COLLOQUIUM MATHEMATICUM
 $\begin{array}{lll}\text { VOL. } 118 & 2010 & \text { NO. } 2\end{array}$

MÖBIUS INVARIANCE OF ANALYTIC BESOV SPACES in tube domains over SYMMETRIC CONES

BY
G. GARRIGÓS (Madrid)

In memory of Andrzej Hulanicki

Abstract

Besov spaces of holomorphic functions in tubes over cones have been recently defined by Békollé et al. In this paper we show that Besov p-seminorms are invariant under conformal transformations of the domain when n / r is an integer, at least in the range $2-r / n<p \leq \infty$.

1. Introduction. In the upper half-plane $\mathbb{H}=\{z=x+i y \in \mathbb{C}: y>0\}$, when $1<p \leq \infty$, the analytic Besov p-space, $\mathbb{B}^{p}(\mathbb{H})$, consists of all holomorphic functions $f(z)$ so that

$$
\|f\|_{\mathbb{R}^{p}}:=\left\|y f^{\prime}(z)\right\|_{L^{p}\left(\mathbb{H}, d z / y^{2}\right)}<\infty .
$$

An easy computation shows that these seminorms are Möbius invariant, that is,

$$
\begin{equation*}
\|f \circ \Phi\|_{\mathbb{B}^{p}}=\|f\|_{\mathbb{B}^{p}}, \quad \forall \Phi \in \operatorname{Aut}(\mathbb{H}) . \tag{1.1}
\end{equation*}
$$

When $0<p \leq 1$, Besov spaces are defined by the condition

$$
\left\|y^{m} f^{(m)}\right\|_{L^{p}\left(\mathbb{H}, d z / y^{2}\right)}<\infty,
$$

where m is the smallest integer so that $m>1 / p$. In this case there is also an equivalent seminorm so that (1.1) holds, although the proof is harder (see [4] or [14, Thm. 5.18]).

This family of analytic Besov spaces (actually in the unit disc setting) was extensively studied in the 80 's by Arazy, Fisher and Peetre [4-7] (see also K. H. Zhu [14]). The Möbius invariance of \mathbb{B}^{p}-norms is a relevant property which is related to a number of remarkable results, such as the characterization of (big) Hankel operators belonging to the Schatten p-class 7 . Another interesting fact is that all Möbius invariant semi-Banach spaces \mathbb{X} of analytic functions necessarily satisfy $\mathbb{B}^{1} \hookrightarrow \mathbb{X} \hookrightarrow \mathbb{B}^{\infty}$, while \mathbb{B}^{2} is the only semi-Hilbert space with this property (see e.g. [11]).

[^0]In higher dimensions, the right setting for these questions is the class of bounded symmetric domains $D \subset \mathbb{C}^{n}$ (or their unbounded realizations), in which case the rank r of the domain plays a role. When D is the unit ball of \mathbb{C}^{n} (i.e. in the case of rank 1), invariant Besov spaces of analytic functions are quite well understood; see e.g. 12] or [16]. For higher ranks, however, the picture is not yet complete. There is a general theory of analytic Besov spaces in bounded symmetric domains developed by K. H. Zhu [15], but Möbius invariance is not considered there; in fact, it is left as an open question in [17, p. 300]. A different approach is taken by Arazy [1-3], who in the special case of bounded symmetric domains of tube type defines a family of Besov p-spaces which are indeed $\operatorname{Aut}(D)$-invariant when $n / r \in \mathbb{N}$ and $2-r / n<p \leq \infty$ (see [3, p. 119], or Section 4 below). The condition $n / r \in \mathbb{N}$ turns out to be necessary, while the cases $0<p \leq 2-r / n$, which require a different definition, seem to be still open.

In this paper we are interested in Möbius invariance of Besov spaces in tube domains over cones, that is, the unbounded realization of the domains considered by Arazy. More precisely, $T_{\Omega}=\left\{z=x+i y \in \mathbb{C}^{n}: y \in \Omega\right\}$, where Ω is an irreducible symmetric cone in \mathbb{R}^{n}. Analytic Besov spaces in T_{Ω} have recently been introduced in [9] in relation to a difficult and still open problem of boundedness of Bergman projections (see also [8]). Namely, $\mathbb{B}^{p}\left(T_{\Omega}\right)$ consists of all functions $F \in \mathcal{H}\left(T_{\Omega}\right)$ so that

$$
\begin{equation*}
\|F\|_{\mathbb{B}^{p}\left(T_{\Omega}\right)}=\left\|\Delta(y)^{m} \square^{m} F(z)\right\|_{L^{p}\left(T_{\Omega}, d \lambda(z)\right)}<\infty \tag{1.2}
\end{equation*}
$$

where m is a sufficiently large integer, and $d \lambda(z), \Delta(y)$ and \square denote respectively the $\operatorname{Aut}\left(T_{\Omega}\right)$-invariant measure in T_{Ω}, the determinant function of the cone, and the generalized wave operator $\square=\Delta\left(\frac{\partial}{\partial z}\right)$ (see $\S 2$ for precise definitions). One of the non-trivial questions studied in [9] concerns the smallest number of derivatives m so that the \mathbb{B}^{p}-seminorms in 1.2 are all equivalent.

The purpose of this note is to give a proof of the Möbius invariance of $\mathbb{B}^{p}\left(T_{\Omega}\right)$ spaces, at least in the same range considered by Arazy for bounded domains. Rather than try to transfer the result from the bounded setting (which does not seem so straightforward to us), we have preferred to give a direct proof in tube domains, based entirely on elementary properties of symmetric cones from [10], and independent of the results in [2, 3].
1.3. Theorem. Suppose that $n / r \in \mathbb{N}$ and $2-r / n<p \leq \infty$. Then the holomorphic Besov space $\mathbb{B}^{p}\left(T_{\Omega}\right)$ is invariant under conformal transformations of the tube domain T_{Ω}, that is,

$$
\begin{equation*}
\|F \circ \Phi\|_{\mathbb{B}^{p}}=\|F\|_{\mathbb{B}^{p}}, \quad \forall \Phi \in \operatorname{Aut}\left(T_{\Omega}\right) \tag{1.4}
\end{equation*}
$$

In (1.4) it is understood that we use the \mathbb{B}^{p}-seminorm defined in 1.2 with $m=n / r$, which is indeed an admissible exponent when $p>2-r / n$ by
the results in [9]. In $\S 3$ we also give explicit examples showing that $n / r \in \mathbb{N}$ is a necessary condition for (1.4) (see Remark 3.11), but as in the bounded setting we do not know yet whether Möbius invariance may hold in the range $0<p \leq 2-r / n$ (except of course in the 1-dimensional case).

The proof of the theorem is mainly based on the explicit formula

$$
\begin{equation*}
\square^{n / r}[F \circ \phi](z)=J_{\phi}(z)\left[\square^{n / r} F\right](\phi(z)), \quad \phi \in \operatorname{Aut}\left(T_{\Omega}\right) \tag{1.5}
\end{equation*}
$$

which in the bounded setting is known as the "intertwining formula" of Arazy, i.e. when $\phi \in \operatorname{Aut}(D)$ and D denotes the bounded realization of T_{Ω} (see [2, Theorem 6.4]). We could not find a reference for (1.5) in the unbounded setting of T_{Ω}, and for this reason we give a proof in Proposition 3.4 below (which is different from Arazy's). We remark that 1.5 is trivial for linear transformations, so the main case becomes $\phi(z)=-z^{-1}$, for which the identity takes the form

$$
\square^{n / r}\left[F\left(-z^{-1}\right)\right]=\Delta^{-2 n / r}(z)\left[\square^{n / r} F\right]\left(-z^{-1}\right)
$$

In $\S 4$ we show a variant of 1.5 with ϕ replaced by the Cayley transform c, which maps conformally D into T_{Ω}. As a consequence we deduce that the Cayley transform actually induces an isometry between $\mathbb{B}^{p}\left(T_{\Omega}\right)$ and the Besov space $\mathbb{B}^{p}(D)$ of Arazy. This gives a direct passage between the two settings which may be of independent interest; see Theorem 4.1 below.
2. Definitions. We denote by $T_{\Omega}=\mathbb{R}^{n}+i \Omega$ the tube domain in \mathbb{C}^{n} based on a cone Ω, which we assume irreducible and symmetric with respect to the usual inner product $(\cdot \mid \cdot)$ in \mathbb{R}^{n}. We write r for the rank of Ω and $\Delta(y)$ for the associated determinant function, as in 10 .

Consider the (complex) differential operator $\square=\Delta(\partial / \partial z)$ given by the equality

$$
\begin{equation*}
\square\left[e^{(z \mid \xi)}\right]=\Delta(\xi) e^{(z \mid \xi)}, \quad z, \xi \in \mathbb{C}^{n} \tag{2.1}
\end{equation*}
$$

This is the usual derivative $d / d z$ when the rank is 1 (i.e., in the upper half-plane), and the complex wave operator $\square=\frac{1}{4}\left(\partial_{z_{1}}^{2}-\partial_{z_{2}}^{2}-\cdots-\partial_{z_{n}}^{2}\right)$ when $r=2$. Observe that $\square=\Delta(\partial / \partial x)=\Delta\left(i^{-1} \partial / \partial y\right)$ when acting on holomorphic functions in T_{Ω}.
2.2. Definition. For $1 \leq p \leq \infty$, we say that a holomorphic function $F(z)$ in T_{Ω} belongs to the Besov space $\mathbb{B}^{p}=\mathbb{B}^{p}\left(T_{\Omega}\right)$ when

$$
\begin{equation*}
\left\|\Delta^{m}(\operatorname{Im} \cdot) \square^{m} F\right\|_{L^{p}\left(T_{\Omega}, d \lambda\right)}<\infty \tag{2.3}
\end{equation*}
$$

where $d \lambda=\Delta^{-2 n / r}(y) d z$ is the invariant measure under conformal transformations of T_{Ω}, and m is the smallest integer such that

$$
\begin{equation*}
m>\max \left\{\left(\frac{2 n}{r}-1\right) \frac{1}{p},\left(\frac{n}{r}-1\right)\left(1-\frac{1}{p}\right)+\frac{1}{p}\right\} \tag{2.4}
\end{equation*}
$$

When $p=\infty$, we call \mathbb{B}^{∞} the Bloch space of T_{Ω}.
2.5. Remark. It is shown in 9 that different integers m as in (2.4) lead to equivalent seminorms in \mathbb{B}^{p}. In this paper, we shall only consider the case $m=n / r \in \mathbb{N}$, that is, we set

$$
\begin{equation*}
\|F\|_{\mathbb{B}^{p}} \equiv\left\|\Delta^{n / r}(\operatorname{Im} \cdot) \square^{n / r} F\right\|_{L^{p}\left(T_{\Omega}, d \lambda\right)} \tag{2.6}
\end{equation*}
$$

which in view of (2.4) forces the restriction $2-r / n<p \leq \infty$. Thus, $\mathbb{B}^{p}\left(T_{\Omega}\right)$ is the semi-Banach space defined by (2.6), which can be made into a Banach space if we consider $\mathbb{B}^{p} / \operatorname{ker} \square^{n / r}$.

Some additional notation. As in [10], we consider $V=\mathbb{R}^{n}$ with the Jordan algebra structure induced by Ω, and denote by \mathbf{e} its identity element. We shall write $G(\Omega)$ for the group of linear invertible transformations of \mathbb{R}^{n} which leave the cone Ω invariant, and G for its identity component. It is well known that G acts transitively on Ω, which may be identified with the Riemannian symmetric space G / K, where K is the compact subgroup of elements of G which fix \mathbf{e}.

Below we shall use the following invariance property of Δ and \square under $g \in G(\Omega)$:

$$
\begin{equation*}
\Delta(g y)=\Delta(g \mathbf{e}) \Delta(y), \quad \forall y \in \Omega \tag{2.7}
\end{equation*}
$$

(see e.g. [10, p. 56]), and, for F holomorphic in T_{Ω},

$$
\begin{equation*}
\square[F(g \cdot)]=\Delta(g \mathbf{e})[\square F](g \cdot) \tag{2.8}
\end{equation*}
$$

The second formula follows from the first and the definition of \square, by writing $F(z)$ as a Fourier-Laplace integral.
3. Results. Let $\operatorname{Aut}\left(T_{\Omega}\right)$ denote the group of conformal transformations of the tube T_{Ω}. It is well known (see e.g. [10, Theorem X.5.6]) that this group is generated by
(i) real translations: $z \mapsto z+u$, where $u \in \mathbb{R}^{n}$;
(ii) linear transformations: $z \mapsto g z$, where $g \in G(\Omega)$;
(iii) inversion: $z \mapsto-z^{-1}$;
here z^{-1} is the usual Jordan algebra inverse. The goal of this section is to prove the following:
3.1. Theorem. Assume n / r is an integer. Then for all $\Phi \in \operatorname{Aut}\left(T_{\Omega}\right)$ and $F \in \mathcal{H}\left(T_{\Omega}\right)$ we have

$$
\begin{align*}
&\left|\Delta^{n / r}(\operatorname{Im} z)\left[\square^{n / r}(F \circ \Phi)\right](z)\right| \tag{3.2}\\
&=\mid \Delta^{n / r}\left(\operatorname{Im}(\Phi(z))\left[\square^{n / r} F\right](\Phi(z)) \mid, \quad z \in T_{\Omega}\right.
\end{align*}
$$

Theorem 1.3 is an immediate corollary of Theorem 3.1 and the definition of Besov norm in 2.6), since

$$
\begin{aligned}
\|F \circ \Phi\|_{\mathbb{B}^{p}} & =\left\|\Delta^{n / r}(\operatorname{Im} \cdot) \square^{n / r}[F \circ \Phi]\right\|_{L^{p}\left(T_{\Omega}, d \lambda\right)} \\
& =\left\|\Delta^{n / r}(\operatorname{Im} \Phi(\cdot))\left[\square^{n / r} F\right] \circ \Phi\right\|_{L^{p}\left(T_{\Omega}, d \lambda\right)}=\|F\|_{\mathbb{B}^{p}},
\end{aligned}
$$

where in the last equality we have changed variables and used the $\operatorname{Aut}\left(T_{\Omega}\right)$ invariance of $d \lambda$.

There are two special cases in which the identity (3.2) is easy to show, even when n / r is replaced by any integer $k \geq 1$, namely, if Φ is a real translation or a linear transformation. Indeed, the first case is trivial since \square is translation invariant, while for $\Phi(z)=g z$ we have, from (2.7) and 2.8),

$$
\Delta^{k}(y)\left[\square^{k}(F \circ g)\right](z)=\Delta^{k}(g y)\left(\square^{k} F\right)(g z)
$$

where $z=x+i y$. Thus, from now on we will assume $\Phi(z)=-z^{-1}$. We also observe that, in this case, the analog of (3.2) with n / r replaced by any other integer does not hold for general F, as can already be seen in the 1-dimensional setting (see also Remark 3.11 below).

Below we shall prove the following identity for $z \in T_{\Omega}$:

$$
\begin{align*}
& \Delta^{n / r}(\operatorname{Im} z) \square^{n / r}\left[F\left(-z^{-1}\right)\right] \tag{3.3}\\
& =\quad \Delta^{n / r}\left(\operatorname{Im}\left(-z^{-1}\right)\right)\left[\square^{n / r} F\right]\left(-z^{-1}\right)|\Delta(z)|^{2 n / r} / \Delta(z)^{2 n / r}
\end{align*}
$$

which clearly implies $\left(3.2\right.$ for $\Phi(z)=-z^{-1}$. Observe that

$$
\begin{aligned}
\Delta\left(\operatorname{Im}\left(-z^{-1}\right)\right) & =\Delta\left(\frac{\bar{z}^{-1}-z^{-1}}{2 i}\right)=\Delta(\bar{z})^{-1} \Delta(-z)^{-1} \Delta\left(\frac{\bar{z}-z}{2 i}\right) \\
& =|\Delta(z)|^{-2} \Delta(\operatorname{Im} z)
\end{aligned}
$$

where the second equality is justified in [10, p. 341]. Thus (3.3) can equivalently be formulated as follows.

3.4. Proposition. If $z \in T_{\Omega}$ then

$$
\begin{equation*}
\square^{n / r}\left[F\left(-z^{-1}\right)\right]=\Delta^{-2 n / r}(z)\left[\square^{n / r} F\right]\left(-z^{-1}\right) \tag{3.5}
\end{equation*}
$$

It suffices to prove (3.5) when $F(z)$ is a holomorphic polynomial. To do so, we use the decomposition of the vector space \mathcal{P} of such polynomials as the direct sum $\bigoplus_{\mathbf{m} \geq \mathbf{0}} \mathcal{P}_{\mathbf{m}}$ which is described in [10, Ch. XI]. To describe these spaces, we denote by $\Delta_{\mathbf{m}}(y), \mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{C}^{r}$, the generalized power function of Ω :

$$
\Delta_{\mathbf{m}}(y)=\Delta_{1}^{m_{1}-m_{2}}(y) \cdots \Delta_{r-1}^{m_{r-1}-m_{r}}(y) \Delta_{r}^{m_{r}}(y), \quad y \in \Omega
$$

where Δ_{k} are the principal minors with respect to a fixed Jordan frame $\left\{c_{1}, \ldots, c_{r}\right\}$. This definition extends to $\Delta_{\mathbf{m}}(z / i)$ when $z \in T_{\Omega}$. By $\mathbf{m} \geq \mathbf{0}$ we mean that m_{i} are integers so that $m_{1} \geq \cdots \geq m_{r} \geq 0$, in which case
$\Delta_{\mathbf{m}}(z / i)$ are holomorphic polynomials. The subspaces $\mathcal{P}_{\mathbf{m}}$ are defined by

$$
\mathcal{P}_{\mathbf{m}}=\operatorname{span}\left\{\Delta_{\mathbf{m}}\left(g^{-1} z\right): g \in G(\Omega)\right\}
$$

The polynomials in $\mathcal{P}_{\mathbf{m}}$ are homogeneous of degree $|\mathbf{m}|=m_{1}+\cdots+m_{r}$.
Thus, we must show 3.5 for all $F \in \mathcal{P}_{\mathbf{m}}$ and $\mathbf{m} \geq \mathbf{0}$, which will be a consequence of the next two lemmas. Below we shall use the following standard notation: given $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{C}^{r}$ and $k \in \mathbb{N}$,

$$
\begin{aligned}
(\mathbf{s})_{k} & =\Gamma_{\Omega}(\mathbf{s}+k) / \Gamma_{\Omega}(\mathbf{s}) \\
& =\prod_{i=1}^{r}\left[\left(s_{i}-\frac{(i-1) d}{2}\right)\left(s_{i}-\frac{(i-1) d}{2}+1\right) \cdots\left(s_{i}-\frac{(i-1) d}{2}+k-1\right)\right]
\end{aligned}
$$

(see [10, p. 129]). Here d is the integer satisfying $n / r=1+(r-1) d / 2$, which coincides with the dimension of the subspaces $V_{i, j}, i<j$, from the Peirce decomposition of V.
3.6. Lemma. Let $\mathbf{m} \geq \mathbf{0}$ and k a positive integer. Then for all $p \in \mathcal{P}_{\mathbf{m}}$,

$$
\begin{equation*}
\Delta(z)^{k}\left(\square^{k} p\right)(z)=(\mathbf{m}+n / r-k)_{k} p(z) \tag{3.7}
\end{equation*}
$$

Proof. This is a particular case of [10, Lemma XIV.2.1], but we sketch the proof for completeness. It suffices to prove the result for the generators of $\mathcal{P}_{\mathbf{m}}, p(z)=\Delta_{\mathbf{m}}(g z)$ with $g \in G(\Omega)$. Since $\Delta^{k}(z) \square^{k}$ is $G(\Omega)$-invariant (by (2.8), we may assume that g is the identity. Then the result follows from [10, Prop. VII.1.6].
3.8. Lemma. Let $\mathbf{m} \geq \mathbf{0}$ and k a positive integer. Then for all $p \in \mathcal{P}_{\mathbf{m}}$,

$$
\begin{equation*}
\Delta^{k}(z)\left[\square^{k}(p \circ \Phi)\right](z)=(-1)^{k r}(\mathbf{m})_{k} p(\Phi(z)) \tag{3.9}
\end{equation*}
$$

where $\Phi(z)=-z^{-1}$.
Proof. We shall obtain the result from the identity

$$
\begin{equation*}
\int_{\Omega} e^{-(y \mid \xi)} p(\xi) \Delta^{\alpha-n / r}(\xi) d \xi=\Gamma_{\Omega}(\mathbf{m}+\alpha) \Delta^{-\alpha}(y) p\left(y^{-1}\right), \quad y \in \Omega \tag{3.10}
\end{equation*}
$$

valid for all complex numbers α with $\operatorname{Re} \alpha>n / r-1$. The proof of 3.10) for the generators of $\mathcal{P}_{\mathbf{m}}$ is straightforward and can be found in [10, Lemma XI.2.3]. The identity continues to hold when y is replaced by z / i with $z \in T_{\Omega}$. Now, apply the operator \square^{k} to both sides of (3.10) to obtain

$$
\begin{aligned}
\square^{k}\left[\Delta^{-\alpha}(z / i) p\left(i z^{-1}\right)\right] & =\frac{1}{\Gamma_{\Omega}(\mathbf{m}+\alpha)} \int_{\Omega} \square_{z}^{k}\left[e^{i(z \mid \xi)}\right] p(\xi) \Delta^{\alpha-n / r}(\xi) d \xi \\
& =\frac{1}{\Gamma_{\Omega}(\mathbf{m}+\alpha)} \int_{\Omega} e^{i(z \mid \xi)} \Delta^{k}(i \xi) p(\xi) \Delta^{\alpha-n / r}(\xi) d \xi \\
& =(-1)^{k r} \frac{\Gamma_{\Omega}(\mathbf{m}+\alpha+k)}{\Gamma_{\Omega}(\mathbf{m}+\alpha)} \Delta^{-\alpha}(z / i) \Delta^{-k}(z) p\left(i z^{-1}\right)
\end{aligned}
$$

where the last equality follows from a new application of (3.10). Since $\Gamma_{\Omega}(\mathbf{m}+\alpha+k) / \Gamma_{\Omega}(\mathbf{m}+\alpha)=(\mathbf{m}+\alpha)_{k}$ is a polynomial in α, the last expression is holomorphic in \mathbb{C} (as a function of α), and hence also valid for $\alpha=0$. But in this case we obtain precisely (3.9).

Proof of Theorem 3.1. Combining the previous two lemmas with $k=$ $n / r \in \mathbb{N}$ we see that, for $\mathbf{m} \geq \mathbf{0}$ and $p \in \mathcal{P}_{\mathbf{m}}$,

$$
\begin{aligned}
\Delta(z)^{n / r} \square^{n / r}\left[p\left(-z^{-1}\right)\right] & =(-1)^{n}(\mathbf{m})_{n / r} p\left(-z^{-1}\right) \\
& =(-1)^{n} \Delta\left(-z^{-1}\right)^{n / r}\left[\square^{n / r} p\right]\left(-z^{-1}\right)
\end{aligned}
$$

which is the same as 3.5 . This establishes Proposition 3.4, and hence completes the proof of Theorem 3.1.
3.11. Remark (A counterexample when $n / r \notin \mathbb{N}$). We claim that there are holomorphic functions $F \in \mathcal{H}\left(T_{\Omega}\right)$ with $\square F=0$ and $\square^{k}[F \circ \Phi] \not \equiv 0$ for all $k \in \mathbb{N}$, where $\Phi(z)=-z^{-1}$. Thus, such functions F are null in \mathbb{B}^{p}, while $F \circ \Phi$ is not, so the seminorms in (2.3) cannot be Möbius invariant for any $0<p \leq \infty$.

To see this, first observe that $n / r=1+(r-1) d / 2$ is not an integer only when r is even and d is odd, that is, when $\Omega=\Lambda_{n}$, the light-cone in \mathbb{R}^{n} with n odd, or when $\Omega=\operatorname{Sym}_{+}(r, \mathbb{R})$, the cone of positive definite symmetric matrices with r even (see [10, p. 97]). Consider the function

$$
F(z)=\phi_{\mathbf{m}}(z)=\int_{K} \Delta_{\mathbf{m}}(k z) d k
$$

which is the only K-invariant polynomial in $\mathcal{P}_{\mathbf{m}}$ (see e.g. [10, Ch. XI]). Then, by Lemma 3.6 ,

$$
\square \phi_{\mathbf{m}}(z)=\left[\prod_{i=1}^{r}\left(m_{i}+\frac{n}{r}-1-\frac{(i-1) d}{2}\right)\right] \phi_{\mathbf{m}}(z) / \Delta(z)
$$

which is equal to 0 if we choose $m_{r}=0$. On the other hand, by Lemma 3.8,

$$
\left[\square^{k}\left(\phi_{\mathbf{m}} \circ \Phi\right)\right](z)=(\mathbf{m})_{k} \phi_{\mathbf{m}}\left(-z^{-1}\right) \Delta^{-k}(-z)
$$

which is a non-zero function when $(\mathbf{m})_{k} \neq 0$. Let us see that we can choose such an index \mathbf{m} in each of the two cases described above. When $\Omega=$ $\operatorname{Sym}_{+}(r, \mathbb{R})$ and r is even, this happens e.g. if we set $m_{1}=\cdots=m_{r-1}=$ $r / 2$ and $m_{r}=0$. Thus the function $F(z)=\phi_{\mathbf{m}}(z)$ satisfies $\square F=0$ and $\square^{k}[F \circ \Phi] \not \equiv 0$ for all $k \in \mathbb{N}$. When $\Omega=\Lambda_{n}$ with n odd, just choose $F(z)=\phi_{(1,0)}(z)=z_{1}($ see [10, p. 236]).
4. Besov spaces in the bounded realization of T_{Ω}. We denote by D the bounded symmetric domain of \mathbb{C}^{n} which is mapped conformally onto
T_{Ω} by the Cayley transform

$$
c(w)=i(\mathbf{e}+w)(\mathbf{e}-w)^{-1}, \quad w \in D
$$

(see [10, p. 190]). The Bergman kernel in D can be written as a constant multiple of $h(z, w)^{-2 n / r}$ for some polynomial $h(z, w)$ (holomorphic in z and antiholomorphic in w) such that $h(x, x)=\Delta\left(\mathbf{e}-x^{2}\right), x \in \mathbb{R}^{n}$ (see e.g. [10, pp. 201 and 262]). Writing $h(w)=h(w, w)$, we see that

$$
d \mu(w)=h(w)^{-2 n / r} d w
$$

is an $\operatorname{Aut}(D)$-invariant measure in D.
When $n / r \in \mathbb{N}$ and $2-r / n<p \leq \infty$, Arazy defines Besov spaces in D as follows: $G \in \mathcal{H}(D)$ belongs to $\mathbb{B}^{p}(D)$ if

$$
\|G\|_{\mathbb{B}^{p}(D)} \equiv\left\|h(w)^{n / r}\left(\square^{n / r} G\right)(w)\right\|_{L^{p}(D, d \mu)}<\infty
$$

(see [1, 3). When $p=\infty$ or $p=2$ one obtains, respectively, generalized Bloch and Dirichlet spaces in D, the latter appearing also in the work of Z. Yan [13]. Our main result in this section, which we shall deduce from the identities in $\S 3$, is the following.
4.1. Theorem. Let $n / r \in \mathbb{N}$ and $2-r / n<p \leq \infty$. Then for every $F \in \mathcal{H}\left(T_{\Omega}\right)$ we have

$$
\begin{equation*}
\left\|\Delta^{n / r}(\operatorname{Im} \cdot) \square^{n / r} F\right\|_{L^{p}\left(T_{\Omega}, d \lambda\right)}=2^{n(1-2 / p)}\left\|h^{n / r} \square^{n / r}(F \circ c)\right\|_{L^{p}(D, d \mu)} . \tag{4.2}
\end{equation*}
$$

In particular, $F \mapsto F \circ c$ defines an isometric isomorphism between $\mathbb{B}^{p}\left(T_{\Omega}\right)$ and $\mathbb{B}^{p}(D)$.

We shall use the following identity.
4.3. Lemma. Let $F \in \mathcal{H}\left(T_{\Omega}\right)$. Then

$$
\begin{equation*}
\square^{n / r}[F \circ c](w)=(2 i)^{n} \Delta(\mathbf{e}-w)^{-2 n / r}\left[\square^{n / r} F\right](c(w)), \quad w \in D . \tag{4.4}
\end{equation*}
$$

Proof. Define the elementary transformations

$$
\tau(z)=z-i \mathbf{e}, \quad d(z)=-2 i z, \quad \Phi(z)=-z^{-1},
$$

and write $c(w)=-i \mathbf{e}+2 i(e-w)^{-1}$, so that

$$
F \circ c(w)=[F \circ \tau \circ d \circ \Phi](\mathbf{e}-w), \quad w \in D .
$$

Using the identity in (3.5), the invariance of \square under translations, and the trivial property $\square(G \circ d)=(-2 i)^{r}(\square G) \circ d$ (since \square is homogeneous of degree r), we easily obtain (4.4).
4.5. Remark. Observe that (4.4) can also be written as

$$
\square^{n / r}[F \circ c](w)=J_{c}(w)\left[\square^{n / r} F\right](c(w)), \quad w \in D,
$$

where $J_{c}(w)=(2 i)^{n} \Delta(\mathbf{e}-w)^{-2 n / r}$ is the complex jacobian of the Cayley transform; see [10, pp. 52 and 278].

Proof of Theorem 4．1．We shall also use the following identity，which can be found in［10，p．263］：

$$
\begin{equation*}
h(w)=|\Delta(\mathbf{e}-w)|^{2} \Delta(\operatorname{Im}[c(w)]), \quad w \in D \tag{4.6}
\end{equation*}
$$

Combining these two results makes it clear that for every $w \in D$ we have

$$
h(w)^{n / r}\left|\square^{n / r}(F \circ c)(w)\right|=2^{n} \Delta^{n / r}(\operatorname{Im}[c(w)])\left|\left(\square^{n / r} F\right)(c(w))\right|
$$

From this，4．2）follows easily，since the change of variables $z=c(w)$ trans－ forms $d \lambda(z)$ into $4^{n} d \mu(w)$（again see［10，p．263］）．This proves Theorem4．1．

Acknowledgements．The author thanks Aline Bonami for many use－ ful conversations on this topic．He also thanks an anonymous referee for comments which helped to improve the presentation of this paper．

This research was partially supported by grant＂MTM2007－60952＂，MEC （Spain）．

REFERENCES

［1］J．Arazy，Realization of the invariant inner products on the highest quotients of the composition series，Ark．Mat． 30 （1992），1－24．
［2］－，A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains，in：Multivarable Operator Theory（Seattle，WA，1993），Contemp．Math． 185，Amer．Math．Soc．，Providence，RI，1995，7－65．
［3］－，Boundedness and compactness of generalized Hankel operators on bounded sym－ metric domains，J．Funct．Anal． 137 （1996），97－151．
［4］J．Arazy and S．D．Fisher，Some aspects of the minimal，Möbius－invariant space of analytic functions on the unit disk，in：Interpolation Spaces and Allied Topics in Analysis（Lund，1983），Lecture Notes in Math．1070，Springer，Berlin，1984，24－44．
［5］—，一，The uniqueness of the Dirichlet space among Möbius－invariant Hilbert spaces， Illinois J．Math． 29 （1985），449－462．
［6］J．Arazy，S．D．Fisher and J．Peetre，Möbius invariant function spaces，J．Reine Angew．Math． 363 （1985），110－145．
［7］—，一，一，Hankel operators on weighted Bergman spaces．Amer．J．Math． 110 （1988）， 989－1053．
［8］D．Békollé，A．Bonami，G．Garrigós and F．Ricci，Littlewood－Paley decompositions related to symmetric cones and Bergman projections in tube domains，Proc．London Math．Soc． 89 （2004），317－360．
［9］D．Békollé，A．Bonami，G．Garrigós，F．Ricci and B．Sehba，Analytic Besov spaces and Hardy－type inequalities in tube domains over symmetric cones，J．Reine Angew． Math．，to appear．
［10］J．Faraut and A．Korányi，Analysis on Symmetric Cones，Clarendon Press，Oxford， 1994.
［11］S．Fisher，The Möbius group and invariant spaces of analytic functions，Amer．Math． Monthly 95 （1988），514－527．
［12］M．Peloso，Möbius invariant spaces in the unit ball，Michigan Math．J． 39 （1992）， 509－536．
［13］Z．Yan，Invariant differential operators and holomorphic function spaces，J．Lie Theory 10 （2000），1－32．
[14] K. H. Zhu, Operator Theory in Function Spaces, Math. Surveys Monogr. 138, Amer. Math. Soc., Providence, RI, 2007.
[15] - , Holomorphic Besov spaces on bounded symmetric domains, I, II, Quart. J. Math. Oxford Ser. (2) 46 (1995), 239-256, Indiana Univ. Math. J. 44 (1995), 1017-1031.
[16] -, Spaces of Holomorphic Functions in the Unit Ball, Grad. Texts in Math. 226, Springer, New York, 2005.
[17] -, Harmonic analysis on bounded symmetric domains, in: Harmonic Analysis in China, Math. Appl. 327, Kluwer, Dordrecht, 1995, 287-307.
G. Garrigós

Departamento de Matemáticas C-XV
Universidad Autónoma de Madrid
28049 Madrid, Spain
E-mail: gustavo.garrigos@uam.es

Received 24 March 2009

[^0]: 2010 Mathematics Subject Classification: 32M15, 32A37, 42B35.
 Key words and phrases: analytic Besov space, symmetric cone, Bergman projection, tube domain.

