex α was solved by Pham The Lai and D. Robert in [19]. We refer
to the survey [8] for a discussion of this result and a short presentation of
the results of Rothschild–Stein and Helffer–Nourrigat in connection with
Rockland’s conjecture (see also [14] written in 1985).

The analysis of non-hypoanalyticity in this spirit has been pursued in
the works by Chanillo, Christ, O. and D. Costin, Hanges, Helffer, Himonas,
Laptev, Robert, Trèves, X. P. Wang (see [2, 15, 20] and references therein).

Let us recall very briefly how one can recover hM(α) by hand. Starting
from (1.2), we can take the partial Fourier transform in the x, y and z
variables and get the family of operators

dπξ,η,ζ(P) := − d2

dt2
+

(
ξ + tη +

t2

2
ζ

)2

,

depending on the three parameters (ξ, η, ζ) which give a (redundant) de-
scription of irreducible representations of N4 (except when η = ζ = 0). So
up to a dilation, hM(α) corresponds to dπ(P) for the non-degenerate rep-
resentations (in the sense of Rockland). The question we will analyze below
can be formulated in this way: What is the best constant Csubell such that
the inequality

(1.3) ‖ |Dz|1/3u‖2 ≤ Csubell〈Pu, u〉L2(R4), ∀u ∈ C∞0 (R4),

holds? This inequality measures the subellipticity of this Hörmander op-
erator. We note that this type of question can be formulated in a quite
general context (see for example the contribution by Dziubański–Hulanicki–
Jenkins [4]).

1.2. Schrödinger operators: can one hear the zero-locus of a
magnetic field. For the analysis of Schrödinger operators with magnetic
fields on compact manifolds, this model was introduced for the first time
by Montgomery [16] and was further studied in [12, 18, 6, 9]. Here the toy
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model (1) proposed by Montgomery is defined on Rt × S1
θ,

(1.4) h2D2
t +

(
hDθ −

1
2
t2

)2

,

where h > 0 is a semi-classical parameter and one is interested in the analysis
of the bottom of the spectrum, E1(h). It is not difficult to see that

(1.5) E1(h) = h4/3 inf
n∈Z

λ1(h1/3n),

where, for any α ∈ R, λ1(α) denotes the lowest eigenvalue of the self-adjoint
realization hM(α). Let us define

(1.6) λ∗ := inf
α∈R

λ1(α),

where λj(α) denotes the jth eigenvalue of hM(α). To make the link with
the problem in (1.3), note that

(1.7) λ∗ = 1/Csubell.

1.3. The Montgomery model in superconductivity. In [17, 18]
X. B. Pan first observes the role of this operator in the analysis of the onset
of superconductivity. This time one looks at the Neumann realization of a
Schrödinger operator with constant magnetic field in a bounded regular do-
main and the analysis of the two-term semi-classical expansion involves λ∗.
The result of X. B. Pan was completed in Helffer–Morame [13] and one can
find in [5] a presentation of the subject.

1.4. Main result. The main result of this note is the following:

Theorem 1. There exists a unique αmin such that

(1.8) λ∗ = λ1(αmin).

Moreover,

αmin > 0,(1.9)
λ′′1(αmin) > 0.(1.10)

Except the last statement which was conjectured in [10], the theorem
was conjectured by Montgomery [16], partially analyzed in [12, 13], stated in
Pan–Kwek [18], and verified with a computer assisted (2) but not completely
mathematically rigorous proof in [10, 11]. One can also find in [6] and [5]
a presentation of some of the results.

(1) Note that this operator is not defined on a compact manifold but has compact
resolvent.

(2) By numerical computations of V. Bonnaillie-Noël.
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The proof given here will use one essential part obtained in [18] but
will avoid the part devoted to the analysis of the solutions of the Riccati
equation.

2. Previous results on hM(α). We collect various results obtained in
various references [16, 13, 18, 10]. We first note that λ1(α) is continuous and
satisfies

(2.1) lim
|α|→+∞

λ1(α) = +∞ .

This is actually trivial when α → −∞ (we have indeed λ1(α) ≥ α2 if
α < 0) and results from a semi-classical analysis as α → +∞. Hence λ1

admits at least one minimum. Moreover, the map α 7→ λ1(α) is C∞ (actually
analytic by Kato’s theory) and, if we denote by u1(t, α) the corresponding
eigenfunction in L2(R) such that ‖u1(·, α)‖2 = 1 and u1(t, α) > 0 for all
t ∈ R, then the Feynman–Hellmann formula gives that

(2.2) λ′1(α) = −2
+∞�

0

(
1
2
t2 − α

)
u1(t, α)2 dt.

In particular, this implies:

Lemma 2. α 7→ λ1(α) is decreasing for α ≤ 0 and all the critical points
of λ1 are in ]0,+∞[. In addition, λ1 admits a strictly positive minimum
which can only be attained for positive α’s.

Observing that the first eigenfunction is even, we get the following easy
lemma (see for example [18]).

Lemma 3. λ1(α) = λN1 (α) where λN1 (α) is the groundstate energy of the
Neumann realization of −d2/dt2 +

(
1
2 t

2 − α
)2 in R+.

Observing that the second eigenvalue of hM(α) corresponds to the odd
spectrum, we also get

(2.3) λ3(α) = λN2 (α).

In [10], the following has been proved:

Lemma 4. If αc is a critical point of λ1 and if

(2.4) 3λ3(αc) > 7λ1(αc),

then

(2.5) λ′′1(αc) > 0.

Let us recall the proof for completeness. When proving the Feynman–
Hellmann formula, we start from

(2.6) (hM(α)− λ1(α))
∂u1(·, α)
∂α

=
[
2
(
t2

2
− α

)
+
∂λ1

∂α
(α)

]
u1(·, α).
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Multiplying by u1 and integrating on the line gives (2.2), and differentiating
once more we obtain

(2.7) λ′′1(α) = 2− 4
�

R

(
1
2
t2 − α

)
u1(t, α)∂αu1(t, α) dt.

This leads at a critical point αc of λ1 to

(2.8) λ′′1(αc) ≥ 2− 4
λ3(αc)− λ1(αc)

∥∥∥∥(
1
2
t2 − αc

)
u1(·, αc)

∥∥∥∥2

.

Here we have used (2.6) and the fact that
(

1
2 t

2 − αc
)
u1(·, αc) and ∂αu1 are

even and orthogonal to u1.
Of course, we have

‖(t2 − αc)u1(·, αc)‖2 ≤ λ1(αc) ,

but one can do a little better (according to [18]) using some invariance under
dilation. We can observe that the groundstate energy of

ρ−2 d2

dt2
+

(
1
2
ρ2t2 − α

)2

is independent of ρ. Hence we have, for the normalized groundstate
u1(·, ρ, α),

ρ−2u′′1(t, ρ, α) +
(

1
2
ρ2t2 − α

)2

u1(t, ρ, α) = λ1(α)u1(t, ρ, α).

We differentiate this identity with respect to ρ, take the scalar product with
u1(·, ρ, α) and finally set ρ = 1 and α = αc. We get

2
∥∥∥∥(

1
2
t2 − αc

)
u1(·, αc)

∥∥∥∥2

= ‖u′1(·, αc‖2,

and consequently

3
∥∥∥∥(

1
2
t2 − αc

)
u1(·, αc)

∥∥∥∥2

= λ1(αc).

So finally, we obtain

∂2
ααλ1(αc) ≥

2
3

3λ3(αc)− 7λ1(αc)
λ3(αc)− λ1(αc)

.

This proves the lemma.

Finally, Pan–Kwek [18] proved the following formula (3) (playing the role
of Hadamard’s formula for the Dirichlet problem in the case of the Neumann

(3) À la Bolley–Dauge–Helffer [3].
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problem): for any critical point αc of λ1,

(2.9) 2
+∞�

0

t

(
1
2
t2 − αc

)
u(t, αc)2 dt = (λ1(αc)− α2

c)u(0, αc)2.

We recall that in this case

(2.10)
+∞�

0

(
1
2
t2 − αc

)
u1(t, αc)2 dt = 0.

(2.9) is deduced from the computation (by integration by parts) of
+∞�

0

(∂tq)(t, α)u1(t, α)2 dt

with q(t, α) =
(

1
2 t

2 − α
)2.

3. End of the proof

3.1. A new inequality. A simple new observation is that a tricky
combination of (2.9) and (2.10) gives that, for any critical point αc, we have

(3.1) 0≤2
+∞�

0

(t−
√

2αc)
(

1
2
t2−αc

)
u1(t, αc)2 dt= (λ1(αc)− α2

c)u1(0, αc)2.

As a corollary, we see that, if αc is a critical point of λ1, then

(3.2) α2
c < λ1(αc).

Of course this inequality is less efficient that in the analysis of the De Gennes
model (4) where we have equality, but this will be enough! We will use the
information we have obtained in the following way.

Lemma 5. If αmin realizes the infimum of λ1, we have

(3.3) α2
min < λ∗.

Then we will complete the proof of the main theorem by proving the
following lemma:

Lemma 6. There exists (an explicit) λ∗ such that

λ∗ < λ∗,(3.4)

3λ3(α) > 7λ1(α), ∀α ∈ [0,
√
λ∗].(3.5)

The proof will be a consequence of a good upper bound for λ1(α) and a
good lower bound for λ3(α).

(4) The De Gennes model corresponds to the family of harmonic oscillators D2
t +

(t + α)2 on the half-line with the Neumann condition. It has been shown in [3] that the
groundstate energy µ(α) has a unique minimum and that this minimum is non-degenerate.
The proof was based on the identity µ′(α) = u1(0, α)2(α2 − µ(α)).
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3.2. Upper bounds for λ1(α). This upper bound will be used two
times: to determine an explicit λ∗ in (3.4) and then to verify (3.5).

Computing (5) the energy 〈hM(α)uρ, uρ〉L2(R) of the L2-normalized
Gaussian

uρ = cρ exp−ρ
2
t2,

we get

E(uρ, α) =
ρ

2
+

3
16
ρ−2 − α

2ρ
+ α2.

Hence, for any ρ > 0,

(3.6) λ1(α) ≤ ρ

2
+

3
16
ρ−2 − α

2ρ
+ α2.

If we take the minimizing ρ for α = 0, we get ρ0 = (3/4)1/3 and the corre-
sponding energy is

E(uρ0 , α) =
1
2

(
3
4

)1/3

+
3
16

(
3
4

)−2/3

+ α2 − 1
2
α

(
3
4

)−1/3

.

Hence we obtain, for this specific ρ0,

(3.7) λ1(α) ≤
(

3
4

)4/3

− 2−1/33−1/3α+ α2.

Minimizing this upper bound over α we obtain

(3.8) λ∗ ≤ 21/33−2/3.

Hence we will prove the lemma with

(3.9) λ∗ = 21/33−2/3 ≈ 0.6057.

The numerically computed infimum (already computed in [16], also later by
C. Bolley [12], and quite recently with more accuracy by V. Bonnaillie-Noël)
was

(3.10) λnum
∗ ≈ 0.57.

Approximately (3.7) reads

(3.11) λ1(α) ≤ 0.68 + α2 − 0.55α

and

(3.12) α∗ :=
√
λ∗ ≈ 0.778.

Numerical computations of Virginie Bonnaillie-Noël (mentioned in [10]) give
that the unique minimum is attained for

αnum ≈ 0.35;

(5) This idea was rather efficient for giving an upper bound in the analogous problem
for the De Gennes model.
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observe for later reference that

αnum < α∗.

Remark 7. One can marginally improve the choice of λ∗ by taking

λ∗∗ := inf
ρ,α

(
ρ

2
+

3
16
ρ−2 − α

2ρ
+ α2

)
.

This leads to

λ∗∗ = inf
ρ

(
ρ

2
+

1
8
ρ−2

)
= 3 · 2−7/3.

We observe that λ∗∗ < λ∗ and that

λ∗∗ ≈ 0.595.

3.3. Lower bounds for λ3(α). We develop the idea of comparing our
operator with a harmonic oscillator. We first observe that, for any γ ≥ 0,
we have

γt2 + α2 − (α+ γ)2 ≤
(

1
2
t2 − α

)2

.

From this we can compare our initial operator to the harmonic oscillator
with potential vγ(t) = γt2 + α2 − (α+ γ)2.

We then get, for any γ,

(3.13) λ3(α) ≥ 5γ1/2 − 2γα− γ2 .

Then the question is how to choose γ. Without trying to be optimal, we will
see that γ = 1 will be enough for our purpose and this choice leads to the
lower bound

(3.14) λ3(α) ≥ 4− 2α.

3.4. Verification of (3.5). We will prove that, for any α ∈ [0, α∗],

(3.15) 3(4− 2α) > 7(34/32−8/3 − 2−1/33−1/3α+ α2).

Using the calculator, this will be a consequence of

7.23 > 2.16α+ 7α2.

The left hand side is increasing with α and a simple calculation shows that

2.16α∗ + 7α2
∗ ≈ 4.27 + 1.68 ≈ 5.95.

Hence the proof of the lemma is finished.

The proof of the main theorem results because we have shown that there
are no α realizing the minimum outside of [0, α∗] and that the only critical
points in [0, α∗] are non-degenerate local minima. This shows the uniqueness.
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4. Final remarks. This approach gives a stronger result than the claim
in [18]. We do not know if Theorem 1 holds for the groundstate energy of
the family (indexed by α ∈ R) of operators h

(k)
M (α) defined on R by

h
(k)
M (α) := D2

t +
(

1
k + 1

tk+1 − α
)2

(k > 1)

and considered in [1, 10, 11] but it is not excluded that it could work for some
k (odd). Numerically computed graphs of λ1 realized by V. Bonnaillie-Noël
(see [10]) show that it is at least “true” for k ≤ 7.

Note that a different (but connected) approach (as announced in [11])
permits one to prove that the conclusion of Theorem 1 holds for k large
enough and that the minimum, if in addition k is even, is attained uniquely
for α = 0.

Acknowledgements. Many thanks to V. Bonnaillie-Noël, S. Fournais,
Yu. Kordyukov and X. B. Pan for motivating discussions or numerical help.
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