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Abstract. Symmetric Jacobi matrices on one sided homogeneous trees are studied.
Essential selfadjointness of these matrices turns out to depend on the structure of the tree.
If a tree has one end and infinitely many origin points the matrix is always essentially
selfadjoint independently of the growth of its coefficients. In case a tree has one origin
and infinitely many ends, the essential selfadjointness is equivalent to that of an ordinary
Jacobi matrix obtained by restriction to the so called radial functions. For nonselfadjoint
matrices the defect spaces are described in terms of the Poisson kernel associated with
the boundary of the tree.

Introduction. The classical moment problem consists in the following.

Given a sequence of real numbers mn, find a positive bounded measure µ
on the half-line [0,∞) or on the whole real line such that

mn =
�
xn dµ(x) for n = 0, 1, 2, . . . .

Two main issues are the existence and uniqueness of the measure µ.
It is known that such a measure µ on the real line exists if and only if the
numbersmn form a positive definite sequence. The uniqueness of the measure
µ is closely related to the selfadjointness of some operators. The problem
was intensively investigated starting with the work of Thomas Jan Stieltjes
(1894, [12], the case of the half-line) and Hans Hamburger (1920, 1921, [4],
the case of the real line), through that of Marcel Riesz (1921–23, [8]–[10], a
functional analysis approach), Rolf Nevanlinna (1922, [5], a complex function
approach) and Marshall H. Stone (1932, [13], Hilbert space methods), until
recent results of Barry Simon (e.g. [11], 1998).

One of the key concepts that have arisen in the modern investigations is
that of the Jacobi matrix. An infinite matrix J is called a Jacobi matrix if
it has a tridiagonal form
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J =



β0 λ0 0 0 0 . . .

λ0 β1 λ1 0 0 . . .

0 λ1 β2 λ2 0 . . .

0 0 λ2 β3
. . .

0 0 0
. . . . . .

...
...

...


,

where the diagonal entries βn are real, while the off-diagonal entries λn are
positive. There exists a one-to-one correspondence between positive definite
sequences mn and Jacobi matrices J given by

mn = (Jnδ0, δ0),

where J is regarded as a symmetric unbounded operator on `2(N0).
Uniqueness of the measure µ on the line turns out to be equivalent to

essential selfadjointness of J on the subspace of finitely supported sequences
in `2(N0). Moreover, in the case when the moment problem mn is inde-
terminate, description of all the solutions µ is related to description of all
selfadjoint extensions of J.

Selfadjointness of an unbounded operator is an important notion on more
general grounds. If a symmetric operator admits a selfadjoint extension, or
even better, is essentially selfadjoint, then the whole machinery of spectral
theory becomes available.

We take up the problem of essential selfadjointness of a Jacobi matrix on
spaces which are natural generalizations of `2(N0). The linear infinite tree
N0 of nonnegative integers has two obvious extensions. We may consider a
homogeneous tree branching out from each vertex into a fixed number of
edges directed either downwards (the case of a tree Γ with one origin) or
upwards (the case of a tree Λ with one end at infinity). We consider a Jacobi
matrix J as a symmetric operator acting in the space of all square-summable
functions defined on the partially ordered set of vertices of these trees. The
domain of J consists of finitely supported functions. The main goal of this
work is to investigate essential selfadjointness of J . In order to do this we
look at its deficiency space. It is described by a recurrence relation, whose
solutions yield systems of orthogonal polynomials. It turns out that essential
selfadjointness of J depends on the structure of the tree and, surprisingly,
the behavior of J is completely different in the two cases.

In fact, the main result of Section 2 states that

The matrix J in the case of the tree Λ is always essentially selfadjoint
regardless of its entries. Furthermore, J has a pure point spectrum, i.e. there
is an orthonormal basis consisting of eigenvectors for J.
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In the case of Γ, essential selfadjointness of J depends on its projection
on the one-dimensional tree N0. Namely, we associate to the Jacobi operator
J acting on the tree Γ some classical Jacobi matrix Jr acting in `2(N0) which
corresponds to the restriction of J to the functions constant on levels of Γ .

The main result of Section 1 is

The operator J is essentially selfadjoint if and only if Jr is essentially
selfadjoint.

One should not be misled by the apparent similarity to the classical
case. The picture becomes clearer when we consider the case when J is not
essentially selfadjoint. Then its deficiency space is much bigger than in the
case of `2(N0), when it is just one-dimensional. We give a description of
the nontrivial deficiency space of J on the tree Γ . It resembles the theory of
harmonic functions since a Poisson-like kernel shows up there. We prove that
functions in the deficiency space are determined by their boundary values
via the Poisson integral. The spectral decomposition of selfadjoint extensions
of J is given explicitly. In particular, we show that any such extension has a
pure point spectrum.

Preliminaries

Selfadjoint extensions of symmetric operators. Let H be a Hilbert
space with inner product (·, ·). Let A be a linear operator with domain
D(A) ⊂ H which is dense in H. For a symmetric operator A and a fixed
complex number z /∈ R we define the deficiency space of A by

Nz = (Im(A− z̄I))⊥,

where ⊥ denotes the orthogonal complement in H. It is known that the
dimension of Nz is constant on each of the half-planes Im z > 0 and Im z < 0.
The two numbers dimNi and dimN−i are called the deficiency indices of A.

Theorem 0.1. The deficiency space Nz is the eigenspace of the opera-
tor A∗ associated with the eigenvalue z.

Theorem 0.2. A symmetric operator admits a selfadjoint extension if
and only if its deficiency indices are equal.

Theorem 0.3. Let A be a symmetric operator and B be a bounded self-
adjoint operator. Then A and A+B have the same deficiency indices.

Theorem 0.4. A symmetric operator is essentially selfadjoint if and only
if its deficiency space is trivial for any z /∈ R (i.e. its deficiency indices are
zero).

The above facts can be found in many books, for instance in [6], [7], [14].
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Classical Jacobi matrices. A Jacobi matrix J , i.e. a matrix of the
form

(0.5) J =



β0 λ0 0 0 0 . . .

λ0 β1 λ1 0 0 . . .

0 λ1 β2 λ2 0 . . .

0 0 λ2 β3
. . .

0 0 0
. . . . . .

...
...

...


,

where βn are real and λn are positive, can be regarded as a linear operator
in the Hilbert space `2(N0) with domain D(J) = lin{δ0, δ1, δ2, . . .}. Here δn
is the characteristic function of the point n, and

(0.6) Jδn = λn−1δn−1 + βnδn + λnδn+1, n ≥ 0

(we adopt the convention that λ−1 = δ−1 = 0).
There are two sequences pn(x) and qn(x) of orthogonal polynomials asso-

ciated with a Jacobi matrix J . They are solutions to the recurrence relation

(0.7) x · an = λn−1an−1 + βnan + λnan+1, n ≥ 1,

with given initial conditions a0 and a1. Taking a0 = 1 and a1 = (1/λ0)(x−β0)
gives an = pn; while a0 = 0 and a1 = 1/λ0 give an = qn. It is known that all
roots of these polynomials are real (see e.g. [3]).

The following basic properties of Jacobi matrices can be found, for in-
stance, in [1], [2], [3], [11], [14].

From (0.5) we can see that the operator J is symmetric. In view of
Theorem 0.2 the following theorem implies that J has a selfadjoint extension.

Theorem 0.8. The deficiency indices of the operator J are either (0, 0)
or (1, 1). In the former case J is essentially selfadjoint. In the latter case a
selfadjoint extension of J is not unique.

Theorem 0.9 (The Hamburger criterion). A Jacobi matrix J is es-
sentially selfadjoint if and only if at least one of the series

∑
pn(0)2 and∑

qn(0)2 is divergent.

Theorem 0.10. Let J̃ be a selfadjoint extension of J in the indetermi-
nate case and E(x) be the resolution of the identity associated with J̃ . Then
the support of the measure

dσ(x) = d(E(x)δ0, δ0)

is a discrete set and coincides with the spectrum of the operator J̃ .

The selfadjointness of J is important in the theory of classical orthogonal
polynomials. The measure which is the solution to the moment problem
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mn = (Jnδ0, δ0) is unique if and only if the Jacobi matrix J is essentially
selfadjoint.

Jacobi matrices on homogeneous trees. The set N0 of nonnegative
integers can be identified with a linear infinite tree with a natural order.

b

b

b

n + 1

n

n− 1

There are two natural generalizations of this configuration: from each
vertex there is a fixed number (greater than 1) of edges either pointing
downward (a tree with one origin) or upward (a tree with one end).

b b b b

b b

b

b

b b

b b b b

n + 1

n

n− 1

1. A Jacobi operator on a tree with one origin. For a fixed d ∈
{2, 3, 4, . . .} we consider an infinite homogeneous tree of degree d, i.e. an
infinite connected graph with a distinguished vertex (root) e and a partial
order such that each vertex x has d successors xi (i = 1, . . . , d) and one
predecessor x0 (unless x = e).

For instance, if d = 3, the top levels of the tree look as follows:

e

x0

x

x1 x2 x3
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The set of all vertices of the tree will be denoted by Γd. There is a
natural distance dist(·, ·) in Γd counting the number of edges in the unique
path connecting two fixed vertices. The length of a vertex is, by definition,
its distance from the root e, i.e. |x| = dist(x, e).

The space `2(Γd) of all square-summable functions on Γd, i.e.

`2(Γd) =
{
f ∈ CΓd :

∑
x∈Γd

|f(x)|2 <∞
}
,

is a Hilbert space with the standard inner product

(f, g) =
∑
x∈Γd

f(x) g(x).

We write δx for the characteristic function of the one-point set {x}. Let F
denote the space of all functions with finite support:

F = lin{δx : x ∈ Γd}.

Let λ0, λ1, λ2, . . . be fixed positive numbers and β0, β1, β2, . . . be fixed
real numbers. We consider the Jacobi operator J with domain

D(J) = F ⊂ `2(Γd),

which acts as follows:
Jδe = β0 · δe + λ0 · (δe1 + · · ·+ δed

),
Jδx = λn−1 · δx0 + βn · δx + λn · (δx1 + · · ·+ δxd

), n ≥ 1,
(1.1)

where n = |x|. We adopt the convention that λ−1 = δe0 = 0. Then the action
of J can be expressed by the latter formula for all n ≥ 0.

It is elementary that J thus defined is a symmetric operator.

Fact 1.2. The deficiency space Nz(J) of the operator J on `2(Γd) con-
sists of all square-summable functions v on Γd satisfying

(1.3) zv(x) = λn−1v(x0) + βnv(x) + λn(v(x1) + · · ·+ v(xd))

for all x with |x| = n and all n ≥ 0.

Proof. A function v ∈ `2(Γd) is orthogonal to Im(J − z̄I) if and only if
for each vertex x with |x| = n,

0 = (v, (J − z̄)δx) = (v, λn−1δx0 + βnδx + λn(δx1 + · · ·+ δxd
)− z̄δx)

= λn−1v(x0) + βnv(x) + λn(v(x1) + · · ·+ v(xd))− zv(x).

Remark. Although the domain of J consists of functions with finite
support, note that the formula for J can actually be applied to any function
on Γd. Therefore we can write

Nz(J) = {v ∈ `2(Γd) : Jv(x) = z · v(x), x ∈ Γd}.
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1.1. The one-dimensional operator. We call a function on Γd radial
if it is constant on each level of Γd, that is, on each set of vertices of fixed
length. We will denote by `2r(Γd) the space of all square-summable radial
functions on Γd. Let χn denote the characteristic function of the nth level.
Note that the normalized functions

µn(x) = (
√
d )−n · χn(x) =

{
d−n/2 for |x| = n,

0 for |x| 6= n,

form an orthonormal basis of `2r(Γd). Obviously,

χn =
∑
|x|=n

δx.

Each vertex of length n− 1 is a predecessor of exactly d vertices of length n.
Therefore

Jχn = d · λn−1 · χn−1 + βn · χn + λn · χn+1.

Since χn = (
√
d )nµn, we have

(
√
d )nJµn = d(

√
d )n−1λn−1µn−1 + (

√
d )nβnµn + (

√
d )n+1λnµn+1.

The restriction of J to `2r(Γd) will be denoted by Jr. Thus

D(Jr) = lin{µ0, µ1, µ2, . . .} ⊂ `2r(Γd)
and

(1.4) Jrµn =
√
d λn−1 · µn−1 + βn · µn +

√
d λn · µn+1, n ≥ 0.

In other words, we can identify Jr with the matrix

(1.5) Jr =



β0

√
d λ0 0 0 0 . . .√

d λ0 β1

√
d λ1 0 0 . . .

0
√
d λ1 β2

√
d λ2 0 . . .

0 0
√
d λ2 β3

√
d λ3 . . .

0 0 0
√
d λ3 β4

. . .
...

...
...

...
. . . . . .


.

This means that Jr on `2r(Γd) can be regarded as a classical one-dimensional
Jacobi operator on `2(N0). In particular, by Theorem 0.8, its deficiency space
Nz(Jr) is either one-dimensional or trivial.

Fact 1.6. A function v ∈ `2r(Γd) belongs to Nz(Jr) if and only if

(1.7) zv(x) = λn−1v(x0) + βnv(x) + λn(v(x1) + · · ·+ v(xd))

for each n ≥ 0 and each x with |x| = n. Moreover,

Nz(Jr) ⊆ Nz(J).
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Proof. Let v ∈ `2r(Γd) be orthogonal to Im(Jr − z̄I), i.e.

0 = (v, (Jr − z̄)χn), n ≥ 0.

We calculate

(v, (Jr − z̄)χn)

= (v, d · λn−1 · χn−1 + βn · χn + λn · χn+1 − z̄χn)

= dλn−1

∑
|x|=n−1

v(x) + βn
∑
|x|=n

v(x) + λn
∑
|x|=n+1

v(x)− z
∑
|x|=n

v(x).

Since v is radial, we obtain

0 = dλn−1 · dn−1v(x0) + βn · dnv(x) + λn · dn+1v(x1)− z · dnv(x).

It follows that 0 = λn−1v(x0) + βnv(x) + λnd · v(x1)− zv(x) for each vertex
x with |x| = n.

Theorem 1.8. The operator J on `2(Γd) is essentially selfadjoint if and
only if the one-dimensional operator Jr on `2(N0) is essentially selfadjoint.

Proof. By Theorem 0.4 and Fact 1.6, it suffices to show that if J is
not essentially selfadjoint, neither is the matrix Jr. To this end, assume
that there exists 0 6= f ∈ Nz(J). We will construct a special function in
a deficiency space. This will allow us to show that Jr is not essentially
selfadjoint.

Let x be a vertex in the support of f of minimal length, i.e.

f(x) 6= 0 and f(y) = 0 for |y| < |x|.

Let Γx denote the subtree of Γd with root at x (see the figure below).

e

x

In the proof we are going to apply an averaging operator E.
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Lemma 1.9. The averaging operator

(1.10) Ef(w) =
1
d|w|

∑
|y|=|w|

f(y)

is a selfadjoint projection in `2(Γd).

Proof. For any f, g ∈ F we have

(Ef, g) =
∑
w∈Γd

Ef(w) · g(w) =
∞∑
k=0

∑
|w|=k

(
1
dk

∑
|y|=k

f(y)
)
· g(w)

=
∞∑
k=0

1
dk

∑
|w|=k

∑
|y|=k

f(y)g(w).

Reversing the order of summation yields

(Ef, g) =
∞∑
k=0

∑
|y|=k

(
1
dk

∑
|w|=k

g(w)
)
· f(y) =

∑
w∈Γd

f(w) · Eg(w) = (f,Eg),

which proves the symmetry.
Now, by the Schwarz inequality,

‖Ef‖2 =
∑
w∈Γd

|Ef(w)|2 =
∞∑
k=0

∑
|w|=k

∣∣∣d−k ∑
|y|=k

f(y)
∣∣∣2

≤
∞∑
k=0

dkd−2k
(∑
|y|=k

|f(y)|
)2

≤
∞∑
k=0

d−k
(∑
|y|=k

12
)(∑
|y|=k

|f(y)|2
)

=
∞∑
k=0

∑
|y|=k

|f(y)|2 =
∑
y∈Γd

|f(y)|2 = ‖f‖2,

whence ‖E‖ ≤ 1. Moreover, for f ∈ `2r(Γd) we obtain the equality ‖Ef‖
= ‖f‖.

We denote by fx the restriction of f to the subtree Γx. Let k = |x|. The
symbol Ex will denote the averaging operator on Γx. More precisely, Ex(g)
is the mean value of a function g on each level of the subtree Γx:

Ex : `2(Γx)→ `2r(Γx)

and

(1.11) Exg(y) = d−(|y|−k) ·
∑
t∈Γx
|t|=|y|

g(t).
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By Lemma 1.9, it is obvious that Ex is a contraction on `2(Γx). Thus the
function Ex(fx) is square-summable and radial on Γx. Restricting to Γx and
averaging in Γx does not change the value at x. Therefore Ex(fx) takes a
nonzero value at x. In order to belong to a deficiency space it needs to
satisfy appropriate equations. Since f , as an element of Nz(J), satisfies all
the recurrence equations (1.3), its restriction fx satisfies those of them which
are related to the restriction of J to Γx. Indeed, at each vertex of Γx different
from x the equations and values remain unchanged. Therefore, only the
equation at x can raise doubts. However, at x we have

zfx(x) = 0 + βkfx(x) + λk(fx(x1) + · · ·+ fx(xd)),

which is consistent with the convention in (1.1) applied to the operator J
with coefficients shifted by k. The corresponding radial operator is expressed
by the matrix

(1.12) Jrk =



βk
√
d λk 0 0 0 . . .√

d λk βk+1

√
d λk+1 0 0 . . .

0
√
d λk+1 βk+2

√
d λk+2 0 . . .

0 0
√
d λk+2 βk+3

√
d λk+3 . . .

0 0 0
√
d λk+3 βk+4

. . .
...

...
...

...
. . . . . .


.

It is immediate that taking the mean value on levels does not affect the
recurrence relation described above. Hence

0 6= Ex(fx) ∈ Nz(Jrk),

i.e. the matrix Jrk is not essentially selfadjoint. We add to Jrk an extra first
column and first row consisting of zeros. We also add an extra first coordinate
with value zero to the vector Ex(fx). We thus get one additional equation in
the description of the deficiency space of the new operator (cf. (1.7)) which
is trivially satisfied. Hence, the extended matrix is not essentially selfadjoint
either. Therefore, the matrix with exactly k extra zero columns and rows

0 0 0 0 · · ·
0 0 0 0 · · ·
0 0
0 0 Jrk
...

...


is not essentially selfadjoint. Next we add to it a symmetric finite-dimen-
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sional operator of the form

β0

√
d λ0 0 0 0 . . .

√
d λ0

. . . . . .
...

0
. . . βk−1

√
d λk−1 0

0
√
d λk−1 0 0

0 . . . 0 0 0
. . .

...
. . . . . .


.

Since it is selfadjoint and bounded, the operator Jr, by Theorem 0.3, is not
essentially selfadjoint.

Remark. We have associated with J in `2(Γd) the radial operator Jr
acting in `2r(Γd), which can be identified with `2(N0). The two matrices

J =


β0 λ0 0 0
λ0 β1 λ1 0

0 λ1 β2
. . .

0 0
. . . . . .

 and Jr =


β0

√
d λ0 0 0√

d λ0 β1

√
d λ1 0

0
√
d λ1 β2

. . .

0 0
. . . . . .


do not have to be essentially selfadjoint at the same time. Let us consider
an example. For d = 2 let βn = λn + λn−1 and β0 = λ0. Then

J =



λ0 λ0

λ0 λ0 + λ1 λ1

λ1 λ1 + λ2 λ2

λ2 λ2 + λ3
. . .

. . . . . .


.

The recurrence relation associated with J (cf. (0.7)) is

xan = λn−1an−1 + (λn + λn−1)an + λnan+1

= (an−1 + an)λn−1 + (an + an+1)λn, n ≥ 1.

In particular, for x = 0 we get

an+1(0) = −λn−1

λn
(an−1(0) + an(0))− an(0).

For the sequence pn(0) (cf. (0.7)) we get a0(0) = p0(0) = 1 and a1(0) =
p1(0) = −1. Consequently, by induction, pn(0) = (−1)n. Hence the series∑
pn(0)2 is divergent. By the Hamburger criterion (Theorem 0.9), the matrix

J is essentially selfadjoint.
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The corresponding matrix on the tree Γ2 is of the form (cf. (1.5))

Jr =



λ0

√
2λ0√

2λ0 λ0 + λ1

√
2λ1√

2λ1 λ1 + λ2

√
2λ2

√
2λ2 λ2 + λ3

. . .
. . . . . .


.

Let λn = 2n. Then λn−1 +λn = 3 ·2n−1. Hence for x = 0 the general solution
to the recurrence relation

√
2 · an−1 + 3 · an + 2

√
2 · an+1 = 0, n ≥ 1,

is
an =

(
1√
2

)n
(c1 · cosnθ + c2 · sinnθ).

Thus the series ∑
|an|2 ≤ (|c1|2 + |c2|2)

∑ 1
2n

is always convergent. Hence both series
∑
pn(0)2 and

∑
qn(0)2 (cf. (0.7))

are convergent. By the Hamburger criterion, Jr is not essentially selfadjoint.

1.2. Description of the deficiency space. We are going to write
down the nontrivial deficiency space Nz(J) as a sum of spaces associated
with vertices of Γd.

Fix a vertex x of length k. Let Jk denote the truncated matrix

Jk =



βk λk 0 0 0 . . .

λk βk+1 λk+1 0 0 . . .

0 λk+1 βk+2 λk+2 0 . . .

0 0 λk+2 βk+3 λk+3 . . .

0 0 0 λk+3 βk+4
. . .

...
...

...
...

. . . . . .


.

Observe that the subtree Γx of Γd can be identified in a natural way with
the whole tree Γd. Hence `2r(Γx) can be identified with `2r(Γd).

In this way the matrix J restricted to `2(Γx) coincides with the operator
Jk on `2(Γd). Moreover, J restricted to `2r(Γx) coincides with the operator
Jk on `2r(Γd). Similarly to (1.4) and (1.5), it can be further identified with
Jk on `2(N0).

From now on we assume that the operator J in `2(Γd) is not essentially
selfadjoint. Hence

Nz(J) = (Im(J − z̄I))⊥ 6= {0}.
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By Theorem 1.8, the operator Jr on `2(N0) is not essentially selfadjoint.
Furthermore, from the proof of this theorem, the truncated matrix Jrk on
`(N0) is not essentially selfadjoint either. By the above arguments, J on
`2r(Γx) is not essentially selfadjoint. Moreover, its deficiency space is one-
dimensional (cf. Theorem 0.8).

Let f̃x denote a nonzero function in this deficiency space. Observe that
f̃x(x) 6= 0. Indeed, if vn is the value of f̃x on the nth level of Γd ⊃ Γx, then
the condition describing the deficiency space

Jf̃x = zf̃x

(cf. Fact 1.6) is equivalent to the system of equations

zvk = βkvk + d · λkvk+1,

zvn = λn−1vn−1 + βnvn + d · λnvn+1, n > k.

Hence, if vk = 0, then vk+1 = 0, and so f̃x ≡ 0, which yields a contradiction.
Choose a function f̃x such that f̃x(x) = 1. For each vertex x ∈ Γd we

define fx ∈ `2(Γd) by saying that supp fx ⊆ Γx and fx coincides with f̃x
on Γx.

For each vertex x ∈ Γd we also define the linear subspace

Ax =
{ d∑
i=1

ai · fxi : ai ∈ C,
d∑
i=1

ai = 0
}
.

For i 6= j the functions fxi and fxj are orthogonal as their supports are
disjoint. Note that the condition

∑d
i=1 ai = 0 guarantees that each element

g ∈ Ax (x ∈ Γd and |x| = n) satisfies, in addition, the recurrence relation
(1.3) at x, namely

0 = z · g(x)
= λn−1g(x0) + βng(x) + λn(g(x1) + · · ·+ g(xd))

= 0 + 0 + λn

d∑
i=1

ai = 0.

This means that all Ax are (d− 1)-dimensional subspaces of Nz(J).
Set

A0 = {a · fe : a ∈ C}.

Obviously, it is a one-dimensional subspace of Nz(J).
We are going to exhibit some properties of the spaces Ax. First, we es-

tablish the following technical lemma.
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Lemma 1.13. Let x ∈ Γd and |x| = n. If g ∈ Ax, then∑
y∈Γx

|y|=k

g(y) = 0

for all k ≥ n+ 1.

Proof. Observe that for two different vertices xi and xj with the same
predecessor x the values of fxi and fxj on the corresponding levels of Γxi and
Γxj are equal. This is because, by definition, the value fy(x) depends only on
the lengths of y and x. It follows that the sum of the values of g = fxi − fxj

on each level of Γx vanishes. It is easily seen that any function g ∈ Ax is a
linear combination of the functions fxi − fxj . Therefore the values of g ∈ Ax
also vanish on all levels of Γx.

Fact 1.14. Let x, y ∈ Γd ∪ {0} and x 6= y. Then Ax ⊥Ay.

Proof. Let gx ∈ Ax for some vertex x ∈ Γd, where |x| = n. Since fe is
radial, we write fe(|t|) = fe(t) for t ∈ Γd. Then

(gx, fe) =
∞∑

k=n+1

∑
t∈Γx
|t|=k

gx(t) fe(t) =
∞∑

k=n+1

fe(k)
∑
t∈Γx
|t|=k

gx(t).

By Lemma 1.13, all the sums
∑

t∈Γx, |t|=k gx(t) vanish, whence

(gx, fe) = 0.

Consider a function gy ∈ Ay for some vertex y different from x. If x /∈ Γy
and y /∈ Γx, then the functions gx and gy have disjoint supports and thus
they are orthogonal. On the other hand, if x ∈ Γy, then

|x| > |y| and supp(gx) ⊂ Γy.

Hence
(gx, gy) =

∑
t∈Γx

gx(t) gy(t)

and on levels of Γx the function gy has constant values gy(k). Therefore,
applying Lemma 1.13 once more, we obtain

(gx, gy) =
∞∑

k=n+1

∑
t∈Γx
|t|=k

gx(t) gy(t) =
∞∑

k=n+1

gy(k)
∑
t∈Γx
|t|=k

gx(t) = 0.

Clearly, the case when y ∈ Γx is similar.

Fact 1.15. Assume that f ∈ Nz(J) and f ⊥ Ax for all x ∈ Γd ∪ {0}.
Then f ≡ 0.
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Proof. We are going to show that f vanishes on the successive levels of Γd
starting from the root e. The function fe is radial on Γd, whence E(fe) = fe
(cf. (1.10)). By Lemma 1.9, we thus get

0 = (f, fe) = (f,E(fe)) = (E(f), fe).

By the same lemma, E(f) is square-summable. Moreover, both fe and E(f)
are in Nz(Jr) because taking the mean value on levels does not affect the
recurrence relation (1.7). As Nz(Jr) is one-dimensional, E(f) is a constant
multiple of fe. Let E(f) = αfe. Then

0 = (E(f), fe) = (αfe, fe) = α‖fe‖2,

whence α = 0. Thus E(f) = 0 and in particular

f(e) = (Ef)(e) = 0.

Summarizing, the orthogonality of f to fe implies that f vanishes at the
root e, i.e. on the zero level of the tree Γd. Similarly, the orthogonality of f
to the successive spaces Ax enables us to show that f is equal to zero at the
corresponding vertices. Indeed, assume that f(x) = 0 for each |x| ≤ n. Fix a
vertex x of length n. Since f ∈ Nz(J) and f(x) = f(x0) = 0, the recurrence
equation (1.3) at x,

zf(x) = λn−1f(x0) + βnf(x) + λn(f(x1) + · · ·+ f(xd)),

gives

(1.16) f(x1) + · · ·+ f(xd) = 0.

Fix g ∈ Ax. Since g is radial on each subtree Γxi ,

Exd
Exd−1

. . . Ex1(g) = g.

By the symmetry of these averaging operators (cf. Lemma 1.9),

0 = (f, g) = (f,Exd
Exd−1

. . . Ex1g) = (Ex1 . . . Exd
f, g).

By (1.16), the function
1Γx · Ex1 . . . Exd

f,

where 1Γx denotes the characteristic function of Γx ⊇ supp g, belongs to
and is orthogonal to the space Ax at the same time. Hence it must be zero.
Therefore

f(xi) = 1Γx · Ex1 . . . Exd
f(xi) = 0

for all i = 1, . . . , d.

We see that the sets Ax, in a sense, fill up the whole deficiency space
Nz(J). To be more precise, the above facts can be summarized as follows.
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Theorem 1.17. The algebraic direct sum⊕
x∈Γd∪{0}

Ax = lin{gx : gx ∈ Ax, x ∈ Γd ∪ {0}}

of the pairwise orthogonal spaces Ax is dense in the nontrivial deficiency
space Nz(J).

Remark. In the case when d = 2, not only A0 but also all the remaining
spaces Ax for x ∈ Γ2 are one-dimensional. Moreover, the functions

gx =
fx1 − fx2

‖fx1 − fx2‖
, x ∈ Γd,

along with the function g0 = f0/‖f0‖ form an orthonormal basis in Nz(J)
on the tree Γ2.

Let us now calculate norms of elements of Ax in the case when d ≥ 2 is
arbitrary.

Let pn be the orthogonal polynomials (cf. (0.7)) associated with the ma-
trix

(1.18) Jr =



β0

√
d λ0 0 0 0 . . .√

d λ0 β1

√
d λ1 0 0 . . .

0
√
d λ1 β2

√
d λ2 0 . . .

0 0
√
d λ2 β3

√
d λ3 . . .

0 0 0
√
d λ3 β4

. . .
...

...
...

...
. . . . . .


,

i.e. let the numbers pn(z) satisfy the equations

zpn(z) =
√
d λn−1pn−1(z) + βnpn(z) +

√
d λnpn+1(z), n ≥ 0,(1.19)

p−1(z) = 0, p0(z) = 1.

Dividing by (
√
d )n gives

z · pn(z)√
dn

= λn−1 ·
pn−1(z)√
dn−1

+ βn ·
pn(z)√
dn

+ d · λn ·
pn+1(z)√
dn+1

, n ≥ 0.

These are exactly the equations describing the unique radial function in
Nz(J) (cf. (1.7)), hence

(1.20) f0(x) = f0(|x|) =
p|x|(z)√
d|x|

.

Then

‖f0‖2 =
∞∑
n=0

dn|f0(n)|2 =
∞∑
n=0

dn
∣∣∣∣pn(z)√

dn

∣∣∣∣2 =
∞∑
n=0

|pn(z)|2.
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The norm of an arbitrary g ∈ A0 can be expressed as
‖g‖ = α0(z) · |g(e)|,

where

α0(z) =
( ∞∑
n=0

|pn(z)|2
)1/2

.

Let qn be the orthogonal polynomials of the second kind (cf. (0.7)) asso-
ciated with the matrix Jr, i.e.

zqn(z) =
√
d λn−1qn−1(z) + βnqn(z) +

√
d λnqn+1(z), n ≥ 1,

q0(z) = 0, q1(z) = 1/λ0.

As before, dividing by (
√
d )n−1 gives

z · λ0qn(z)√
dn−1

= λn−1 ·
λ0qn−1(z)√

dn−2
+ βn ·

λ0qn(z)√
dn−1

+ d · λn ·
λ0qn+1(z)√

dn
, n ≥ 1.

Therefore, for a fixed i,

(1.21) fei(x) = fei(|x|) = λ0 ·
q|x|(z)√
d|x|−1

.

Hence

‖fei‖2 =
∑
x∈Γei

|fei(x)|2 =
∞∑
n=1

dn−1|fei(n)|2

=
∞∑
n=1

dn−1λ2
0

∣∣∣∣ qn(z)√
dn−1

∣∣∣∣2 = λ2
0

∞∑
n=1

|qn(z)|2.

Let

(1.22) α1(z) = λ0

( ∞∑
n=1

|qn(z)|2
)1/2

.

Since the functions fei are pairwise orthogonal, the norm of an arbitrary
function g ∈ Ae is equal to

‖g‖ =
∥∥∥ d∑
i=1

g(ei)fei

∥∥∥ = α1(z) ·
√
|g(e1)|2 + · · ·+ |g(ed)|2.

Now we consider a function g ∈ Ax for a fixed vertex x 6= e, i.e. |x| =
k ≥ 1. Since

g =
d∑
i=1

g(xi) · fxi ,

where fxi are pairwise orthogonal, we get

‖g‖2 = ‖fxi‖2 ·
d∑
i=1

|g(xi)|2,
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because the values of fxi on the subtree Γxi depend only on the length of
vertices and on k which is the length of the root of this subtree. These values
are determined by the equations

zfxi(n) = λn−1fxi(n− 1) + βnfxi(n) + dλnfxi(n+ 1), n ≥ k + 1,

and
fxi(k) = 0, fxi(k + 1) = 1

(cf. (1.7) and the definition of fx). Note that the numbers

(1.23)
λk(pk(z)qn(z)− qk(z)pn(z))√

dn−(k+1)
, n ≥ k,

satisfy these equations. Indeed, pn(z) and qn(z) satisfy the recurrence start-
ing with n = 1, in particular, for n ≥ k. Therefore, the same holds for any
linear combination of them. Since |xi| = k+ 1, there are exactly n− (k+ 1)
vertices on the nth level of Γxi . This accounts for the exponent in the de-
nominator. Furthermore, for n = k the value of the expression (1.23) is 0.
Finally, from the formula

pn(z)qn+1(z)− pn+1(z)qn(z) = 1/λn
(see e.g. [1] or [14]), we get the value 1 for n = k + 1. Consequently,

(1.24) fxi(n) =
λk(pk(z)qn(z)− qk(z)pn(z))√

dn−(k+1)
, n ≥ k + 1,

and thus

‖fxi‖2 =
∞∑

n=k+1

dn−(k+1)|fxi(n)|2 = λ2
k

∞∑
n=k+1

|pk(z)qn(z)− qk(z)pn(z)|2.

Hence

‖g‖2 = (|g(x1)|2 + · · ·+ |g(xd)|2) · λ2
k

∞∑
n=k+1

|pk(z)qn(z)− qk(z)pn(z)|2.

Let αk+1(z) denote the positive number such that

(1.25) α2
k+1(z) = λ2

k

∞∑
n=k+1

|pk(z)qn(z)− qk(z)pn(z)|2, k ≥ 1.

Then
‖g‖ = αk+1(z) ·

√
|g(x1)|2 + · · ·+ |g(xd)|2

for any g ∈ Ax, where |x| = k ≥ 1.
Note that for k = 0 the right hand side of (1.25) gives exactly the number

α1(z) defined already by (1.22) so the numbers αk(z) may be defined by the
common formula (1.25) for all k ≥ 0.

The following fact summarizes the previous considerations concerning
norms.
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Fact 1.26. We have

‖fx‖ = α|x| for x ∈ Γd ∪ {0},
and

‖g‖ =


α0(z) · |g(e)| if g ∈ A0,

α|x|+1(z) ·
( d∑
i=1

|g(xi)|2
)1/2

if g ∈ Ax, x ∈ Γd,

where the coefficients αk(z) do not depend on functions and are as follows:

α0(z) =
∞∑
n=0

|pn(z)|2,

αk(z) = λ2
k−1

∞∑
n=k

|pk−1(z)qn(z)− qk−1(z)pn(z)|2 for k ≥ 1.

1.3. The deficiency space and the boundary of the tree. A path
in a tree is, by definition, a sequence {xn} of vertices such that for any n,
the vertices xn and xn+1 are joined by an edge. The boundary Ω = ∂Γd of
the tree Γd is the set of all infinite paths starting at the root e.

Note that at each level on the way downward from the root e we have
to choose one of d edges, hence the boundary Ω can be identified with the
Cantor set

Ω ' {0, 1, . . . , d− 1}N

(which is the classical Cantor set in an interval when d = 2). Clearly, to
each vertex x and thereby to each subtree Γx, there is associated a cylinder
Ωx ⊆ Ω, i.e. the set of all those paths which contain x.

Let µ be the probability measure on {0, 1, . . . , d− 1} such that

µ =
1
d
· (δ0 + δ1 + · · ·+ δd−1).

Let dω denote the natural probability product measure on the boundary Ω,

dω =
∞⊗
i=0

dµi, µi = µ,

i.e. the values of dω on cylinders are given by

dω(Ωx) = d−|x|, x ∈ Γd.
For each subspace Ax ⊂ Nz(J) we define the corresponding subspace

Bx ⊆ L2(Ω, dω). Namely, let B0 denote the one-dimensional linear subspace
of constant functions on Ω and for x ∈ Γd we put

Bx =
{ d∑
i=1

bi · 1Ωxi
: bi ∈ C,

d∑
i=1

bi = 0
}
.
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Similarly to Ax, each Bx is a linear space of dimension d−1. Another analogy
is given by the following property of any element F of Bx:

�

Ω

F (ω) dω =
d∑
i=1

�

Ωxi

F (ω) dω = d−|xi| ·
d∑
i=1

bi = 0.

Fact 1.27. The subspaces Bx for x ∈ Γd ∪ {0} are pairwise orthogonal
and fill up the whole L2(Ω, dω), i.e. the algebraic direct sum⊕

x∈Γd∪{0}

Bx = lin{Gx : Gx ∈ Bx, x ∈ Γd ∪ {0}}

is dense in L2(Ω, dω).

Proof. Let Gx ∈ Bx and Gy ∈ By for x 6= y. Two cylinders with different
vertices are either disjoint or one is a proper subset of the other. If Ωx ∩Ωy
= ∅, then Gx and Gy are orthogonal. On the other hand, if Ωy  Ωx, then
there exists i such that Ωy ⊆ Ωxi . Let bi denote the value of Gx on Ωxi .
Then

(Gx, Gy) =
�

Ωy

Gx(ω)Gy(ω) dω = bi ·
�

Ωy

Gy(ω) dω = 0,

which completes the proof of orthogonality.
Assume that F ∈ L2(Ω, dω) is orthogonal to every Bx for x ∈ Γd ∪ {0}.

In particular, for the function G0 ≡ 1 belonging to B0 we obtain

(1.28) 0 = (F,G0) =
�

Ω

F (ω) dω =
d∑
i=1

�

Ωei

F (ω) dω.

The orthogonality of F to 1Ωei
− 1Ωej

∈ Be for i 6= j gives

0 = (F,1Ωei
− 1Ωej

) =
�

Ωei

F (ω) dω −
�

Ωej

F (ω) dω,

whence �

Ωei

F (ω) dω =
�

Ωej

F (ω) dω.

Since all the numbers
	
Ωei

F (ω) dω are equal and sum up to 0 (see (1.28)),
they all vanish. Similar considerations applied to x = ej and its successors
xi yield

	
ΩyF (ω) dω = 0 for dist(y, e) = 2. In this way one can show that

integrating F over an arbitrary cylinder gives 0. Hence F = 0 dω-almost
everywhere.

Let x ∈ Γd. To the function fx corresponds the function Fx ∈ L2(Ω, dω)
defined by

Fx = α|x| ·
√
d|x| · 1Ωx .
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Then

‖Fx‖2 =
�

Ω

Fx(ω)Fx(ω) dω = α2
|x|(z)d

|x| · dω(Ωx) = α2
|x|(z) = ‖fx‖2.

Clearly, if xi 6= xj have a common predecessor, then Fxi and Fxj are orthog-
onal as their supports are disjoint. Thus

(1.29) Ax 3
d∑
i=1

aifxi = g ↔ G =
d∑
i=1

aiFxi ∈ Bx

is a one-to-one correspondence. Furthermore,

‖G‖ = ‖Fxi‖ ·
√
|a1|2 + · · ·+ |ad|2

= ‖fxi‖ ·
√
|a1|2 + · · ·+ |ad|2 = ‖g‖.

It follows that the mapping G 7→ g is a linear bijection between Bx and Ax
which, in addition, preserves the norm. We also define a mapping from A0

onto B0 by

(1.30) f0 7→ F0 = α0 · 1Ω,
which, clearly, is also a norm preserving linear bijection.

In view of Theorem 1.17 and Fact 1.27, all these bijections have a unique
extension to an injective isometry

(1.31) U : L2(Ω, dω) onto−−→ Nz(J).

For a fixed vertex y ∈ Γd we define a functional on L2(Ω, dω) by

F 7→ (UF )(y).

As it is linear and bounded, it determines, by the Riesz Theorem, a unique
function Pz(y, ω) ∈ L2(Ω, dω) such that for all F ∈ L2(Ω, dω),

(1.32) (UF )(y) =
�

Ω

Pz(y, ω)F (ω) dω.

In particular, for a function g ∈ Ax and the corresponding G ∈ Bx,

(1.33) g(y) =
�

Ω

Pz(y, ω)G(ω) dω.

In view of this formula, it is natural to call Pz(y, ω) the Poisson kernel .
It describes a relationship between functions in the deficiency space and
functions on the boundary of the tree.

We now state some of the properties of this kernel.

Fact 1.34. For a fixed y ∈ Γd,
(JPz(·, ω))(y) = z · Pz(y, ω)

dω-almost everywhere.
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Proof. Let y ∈ Γd ∪ {0}. It is sufficient to show that for all x ∈ Γd ∪ {0}
and G ∈ Bx,

(JPz(y, ·), G) = (zPz(y, ·), G).

Set g = UG ∈ Ax. Since Ax ⊂ Nz(J), g satisfies, in particular, the recurrence
relation (1.3) at y, i.e.

(Jg)(y) = z · g(y).

In view of (1.33), we have(
J
( �
Ω

Pz(·, ω)G(ω) dω
))

(y) = z ·
�

Ω

Pz(y, ω)G(ω) dω.

By the linearity of the integral, we get
�

Ω

JPz(y, ω)G(ω) dω =
�

Ω

zPz(y, ω)G(ω) dω,

completing the proof.

Now we are going to make use of automorphisms of Γd. By an automor-
phism we mean a mapping k : Γd → Γd such that

(∀x, y ∈ Γd) dist(kx, ky) = dist(x, y).

Observe that the root e is the only vertex in Γd of degree d. Clearly, auto-
morphisms preserve the degree of vertices. Therefore k(e) = e. In addition,
each automorphism of Γd extends to the boundary Ω.

Note that J commutes with all isometries of Γd. Each automorphism of Γd
acts on functions in Ax and in Bx in a natural way. Namely, let k : Γd → Γd
be an automorphism of Γd. For any g ∈ Ax we put

(kg)(y) = g(k−1y).

Then
kg ∈ Akx and kg(ky) = g(y).

Similarly, k acts on functions in Bx. Hence for the corresponding function
G ∈ Bx we have

kG ∈ Bkx and (kG)(kω) = G(ω).

Lemma 1.35. For any fixed vertex y ∈ Γd and an arbitrary automorphism
k of Γd,

Pz(ky, kω) = Pz(y, ω)

dω-almost everywhere.

Proof. Let x ∈ Γd ∪ {0} and g ∈ Ax. By (1.33) and the property of the
automorphism k, we have
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�

Ω

Pz(y, ω)G(ω) dω = g(y) = kg(ky) = U(kG) (ky) =
�

Ω

Pz(ky, ω) · (kG)(ω) dω.

Replacing ω by kω in the last integral yields�

Ω

Pz(y, ω) ·G(ω) dω =
�

Ω

Pz(ky, kω) · (kG)(kω) d(kω)

=
�

Ω

Pz(ky, kω) ·G(ω) d(kω).

By the invariance of the measure dω, we obtain�

Ω

Pz(y, ω) ·G(ω) dω =
�

Ω

Pz(ky, kω) ·G(ω) dω.

Since G was an arbitrary function, the conclusion follows.

Fix a path ω ∈ Ω and a vertex y ∈ Γd. Number the consecutive vertices
in ω with the numbers 0, 1, 2, . . . starting with the root e,

ω = {ω0, ω1, ω2, . . .}, ω0 = e.

The relative position of the path ω and the vertex y can be described by two
nonnegative integers. Let n = n(y, ω) denote the distance between y and ω
and let m = m(y, ω) be such that the vertex ωm ∈ ω realizes this distance,

n = dist(y, ω) = dist(y, ωm).

Obviously, |y| = m+ n. One can say that on the way from the root e to the
vertex y we do exactly m steps along the path ω and exactly n steps off ω.

bω0

bω1

b ωm

by

b
ωm+1

b
ỹ

b

b

...

ω

m

m + n
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For instance, for y and ω in the figure above (d = 2) we get n = m = 2.
Note that replacing y by ỹ gives the same numbers n and m.

Fact 1.36. The value of the Poisson kernel Pz(y, ω) depends only on the
numbers m(y, ω) and n(y, ω) defined above.

Proof. Let y, y′ ∈ Γd and ω, ω′ ∈ Ω satisfy

m(y, ω) = m(y′, ω′) and n(y, ω) = n(y′, ω′).

Let k1 be any automorphism on Γd mapping ω to ω′. By assumption,
dist(k1y, ω

′) = dist(y, ω′) and both distances are realized by the same point
in the path ω′. Hence, there exists an automorphism k2 which fixes ω′ but
maps k1y to y′. By Lemma 1.35, we thus get

Pz(y′, ω′) = Pz(k2(k1y), k2ω
′) = Pz(k1y, ω

′) = Pz(k1y, k1ω) = Pz(y, ω).

To give an explicit formula for Pz(y, ω), we introduce some projections.
Let πz denote the projection of `2(Γd) onto the deficiency space

Nz(J) =
⊕

x∈Γd∪{0}

Ax

(cf. Theorem 1.17). Then for every f ∈ `2(Γd) we have

πz(f) =
∑

x∈Γd∪{0}

πz,x(f),

where πz,x denotes the projection of `2(Γd) onto Ax; in particular, πz,0 is the
projection onto A0.

Fact 1.37. Let x be a vertex in Γd and k = |x|+ 1. If y ∈ Γx is different
from x and y ∈ Γxi , then

πz,x(δy) =
fxi(y)
α2
k(z)

·
[
fxi −

1
d

d∑
j=1

fxj

]
.

Moreover, for all y ∈ Γd we have

πz,0(δy) =
fe(y)
α2

0(z)
· fe.

Proof. Since πz,x(δy) ∈ Ax, there exist constants aj such that

πz,x(δy) =
d∑
j=1

ajfxj .

Let g =
∑d

j=1 bjfxj be any element of Ax. Then

(g, δy) = (πz,x(g), δy) = (g, πz,x(δy)).
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Since supp(fxj ) ⊆ Γxj and y ∈ Γxi , we obtain

(g, δy) =
d∑
j=1

bjfxj (y) = bifxi(y).

On the other hand, (fxi , fxj ) = 0 for i 6= j. Hence

(g, πz,x(δy)) =
d∑
j=1

bj aj ‖fxj‖2 = α2
k(z) ·

d∑
j=1

bj aj .

We thus get the equation

bifxi(y) = α2
k(z) ·

d∑
j=1

bj aj

for any coefficients bj such that
∑d

j=1 bj = 0. Let bi = 1. Then setting
bj0 = −1 for an arbitrary j0 6= i yields

fxi(y) = α2
k(z)(ai − aj0).

This means that the coefficients aj for all j 6= i have the same value, as
j0 was chosen arbitrarily. Set a = aj for j 6= i. Since the sum of all the
coefficients aj vanishes, we have ai = −(d− 1)a. It follows that

fxi(y) = α2
k(z) · [−(d− 1)a− a] = −d a · α2

k(z),

whence

a = − fxi(y)
dα2

k(z)
.

Summarizing,

πz,x(δy) =
(d− 1) fxi(y)

dα2
k(z)

· fxi −
∑
j 6=i

fxi(y)
dα2

k(z)
· fxj

=
fxi(y)
α2
k(z)

·
[(

1− 1
d

)
· fxi −

1
d
·
∑
j 6=i

fxj

]

=
fxi(y)
α2
k(z)

·
[
fxi −

1
d
·

d∑
j=1

fxj

]
.

The formula for πz,0(δy) is clear as the vector generating the one-dimensional
subspace A0 is equal to (α0(z))−1fe. Hence

πz,0(δy) =
(δy, fe)
‖fe‖2

· fe =
fe(y)
α2

0(z)
· fe.

In order to describe the action of πz on δy it is necessary to consider all
the subspaces Ax such that y ∈ Γx.
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Corollary 1.38. Let y ∈ Γd have length n ≥ 0. Let y0, y1, . . . , yn be the
path from the root e to y = yn. Then

πz(δy) =
fe(y)
α2

0(z)
· fe +

n∑
i=1

fyi(y)
α2
i (z)

·
[
fyi −

1
d

d∑
j=1

f(yi−1)j

]
,

where (yi−1)j for j = 1, 2, . . . are all the successors of the vertex yi−1.

Proof. It is sufficient to apply Fact 1.37 to the sum

πz(δy) =
∑

x∈Γd∪{0}

πz,x(δy) = (πz,y0 + πz,y1 + · · ·+ πz,yn)(δy).

Note that in view of (1.29) and (1.30), the isometry U defined by (1.31)
can be expressed by the formula

U
(
αk(z)

√
dk ·

d∑
i=1

ai · 1Ωxi

)
=

d∑
i=1

aifxi ,

where k = |xi| = |x|+ 1, and

(1.39) U(α0(z) · 1Ω) = fe.

As the supports are disjoint for i 6= j, the first formula can be written as

(1.40) U(αk(z)
√
dk · 1Ωxi

) = fxi .

Here comes the promised explicit formula for the Poisson kernel.

Theorem 1.41. Let ω ∈ Ω and y ∈ Γd be of length n. Then

Pz(y, ω) =
fe(y)
α0(z)

· 1Ω +
n∑
i=1

fyi(y)
αi(z)

·
√
di ·
[
1Ωyi

− 1
d
1Ωyi−1

]
,

where {y0, y1, . . . , yn} is the only path from the root e = y0 to y = yn.

Proof. Applying (1.39) and (1.40) in Corollary 1.38 yields

πz(δy) = U(S(y)),

where

S(y) =
fe(y)
α0(z)

· 1Ω +
n∑
i=1

fyi(y)
√
di

αi(z)
·
[
1Ωyi

− 1
d
1Ωyi−1

]
.

For any F ∈ L2(Ω, dω) we have

UF (y) = (UF, δy) = (UF, πz(δy)).

On the other hand, by (1.32),

UF (y) =
�

Ω

Pz(y, ω)F (ω) dω = (F, Pz(y, ·)).
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Hence

(F, Pz(y, ·)) = (UF, πz(δy)) = (UF,U(S(y))) = (F, S(y)),

which completes the proof.

1.4. The spectrum of a selfadjoint extension. Our next aim is to
describe the spectral properties of J .

Recall that we are considering the case when J is not essentially selfad-
joint. For a fixed vertex x ∈ Γd we define the linear subspace Hx of `2(Γd)
to consist of those functions f ∈ `2(Γd) which satisfy

(1) supp(f) ⊂ Γx \ {x},
(2)

∑d
i=1 f(xi) = 0,

(3) f is radial on each subtree Γxi ,
(4) the value of f on a level of Γxi equals the value of f on the corre-

sponding level of Γxj multiplied by f(xi)/f(xj).

Moreover, we set H0 = `2r(Γd).

Fact 1.42. The spaces Hx ⊂ `2(Γd), where x ∈ Γd ∪ {0}, satisfy
(1) J [Hx] ⊆ Hx for every x,
(2) Hx is closed for every x,
(3) Hx ⊥ Hy for x 6= y,
(4)

⊕
x∈Γd∪{0}Hx = lin{f ∈ Hx : x ∈ Γd ∪ {0}} is dense in `2(Γd).

Proof. Properties (1) and (2) are clear. Property (3) may be proved in
much the same way as Fact 1.14. To prove (4), assume that g ∈ `2(Γd) is
orthogonal to every Hx for x ∈ Γd ∪ {0}. In particular, as δe ∈ H0,

0 = (g, δe) = g(e).

The orthogonality to δei − δej ∈ He gives

0 = (g, δei − δej ) = g(ei)− g(ej),

whence the values on the first level are all equal. Furthermore, since the
characteristic function χ1 of the first level is an element of H0, we get

0 = (g, χ1) =
d∑
i=1

g(ei).

This means that g vanishes also on the first level of Γd. Similar considerations
show that g is equal to 0 at each level of Γd.

Let Jx denote the restriction of J to Hx ∩D(J). For x = 0 the operator
Jx has the matrix Jr = Jr0 . For x ∈ Γd the action of Jx is associated with
the restricted matrix Jrn, where n = |x|+ 1 (cf. (1.12)).

Since J is not essentially selfadjoint, neither is any of the matrices Jrn
(cf. the beginning of Section 1.2). It is known that there exists a selfadjoint
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extension J̃n of Jrn and the spectrum of each selfadjoint extension is a discrete
set (cf. Theorem 0.10).

Let J̃x be the operator with domain D(J̃x) ⊆ Hx associated with the
selfadjoint extension J̃|x|+1. Hence its spectrum σ(J̃|x|+1) is a discrete set, so
J̃x has a pure point spectrum (i.e. there exists a basis consisting of eigenvec-
tors). Define

J̃(f) =
∑

x∈Γd∪{0}

J̃x(f)

with domain

D(J̃) =
⊕

D(J̃x) = lin{f ∈ `2(Γd) : f ∈ D(J̃x)}.

Since the Hx are invariant under J and their Hilbert orthogonal sum is the
whole `2(Γd), the operator J̃ is a selfadjoint extension of J . Moreover, the
spectrum of this extension

σ(J̃) =
⋃

σ(J̃x)

is also a pure point spectrum.

2. A Jacobi operator on a tree with one end. For a fixed number
d = 2, 3, 4, . . . we consider an infinite homogeneous tree of degree d which is
partially ordered and locally looks like the one in the previous section but
upside down. For instance, if d = 3, the top levels of the tree look as follows:

. . .

y x0

x

x1 x2 x3

· · ·

· · ·

· · ·

In view of the figure above, it is intuitively clear what the partial order
in this tree is. All vertices with only one edge are on the zero level. Those at
distance 1 from the zero level have length 1, and so on. To be more precise,
this time we distinguish not a vertex but an infinite path ω = {ω0, ω1, ω2, . . .}
where ω0 is any vertex with only one adjacent edge. The natural distance
dist(·, ·) enables one to calculate the distance between a given vertex x and



JACOBI MATRICES ON TREES 493

the path ω, i.e. dist(x, ω). Then, by the length of a vertex x we mean

|x| = n− dist(x, ω),

where n is the index of the element of ω which realizes the distance

dist(x, ω) = dist(x, ωn).

In the figure above the fixed path ω is indicated by a bold line. We have
|x| = 3− 2 = 1 and for y = ω2 we have |y| = 2− 0 = 2. It is clear that the
length | · | defined in this way is independent of the choice of ω.

The set of all vertices with this partial order is denoted by Λd.
In the tree Λd, each vertex of length at least 1 has exactly d predecessors

and one successor. Each origin, i.e. a vertex with no predecessor, has length 0
and exactly one adjacent (downward) edge so also one successor. This time
there are infinitely many vertices of length 0. At each vertex, however, there
is just one downward edge so Λd can be said to be a homogeneous tree with
one end.

Just as for Γd, the predecessors of a vertex x are denoted by x1, . . . , xd
and the successor by x0. In analogy with the previous section we also define
the action of the Jacobi operator J on the characteristic function δx of a
vertex |x| = n, namely

Jδx = λn−1(δx1 + · · ·+ δxd
) + βnδx + λnδx0 .

The domain of J consists of functions with finite support, i.e.

D(J) = lin{δx : x ∈ Λd} ⊆ `2(Λd).

We keep the convention that λ−1 = 0, which makes the formula for J valid
also for vertices of length 0.

Fact 2.1. The deficiency space Nz(J) of the operator J on `2(Λd) con-
sists of all square-summable functions v on Λd satisfying

(2.2) zv(x) = λn−1(v(x1) + · · ·+ v(xd)) + βnv(x) + λnv(x0)

for all x with |x| = n and all n ≥ 0.

Proof. Just as for Γd, this follows by calculation:

0 = (v, (J − z̄)δx)
= (v, λn−1(δx1 + · · ·+ δxd

) + βnδx + λnδxo − z̄δx)
= λn−1(v(x1) + · · ·+ v(xd)) + βnv(x) + λnv(x0)− zv(x).

Remark. Clearly, an equivalent formulation of the assertion is:

Nz(J) = {v ∈ `2(Λd) : Jv(x) = z · v(x), x ∈ Λd}.

Let Λx denote the subtree of Λd which ends at the vertex x. The subtree
Λx is emphasized in the figure below.
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. . .

x · · ·

· · ·

· · ·

The following technical lemma is a direct preparation for the main the-
orem of this section.

Lemma 2.3. Assume that v ∈ `2(Λd) satisfies the recurrence relation
(2.2) for some z ∈ C (possibly real). Let x ∈ Λd have length n. Assume that
the values pk(z) of the orthogonal polynomials associated with the matrix Jr
are nonzero for k = 1, . . . , n. Then the values of v are constant on each level
of Λx. Moreover, if y ∈ Λx and |y| = k ≥ 0, then

v(y) =
√
dk pk(z) · v0,

where v0 is the value of v on the zero level of Λx.

Proof. The proof is by induction on n.
(1) Fix a vertex x with |x| = n = 1. For each i = 1, . . . , d, by (2.2) for

x = xi we have
(z − β0)v(xi) = λ0v(x).

Hence
v(x) =

z − β0

λ0
· v(xi) =

√
d p1(z) · v0

as p0(z) = 1 and
z p0(z) = β0p0(z) +

√
d λ0 p1(z).

(2) Assume that the assertion holds for some n ≥ 1. Let x be any vertex
in Λx of length n+ 1. Each of its predecessors xi has length n so the values
of v on the kth level of Λxi are constant and equal to

√
dk · pk(z) · vi0, where

vi0 is the value of v on the zero level of Λxi . By assumption, the recurrence
equation (2.2) at xi,

(z − βn) · v(xi) = λn−1 ·
d∑
j=1

v((xi)j) + λn · v(x),

yields
(z − βn) ·

√
dn pn(z) · vi0 = dλn−1 ·

√
dn−1 pn−1(z) · vi0 + λn · v(x).
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Hence

v(x) =
(z − βn)

√
dn pn(z)− dλn−1

√
dn−1 pn−1(z)

λn
· vi0.

Since {pn(z)} satisfies (1.19), we get

v(x) = vi0 ·
√
dn+1 · pn+1(z).

Here is the main theorem.

Theorem 2.4. The operator J on Λd is always essentially selfadjoint.

Proof. For a complex number z /∈ R all the coefficients
√
dkpk(z) appear-

ing in Lemma 2.3 are nonzero, as all roots of the orthogonal polynomials pn
are real. By Lemma 2.3, if there existed a function satisfying all the equa-
tions (2.2), it would have to be nonzero and constant on levels of the whole
tree Λd. However, there are infinitely many vertices on each level, so such a
function cannot be square-summable. Therefore, Nz(J) = {0}.

Theorem 2.5. The Jacobi operator J on Λd has a pure point spectrum,
i.e. there is an orthonormal basis consisting of eigenvectors for J . More-
over, σ(J) coincides with the closure of the set of all roots of the orthogonal
polynomials pn associated with the matrix J .

Proof. Since J is essentially selfadjoint it suffices to find a set of eigen-
vectors which is linearly dense in D(J).

Fix x ∈ Λd of length n ≥ 1. We consider the subspace Mx ⊂ D(J)
consisting of the functions with support in Λx. Clearly,

dimMx = 1 + d+ d2 + · · ·+ dn.

It is known that pn has exactly n real simple roots t1, . . . , tn. For a fixed
predecessor xi of x and for a fixed tj let fi,j ∈Mx be given by

fi,j(y) =

{√
dk · pk(tj) for y ∈ Λxi and |y| = k,

0 for y /∈ Λxi .

Of course, fi,j satisfies (2.2) with z = tj and for any x ∈ Λxi different from xi.
Furthermore, since

fi,j(x) = 0 =
√
dn · pn(tj),

the equation (2.2) also holds at xi. Hence, the linear combinations

f1,j − fi,j for i = 2, . . . , d

satisfy (2.2) at x, i.e.

0 = (z − βn)(f1,j(x)− fi,j(x)) = λn−1(f1,j(x1)− fi,j(xi)) + λn · 0

because f1,j(x1) = fi,j(xi).



496 A. M. KAZUN AND R. SZWARC

By the above, when j is fixed and i varies from 2 to d, the functions
f1,j − fi,j satisfy (2.2) for z = tj at every vertex of Λd, i.e.

J(f1,j − fi,j) = tj · (f1,j − fi,j), i = 2, . . . , d.

Hence they are eigenfunctions associated with the eigenvalue tj . Clearly,
there are d − 1 of them and they form a linearly independent system since
the functions fi,j are pairwise orthogonal for i = 1, . . . , d as functions with
disjoint supports.

In this way, for a fixed vertex of length n, we have indicated exactly
n · (d − 1) linearly independent eigenfunctions associated with this vertex.
In the entire subtree Λx there are dn−k vertices of length k. Of course, the
eigenfunctions corresponding to two such vertices of the same length k are
orthogonal as their supports are disjoint. Moreover, if two vertices are such
that one is in the subtree associated with the other, the corresponding eigen-
functions are also orthogonal, because on each level of the smaller tree one
function has a constant value while the values of the other sum to zero (cf.
the proof of Fact 1.14). Therefore, the number of all eigenfunctions of J thus
defined with support in Λx is equal to

(d− 1) ·
n∑
k=1

k · dn−k

and they are all linearly independent.
Let Vx ⊆ Mx denote the linear subspace spanned by the eigenvectors

defined above and with support in Λx. Then

dimVx = (d− 1) ·
n∑
k=1

k · dn−k = (1 + d+ d2 + · · ·+ dn)− (n+ 1).

Since there are n+ 1 levels in Λx, there exist exactly n+ 1 linearly inde-
pendent functions in Mx which are constant on the levels of Λx. Therefore,
the equality

dimMx = dimVx + (n+ 1),

obtained above, means that the orthogonal complement of Vx inMx consists
only of functions constant on levels of Λx.

To complete the proof it suffices to show that no square-summable and
nonzero function is orthogonal to every Vx. Assume that f ∈ `2(Λd) satisfies

∀x ∈ Λd f ⊥ Vx.
Then f is constant on levels of Λx for each x ∈ Λd. Hence f is constant on
levels of Λd. But f is square-summable. Therefore f ≡ 0.
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