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MÖBIUS INVARIANCE OF ANALYTIC BESOV SPACES
IN TUBE DOMAINS OVER SYMMETRIC CONES

BY

G. GARRIGÓS (Madrid)
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Abstract. Besov spaces of holomorphic functions in tubes over cones have been
recently defined by Békollé et al. In this paper we show that Besov p-seminorms are
invariant under conformal transformations of the domain when n/r is an integer, at least
in the range 2− r/n < p ≤ ∞.

1. Introduction. In the upper half-plane H = {z= x+ iy ∈C : y > 0},
when 1 < p ≤ ∞, the analytic Besov p-space, Bp(H), consists of all holo-
morphic functions f(z) so that

‖f‖Bp := ‖yf ′(z)‖Lp(H,dz/y2) <∞.
An easy computation shows that these seminorms are Möbius invariant,
that is,

(1.1) ‖f ◦ Φ‖Bp = ‖f‖Bp , ∀Φ ∈ Aut(H).

When 0 < p ≤ 1, Besov spaces are defined by the condition

‖ymf (m)‖Lp(H,dz/y2) <∞,
where m is the smallest integer so that m > 1/p. In this case there is also an
equivalent seminorm so that (1.1) holds, although the proof is harder (see
[4] or [14, Thm. 5.18]).

This family of analytic Besov spaces (actually in the unit disc setting)
was extensively studied in the 80’s by Arazy, Fisher and Peetre [4–7] (see
also K. H. Zhu [14]). The Möbius invariance of Bp-norms is a relevant prop-
erty which is related to a number of remarkable results, such as the char-
acterization of (big) Hankel operators belonging to the Schatten p-class [7].
Another interesting fact is that all Möbius invariant semi-Banach spaces X
of analytic functions necessarily satisfy B1 ↪→ X ↪→ B∞, while B2 is the only
semi-Hilbert space with this property (see e.g. [11]).
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In higher dimensions, the right setting for these questions is the class
of bounded symmetric domains D ⊂ Cn (or their unbounded realizations),
in which case the rank r of the domain plays a role. When D is the unit
ball of Cn (i.e. in the case of rank 1), invariant Besov spaces of analytic
functions are quite well understood; see e.g. [12] or [16]. For higher ranks,
however, the picture is not yet complete. There is a general theory of analytic
Besov spaces in bounded symmetric domains developed by K. H. Zhu [15],
but Möbius invariance is not considered there; in fact, it is left as an open
question in [17, p. 300]. A different approach is taken by Arazy [1–3], who
in the special case of bounded symmetric domains of tube type defines a
family of Besov p-spaces which are indeed Aut(D)-invariant when n/r ∈ N
and 2 − r/n < p ≤ ∞ (see [3, p. 119], or Section 4 below). The condition
n/r ∈ N turns out to be necessary, while the cases 0 < p ≤ 2 − r/n, which
require a different definition, seem to be still open.

In this paper we are interested in Möbius invariance of Besov spaces in
tube domains over cones, that is, the unbounded realization of the domains
considered by Arazy. More precisely, TΩ = {z = x + iy ∈ Cn : y ∈ Ω},
where Ω is an irreducible symmetric cone in Rn. Analytic Besov spaces
in TΩ have recently been introduced in [9] in relation to a difficult and still
open problem of boundedness of Bergman projections (see also [8]). Namely,
Bp(TΩ) consists of all functions F ∈ H(TΩ) so that

(1.2) ‖F‖Bp(TΩ) = ‖∆(y)m �mF (z)‖Lp(TΩ ,dλ(z)) <∞,
where m is a sufficiently large integer, and dλ(z), ∆(y) and � denote re-
spectively the Aut(TΩ)-invariant measure in TΩ, the determinant function
of the cone, and the generalized wave operator � = ∆

(
∂
∂z

)
(see §2 for pre-

cise definitions). One of the non-trivial questions studied in [9] concerns the
smallest number of derivatives m so that the Bp-seminorms in (1.2) are all
equivalent.

The purpose of this note is to give a proof of the Möbius invariance of
Bp(TΩ) spaces, at least in the same range considered by Arazy for bounded
domains. Rather than try to transfer the result from the bounded setting
(which does not seem so straightforward to us), we have preferred to give
a direct proof in tube domains, based entirely on elementary properties of
symmetric cones from [10], and independent of the results in [2, 3].

1.3. Theorem. Suppose that n/r ∈ N and 2− r/n < p ≤ ∞. Then the
holomorphic Besov space Bp(TΩ) is invariant under conformal transforma-
tions of the tube domain TΩ, that is,

(1.4) ‖F ◦ Φ‖Bp = ‖F‖Bp , ∀Φ ∈ Aut(TΩ).

In (1.4) it is understood that we use the Bp-seminorm defined in (1.2)
with m = n/r, which is indeed an admissible exponent when p > 2− r/n by



MÖBIUS INVARIANCE 561

the results in [9]. In §3 we also give explicit examples showing that n/r ∈ N
is a necessary condition for (1.4) (see Remark 3.11), but as in the bounded
setting we do not know yet whether Möbius invariance may hold in the range
0 < p ≤ 2− r/n (except of course in the 1-dimensional case).

The proof of the theorem is mainly based on the explicit formula

(1.5) �n/r[F ◦ φ](z) = Jφ(z)[�n/rF ](φ(z)), φ ∈ Aut(TΩ),

which in the bounded setting is known as the “intertwining formula” of
Arazy, i.e. when φ ∈ Aut(D) and D denotes the bounded realization of TΩ
(see [2, Theorem 6.4]). We could not find a reference for (1.5) in the un-
bounded setting of TΩ, and for this reason we give a proof in Proposition
3.4 below (which is different from Arazy’s). We remark that (1.5) is trivial
for linear transformations, so the main case becomes φ(z) = −z−1, for which
the identity takes the form

�n/r[F (−z−1)] = ∆−2n/r(z)[�n/rF ](−z−1).
In §4 we show a variant of (1.5) with φ replaced by the Cayley trans-

form c, which maps conformally D into TΩ. As a consequence we deduce
that the Cayley transform actually induces an isometry between Bp(TΩ) and
the Besov space Bp(D) of Arazy. This gives a direct passage between the
two settings which may be of independent interest; see Theorem 4.1 below.

2. Definitions. We denote by TΩ = Rn + iΩ the tube domain in Cn

based on a cone Ω, which we assume irreducible and symmetric with respect
to the usual inner product (·|·) in Rn. We write r for the rank of Ω and ∆(y)
for the associated determinant function, as in [10].

Consider the (complex) differential operator � = ∆(∂/∂z) given by the
equality
(2.1) � [e(z|ξ)] = ∆(ξ)e(z|ξ), z, ξ ∈ Cn.

This is the usual derivative d/dz when the rank is 1 (i.e., in the upper
half-plane), and the complex wave operator � = 1

4(∂2
z1 − ∂

2
z2 − · · · − ∂

2
zn)

when r = 2. Observe that � = ∆(∂/∂x) = ∆(i−1∂/∂y) when acting on
holomorphic functions in TΩ.

2.2. Definition. For 1 ≤ p ≤ ∞, we say that a holomorphic function
F (z) in TΩ belongs to the Besov space Bp = Bp(TΩ) when

(2.3) ‖∆m(Im ·) �mF‖Lp(TΩ ,dλ) <∞,
where dλ = ∆−2n/r(y)dz is the invariant measure under conformal transfor-
mations of TΩ, and m is the smallest integer such that

(2.4) m > max
{(

2n
r
− 1
)

1
p
,

(
n

r
− 1
)(

1− 1
p

)
+

1
p

}
.

When p =∞, we call B∞ the Bloch space of TΩ.
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2.5. Remark. It is shown in [9] that different integers m as in (2.4)
lead to equivalent seminorms in Bp. In this paper, we shall only consider the
case m = n/r ∈ N, that is, we set

(2.6) ‖F‖Bp ≡ ‖∆n/r(Im ·) �n/rF‖Lp(TΩ ,dλ),

which in view of (2.4) forces the restriction 2− r/n < p ≤ ∞. Thus, Bp(TΩ)
is the semi-Banach space defined by (2.6), which can be made into a Banach
space if we consider Bp/ker �n/r.

Some additional notation. As in [10], we consider V = Rn with the
Jordan algebra structure induced by Ω, and denote by e its identity element.
We shall write G(Ω) for the group of linear invertible transformations of Rn

which leave the cone Ω invariant, and G for its identity component. It is
well known that G acts transitively on Ω, which may be identified with the
Riemannian symmetric space G/K, where K is the compact subgroup of
elements of G which fix e.

Below we shall use the following invariance property of ∆ and � under
g ∈ G(Ω):

(2.7) ∆(gy) = ∆(ge)∆(y), ∀y ∈ Ω

(see e.g. [10, p. 56]), and, for F holomorphic in TΩ,

(2.8) �[F (g ·)] = ∆(ge)[�F ](g ·).

The second formula follows from the first and the definition of �, by writing
F (z) as a Fourier–Laplace integral.

3. Results. Let Aut(TΩ) denote the group of conformal transformations
of the tube TΩ. It is well known (see e.g. [10, Theorem X.5.6]) that this group
is generated by

(i) real translations: z 7→ z + u, where u ∈ Rn;
(ii) linear transformations: z 7→ gz, where g ∈ G(Ω);

(iii) inversion: z 7→ −z−1;

here z−1 is the usual Jordan algebra inverse. The goal of this section is to
prove the following:

3.1. Theorem. Assume n/r is an integer. Then for all Φ ∈ Aut(TΩ)
and F ∈ H(TΩ) we have

(3.2) |∆n/r(Im z)[�n/r(F ◦ Φ)](z)|
= |∆n/r(Im(Φ(z))[�n/rF ](Φ(z))|, z ∈ TΩ.
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Theorem 1.3 is an immediate corollary of Theorem 3.1 and the definition
of Besov norm in (2.6), since

‖F ◦ Φ‖Bp = ‖∆n/r(Im ·) �n/r[F ◦ Φ]‖Lp(TΩ ,dλ)

= ‖∆n/r(ImΦ(·)) [�n/rF ] ◦ Φ‖Lp(TΩ ,dλ) = ‖F‖Bp ,
where in the last equality we have changed variables and used the Aut(TΩ)-
invariance of dλ.

There are two special cases in which the identity (3.2) is easy to show,
even when n/r is replaced by any integer k ≥ 1, namely, if Φ is a real
translation or a linear transformation. Indeed, the first case is trivial since
� is translation invariant, while for Φ(z) = gz we have, from (2.7) and (2.8),

∆k(y)[�k(F ◦ g)](z) = ∆k(gy) (�kF )(gz),

where z = x + iy. Thus, from now on we will assume Φ(z) = −z−1. We
also observe that, in this case, the analog of (3.2) with n/r replaced by any
other integer does not hold for general F , as can already be seen in the
1-dimensional setting (see also Remark 3.11 below).

Below we shall prove the following identity for z ∈ TΩ:

(3.3) ∆n/r(Im z) �n/r[F (−z−1)]

= ∆n/r(Im(−z−1)) [�n/rF ](−z−1) |∆(z)|2n/r/∆(z)2n/r,

which clearly implies (3.2) for Φ(z) = −z−1. Observe that

∆(Im(−z−1)) = ∆

(
z̄−1 − z−1

2i

)
= ∆(z̄)−1∆(−z)−1∆

(
z̄ − z

2i

)
= |∆(z)|−2∆(Im z),

where the second equality is justified in [10, p. 341]. Thus (3.3) can equiva-
lently be formulated as follows.

3.4. Proposition. If z ∈ TΩ then

(3.5) �n/r[F (−z−1)] = ∆−2n/r(z)[�n/rF ](−z−1).

It suffices to prove (3.5) when F (z) is a holomorphic polynomial. To do
so, we use the decomposition of the vector space P of such polynomials as
the direct sum

⊕
m≥0 Pm which is described in [10, Ch. XI]. To describe

these spaces, we denote by ∆m(y), m = (m1, . . . ,mr) ∈ Cr, the generalized
power function of Ω:

∆m(y) = ∆m1−m2
1 (y) · · ·∆mr−1−mr

r−1 (y)∆mr
r (y), y ∈ Ω,

where ∆k are the principal minors with respect to a fixed Jordan frame
{c1, . . . , cr}. This definition extends to ∆m(z/i) when z ∈ TΩ. By m ≥ 0
we mean that mi are integers so that m1 ≥ · · · ≥ mr ≥ 0, in which case
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∆m(z/i) are holomorphic polynomials. The subspaces Pm are defined by

Pm = span{∆m(g−1z) : g ∈ G(Ω)}.
The polynomials in Pm are homogeneous of degree |m| = m1 + · · ·+mr.

Thus, we must show (3.5) for all F ∈ Pm and m ≥ 0, which will be
a consequence of the next two lemmas. Below we shall use the following
standard notation: given s = (s1, . . . , sr) ∈ Cr and k ∈ N,

(s)k = ΓΩ(s + k)/ΓΩ(s)

=
r∏
i=1

[(
si −

(i− 1)d
2

)(
si −

(i− 1)d
2

+ 1
)
· · ·
(
si −

(i−1)d
2

+ k−1
)]

(see [10, p. 129]). Here d is the integer satisfying n/r = 1+(r − 1)d/2, which
coincides with the dimension of the subspaces Vi,j , i < j, from the Peirce
decomposition of V .

3.6. Lemma. Let m ≥ 0 and k a positive integer. Then for all p ∈ Pm,

(3.7) ∆(z)k (�kp)(z) = (m + n/r − k)k p(z).

Proof. This is a particular case of [10, Lemma XIV.2.1], but we sketch
the proof for completeness. It suffices to prove the result for the generators
of Pm, p(z) = ∆m(gz) with g ∈ G(Ω). Since ∆k(z)�k is G(Ω)-invariant (by
(2.8)), we may assume that g is the identity. Then the result follows from
[10, Prop. VII.1.6].

3.8. Lemma. Let m ≥ 0 and k a positive integer. Then for all p ∈ Pm,

(3.9) ∆k(z)[�k(p ◦ Φ)](z) = (−1)kr(m)kp(Φ(z)),

where Φ(z) = −z−1.

Proof. We shall obtain the result from the identity

(3.10)
�

Ω

e−(y|ξ)p(ξ)∆α−n/r(ξ) dξ = ΓΩ(m + α)∆−α(y)p(y−1), y ∈ Ω,

valid for all complex numbers α with Reα > n/r − 1. The proof of (3.10)
for the generators of Pm is straightforward and can be found in [10, Lemma
XI.2.3]. The identity continues to hold when y is replaced by z/i with z ∈ TΩ.
Now, apply the operator �k to both sides of (3.10) to obtain

�k[∆−α(z/i)p(iz−1)] =
1

ΓΩ(m + α)

�

Ω

�k
z [e

i(z|ξ)]p(ξ)∆α−n/r(ξ) dξ

=
1

ΓΩ(m + α)

�

Ω

ei(z|ξ)∆k(iξ)p(ξ)∆α−n/r(ξ) dξ

= (−1)kr
ΓΩ(m + α+ k)
ΓΩ(m + α)

∆−α(z/i)∆−k(z)p(iz−1),
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where the last equality follows from a new application of (3.10). Since
ΓΩ(m + α+ k)/ΓΩ(m + α) = (m + α)k is a polynomial in α, the last ex-
pression is holomorphic in C (as a function of α), and hence also valid for
α = 0. But in this case we obtain precisely (3.9).

Proof of Theorem 3.1. Combining the previous two lemmas with k =
n/r ∈ N we see that, for m ≥ 0 and p ∈ Pm,

∆(z)n/r �n/r[p(−z−1)] = (−1)n(m)n/r p(−z−1)

= (−1)n∆(−z−1)n/r[�n/rp](−z−1),

which is the same as (3.5). This establishes Proposition 3.4, and hence com-
pletes the proof of Theorem 3.1.

3.11. Remark (A counterexample when n/r 6∈ N). We claim that there
are holomorphic functions F ∈ H(TΩ) with �F = 0 and �k[F ◦ Φ] 6≡ 0 for
all k ∈ N, where Φ(z) = −z−1. Thus, such functions F are null in Bp, while
F ◦ Φ is not, so the seminorms in (2.3) cannot be Möbius invariant for any
0 < p ≤ ∞.

To see this, first observe that n/r = 1 + (r − 1)d/2 is not an integer
only when r is even and d is odd, that is, when Ω = Λn, the light-cone
in Rn with n odd, or when Ω = Sym+(r,R), the cone of positive definite
symmetric matrices with r even (see [10, p. 97]). Consider the function

F (z) = φm(z) =
�

K

∆m(kz) dk,

which is the only K-invariant polynomial in Pm (see e.g. [10, Ch. XI]). Then,
by Lemma 3.6,

�φm(z) =
[ r∏
i=1

(
mi +

n

r
− 1− (i− 1)d

2

)]
φm(z)/∆(z),

which is equal to 0 if we choose mr = 0. On the other hand, by Lemma 3.8,

[�k(φm ◦ Φ)](z) = (m)k φm(−z−1)∆−k(−z),

which is a non-zero function when (m)k 6= 0. Let us see that we can choose
such an index m in each of the two cases described above. When Ω =
Sym+(r,R) and r is even, this happens e.g. if we set m1 = · · · = mr−1 =
r/2 and mr = 0. Thus the function F (z) = φm(z) satisfies �F = 0 and
�k[F ◦ Φ] 6≡ 0 for all k ∈ N. When Ω = Λn with n odd, just choose
F (z) = φ(1,0)(z) = z1 (see [10, p. 236]).

4. Besov spaces in the bounded realization of TΩ. We denote by
D the bounded symmetric domain of Cn which is mapped conformally onto
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TΩ by the Cayley transform

c(w) = i(e + w)(e− w)−1, w ∈ D
(see [10, p. 190]). The Bergman kernel in D can be written as a constant
multiple of h(z, w)−2n/r for some polynomial h(z, w) (holomorphic in z and
antiholomorphic in w) such that h(x, x) = ∆(e − x2), x ∈ Rn (see e.g. [10,
pp. 201 and 262]). Writing h(w) = h(w,w), we see that

dµ(w) = h(w)−2n/rdw

is an Aut(D)-invariant measure in D.
When n/r ∈ N and 2− r/n < p ≤ ∞, Arazy defines Besov spaces in D

as follows: G ∈ H(D) belongs to Bp(D) if

‖G‖Bp(D) ≡ ‖h(w)n/r(�n/rG)(w)‖Lp(D,dµ) <∞
(see [1, 3]). When p = ∞ or p = 2 one obtains, respectively, generalized
Bloch and Dirichlet spaces in D, the latter appearing also in the work of
Z. Yan [13]. Our main result in this section, which we shall deduce from the
identities in §3, is the following.

4.1. Theorem. Let n/r ∈ N and 2 − r/n < p ≤ ∞. Then for every
F ∈ H(TΩ) we have

(4.2) ‖∆n/r(Im ·)�n/rF‖Lp(TΩ ,dλ) = 2n(1−2/p)‖hn/r�n/r(F ◦ c)‖Lp(D,dµ).

In particular, F 7→ F ◦ c defines an isometric isomorphism between Bp(TΩ)
and Bp(D).

We shall use the following identity.

4.3. Lemma. Let F ∈ H(TΩ). Then

(4.4) �n/r[F ◦ c](w) = (2i)n∆(e− w)−2n/r[�n/rF ](c(w)), w ∈ D.
Proof. Define the elementary transformations

τ(z) = z − ie, d(z) = −2iz, Φ(z) = −z−1,

and write c(w) = −ie + 2i(e− w)−1, so that

F ◦ c(w) = [F ◦ τ ◦ d ◦ Φ](e− w), w ∈ D.
Using the identity in (3.5), the invariance of � under translations, and the
trivial property �(G ◦ d) = (−2i)r(�G) ◦ d (since � is homogeneous of
degree r), we easily obtain (4.4).

4.5. Remark. Observe that (4.4) can also be written as

�n/r[F ◦ c](w) = Jc(w)[�n/rF ](c(w)), w ∈ D,
where Jc(w) = (2i)n∆(e − w)−2n/r is the complex jacobian of the Cayley
transform; see [10, pp. 52 and 278].
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Proof of Theorem 4.1. We shall also use the following identity, which
can be found in [10, p. 263]:

(4.6) h(w) = |∆(e− w)|2∆(Im[c(w)]), w ∈ D.
Combining these two results makes it clear that for every w ∈ D we have

h(w)n/r|�n/r(F ◦ c)(w)| = 2n∆n/r(Im[c(w)]) |(�n/rF )(c(w))|.
From this, (4.2) follows easily, since the change of variables z = c(w) trans-
forms dλ(z) into 4ndµ(w) (again see [10, p. 263]). This proves Theorem 4.1.
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