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BOUNDARY BEHAVIOUR OF HOLOMORPHIC FUNCTIONS IN
HARDY–SOBOLEV SPACES ON CONVEX DOMAINS IN Cn

BY
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This paper is dedicated to the memory of Andrzej Hulanicki

Abstract. We study the boundary behaviour of holomorphic functions in the Hardy–
Sobolev spaces Hp,k(D), where D is a smooth, bounded convex domain of finite type
in Cn, by describing the approach regions for such functions. In particular, we extend
a phenomenon first discovered by Nagel–Rudin and Shapiro in the case of the unit disk,
and later extended by Sueiro to the case of strongly pseudoconvex domains.

In memory of Andrzej Hulanicki (by Marco Peloso). I first met Andrzej
Hulanicki in Torino when he visited the Department of Mathematics of the
Politecnico, where I had recently started my appointment. I was a young
mathematician, with my new Ph.D. degree. Andrzej asked me about my
mathematics and then tried to find some area of interest for both of us
to work on. He soon invited me to spend an extended period of time in
Wrocław and to give a short course to his group of collaborators and col-
leagues. I gladly accepted. Once in Wrocław I was impressed by Andrzej’s
hospitality, kindness and by the very pleasant atmosphere that he created in
his department. I realized that he took a sincere interest in younger mathe-
maticians with the intent to help them proceed in their careers.

We started discussing some mathematics that eventually developed into
a paper written in collaboration with Ewa Damek and Detlef Müller. Al-
though that was our only joint paper, I stayed in contact with Andrzej
throughout the years and we exchanged several visits.

I will always remember Andrzej as a very good hearted person, as a friend
who helped me at the beginning of my career, and I still thank him for
everything.

Introduction. Let D be a smooth, bounded domain in Cn. For 0 < p
≤ ∞, let Lp(D) denote the Lebesgue space with respect to the volume form,
and Lp(bD) be the Lebesgue space on bD with respect to the induced surface
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measure dσ. We will denote by H(D) the space of holomorphic functions
on D.

We let Hp(D) denote the Hardy space of holomorphic functions on D,
with norm given by

‖f‖pHp(D) := sup
0<ε<ε0

�

δ(w)=ε

|f(w)|p dσε(w),

where δ(w) is the distance from w to bD and dσε denotes the surface mea-
sure on the manifold {δ(w) = ε}. To any f ∈ Hp(D) corresponds a unique
boundary function in Lp(bD), which we still denote by f , obtained as normal
almost everywhere limit, [St]. Thus, we may identify Hp(D) with a closed
subspace of Lp(bD).

Let k be a non-negative integer. In this paper we study the spaces Hp,k =
Hp,k(D) of holomorphic functions on D whose derivatives of order less than
or equal to k belong the Hardy space Hp(D):

Hp,k = {f ∈ H(D) : ∂αf ∈ Hp(D) for |α| ≤ k}.
In the case of the classical Hardy spaces Hp and p ≥ 1 it is well known

that a function f ∈ Hp converges to its boundary values as z tends to a point
ζ on the boundary while varying in the so-called approach regions A = A(ζ)
whose shape is determined by the geometry of the boundary bD (see (13)
for the definition). For instance, if D is strongly pseudoconvex the approach
region centered at ζ ∈ bD is

A(ζ) = {z ∈ D : d(z, ζ) < δ(z)},
where d is a natural pseudometric on the domain D and δ(z) denotes the
distance of the point z from the boundary bD (we refer the reader to Section 1
for precise definitions).

These spaces have been intensively studied in the case of the unit ball (see
[AhBr]), and in the case of finite type domains ([G] and references therein).
Properties of Hardy spaces (i.e. without any condition on the derivatives)
on convex domains of finite type have been studied in [KL, BPS, GP, DFi].

In this paper we study the boundary behaviour of functions in Hp,k on
convex domains of finite type in Cn.

When D is a smooth, bounded convex domain of finite type, there exists
a natural pseudodistance db on bD (see [Mc]) that makes bD into a space of
homogeneous type.

The geometry of convex domains of finite type was first described by Mc-
Neal [Mc]. This description was later applied to the analysis of the mapping
properties of the Bergman projection [McS1] and Szegö projection [McS2] by
McNeal and Stein. In the case of strongly pseudoconvex domains and finite
type domains in C2 the geometry was determined by canonical vector fields.
The natural pseudodistance on bD was the control distance determined by
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these vector fields, i.e. the Carnot metric. The situation of convex domains of
finite type is much more general. The “weight” of each vector field may vary
from point to point, and one needs to take into consideration the different
order of contact of complex lines with bD. For these reasons it is natural
to consider a diameter function τ(ζ, λ, r), which gives the diameter of the
largest one-dimensional disk in the direction of λ with centre at ζ, that fits
inside the region {z′ : %(z′) < r}. Here % denotes a fixed smooth defining
function for D.

Our main result can be stated by saying that if f ∈ Hp,k, then f con-
verges to its boundary values as z tends to the boundary point ζ along an
approach region whose shape depends on p and k, besides the geometry of
the boundary of D. Our results extend, to the setting of convex domains of
finite type, results by Nagel, Rudin and Shapiro [NRSh] in the case of the
unit disk, and Sueiro [Su1, Su2] in the case of the unit ball, respectively.

We use the notation A <∼ B to indicate that A ≤ cB where the constant
c does not depend on the important parameters on which the functions A
and B depend. (Typically, the constant c will only depend on the geometry of
the domain D.) We use the symbols >∼ and ≈ with similar, obvious meanings.

1. Basic facts and notation. Let D be a smooth, bounded convex
domain in Cn. A point ζ ∈ bD is said to be of finite type if the order of contact
of complex lines with bD at this point is finite (see [BoS] and references
therein). The type of the point is the least upper bound of the various orders
of contact. We say that D is of finite type TD if every point on bD is of finite
type ≤ TD and TD is the maximum of the types of the points on bD.

Let D = {z ∈ Cn : %(z) < 0}. There exists ε0 > 0 such that for |ε| ≤ ε0
the sets Dε = {z ∈ Cn : %(z) < ε} are all convex, and the normal projection
π : U → bD is well defined and smooth, where U = {z ∈ Cn : δ(z) < ε0}.

The basic geometric facts about convex domains of finite type were first
proved by McNeal [Mc] (see also [McS1, McS2, DiFo]). By recalling the
results that are involved in the present work we take the opportunity to
review the main elements of the construction and set some notation.

For z ∈ U and λ ∈ Cn a unit vector, we denote by τ(z, λ, r) the distance
from z to the surface {z′ : %(z′) = %(z)+r} along the complex line determined
by λ.

For each z ∈ U and r < ε0 there exists a special set of coordinates
{wz,r1 , . . . , wz,rn }, which we call r-extremal . The first vector v(1) is given by
the direction transversal to the boundary, in the sense that the shortest
distance from z to the set {z′ : %(z′) = %(z) + r} is realized on the complex
line determined by v(1).

The vector v(2) is chosen among the vectors orthogonal to v(1) in such
a way that τ(z, v(2), r) is maximal. We repeat the same process until we
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determine an orthonormal basis {v(1), . . . , v(n)}. We denote by (w1, . . . , wn)
the coordinates with respect to this basis. Notice that these coordinates
(w1, . . . , wn) = (wz,r1 , . . . , wz,rn ) depend on z and r. However, the transversal
direction w1 does not depend on r.

For k = 1, . . . , n, we set

(1) τk(z, r) = τ(z, v(k), r),

and define the polydisk

(2) Q(z, r) = {w : |wk| < τk(z, r), k = 1, . . . , n}.
Basic relations among these quantities are the following (see [McS2,

Prop. 1.1] and also [BPS, Lemma 2.1].

Proposition 1.1. There exists a constant C > 0 depending only on D
such that for any unit vector λ ∈ Cn, 0 < r ≤ ε0, z ∈ U , and 0 < δ < 1 we
have:

(i) δ1/2τ(z, λ, r) <∼ τ(z, λ, δr) <∼ δ
1/TDτ(z, λ, r);

(ii) δ1/2Q(z, C−1r) ⊂ Q(z, δr) ⊂ δ1/TDQ(z, Cr);
(iii) if w ∈ Q(z, r) then τ(z, λ, r) ≈ τ(w, λ, r).

We define the quasi-distance db : U × U → [0,+∞) by setting

(3) db(z, w) = inf {δ : w ∈ Q(z, δ)},
and the function d

(4) d(z, w) = db(z, w) + δ(z) + δ(w).

Notice that d is initially defined on U × U and we extend it to Cn × Cn by
setting

d(z, w) = ψ(%(z))ψ(%(w))d(z, w) + (1− ψ(%(z)))(1− ψ(%(w)))|z − w|,
where ψ is a smooth cut-off function on R such that ψ(t) = 1 for |t| ≤ ε0/2
and ψ(t) = 0 for |t| ≥ ε0.

On the boundary we will use a family of “balls” centred at ζ ∈ bD of
radius δ defined as

B(ζ, δ) = Q(ζ, δ) ∩ bD.
For any unit vector λ we introduce the differential operator

(5) Lλ = (∂λ%)∂x1 − (∂x1%)∂λ,

where w1 = x1 + iy1 is the transversal direction fixed earlier. Here, ∂λ is the
standard vector field defined by λ as ∂λf = 〈λ, df〉, for the real differential
df of a smooth function f , and where 〈 , 〉 denotes the usual pairing between
a one-form and a vector.

Notice that Lλ is always a tangential vector field. If λ ∈ S2n−1 is itself
tangent to bD, then Lλ is the directional derivative in the direction λ.
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For Λ = (λ1, . . . , λq) a q-list of vectors in S2n−1 and µ = (µ1, . . . , µq) a
q-index we set |µ| = µ1 + · · ·+ µn,

(6) LµΛ = Lµ1

λ1
· · ·Lµqλq ,

and

(7) τµ(z, Λ, δ) = τ(z, λ1, δ)µ1 · · · τ(z, λq, δ)µq .

We recall the fundamental estimates for the Szegö kernel and its deriva-
tives [McS2] (called interior estimates of S-type, see [McS2, Def. 4 and
Thm. 3.6]). Here, and in the rest of the paper, we denote by SD(z, ζ) the
Szegö kernel for D.

We have

(8) |LµΛ,zL
µ′

Λ′,z′SD(z, z′)| <∼
τ−µ(z, Λ, δ)τ−µ

′
(z′, Λ′, δ)

|B(π(z), δ)|
,

where δ = d(z, z′), z, z′ ∈ D × D \∆bD, ∆bD denoting the diagonal on bD.
Here and in what follows, we denote by |E| the surface area measure of a
measurable set E ⊆ bD, or the Lebesgue measure of E if E ⊆ D.

2. Statement of the main results. In order to describe the boundary
behaviour of functions in the Hardy–Sobolev spaces Hp,k we will study the
boundedness of a maximal function that can be defined also for non-integral
values.

We now recall the definition of an operator of order a = (a1, . . . , an),
as introduced in [McS2, Definition 3]. A function ψ ∈ CN (bD) is called
a normalized bump function if suppψ ⊆ B(ζ0, r) and

|LµΛψ(ζ)| ≤ τ−µ(ζ0, Λ, r)

for all lists Λ and indices µ with |µ| ≤ N , and for all ζ ∈ B(ζ0, r).
Given a = (a1, . . . , an), we are going to use the notation

(9) τa(z, δ) = τ1(z, δ)a1 · · · τn(z, δ)an .

Definition 2.1. An operator

Tf(ζ) =
�

bD
H(ζ, ω)f(ω) dσ(ω)

is said to be of order a = (a1, . . . , an) if there exists a family of operators
Tεf(ζ) =

	
bDHε(ζ, ω)f(ω) dσ(ω) such that:
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(i) for f ∈ C∞(bD), Tεf → Tf in C∞ as ε→ 0;
(ii) Hε ∈ C∞(bD × bD);
(iii) for all multi-indices µ, µ′ and lists Λ,Λ′ we have

(10) |LµΛ,ζL
µ′

Λ′,ωHε(ζ, ω)| <∼
τa(ζ, δ)τ−µ(ζ, Λ, δ)τ−µ

′
(ζ, Λ′, δ)

|B(ζ, δ)|
,

where δ = db(ζ, ω), and the estimate holds uniformly in ε;
(iv) for each non-negative integer m there exists a positive integer Nm

such that for any normalized bump function ψ of order ≥ Nm on
B(ζ0, δ),

sup
ζ∈B(ζ0,δ)

|LµΛ(Tεψ)(ζ)| <∼ τ
a(ζ, δ)τ−µ(ζ, Λ, δ)

for all lists Λ and indices µ with |µ| ≤ m, uniformly in ε.

Remark 2.2. (a) We notice that typical examples of operators of order 0
are the identity operator and the Szegö projection; see [McS2].

(b) The estimates in the definition of an operator of order a are symmetric
in ζ and ω.

(c) Since δ1/2 <∼ τj(ζ, δ) <∼ δ1/TD , it follows that an operator of order
a = (a1, . . . , an) is also of order (sa, 0, . . . , 0), where

sa := a1 +
1
TD

∑
aj>0, j 6=1

aj +
1
2

∑
aj<0, j 6=1

aj .

Definition 2.3. We say that an operator T of order a = (a1, . . . , an)
with kernel H satisfies interior estimates of S-type of order a if the approx-
imating kernels Hε(z, ω) extend holomorphically in z ∈ D and they satisfy
estimates

|LµΛ,ζL
µ′

Λ′,ωHε(z, ω)| <∼
τa(z, δ)τ−µ(z, Λ, δ)τ−µ

′
(z, Λ′, δ)

|Q(π(z), δ)|
,

uniformly in ε, where δ = d(ζ, ω), for all lists Λ,Λ′ and all multi-indices µ, µ′.

On the smooth, bounded, convex domain D of finite type we introduce
approach regions whose shape is clearly determined by the geometry of the
boundary. Here, and in the rest of the paper, for z ∈ D and δ > 0 we set

(11) ν(z, δ) =
n∏
j=2

τj(z, δ),

and, for short, for z ∈ D,

(12) ν(z) =
n∏
j=2

τj(z, δ(z)).

Notice that |B(π(z), δ(z))| ≈ δ(z)ν2(z).
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Definition 2.4. Let 1 ≤ p < ∞ and let 0 ≤ s < n/p. For ζ ∈ bD we
define the tangential approach regions

(13) A(ζ) = {z ∈ D : db(π(z), ζ)ν2(π(z), db(π(z), ζ)) ≤ (δ(z)ν2(z))1−sp/n}.
Recall that, here and in what follows, for z ∈ D we denote by π(z) the

unique normal projection of z onto the boundary.
Notice that, if s = 0 and D is a strongly pseudoconvex domain, we

recover the classical approach regions for the Hardy spaces Hp, which are
independent of p. On the other hand, if s > 0, then A(ζ) = Ap,s(ζ), that is,
A(ζ) depend on p and s. Finally, notice that the inequality in the definition
of A(ζ) can be written as

|B(π(z), db(π(z), ζ))| ≤ |B(π(z), δ(z))|1−sp/n.
The main results of the present work are the following.

Theorem 2.5. Let D be a smooth, bounded, convex domain of finite type.
Let T be an operator of order a with kernel H satisfying interior estimates
of S-type, where a = (s/n, 2s/n, . . . , 2s/n) and 0 ≤ s < n. Let 1 ≤ p < ∞
and A be defined in (13). Define the maximal operator

Mf(ζ) = sup
z∈A(ζ)

|(Tf)(z)|.

Let 1 ≤ p <∞ and assume that 1− sp/n > 0. Then M is weak-type (1, 1),
and for p > 1,M : Lp(bD)→ Lp(bD) is bounded.

Theorem 2.6. Let D be a smooth, bounded, convex domain of finite
type, 1 ≤ p < ∞, 0 ≤ k < n/p and let f ∈ Hp,k. Let A(ζ) = Ap,k(ζ) be the
approach region defined in (13) (with s = k). Then

lim
A(ζ)3z→ζ∈bD

f(z) = f(ζ)

exists for a.a. ζ ∈ bD. Moreover, the boundary function f(ζ) so determined
belongs to the Sobolev space W k,p(bD).

We recall that the above results hold true when D is a smooth, bounded
strongly pseudoconvex domain (see [Su2]).

3. Proof of Theorem 2.5. We begin by recalling that the maximal
operators are defined in terms of the regions Ap,s that depend on s and p.
Hence, in order to apply an interpolation argument one would need to prove
that the family of operators depend analytically on s and p. For this rea-
son we have chosen to prove the results for p > 1 and p = 1 directly and
independently. We begin with the case p > 1 and treat the case p = 1 later.

The kernel H of the operator T can be approximated by operators
Hε(z, ω) that can be extended holomorphically in z ∈ D and that satisfy
the estimates in Definition 2.3, uniformly in ε.
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We consider the corresponding maximal operator Mε defined in terms
of the operator with kernel Hε and prove the result in the statement of the
theorem for such operators. All the estimates in the proof will hold uniformly
in ε and hence the result will follow for the operatorM itself.

Therefore, for simplicity of notation we drop the subscript ε from Hε in
what follows.

We set Bk = B(π(z), 2kδ(z)) and

I0 =
�

B0

f(ω)H(z, ω) dσ(ω),

and, for k ≥ 1,
Ik =

�

Bk\Bk−1

f(ω)H(z, ω) dσ(ω).

Hence,
(Tf)(z) =

∑
k≥0

Ik.

For a point z ∈ U we write z′ = π(z). We know that Ik depends on z ∈ D
and

|Ik| ≤ |B(z′, 2kδ(z))|s/n 1
|Bk|

�

Bk

|f(ω)| dσ(ω).

We wish to estimate |
∑

k≥0 Ik|. We have three cases.

Case 1. We drop the subscript in TD for simplicity. Let

A1 = {k : 2kδ(z)ν2(z′, 2kδ(z)) ≥ 1}.

Then, for k ∈ A1, we have (2kδ(z))1+ 2
T

(n−1) ≥ c, that is
2kδ(z) ≥ c′.

Therefore, ∣∣∣ ∑
k∈A1

Ik

∣∣∣ =
∣∣∣ ∑
k∈A1

�

Bk\Bk−1

f(ω)H(z, ω)dσ(ω)
∣∣∣(14)

≤
�

bD\B(z′,c′/2)

|f(ω)| |H(z, ω)| dσ(ω)

≤ C
�

bD
|f(ω)| dσ(ω) ≤ C ′‖f‖Lp(bD).

Case 2. We let

A2 = {k : 2kδ(z)ν2(z′, 2kδ(z)) < 1}.
Then for k ∈ A2 we have (2kδ(z))n+1 ≤ c, that is,

2kδ(z) ≤ c′.
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We split this case into two subcases. We define

A′2 = {k : 1 > 2kδ(z)ν2(z′, 2kδ(z)) ≥ (δ(z)ν2(z))1−sp/n}.

Then for k ∈ A′2 and z ∈ A(ζ) we have

(15) db(z′, ζ)ν2(ζ, db(z′, ζ)) ≤ (δ(z)ν2(z))1−sp/n ≤ 2kδ(z)ν2(z′, 2kδ(z)).

Claim 1. For k ∈ A′2 and z ∈ A(ζ) we have

db(z′, ζ) ≤ C2kδ(z),

where C does not depend on k or z.

Assume that 2kδ(z) ≤ db(z′, ζ) (otherwise there is nothing to prove).
This gives

ν2(z′, 2kδ(z)) = ν2

(
z′, db(z′, ζ)

2kδ(z)
db(z′, ζ)

)
≤ C

(
2kδ(z)
db(z′, ζ)

) 2
T

(n−1)

ν2(z′, db(z′, ζ)).

Using this last inequality in (15) we obtain

db(z′, ζ)ν2(ζ, db(z′, ζ)) ≤ C2kδ(z)
(

2kδ(z)
db(z′, ζ)

) 2
T

(n−1)

ν2(z′, 2kδ(z));

that is, db(z′, ζ) ≤ C2kδ(z), which proves the claim.
The claim shows that the ball B̃k = B(z′, C2kδ(z)) contains the point ζ.

Then
1
|Bk|

�

Bk

|f(ω)|dσ(ω) ≤ C 1

|B̃k|

�

eBk
|f(ω)| dσ(ω)

≤ C sup
db(z′,ζ)<r≤c′

1
|B(z′, r)|

�

B(z′,r)

|f(ω)| dσ(ω)

≤ CMbDf(ζ),

where MbD denotes the Hardy–Littlewood maximal function on bD.
Thus, we have shown that∣∣∣ ∑

k∈A′2

Ik

∣∣∣ ≤ C ∑
2kδ(z)≤c

|B(z′, 2kδ(z))|s/nMbDf(ζ).

We now show that the above series converges. Since 2kδ(z) ≤ c we have

|B(z′, 2kδ(z))|s/n = (2kδ(z)ν2(z′, 2kδ(z)))s/n ≤ Cs,n(2kδ(z))s/n
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and that ∑
2kδ(z)≤c

(2kδ(z))s/n ≤ δ(z)s/n 2(k0+1)s/n − 1
2s/n − 1

≤ C2s/n
(2k0δ(z))s/n

2s/n − 1
≤ Cs,n.

Therefore,

(16)
∣∣∣ ∑
k∈A′2

Ik

∣∣∣ ≤ Cs,nMbDf(ζ).

Finally, we consider the set

A′′2 = {k : 2kδ(z)ν2(z′, 2kδ(z)) ≤ (δ(z)ν2(z))1−sp/n}.

In this case, we need to introduce the weight function already considered
in [NRSh] and [Su2]. For a point z ∈ D, we write z′ = π(z). Let % ≥ 1. For
z ∈ D we define the shadow of the ball B(z′, %δ(z)) to be the set

Ω%(z) = Ω%(z′, %δ(z))
= {θ ∈ bD : there exists w ∈ A(θ) with δ(w) = δ(z) and w′ ∈ B(z′, %δ(z))}.

Next, we define the weight η% : bD × (0, CD)→ [0,+∞) as

(17) η%(ω, %s) = inf
{
|B(z′, %δ(z))|
|Ω%(z′, %δ(z))|

: δ(z) ≥ s, ω ∈ B(z′, %δ(z))
}
,

where ω ∈ bD and CD is a constant depending only on D; cf. [NS, Lemma 11]
and [Su2, Sect. 1].

We are going to use the above definitions to prove the following state-
ment.

Claim 1. Set

M2k

p f(ζ) = sup
z∈A(ζ)

η2k(z′, 2kδ(z))1/p
1
|Bk|

�

Bk

|f(ω)| dσ(ω).

Then for any p > 1 there exists Ap > 0 such that

‖M2k

p f‖Lp(bD) ≤ Ap‖f‖Lp(bD),

where the constant Ap does not depend on k.

We will adapt a result by Sueiro [Su2, Prop. 1.12] to the case of a smooth,
bounded domain of finite type. In order to do this, we need a number of
preliminary facts.

Our ultimate goal is to estimate the weight η2k from below, while our
first goal is to estimate the measure of the set Ω2k(z, 2kδ(z)).
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Let z ∈ D be fixed and let w ∈ D be such that δ(w) = δ(z). We write
w′ = π(w). Notice that w ∈ A(θ) if and only if

db(θ, w′)ν2(θ, db(θ, w′)) ≤ (δ(w)ν2(w))1−sp/n ;

that is, if and only if

(18) db(θ, w′)ν2(θ, db(θ, w′)) ≤ (δ(z)ν2(w′, δ(z)))1−sp/n.

Moreover, w′ ∈ B(z′, 2kδ(z)) if and only if db(w′, z′) ≤ 2kδ(z), and from
the definition of A′′2 we get

(19) db(w′, z′)ν2(z′, db(w′, z′)) ≤ c(δ(z)ν2(z))1−sp/n.

Notice that we can reformulate (18) as

(20) |B(θ, db(θ, w′))| ≤ c|B(w′, δ(z))|1−sp/n,
and (19) as

(21) |B(z′, db(z′, w′))| ≤ c|B(z′, δ(z))|1−sp/n.

We now estimate |Ω2k(z′, 2kδ(z))|. We denote this set by Ω2k(z) for short.
Let θ ∈ Ω(z) and denote by w(θ) the point in A(θ) as in the definition

of Ω2k(z), and let w′(θ) = π(w(θ)). Define

(22) d(θ) = max{db(θ, w′(θ)), db(z′, w′(θ))} and d = sup
θ∈Ω2k (z)

d(θ).

Notice that d = dz depends on the point z.
Then there exists a constant cD such that Ω2k(z′, 2kδ(z)) ⊆ B(z′, cDd).

In fact, for all θ ∈ Ω2k(z′, 2kδ(z)),

db(z′, θ) ≤ CD(db(θ, w′(θ)) + db(w′(θ), z′)) ≤ 2CDd(θ) ≤ 2CDd = cDd.

Claim 2. For all θ ∈ Ω2k(z) we have

|B(z′, d(θ))| ≤ C2−k(1+ 2
T

(n−1))(1−sp/n)|B(z′, 2kδ(z))|1−sp/n.
In order to prove the claim, we distinguish two cases. We first assume

that db(θ, w′(θ)) ≤ db(z′, w′(θ)), that is, d(θ) = db(z′, w′(θ)). Then (21) gives

|B(z′, d(θ))| ≤ |B(z′, δ(z))|1−sp/n

and we just have to use the fact that

δ(z)ν2(z, δ(z)) ≤ C2−k(1+ 2
T

(n−1))|2kδ(z)ν2(z′, 2kδ(z))|.
Next, we assume that d(θ) = db(θ, w′(θ)). Then

db(z′, θ) ≤ CD(db(z′, w′(θ)) + db(w′(θ), θ)) ≤ 2CDdb(w′(θ), θ),

that is, z′ ∈ B(θ, cDdb(θ, w′(θ))). Hence,

|B(z′, db(θ, w′(θ)))| ≈ |B(θ, db(θ, w′(θ)))|.
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Now, (20) gives

|B(z′, db(θ, w′(θ)))| ≤ |B(w′(θ), δ(z))|1−sp/n

≤ 2−k(1+ 2
T

(n−1))(1−sp/n)|B(w′(θ), 2kδ(z))|1−sp/n.

Recalling that θ ∈ Ω2k(z) implies that db(w′(θ), z′) ≤ 2kδ(z), that is, z′ ∈
B(w′(θ), 2kδ(z)), we have

|B(z′, 2kδ(z))| ≈ |B(w′(θ), 2kδ(z))|.
Therefore, by (21),

|B(w′(θ), db(θ, w′(θ)))| ≤ 2−k(1+ 2
T

(n−1))(1−sp/n)|B(w′(θ), 2kδ(z))|1−sp/n

<∼ 2−k(1+ 2
T

(n−1))(1−sp/n)|B(z′, 2kδ(z))|1−sp/n.
This proves the claim.

We remark that from the previous discussion we learn that

(23) |Ω2k(z′, 2kδ(z))| ≤ C2−k(1+ 2
T

(n−1))(1−sp/n)|B(z′, 2kδ(z))|1−sp/n.
We are in a position to estimate the weight (17).

Claim 3. There exist a positive integer k0 = k0(D) and ε0 = ε0(D) > 0
such that for all z ∈ D with δ(z) < ε0,

η2k(z′, 2kδ(z)) >∼
|B(z′, 2k+k0δ(z))|
|Ω2k(z′, 2k+k0δ(z))|

.

Let z ∈ D and suppose θ ∈ B(z′, 2kδ(z)). Let ω ∈ Ω2k(θ, 2kδ(z)). Let
w=w(ω) with δ(w)=δ(z) and w′∈B(θ, 2kδ(z)). Then w′ ∈ B(z′, c12kδ(z)),
so that ω ∈ Ω2k(z′, 2kc1δ(z)).

Therefore, for all θ ∈ B(z′, 2kδ(z)),

Ω2k(θ, 2kδ(z)) ⊂ Ω2k(z′, 2kc1δ(z)),

so that

inf
θ: db(z′,θ)≤2kδ(z)

|B(θ, 2kδ(z))|
|Ω2k(θ, 2kδ(z))|

>∼
|B(z′, 2kc1δ(z))|
|Ω2k(z′, 2kc1δ(z))|

.

This proves the claim.

Using (22), it now follows that

η2k(z′, 2kδ(z)) >∼
|B(z′, 2kδ(z))|
|B(z′, c1d)|

>∼
|B(z′, 2kδ(z))|

2−k(1+ 2
T

(n−1))(1−sp/n)|B(z′, 2kδ(z))|1−sp/n
,

that is,

|B(z′, 2kδ(z))|sp/n ≤ C2−k(1+ 2
T

(n−1))(1−sp/n)η2k(z′, 2kδ(z)).
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Assuming the validity of the previous Claim 1, we have∣∣∣∑
k∈A′′2

Ik

∣∣∣ ≤ ∑
k∈A′′2

|B(z′, 2kδ(z))|s/n 1
|Bk|

�

Bk

|f(ω)| dσ(ω)

≤
∑
k∈A′′2

2−k(1+ 2
T

(n−1))(1−sp/n)M2k

p f(ζ).

Combining the above estimates with (14) and (16) we obtain

|(Tf)(ζ)| ≤
∣∣∣∑
k

Ik

∣∣∣
≤ C

(
‖f‖Lp(bD) +MbDf(ζ) +

∑
k

2−k(1+ 2
T

(n−1))(1−sp/n)M2k

p f(ζ)
)
,

so that

‖Mf‖Lp(bD) ≤ C
(∑

k

2−k(1+ 2
T

(n−1))(1−sp/n)
)
‖f‖Lp(bD)

≤ C ′‖f‖Lp(bD)

since 1 − sp/n > 0. Modulo the proof of Claim 1, this proves the theorem
for the case p > 1.

Now, the proof of Claim 1 is as the one of Thm. 1.7 in [Su2], using the
fact that the family of balls {B(ζ, r)} on bD satisfy the requirements for bD
to be a space of homogeneous type with respect to the surface measure (see
[McS2], e.g.).

Finally, in the case p = 1 we consider the approach regions

A1,s(ζ) = {z ∈ D : db(π(z), ζ)ν2(π(z), db(π(z), ζ)) ≤ (δ(z)ν2(z))1−s/n}.

Writing Bζ := B(ζ, 2CDd(z′, ζ)) we decompose

(Tf)(z) =
�

Bζ

H(z, ω)f(ω) dσ(ω) +
�

bD\Bζ

H(z, ω)f(ω) dσ(ω)

=: J1 + J2.

Using the estimate for the kernel of type a = (s/n, 2s/n, . . . , 2s/n), we see
that

|H(z, ω)| ≤ C(d(z, ω)ν2(z, d(z, ω)))−(1−s/n)

≤ (δ(z)ν2(z, δ(z)))−(1−s/n).
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Then for z ∈ A1,s(ζ) we have

|J1| ≤ (δ(z)ν2(z, δ(z)))−1+s/n
�

Bζ

|f(ω)| dσ(ω)

≤ C 1
|B(ζ, db(ζ, z′))|

�

Bζ

|f(ω)| dσ(ω)

≤ C 1
|Bζ |

�

Bζ

|f(ω)| dσ(ω) ≤ CMbDf(ζ),

where again z′ = π(z).
Next, notice that ω ∈ bD \ B(ζ, 2CDd(z′, ζ)) implies that db(ω, z′) ≥

cdb(ω, ζ). Indeed, since db(ζ, ω) ≥ 2CDdb(z′, ζ), and since

db(ω, ζ) ≤ CD(db(ω, z′) + db(z′, ζ)) ≤ CDdb(ω, z′) +
1
2
db(ω, ζ),

the assertion follows with c = 1/2CD. This allows us to majorize

|J2| ≤ C
�

bD

|f(ω)|
(db(ζ, ω)ν2(ω, db(ζ, ω)))1−s/n

dσ(ω).

Now notice that, if db(ζ, ω) ≥ 1, the denominator above is bounded from
below by a positive constant, so that

�

bD\{db(ζ,ω)≥1}

|f(ω)|
(db(ζ, ω)ν2(ω, db(ζ, ω)))1−s/n

dσ(ω) ≤ c‖f‖L1(bD).

Otherwise, write{
ω : db(ζ, ω) ≤ 1} ⊆

⋃
k≥0

{ω : 2−(k+1) ≤ db(ζ, ω) ≤ 2−k
}

=
⋃
k≥0

Ck.

Then
�

{ω : db(ζ,ω)≤1}

|f(ω)|
(db(ζ, ω)ν2(ω, db(ζ, ω)))1−s/n

dσ(ω)

≤
∑
k≥0

�

Ck

|f(ω)|
(db(ζ, ω)ν2(ω, db(ζ, ω)))1−s/n

dσ(ω)

≤ C
∑
k≥0

1
(2−kν2(ζ, 2−k))1−s/n

�

Ck

|f(ω)| dσ(ω)

≤ C
∑
k≥0

(2−kν2(ζ, 2−k))s/nMbDf(ζ)

≤ CMbDf(ζ),

since 2−k ≤ 1 implies that ν2(ζ, 2−k) ≤ C ′.
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Therefore, Mf(ζ) ≤ C(MbDf(ζ) + ‖f‖L1(bD)). This shows that M is
weak-type (1, 1) and we are done.

4. Proof of Theorem 2.6. Let 1 ≤ p <∞ and k a non-negative integer
such that k < n/p. Let b be a fixed (small) positive number. For ζ ∈ bD,
let N denote a smooth vector field defined in a tubular neighborhood of the
boundary, transversal to the boundary itself. For ζ ∈ bD, let N(ζ, s) be the
integral curve of N such that N(ζ, 0) = ζ and N(ζ, s) ∈ D for 0 < s ≤ b.

Without loss of generality, by induction we may assume that k = 1.
Then, for f ∈ Hp,1, recalling that SD is the Szegö kernel, we write

f(ζ)− f(N(ζ, b)) = −
b�

0

d

ds
(f(N(ζ, s))) ds

=
b�

0

n∑
j=1

gj(N(ζ, s))∂zjf(N(ζ, s)) ds

=
n∑
j=1

b�

0

gj(N(ζ, s))
�

bD
∂zjf(ω)SD(N(ζ, s), ω) dσ(ω) ds

=
n∑
j=1

�

bD
∂zjf(ω)

b�

0

gj(N(ζ, s))SD(N(ζ, s), ω) ds dσ(ω).

Therefore, for z ∈ D, denoting by P the Szegö projection, we have

f(z) =
n∑
j=1

�

bD
∂zjf(ω)

�

bD
SD(z, ζ)

b�

0

gj(N(ζ, s))SD(N(ζ, s), ω) ds dσ(ζ) dσ(ω)

+ P(f(N(·, b))(z)

=
n∑
j=1

�

bD
∂zjf(ω)H(j)(ζ, ω) dσ(ω) + P(f(N(·, b)))(z).

We now claim that the operators Tj having kernels

(24) H(j)(z, ω) =
�

bD
SD(z, ζ)

b�

0

gj(N(ζ, s))SD(N(ζ, s), ω) ds dσ(ζ)

are operators of order a = (1/n, 2/n, . . . , 2/n) satisfying interior estimates
of S-type of the same order, in the sense of Definition 2.3.

Assume this fact for the moment, and denote byMj the operator defined
on Lp(bD) by

Mjg(ζ) = sup
z∈A(ζ)

|(Tjg)(z)|.

Also, notice that the function P(f(N(·, b))) is holomorphic in D and contin-



664 M. M. PELOSO AND H. VALENCOURT

ues smoothly to the boundary bD, and that its sup norm is controlled, say,
by the Hp norm of f .

Then we obtain

sup
z∈A(ζ)

|f(z)| ≤
n∑
j=1

Mj(∂zjf)(ζ) + ‖f‖Hp ,

so that, if we denote by f∗(z) the left hand side above, we have

‖f∗‖Lp(bD) <∼
n∑
j=1

‖Mj(∂zjf)‖Lp(bD) + ‖f‖Hp <∼
n∑
j=1

‖∂zjf‖Lp(bD) + ‖f‖Hp

<∼
n∑
j=1

‖∂zjf‖Hp + ‖f‖Hp <∼ ‖f‖Hp,1 .

Now, a classical argument finishes the proof, modulo the claim.
We now prove the claim, the proof of which depends essentially on two

properties, similar to Propositions 3.1 and 2.3 in [McS2].
It is clear that the kernels H(j) defined in (24) are holomorphic in the

the first variable z in D and have anti-holomorphic extension in the second
variable ω in D as well.

Next, since the Szegö projection is an operator of order 0, by [McS2,
Prop. 2.3], it suffices to show that an operator having kernel

(25) K(ζ, ω) =
b�

0

g(N(ζ, s))SD(N(ζ, s), ω) ds,

where g is a smooth function on bD, is an operator of order a = (1/n, 2/n,
. . . , 2/n), since condition (2.1) in [McS2] is clearly satisfied.

Define

(26) Kε(ζ, ω) =
b�

ε

g(N(ζ, s))SD(N(ζ, s), ω) ds.

We need to show that Kε satisfies conditions (i)–(iii) in Definition 2.1 and
that the corresponding integral operator Tε satisfies condition (iv) in Defi-
nition 2.1, all uniformly in ε.

Let t = δ(N(ζ, s))+db(N(ζ, s), ω). As observed in [McS2, 3.2], t >∼ s and
τj(N(ζ, s), t) ≈ τj(ζ, t), and also, for all s,

db(ζ, ω) <∼ db(N(ζ, s), ω).

It follows that

(27) s+ db(ζ, ω) <∼ t.
Therefore, using the fundamental estimates (8) for the Szegö kernel we

obtain
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|SD(N(ζ, s), ω)| <∼ (s+ db(ζ, ω))−1
n∏
j=2

τj(N(ζ, s), s+ db(N(ζ, s), ω))−2(28)

<∼ (s+ db(ζ, ω))−1
n∏
j=2

τj(ζ, s+ db(ζ, ω))−2.

We write

Kε(ζ, ω) =
db(ζ,ω)�

ε

g(N(ζ, s))SD(N(ζ, s), ω) ds

+
b�

db(ζ,ω)

g(N(ζ, s))SD(N(ζ, s), ω) ds

=: I + II.

Notice that, since δ1/2 <∼ τj(z, δ), it follows that δ <∼ |B(ζ, δ)|1/n. Hence

I <∼

db(ζ,ω)�

ε

(s+ db(ζ, ω))−1
n∏
j=2

τj(ζ, s+ db(ζ, ω))−2 ds(29)

<∼ [ν2(ζ, db(ζ, ω))]−1

db(ζ,ω)�

ε

(s+ db(ζ, ω))−1 ds

<∼ |B(ζ, db(ζ, ω))|−1+1/n,

uniformly in ε > 0. On the other hand, for J ≥ log(b/db(ζ, ω)),

II <∼
b�

db(ζ,ω)

(s+ db(ζ, ω))−1
n∏
j=2

τj(ζ, s+ db(ζ, ω))−2 ds(30)

<∼
J∑
k=0

2k+1db(ζ,ω)�

2kdb(ζ,ω)

[(s+ db(ζ, ω))ν2(ζ, s+ db(ζ, ω))]−1 ds

<∼
J∑
k=0

[(2kdb(ζ, ω))ν2(ζ, 2kdb(ζ, ω))]−1

2k+1db(ζ,ω)�

2kdb(ζ,ω)

ds

<∼ |B(ζ, db(ζ, ω))|−1
J∑
k=0

2−k2−2k(n−1)/T

2k+1db(ζ,ω)�

2kdb(ζ,ω)

ds

<∼ |B(ζ, db(ζ, ω))|−1+1/n.

The estimates (29) and (30) show that Kε satisfies condition (iii) in
Definition 2.1, uniformly in ε. Conditions (i)–(ii) are easily checked. The
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fact that the corresponding integral operator Tε satisfies condition (iv) in
Definition 2.1, uniformly in ε, follows from the same argument as in [McS2,
Lemma 3.2]. This shows that the operator having integral given by (25) is
of order a = (1/n, 2/n, . . . , 2/n).

The last part of the statement is clear.

5. Final remarks

Another maximal function. A different, less natural, extension of
the tangential approach regions of Nagel–Rudin–Shapiro and Sueiro, in the
setting of convex domains of finite type, is to use

Ã(ζ) = {z ∈ D : db(π(z), ζ) ≤ δ(z)γ(1−sp/n)},
where γ ≥ 1. Hence, we define the approach regions whose aperture depends
only on the distance to the boundary. Notice that also in this case the regions
Ã = Ãp,s depend on p and on s.

We then set
M̃γf(ζ) = sup

z∈Ã(ζ)

|(Tf)(z)|.

Then for the regions Ã and the maximal opertor M̃γ we can easily prove
the following results.

Proposition 5.1. Let p ≥ 1 and s ≥ 0 be such that 1− sp/n > 0. Let

γ ≤ 1 +
sp

n

n− 1
n− sp

(
1− 2

T

)
.

Then for all ζ ∈ bD we have Ã ⊆ A and therefore the maximal operator
M̃γ is controlled by the operator M. Therefore, the maximal operator M̃γ

is weak-type (1, 1) and hence M̃γ : Lp(bD)→ Lp(bD) is bounded for p > 1.

Proof. The proof is somewhat obvious, and we only sketch it. It suffices
to prove the result for γ = 1 + sp

n
n−1
n−sp

(
1− 2

T

)
. One notices that

(31) γ

(
1− sp

n

)
− 1 = −sp

n2

(
1 +

2
T

(n− 1)
)
≤ 0.

In order to prove that Ãp,s ⊆ Ap,s one shows that db(z′, ζ) ≤ δ(z)γ(1−sp/n)

implies that

(32) db(z′, ζ)ν2(z′, db(z′, ζ)) ≤ (δ(z)ν2(z))γ(1−sp/n).

Using the fact that δ(z)γ(1−sp/n) ≤ 1 we have

db(z′, ζ)ν2(z′, db(z′, ζ)) ≤ δ(z)γ(1−sp/n)ν2(z′, δ(z)γ(1−sp/n))

≤ Cδ(z)γ(1−sp/n)δ(z)(γ(1−sp/n)−1)(n−1)ν2(z′, δ(z))

= Cδ(z)nγ(1−sp/n)−(n−1)ν2(z′, δ(z)).
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Hence, in order to prove (32) it suffices to prove that

δ(z)nγ(1−sp/n)−(n−1)ν2(z′, δ(z)) ≤ δ(z)1−sp/nν2(z′, δ(z))1−sp/n,

that is,
δ(z)γ(n−sp)−n(δ(z)ν2(z′, δ(z)))sp/n ≤ 1.

But by (31) the above inequality can be rewritten as

δ(z)−(sp/n) 2
T

(1−n)ν2(z′, δ(z))sp/n ≤ 1.

Since ν2(z′, δ(z)) ≤ Cδ(z)
2
T

(n−1), the above inequality holds true and we are
done.

Fractional Hardy–Sobolev spaces. It would be interesting to study
Hardy–Sobolev spaces Hp,s for s ≥ 0 not necessarily an integer. These spaces
can be defined as follows. When s ≥ 0, we set s = [s] + s′, where [s] denotes
the integral part of s and 0 ≤ s′ < 1. Then we define

Hp,s =
{
f ∈ H(D) : ∂α

( �
D
f(w)KD(·, w)δ(w)−s

′
dV (w)

)
∈ Hp(D)

for all α, |α| ≤ [s]}.
The analysis of these space would require the use of weighted reproducing
kernels, in particular of the Bergman kernel for the weight given by powers
of δ(z). This could probably be done using known techniques such as in
[A, BeA, DiFFi]. We wish to return to these questions in the future.
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