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Abstract. Let G be a locally compact non-compact metric group. Assuming that
G is abelian we construct symmetric aperiodic random walks on G with probabilities
n 7→ P(S2n ∈ V ) of return to any neighborhood V of the neutral element decaying at
infinity almost as fast as the exponential function n 7→ exp(−n). We also show that for
some discrete groups G, the decay of the function n 7→ P(S2n ∈ V ) can be made as slow
as possible by choosing appropriate aperiodic random walks Sn on G.

1. Introduction. Let {Xk} be a sequence of independent, identically
distributed real-valued random variables with common distribution PX1 :=µ.
Assume that µ is symmetric and belongs to the domain of attraction of a
stable law with exponent 0 < α ≤ 2. Then, by a local limit theorem (see [8],
[11], [16], [18]),

P(Sn ∈ I) ∼ cα,µ|I|n−1/α as n→∞.
This shows that as α→ 0 the decay of the function n 7→ P(Sn ∈ I) becomes
faster than that of any given function n 7→ n−k, k > 0.

To put our observations in perspective let us replace the group R by a
more general group. Namely, let G be a locally compact non-compact metric
group. Let ν be a left Haar measure on G and L2 = L2(ν). Let µ be a
symmetric probability measure on G such that suppµ generates a dense
subgroup of G. Let Lµ : L2 → L2 be the corresponding left-convolution
operator h 7→ µ∗h. In general, ‖Lµ‖L2→L2 ≤ 1 and it is equal to 1 if and only
if the group G is amenable (see e.g. [4]). On the other hand, let {Xk} be i.i.d.
on G with the law PX1 = µ and let Sn = X1 · . . . ·Xn be the corresponding
random walk on G. According to [5] the following characterization of Sn via
the norm of the convolution operator Lµ holds: For all relatively compact
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neighborhoods V of the neutral element e ∈ G,

lim
n→∞

P(S2n ∈ V )1/2n = ‖Lµ‖L2→L2 .

In particular, if G is amenable, ‖Lµ‖L2→L2 = 1 and therefore

P(S2n ∈ V ) = exp(−n · o(1)) as n→∞.

If the group G is not amenable, then ‖Lµ‖L2→L2 < 1. This implies that the
decay at infinity of the function n 7→ P(S2n ∈ V ) is always exponential.

In what follows we call a measure µ admissible if it is absolutely con-
tinuous with respect to the measure ν and admits a bounded and strictly
positive density x 7→ µ(x) in some neighborhood of the identity.

All the above leads us to the following question: Is it true that for any
non-compact amenable group G the decay of the function n 7→ P(S2n ∈ V )
can be made as close as possible to the exponential one by an appropriate
choice of a symmetric admissible probability measure µ = PX1?

Any abelian group is amenable. In this paper we prove the following
theorem.

Theorem 1.1. Let G be a locally compact non-compact metric abelian
group. Let F : R+ → R+ be a non-decreasing function such that F (t) = o(t)
at infinity. There exists a symmetric admissible probability measure µ on G
such that

− logµ∗n(e)/F (n)→∞ at ∞.

Observe that P(S2n ∈ V ) ≤ µ∗2n(e)ν(V ), hence for abelian groups The-
orem 1.1 brings a positive answer to the above question.

To prove Theorem 1.1 we consider the following three cases (Sections 2,
3 and 4): G = R, G = Z and G is a countable periodic group, and prove
our claim for these special groups. In the final Section 5, using the structure
theory of locally compact abelian groups [13], [14], and our knowledge of the
result for special groups, we construct probability measures on G with the
desired properties.

Section 4 is of independent interest. The underlying group G is a union
of finite subgroups Gk ⊂ G. This group is not compactly generated. The
special structure of G allows us to introduce a class of probabilities on G of
the form µ =

∑
k ckmk, where mk is the normalized Haar measure on Gk.

Each µ = µ(c) is infinitely divisible and hence can be embedded in a weakly
continuous convolution semigroup µt = µ(c(t)). In particular, µ∗n = µ(c(n)).
Thanks to this fact our computations become very precise. In particular,

µ∗n(e) �
∞�

0

e−nλdN(λ) at ∞,
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where the function λ 7→ N(λ) = N(c, λ) has a very precise form. As an
application, we show (Theorem 4.3) that the decay of the function n 7→
µ∗n(e) can be made as slow as possible by an appropriate choice of the
measure µ = µ(c) (cf. Theorem 1.1). In this connection observe that any
compactly generated abelian group is of the form Rl× Zm×K, where K is
a compact group. It follows that for any admissible symmetric probability µ
on this group we must have µ∗2n(e) � n−(l+m)/2 at ∞. See [21].

Notation. For any two functions f and g defined in a neighborhood of
infinity we will write f � g at ∞ if there exists a constant c > 0 such that
f(x) ≤ cg(x) for all x large enough. If f � g and g � f we will write f � g.
We also write f ∼ g if f/g → 1 at ∞.

2. The case of the group G = R. In this section we give a proof of
Theorem 1.1 assuming that G = R. We let |A| be the Lebesgue measure
of a Borel set A ⊂ R. Let us choose a probability measure µ = PX1 which
is symmetric and infinitely divisible. This implies that there exists a one-
parameter convolution semigroup (µt)t>0 of symmetric probability measures
on G such that:

• µ = µt for t = 1. In particular, µ∗n = µn.
• µt → ε0 weakly as t→∞, where ε0 is the Dirac measure concentrated

at 0.

Let µ̂t be the Fourier transform of the probability measure µt. Then

µ̂t(ξ) = exp(−tΨ(ξ)), ξ ∈ R,
where ξ 7→ Ψ(ξ) is an even non-negative definite function on R ([6, Thm. 8.3]).

Assumption 1. We assume that for any t > 0, the function ξ 7→ e−tΨ(ξ)

is in L1. This implies that µt is absolutely continuous with respect to the
Lebesgue measure, admits a continuous bounded density x 7→ µt(x), and

µt(0) =
�

R
e−tΨ(ξ) dξ = 2

∞�

0

e−ts dF(s),

where F(s) = |{τ > 0 : Ψ(τ) ≤ s}|.
Assumption 2. We assume that there exists a function f : R+ → R+

such that f is increasing, log f(t) = o(t) at ∞ and

(2.1) F(s) =
s�

0

f(t) dt, s ≥ 0.

Assumptions 1 and 2 imply the following identity, crucial for our purpose:

(2.2) µt(0) = 2
∞�

0

e−tsf(s) ds, t > 0.
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Thus, in order to prove Theorem 1.1 with G = R we are left to investi-
gate the asymptotic behavior of the Laplace integral of the function f . See
Theorem 2.1 below.

Remark 2.1. 1) Observe that if µ is a symmetric stable distribution of
index 0 < α ≤ 2, that is, µ̂t(ξ) = exp(−|ξ|α), then it is easy to see that the
representation (2.1) is possible only if 0 < α ≤ 1.

2) That for any increasing function f ≥ 0 the equality (2.1) indeed gives
rise to an infinitely divisible distribution follows from the celebrated Pólya
theorem (see, e.g., [8], [17]): Let Ψ ≥ 0 be an even continuous function such
that Ψ(0) = 0. Assume that Ψ restricted to R+ is increasing and concave.
Then the function x 7→ e−tΨ(x) restricted to R+ is decreasing, takes the
value 1 at 0, and is convex. By the Pólya theorem, it coincides with the
characteristic function of some probability measure µt on R. In particular,
an even function Ψ defined on R+ as the inverse of the function s 7→

	s
0 f(t) dt

satisfies the hypotheses above. Hence there exists a symmetric convolution
semigroup (µt)t>0 such that µ̂t = exp(−tΨ).

Thanks to our choice (Assumptions 1 and 2) the semigroup (µt)t>0 has
the following important properties:

(1) For each t > 0, the density x 7→ µt(x) is a strictly positive C∞-
function. In particular, µt is admissible.

(2) If 1/f2 is convex, then x 7→ µt(x) is a unimodal function, i.e. has a
strict maximum (at x = 0).

The first property is a consequence of the following two facts:

• Ψ(s)/ log s→∞ at ∞,
• x 7→ e−tΨ(x) is decreasing and strictly convex.

The second property is an application of the non-trivial criteria of unimodal-
ity due to Askey [1].

To investigate the Laplace integral (2.2) we introduce two auxiliary trans-
forms. LetM : R+ → R+ be a right-continuous decreasing function such that
M(0) = +∞. Define two transforms:

• The Köhlbecker transform of M :

K(M)(x) := − log
(∞�

0

e−xt de−M(t)
)
, x > 0.

• The Legendre transform of M :

L(M)(x) := inf
τ>0
{xτ +M(τ)}, x > 0.

The following theorem is crucial in our computations. See [2, Lemma 3.2].
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Theorem 2.1. In the notation above,

K(M)(x) ∼ L(M)(x) as x→∞.

For completeness we give a short proof of this result: For fixed x > 0
consider a positive function mx(t) = xt+M(t) on (0,∞). The function mx

tends to ∞ at 0 and at ∞. Let tx be the smallest t at which mx almost
attains its infimum, so that (1 + ε)L(M)(x) ≥ mx(tx). We have
∞�

0

e−xt de−M(t) = x

∞�

0

e−(xt+M(t)) dt ≥ x
∞�

tx

e−(xt+M(t)) dt

≥ xe−M(tx)
∞�

tx

e−xt dt = e−(xtx+M(tx)) ≥ e−(1+ε)L(M)(x).

This proves the desired lower bound. For the upper bound, write
∞�

0

e−xtde−M(t) = x

∞�

0

e−(xt+M(t)) dt

≤ x
( L(M)(x)/x�

0

e−(xt+M(t)) dt+
∞�

L(M)(x)/x

e−xt dt
)

≤ x
L(M)(x)/x�

0

e−L(M)(x) dt+
∞�

L(M)(x)

e−udu

= L(M)(x)e−L(M)(x) + e−L(M)(x).

That K(M) ∼ L(M) at infinity follows easily from these two bounds.

Example 2.1. Let g : R+ → R+ be a decreasing function, g(0) = +∞.
Put f = e−g and define F(t) =

	t
0 f(τ) dτ . Let (µt)t>0 be the corresponding

convolution semigroup. We have

µt(0) = 2
∞�

0

e−st dF(s) = 2
∞�

0

e−stf(s) ds =
2
t

∞�

0

e−st de−g(s).

This gives

− logµt(0) = log
t

2
+K(g)(t).(2.3)

Choose g(s) such that g(s)/log(1/s) → ∞ at zero. Then F(s) = o(sA) at
zero, for any A > 1. It follows that − logµt(0)/log t→∞ at∞. Hence apply-
ing Theorem 2.1 and the equality (2.3), we obtain the following asymptotic
relation:

− logµt(0) ∼ K(g)(t) ∼ L(g)(t) at ∞.
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Some particular results based on the direct computation of L(g) are pre-
sented in the table below, where we use the notation

µt(0) = exp
{
− t
[
− logµt(0)

t

]}
:= exp{−t · o(1)}.

Table 1. Some examples of fast decaying functions t 7→ µt(0)

g(s) � at zero − logµt(0) � at infinity o(1) � at infinity
1 (log 1

s
)α, α > 1 (log t)α (log t)α

t

2 s−β , β > 0 tβ0 , β0 := β
β+1

( 1
t
)1−β0

3 exp{s−γ}, γ > 0 t

(log t)1/γ
1

(log t)1/γ

4 exp(k){s−ν}, ν > 0 (∗) t

(log(k) t)
1/ν

(∗∗) 1

(log(k) t)
1/ν

(∗) exp(k)(t) = exp(exp(... exp(t)))| {z }
k times

, (∗∗) log(k)(t) = log(log(... log(t)))| {z }
k times

.

Let us show for instance how to compute the Legendre transform of the
function g : τ 7→ exp(k){τ−ν} for k > 1 and ν > 0. Set R(τ) := tτ + g(τ).
The function R(τ) is strictly convex and tends to ∞ at 0 and at ∞. Let
τ∗ be the (unique!) value of τ at which R(τ) attains its minimum, so that
R(τ∗) = L(g)(t). Since τ 7→ R(τ) is smooth, we obtain the equation

0=R′(τ∗)= t+ g′(τ∗)= t− ν

τν+1
∗

g(τ∗) log g(τ∗) log(2) g(τ∗) · · · log(k−1) g(τ∗),

which, in turn, implies the following two crucial properties:

log(k) t ∼ τ−ν∗ as t→∞, in particular, τ∗ → 0 as t→∞,(1)
g(τ∗)
τ∗t

=
τν∗

ν log g(τ∗) log log g(τ∗) · · · log(k−1) g(τ∗)
→ 0 as t→∞.(2)

Finally, we arrive at the desired conclusion

L(g)(t) = R(τ∗) = tτ∗

(
1 +

g(τ∗)
τ∗t

)
∼ tτ∗ ∼

t

(log(k) t)1/ν
as t→∞.

Remark 2.2. The same method works also in a slightly more general
setting: Let r : R+ → R+ be a strictly increasing function with r(+∞) =
+∞. Assume that λr′(λ) � r(λ) at ∞. Let g(τ) = exp(k)(r(1/τ)), τ > 0.
Then

L(g)(t) � t

r−1(log(k)(t))
at ∞.

Theorem 2.2. For any non-decreasing function F : R+ → R+ which is
o(t) at ∞, there exists a symmetric admissible probability measure µ on R
such that

− logµ∗n(e)/F (n)→∞ at ∞.
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Proof. Choose a concave function x 7→ F̃ (x) such that F̃ (x) = o(x) and
F̃ /F →∞ at infinity (see below for the existence of such a function). Define
the conjugate Legendre transform L∗(F̃ ) as

(2.4) L∗(F̃ )(x) = sup
t>0
{−tx+ F̃ (t)}, x > 0,

and put f = exp(−L∗(F̃ )). Let F(t) =
	t
0 f(x) dx, Ψ = F−1 and let µt be a

probability density such that µ̂t = exp(−tΨ). By Theorem 2.1,

− logµt(0) ∼ K(L∗(F̃ ))(t) ∼ L(L∗(F̃ ))(t) at ∞.

Since F̃ is concave, L(L∗(F̃ )) = F̃ . It follows that

− logµt(0)/F (t) ∼ F̃ (t)/F (t)→ +∞ at ∞.

Construction of the function F̃ : Since F (t) = o(t) at ∞, we can choose
a decreasing sequence εk ↓ 0 and an increasing sequence tn ↑ ∞ such that

F (t) < ε0t for t ∈ [t0, t1],

and

F (t) < εkt+
k∑
i=1

ti(εi−1 − εi) for t ∈ [tk, tk+1], k ≥ 1.

Finally, we let F̃ be a piecewise linear function defined by the right-hand
sides of the inequalities above. Evidently t 7→ F̃ (t) is a concave function.
The proof is finished.

3. The case of the group G = Z. The aim of this section is to prove
Theorem 1.1 assuming that G = Z. This can be done by reducing the problem
to the one on R.

Reduction to the group R. Let µ be a symmetric probability measure
on Z and Φ = µ̂ be its characteristic function. We have

µ∗2n(0) =
1
2π

π�

−π
[Φ(x)]2n dx =

1
π

π�

0

[Φ(x)]2n dx.

We are looking for Φ supported in [−ε, ε] ⊂ [−π, π] and having the form
Φ = e−g near zero. Let f : R+ → R+ be an increasing function such that
f(0) = 0. Define g and Φ0 by the equalities

g =
(
λ 7→

λ�

0

f(τ) dτ
)−1

, Φ0 = e−g.

Then, by the Pólya theorem, Φ0 is the characteristic function of some prob-
ability measure µ0 on R, that is, Φ0 = µ̂0. Next define Φ as in Figure 1.
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1
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Fig. 1. Construction of the function Φ

By construction, Φ restricted to R+ is a continuous, decreasing and con-
vex function. The Pólya theorem implies that there exists a probability mea-
sure µ1 on R such that µ̂1 = Φ. Since Φ ∈ L1, µ1 is absolutely continuous
with respect to the Lebesgue measure, and its density x 7→ µ1(x) can be
expressed as the inverse Fourier transform of Φ. Next we apply the Poisson
summation formula to (Φ, µ1) (see [10]):

(3.1)
∑
k∈Z

Φ(ξ + 2kπ) =
∑
n∈Z

µ1(n)einξ, ξ ∈ R.

Since Φ is supported in the interval [−ε, ε] ⊂ [−π, π], the equation (3.1)
shows that for |ξ| < π,

(3.2) Φ(ξ) =
∑
n∈Z

µ1(n)einξ.

In particular, for ξ = 0, (3.2) gives

(3.3) 1 = Φ(0) =
∑
n∈Z

µ1(n).

The equality (3.3) implies that the distribution µ on Z defined as µ({n}) =
µ1(n) is a probability distribution. Its characteristic function Φ coincides
with Φ0 = e−g on the interval (−ε′, ε′).

-4    -3   -2   -1     0    1     2     3    4

1

1

1

Zo n

Ro n

m

m

Fig. 2. Construction of the probability measure µ on Z
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These observations show that for some λ > 0,

µ∗2n(0) =
1
π

ε�

0

[Φ(x)]2n dx =
1
π

ε′�

0

[Φ0(x)]2n dx+O(e−λn)

∼ 1
π

ε′�

0

e−2ng(x) dx ∼ 1
π

∞�

0

e−2nsf(s) ds at ∞,

and therefore we can proceed as in Section 2 to prove the following theorem.

Theorem 3.1. For any non-decreasing function F : R+ → R+ which is
o(t) at ∞ there exists a symmetric admissible probability measure µ on Z
such that

− logµ∗n(e)/F (n)→∞ at ∞.

4. The case when G is a countable periodic group. Let G be a
countable periodic abelian group, that is, each element g ∈ G has a finite
order. Then G can be represented as the union

⋃∞
k=0 Gk of an increasing

sequence of finite subgroups Gk. Indeed, let G = {id, a1, a2, . . .}, G0 = {id}
and let Gk = 〈a1, . . . , ak〉 be the group generated by the first k elements
a1, . . . , ak. By construction, every a ∈ Gk is of the form am1

1 · . . . ·a
mk
k , where

mi ≤ max{order ai}. We have

Gk ⊆ Gk+1 ⊆ G, k = 0, 1, 2, . . . .

Next we can renumber the sequence {Gk} so that

Gk ⊂ Gk+1 ⊂ G.

Clearly all Gk are finite groups and, in fact, by structure theory [13, §A.27],
each Gk is a finite product of cyclic groups Z(ni).

Example 4.1. Let Z(2)∞ = Z(2)×Z(2)×· · · , where Z(2) ∼= {1, 0} with
addition mod 2. Then all elements ξ = (ξ0, ξ1, . . .) ∈ Z(2)∞ have order 1
or 2. We define the infinite countable periodic group G = Z(2)(∞) ⊂ Z(2)∞

as the set of all sequences ξ = (ξk) which are eventually zero. For i ∈ N, let
ξi be the sequence (ξk) with ξi = 1 and ξk = 0 for k 6= i. Then clearly

Gk = 〈ξ1, . . . , ξk〉 ∼= Z(2)k and G =
∞⋃
k=0

Gk.

Example 4.2. Let G = Z(p∞) be the group of all pk-roots of unity,

Z(p∞) = {ξ = exp(2πmi/pk) : 0 ≤ m ≤ pk − 1, k = 1, 2, . . .}.

Clearly Z(pk) ⊂ Z(pk+1) and G =
⋃∞
k=1 Z(pk).
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Proposition 4.1. Let {dk} be a sequence of natural numbers such that
dk+1/dk is an integer equal to 2 or greater. Then there exists a countable
periodic group G and an increasing sequence of groups Gk ⊂ G such that
G =

⋃∞
k=0 Gk and dk is the cardinality of Gk.

Proof. Define ck := dk+1/dk, k = 0, 1, 2, . . . . Then dn = d0 · c0 · . . . · cn−1,
n = 1, 2, . . . . Put G̃0 = Z(d0), G̃n = Z(d0) × Z(c0) × · · · × Z(cn−1), n ≥ 1.
We have |G̃n| = d0 · c0 · . . . · cn−1 = dn. Let now G0 = {(e0, 1, 1, . . .) :
e0 ∈ G̃0}, . . . ,Gn = {(e0, e1, . . . , en, 1, 1, . . .) : (e0, e1, . . . , en) ∈ G̃n}. Clearly
{Gk} increases and G =

⋃∞
k=0 Gk. Also |Gk| = |G̃k| = dk. The group G is a

countable periodic group.

Let H = Ĝ be the dual group of G, that is, the group of all characters
of G (see [13], [14]). According to the structure theory of abelian groups, H
is a compact totally disconnected group. Some examples which are basic for
our purpose are given below.

Example 4.3.

• G ∼= Z(p∞), H ∼= ∆p, the group of p-adic integers,
• G ∼= Z(l)(∞), H ∼= Z(l)∞, l ≥ 2.

More generally,

• G ∼= (
∏∞
k=0)

∗Z(lk), H ∼=
∏∞
k=0 Z(lk),

where
∏∗Xk is the weak product of the groups Xk, that is, the set of all

sequences x = (xi) ∈
∏
Xk which are eventually identities.

Let mk be the uniform distribution on Gk, i.e. for A ⊂ Gk,

mk(A) =
|A|
|Gk|

.

Let {ck}∞k=0 ⊂ R+ be a sequence of positive reals such that
∑∞

k=0 ck = 1.
Define a probability measure µ = µ(c) on G as follows:

µ = c0m0 + c1m1 + · · · .

Evidently µ is a symmetric admissible probability measure on G. We want
to find the Fourier transform µ̂ of the measure µ,

µ̂(y) =
�

G
〈y, x〉 dµ(x), y ∈ H.

Let Hk = A(H,Gk) = {y ∈ H : 〈y, x〉 = 1, ∀x ∈ Gk} be the annihilator of
the group Gk in the group H = Ĝ. In particular, H0 = H, Hk+1 ⊂ Hk and

H = (H0 \H1) ∪ (H1 \H2) ∪ · · · .
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Example 4.4. Let G = (
∏∞
i=1)

∗Z(pi). Then

Gk =
k∏
i=1

Z(pi)× {e}, H0 =
∞∏
i=1

Z(pi), Hk = {e} ×
∞∏

i=k+1

Z(pi),

where e = (ek+1, ek+2, . . .) and e = (e1, . . . , ek) stand for identities.

Proposition 4.2. The Fourier transform µ̂ of the measure µ is of the
form

µ̂(y) = c0 + c1 + · · ·+ ck, y ∈ Hk \Hk+1, k = 0, 1, . . . .

Proof. Let G be a locally compact abelian group and L ⊂ G be a compact
subgroup. Let mL be the Haar measure of L regarded as a measure on G.
The Fourier transform m̂L of the measure mL is of the form [9, 2.14]

m̂L(y) =
{

1 if y ∈ A(H,L),
0 if y /∈ A(H,L).

In particular, for L = Gk ⊂ G,

(4.1) m̂k(y) =
{

1 if y ∈ Hk,

0 if y ∈ H \Hk.

Using (4.1) we compute the Fourier transform µ̂ of the measure µ

(4.2) µ̂ =
∞∑
k=0

ckm̂k =
∞∑
k=0

ck1Hk =
∞∑
k=0

( k∑
i=0

ci

)
1Hk\Hk+1

.

Clearly (4.2) gives the desired result. The proof is finished.

Proposition 4.3. Put σk := c0 + c1 + · · ·+ ck for k ≥ 0 and σ−1 := 0.
Then

µ∗n =
∞∑
k=0

(σnk − σnk−1)mk, n = 1, 2, . . . .

Proof. Observe that ck = σk − σk−1. Proposition 4.2 and the fact that
µ̂∗n = (µ̂)n imply that

µ̂∗n(y) = σnk , y ∈ Hk \Hk+1, k = 0, 1, . . . .

Since for any i > j, mi ∗mj = mj , the measure µ∗n has the same structure
as µ, that is, µ∗n =

∑
akmk. Observe that the sum converges in variation.

Hence, by Proposition 4.2, for any k = 0, 1, . . .,

µ̂∗n(y) =
∞∑
k=0

akm̂k(y) = a0 + a1 + · · ·+ ak, y ∈ Hk \Hk+1.

It follows that for k = 0, 1, 2, . . ., we must have ak := σnk − σnk−1. The proof
is finished.



456 A. BENDIKOV AND B. BOBIKAU

Proposition 4.4. The measure µ = µ(c) defined on the group G is
infinitely divisible. More precisely, for any n = 2, 3, . . . , µ = µ∗n(a), where
a = (ak) is the sequence with entries ak = σ

1/n
k − σ1/n

k−1, k = 0, 1, . . . .

Proof. By Proposition 4.2, for any sequence a = (ai) with non-negative
entries and for any k = 0, 1, . . . ,

µ̂∗n(a)(y) = (a0 + a1 + · · ·+ ak)n, y ∈ Hk \Hk+1.

We want to find a = (ai) such that µ(c) = µ∗n(a). This gives an infinite
system of algebraic equations

c0 + c1 + · · ·+ ck = (a0 + a1 + · · ·+ ak)n, k = 0, 1, . . . ,

which has a unique solution a = (ak): ak = σ
1/n
k − σ

1/n
k−1. The proof is

finished.

Proposition 4.5. The Fourier transform µ̂ of the measure µ = µ(c) can
be represented in the form

µ̂(θ) = exp(−Ψ(θ)), θ ∈ H,
where the negative-definite function Ψ has the representation

Ψ(θ) =
�

G
(1− 〈x, θ〉) dΠ(x), θ ∈ H.

The measure Π on G is finite and can be written in the form

Π =
∞∑
k=0

pkmk, pk > 0, k = 0, 1, 2, . . . ,

where

p0 = Π(G)− log
1
c0

and pk = log
[
1 +

ck
σk−1

]
, k ≥ 1.

Proof. By Proposition 4.4, the measure µ is infinitely divisible, hence by
the representation formula valid for any locally compact abelian group (see
[6, Thm. 8.3] and [15]) its Fourier transform µ̂ has the form

µ̂(θ) = exp{−Ψ(θ)}, θ ∈ H,
where Ψ : H → C is a negative-definite function on H. Since µ is symmetric,
Ψ is real-valued. By the celebrated Lévy–Khinchin formula ([6, Thm. 18.19]),

Ψ(θ) = φ(θ) +
�

G\{e}

Re(1− 〈x, θ〉) dΠ(x),

where φ is a non-negative definite quadratic form on H and Π is a symmetric
measure on G \ {e}. Since the group H = Ĝ is totally disconnected, φ ≡ 0.
Since G is discrete, Π, by definition, is a finite symmetric measure on G\{e}.
Extend the measure Π to the whole group G putting Π({e}) = π0 > 0.
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Evidently this does not change the value of the function Ψ(θ), θ ∈ H. After
these preparations we can write the following equality:

Ψ(θ) =
�

G
(1− 〈x, θ〉) dΠ(x) = Π(G)− Π̂(θ).

On the other hand, we must have

Ψ(θ) = − log µ̂(θ) = log
1
σk

if θ ∈ Hk \Hk+1, k = 0, 1, . . . .

Put λ = Π(G); then Π̂(θ) = λ− Ψ(θ). It follows that

(4.3) Π̂(θ) = λ− log
1
σk

if θ ∈ Hk \Hk+1, k = 0, 1, . . . .

Clearly we can choose the value π0 = Π({e}) large enough so that Π(G) >
log(1/c0) > 0. The equality (4.3) shows that Π has the same structure as µ,

Π =
∞∑
k=0

pkmk.

To find {pk} we solve the system of algebraic equations

λ− log
1
σk

= p0 + p1 + · · ·+ pk−1 + pk, k = 0, 1, . . . .

The desired result follows.

Notation. For any finite measure P on G we define

e(P) := e−P(G)

{
m0 + P +

1
2!

P∗2 + · · ·
}
,

and call this measure the compound Poisson measure.

Proposition 4.6. The measure µ = µ(c) can be embedded in a weakly
continuous convolution semigroup (µt)t>0 of symmetric probability measures
on G. Moreover, the following properties hold:

(1) Each measure µt has a representation

µt = e(tΠ), t > 0,

where Π is a finite measure on G (see Proposition 4.5).
(2) In particular, µt =

∑∞
k=0 ck(t)mk, where ck(t) = σtk − σtk−1, k =

0, 1, . . . .

Proof. Let Ψ be the negative-definite function defined by µ. For each
t > 0 we define the probability measure µt by its Fourier transform

µ̂t(θ) = exp{−tΨ(θ)}, θ ∈ H.
That this equation defines µt as a probability on G follows from the cele-
brated theorem of Bochner valid on any locally compact abelian group (see
[6, Thm. 8.3]). Evidently (µt) is a weakly continuous convolution semigroup.
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The equation ê(tΠ) = exp(−tΨ) follows by inspection. Hence the equal-
ity µ = µ1 follows from Proposition 4.5. The second statement for rational
t = m/n is a consequence of Propositions 4.3 and 4.4. Then for any real
t > 0 it follows by continuity.

Proposition 4.7. Let m be the Haar measure on G such that m({x})=1
for any x ∈ G. For any t > 0 the measure µt is absolutely continuous with
respect to m and has a density x 7→ µt(x) given by

µt(x) =
∞∑
k=0

ck(t)
|Gk|

1Gk(x) =
∞∑
k=0

( ∞∑
n=k

cn(t)
|Gn|

)
1Gk\Gk−1

(x), x ∈ G.

In particular, for any finite set F ⊂ G, µt(F) ∼ µt(e)|F| at ∞.

Proof. Since µt is symmetric we must have

µt(x) ≤ µt(e), x ∈ G.
On the other hand, for x ∈ Gn \Gn−1,

µt(x) =
∞∑
k=n

σtk − σtk−1

|Gk|
=
∞∑
k=0

σtk − σtk−1

|Gk|
−
n−1∑
k=0

σtk − σtk−1

|Gk|

= µt(e)−
n−1∑
k=0

σtk − σtk−1

|Gk|
.

Since each term σtk/|Gk|, as a function of t > 0, has an exponential decay
and the function t 7→ µt(e) has subexponential decay (this property holds
for any amenable group!) we must have

µt(x) ∼ µt(e) at ∞,
which is true for any x ∈ F ∩ (Gn \Gn−1). Since we assume that F is finite,
this gives the result.

Next, we want to investigate the asymptotic properties of the function
t 7→ µt(e) at infinity. Let dk := |Gk| and σ(k) :=

∑∞
i=k+1 ci = 1− σk. Define

a step function x 7→ N(x) as follows: It has jumps at the points λk = σ(k)
and the values of the jumps are 1/dk. We also assume that x 7→ N(x) is
right-continuous and N(0) = 0.

Theorem 4.1. The following inequality holds:

(4.4)
1
2

∞�

0

e−tδλ dN(λ) ≤ µt(e) ≤
∞�

0

e−tλ dN(λ) (∃δ = δ(c) > 1,∀t > 0).

Proof. According to Proposition 4.7 we can write

µt(e) =
∞∑
k=0

σtk − σtk−1

dk
=
∞∑
k=0

σtk
dk
−
∞∑
k=0

σtk−1

dk
.
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This gives an upper bound

µt(e) ≤
∞∑
k=0

σtk
dk
.

Since dk ≥ 2dk−1, we also have

µt(e) ≥
∞∑
k=0

σtk
dk
− 1

2

∞∑
k=1

σtk−1

dk−1
=

1
2

∞∑
k=0

σtk
dk
.

Write σtk = (1− σ(k))t = et·log(1−σ(k)). Since all ck > 0, we have 0 < σ(k) <
σ(0) < 1. It follows that for some δ > 1, and all k ≥ 0,

−δσ(k) < log(1− σ(k)) < −σ(k),

and therefore

e−tδσ(k) < σtk < e−tσ(k), k = 0, 1, 2, . . . .

Altogether we get

1
2

∞∑
k=0

1
dk
e−tδσ(k) < µt(e) <

∞∑
k=0

1
dk
e−tσ(k).

Evidently we can write
∞∑
k=0

1
dk
e−tσ(k) =

∞�

0

e−tλdN(λ),

which gives the result.

Observe that for any non-decreasing continuous function f such that
f(t) → 0 as t → 0 one can construct a right-continuous step function λ 7→
N(λ) which has jumps 1/dk at the points σ(k), and such that N ≤ f . See
Figure 3.

Fig. 3. Construction of the step function N ≤ f



460 A. BENDIKOV AND B. BOBIKAU

Put ck+1 = σ(k) − σ(k + 1) and define a probability measure µ =∑∞
k=0 ckmk. Let (µt)t≥0 be the convolution semigroup such that µ = µ1.

By (4.4),

µ∗n(e) ≤
∞�

0

e−nλ df(λ).

With this bound in mind we can apply asymptotic properties of the Laplace
integral (see Theorem 2.2) to get the following statement.

Theorem 4.2. Let G be a countable periodic abelian group. For any
function F : R+ → R+ such that F (t) = o(t) at ∞, there exists a symmetric
admissible probability measure µ on G such that

− logµ∗n(e)/F (n)→∞ at ∞.
For any non-decreasing function g(t) such that limt→0 g(t) = 0 one can

construct a step function N ≥ g with jumps 1/dk at σ(k). See Figure 4.

Fig. 4. Construction of the step function N ≥ g

Put ck+1 = σ(k) − σ(k + 1) and define a probability measure µ =∑∞
k=0 ckmk. Let (µt)t≥0 be the convolution semigroup such that µ = µ1.

Applying the inequality (4.4) we obtain

(4.5) µ∗n(e) ≥ 1
2

∞�

0

e−nδλdN(λ) ≥ 1
2

∞�

0

e−nδλdg(λ).

Example 4.5. Assume that t 7→ g(t) is a non-decreasing function such
that limt→0 g(t) = 0. Let N ≥ g be as in Figure 4. Then

µt(0) ≥ 1
2

∞�

0

e−tδλ dN(λ) ≥ 1
2

∞�

0

e−tδλ dg(λ) =
δt

2

∞�

0

e−tδλg(λ) dλ

=
δ

2

∞�

0

e−δsg

(
s

t

)
ds =

δ

2
g

(
1
t

)∞�
0

[
g

(
s

t

)/
g

(
1
t

)]
e−δs ds.
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Assuming that g(λτ)/g(τ) has dominated convergence as τ → 0 to some
integrable function (in fact, always to the function λ 7→ λα, 0 ≤ α < ∞,
see [7]) we obtain

lim inf
t→∞

µt(0)
g(1/t)

≥ δ

2

∞�

0

sαe−δs ds =
δ−α

2
Γ (1 + α).

This simple observation leads us to some examples presented in Table 2.

Table 2. Some examples of slowly decaying functions
t 7→ µt(0)

g(t) � at zero µt(0) � at infinity
1 tα, α > 0 1

tα

2 exp{−(log 1
t
)α}, 0 < α < 1 exp{−(log t)α}

3 (log 1
t
)−1/α, α > 0 ( 1

log t
)1/α

4 [log(log 1
t
)]−1/α, α > 0 [ 1

log(log t)
]1/α

5 [log(k)
1
t
]−1/α, α > 0 [ 1

log(k) t
]1/α

Theorem 4.3. Let G be a countable periodic abelian group. For any non-
decreasing function R : R+ → R+ such that R(t) → ∞ at ∞ there exists a
symmetric admissible probability measure µ on G such that

− logµ∗n(e)/R(n)→ 0 at ∞.

Proof. Choose a concave increasing non-negative function t 7→ R̃(t) such
that R̃(t)/R(t) → 0, R̃(t) → ∞ and R̃(t) = o(t) as t → ∞. That such a
choice is possible follows from a simple geometric construction: see Figure 5.

¥®<< ...tt
21

t t t
1 2 3

...

R
~

R

Fig. 5. Construction of the function eR
Define g(x) = e−L

∗( eR)(x) and construct a step function N ≥ g as in
Figure 4. Applying (4.5) and Theorem 2.1 we obtain

µ∗n(e) ≥ 1
2

∞�

0

e−nδλ dg(λ) =
1
2

∞�

0

e−nδλ de−L
∗( eR)(λ) � 1

2
e−L(L∗( eR))(nδ).

Since R̃ is concave, L(L∗(R̃)) = R̃ and we get the desired result.
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Remark 4.1. It is well known that if a locally compact non-compact
group G is compactly generated (in particular, for discrete G, finitely gen-
erated) the upper rate of decay of the function n 7→ µ∗n(e) with symmetric
admissible µ exists and is a geometric invariant of the group G. See for in-
stance [3], [19], [20]. In particular, let G be an abelian compactly generated
group. By structure theory [13, Thm. 9.8],

G ∼= Rl × Zm ×K,
where K is a compact group. Then, for any symmetric admissible µ on G,
we must have

µ∗2n(e) � n−(l+m)/2 at ∞.
Theorem 4.3 shows that if G is not compactly generated, the upper rate
of decay of the function n 7→ µ∗2n(e) may not exist in the sense explained
above.

5. General case: proof of Theorem 1.1. Let G be a locally compact
non-compact metric abelian group. According to structure theory [13, 24.30],

G = Rn × Γ,
where n ≥ 0 and the group Γ contains an open compact subgroup Γ0 ⊂ Γ . In
particular, Γ/Γ0 is a countable abelian group. We shall consider the following
two cases:

1. Assume that n > 0. Define a probability measure µ on G by

µ = µ1 ⊗ µ2,

where µ1 and µ2 are symmetric admissible probability measures on R and
on Rn−1 × Γ respectively. Let µ1(x) and µ2(y) be their symmetric and con-
tinuous densities. Then µ(x, y) = µ1(x)µ2(y) is the density of µ. Theorem
2.2 and the equality above show that Theorem 1.1 is true in this case.

2. Assume that n = 0. Then G = Γ and Γ/Γ0 is a countable group, say

Γ/Γ0 = {a0 = id, a1, a2, . . .}.
The following two cases are possible:

(a) Assume that Γ/Γ0 contains an element a of infinite order, that is,
ak 6= id for k = 1, 2, . . . . Let 〈a〉 be the subgroup of Γ/Γ0 generated by a.
Clearly the mapping

γ : Z→ 〈a〉, γ(n) = an,

is an isomorphism between the group Z and 〈a〉. Let π : Γ → Γ/Γ0 be
the canonical homomorphism of Γ onto Γ/Γ0. Evidently π−1(〈a〉) is an open
subgroup of Γ . It is clear that the group π−1(〈a〉) is generated by the compact
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set Γ0 ∪ π−1(a). By structure theory [13, Thm. 9.8],

π−1(〈a〉) ∼= Rm × Zl ×K,
where K is a compact group. Evidently m = 0 and since

π−1(〈a〉)/Γ0
∼= Z,

we must have l = 1. Thus

π−1(〈a〉) ∼= Z× Γ0.

Let µ1 be a symmetric probability measure on Z and µ2 be the Haar measure
on Γ0. Consider the probability measure µ1⊗ µ2 on Z×Γ0 and lift it to the
group π−1(〈a〉). Call this lifting µ. Clearly µ will have the property claimed
in Theorem 1.1 provided µ1 is chosen as in Theorem 3.1.

(b) Assume that all elements of the group Γ/Γ0 are of finite order, i.e.
Γ/Γ0 is a countable periodic group. Let µ be a probability measure on Γ/Γ0

with values µi := µ({ai}), i = 0, 1, 2, . . . . Define a probability measure µ̃ on
Γ as follows: Set µ̃ on each compact set π−1(ai) to be a uniform distribution
such that µ̃(π−1(ai)) = µi, i = 0, 1, 2, . . . . Since Γ =

⋃
i≥0 π

−1(ai) and the
cosets π−1(ai) do not intersect, the definition is correct. Evidently µ̃ is a
probability measure on Γ and π(µ̃) = µ. It follows (see [9, Proposition 2.4])
that for all n = 1, 2, . . . ,

µ∗n = (π(µ̃))∗n = π(µ̃∗n).

In particular, since π−1(id) = Γ0 we obtain

µ̃∗n(Γ0) = µ∗n(id), n = 1, 2, . . . .

It remains to choose the measure µ on Γ/Γ0 as in Theorem 4.2 to get the
desired result in this last case.
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