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Abstract. We prove that, for a distinguished laplacian on an Iwasawa AN group
corresponding to a complex semisimple Lie group, a Hörmander type multiplier theorem
holds. Our argument is based on Littlewood–Paley theory.

1. Introduction and preliminaries. Multiplier theorems are a long
studied subject. Most of works on multipliers of Hörmander type were done
in the polynomial growth setting. Operators on spaces of exponential growth
are more difficult; in some cases (like laplacian on non-compact symmetric
spaces) only holomorphic functions can give operators which are bounded
on Lp, p 6= 2.

Currently, there are several known results (starting from [3] and [2])
on solvable groups of exponential growth. However, only [4] and follow-up
works give Hörmander type multiplier theorems; other works put additional
restrictions on the multiplier so that at infinity the resulting operator is given
by convolution with an integrable function. In [4] only distinguished lapla-
cians on (a particular class of) groups of rank 1 are handled. The method
of [4] can be extended to a distinguished laplacian on Iwasawa type solvable
groups, but the full argument is long and only part of it is written up. This
paper presents a different, much simpler argument for a distinguished lapla-
cian on Iwasawa type solvable groups corresponding to complex semisimple
groups.

Let G denote a connected, complex semisimple Lie group and g its Lie
algebra. Denote by θ a Cartan involution of g, and write

g = k⊕ p

for the associated Cartan decomposition. Fix a maximal abelian subspace a
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of p; this determines a root space decomposition

g = g0 ⊕
∑
α∈Λ

gα,

Λ denoting the set of roots of the pair (g,a). Corresponding to the choice of
an ordering of the roots, we have an Iwasawa decomposition

g = a⊕ n⊕ k.

Let G = ANK be the corresponding Iwasawa decomposition of G. A distin-
guished laplacian on AN can be constructed as follows. Let π : g → p be
the projection (defined by the Cartan decomposition). We define a positive
definite form B̃ on a ⊕ n setting B̃(X,Y ) = B(πX, πY ) where B is the
Killing form on g. Put n = dim(AN). Choose an orthonormal (with respect
to B̃) basis in a⊕ n, say {X1, . . . , Xn}.

Define the (minus) laplacian L by setting

Lf(x) = −
n∑
j=1

X2
j

where we identify elements of a⊕ n with right-invariant vector fields on AN .
L is a densely defined selfadjoint operator on L2(AN) (integration is with

respect to left-invariant Haar measure). For a bounded Borel measurable
function m on [0,∞) we can define the bounded operator m(L) on L2(AN)
using the spectral theorem:

m(L) =
�
m(λ) dE(λ)

where E is the spectral measure of L. It is natural to ask for sufficient
conditions on m which imply that m(L) can be extended to Lp(AN), p 6= 2.

2. Main theorem

Theorem 2.1. If for some function ψ ∈ C∞c (R+), ψ 6= 0,

sup
t>0
‖ψm(t · )‖Cn+1 <∞

then m(L) is bounded on Lp(AN), 1 < p <∞.

Remark. If the assumption in 2.1 is satisfied by one ψ, then it is satisfied
by all ψ.

Let φ be a bounded holomorphic function defined for <z > 0 such that
|φ(z)| ≤ c(|z|/(1 + |z|2)) and φ(x) > 0 for positive real x. Put φk(λ) =
φ(2−kλ). We define a vector-valued operator Sφ by the formula

Sφ(f) = {φk(L)f}∞k=−∞.
Fact 2.2. Sφ is bounded from Lp(dx) to Lp(`2).
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Proof. This is a consequence of the holomorphic multiplier theorem from
[1] or [5], using classical arguments.

Choose ψ ∈ C∞c (R+) such that
∑

k ψ(2kx) = 1 for all x > 0. Letmk(λ) =
ψ(2−kλ)m(λ) and hk = φ−2

k mk. Then

m(L) =
∑

mk(L) =
∑

φk(L)hk(L)φk(L) = S∗φHSφ

where H is the bounded operator on L2(`2) given by the formula

H{fk}∞k=−∞ = {hk(L)fk}∞k=−∞
and S∗φ : L2(`2)→ L2(dx) is the adjoint of Sφ.

Thus, to prove Theorem 2.1 we only need to prove that H is bounded on
Lp(dx, `2).

Lemma 2.3. There exists C such that for all k and fk,

‖hk(L)‖L1,L1 ≤ C,
|hk(L)fk|(x) ≤ C sup

t>0
exp(−tL)|fk|(x).

Proof. For x ∈ Rn put ηk(x) = hk(2k|x|2). The functions ηk are in Cn+1
c

with uniform bounds on their support and their derivatives so

|η̂k|(y) ≤ C1(1 + |y|)−n−1

where ̂ denotes the Fourier transform and C1 does not depend on k. Next,
there is a nonnegative integrable function w such that

C1(1 + |y|)−n−1 ≤
∞�

0

w(t)êt(y) dt

where et(x) = exp(−t|x|2). For example, we can take a multiple of (1+t)−3/2

as w. Consequently,

|hk(−∆)|(x) ≤ C1

∞�

0

w(t) exp(t2−k∆)(x) dt

where ∆ is the laplacian on Rn. By [3] the last inequality remains valid
on AN :

|hk(L)|(x) ≤ C1

∞�

0

w(t) exp(−t2−kL)(x) dt.

Since ‖exp(t2−kL)‖L1,L1 = 1 the first claim follows. To get the second claim
we note that
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|hk(L)fk|(x) ≤ C1

∞�

0

w(t) exp(−t2−kL)|fk|(x) dt

≤ C1

∞�

0

w(t) dt sup
t>0

exp(−t2−kL)|fk|(x) = C2 sup
t>0

exp(−tL)|fk|(x).

Now
sup
k
|hk(L)fk|(x) ≤ C sup

t>0
exp(−tL)(sup

k
|fk|)(x).

Since the semigroup maximal function is bounded on Lp, H is bounded on
Lp(dx, `∞). Next, since

‖hk(L)‖L1(dx),L1(dx) ≤ C

we have

‖H{fk}∞k=−∞‖L1(dx,`1) =
∥∥∥∑

k

|hk(L)fk|
∥∥∥
L1(dx)

=
∑
k

‖hk(L)fk‖L1(dx)

≤ C
∑
k

‖fk‖L1(dx) = ‖{fk}∞k=−∞‖L1(dx,`1).

By analytic interpolation between L1(dx, `1) and L2(dx, `2), H is bounded
on Lp(dx, `p), 1 ≤ p ≤ 2. Again, by interpolation between Lp(dx, `p) and
Lp(dx, `∞), H is bounded on Lp(dx, `2), 1 ≤ p ≤ 2. We handle p > 2 by
duality, which ends the proof.

3. Possible improvements and limitations. In Lemma 2.3 it is
enough to bound the H(n+1)/2+ε Sobolev norm of hn. Since this is the only
place where we use regularity of m, the main theorem remains valid if m
only satisfies

sup
t>0
‖ψm(t·)‖Hs <∞

with s > (n+ 1)/2.
Lemma 2.3 (with n replaced by apropriate values like in [2]) remains

valid for distinguished laplacians on all (not necessarily complex) Iwasawa
AN groups, but the proof is much more complicated.

Since our argument is based on the use of a maximal function it probably
cannot be improved to give the expected critical exponent n/2. Also, it is
probably impossible to get the weak type (1, 1) of the multiplier operator
preserving the simplicity of the argument.

Finally, let us mention that the related problem of bounding Riesz trans-
forms requires estimates of derivatives of the semigroup kernel, hence a quite
different method.
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