
0. Introduction

Let us consider the following stochastic differential equation in a real separable Hilbert

space H:

(∗)
{
dXt = [AXt + F (Xt)]dt+BdWt,
X0 = x ∈ H, t ≥ 0.

In this equation:

• A is the infinitesimal generator of a strongly continuous semigroup St, t ≥ 0, of
linear bounded operators on H,

• F is a Borel mapping from H to H,

• B is a linear bounded operator from a real separable Hilbert space K to H,
• Wt, t ≥ 0, is a K-valued standard cylindrical Wiener process.
If the operators Qt defined by

(0.1) Qtx =

t\
0

SsBB
∗S∗sx ds, x ∈ H, t > 0,

are nuclear (trQt <∞), then the process Z given by the formula

(0.2) Zxt = Zt(x) = Stx+

t\
0

St−sB dWs, t ≥ 0,

is a unique mild solution to the linear equation corresponding to (∗) (F ≡ 0) (see
e.g. [D-Z; S]). The process Z is Gaussian and Markovian and it is called an Ornstein–

Uhlenbeck process (O-U process for short).

In this paper our basic assumption is

(A1)

∞\
0

trSsBB
∗S∗s ds <∞.

If (A1) holds, then the Gaussian measure µ = N (0, Q∞) on H with mean zero and with
covariance operator

(0.3) Q∞x =

∞\
0

SsBB
∗S∗sx ds, x ∈ H,

is an invariant measure for the O-U process Z defined by (0.2). It is well known that

under (A1) the transition semigroup (Rt) of Z,

Rtφ(x) := E(φ(Z
x
t )),



6 A. Chojnowska-Michalik

is a positivity preserving C0-semigroup of contractions in L
p(H,µ), for all 1 ≤ p < ∞.

An important example is the so-called Malliavin process which is a solution of (∗) with
A = −1/2, F ≡ 0 and a Hilbert–Schmidt operator B, and then Q∞ = BB∗. The

generator LM (the Malliavin generator) of its transition semigroup (RMt ) is known in

quantum physics as the Number Operator. Let us recall some remarkable properties

of (RMt ) like hypercontractivity ([N]) and the Logarithmic Sobolev Inequality for L
M

([Gr1], [S1]). Moreover, (RMt ) is symmetric (in L
2(H,µ)).

Two classes of O-U semigroups (and related semilinear equations) have been inten-

sively studied for many years:

• The first is the class of symmetric O-U semigroups, which is important because
of applications in physics. Recall that symmetric transition semigroups correspond to

reversible processes.

• The second one is the class of strongly Feller O-U semigroups, which is important in
the theory of Kolmogorov equations because of smoothing properties of such semigroups.

The aim of this paper is to investigate the transition semigroup for equation (∗) in the
spaces Lp(H,µ). We do not assume that the corresponding O-U semigroup is associated

to a Dirichlet form (in particular symmetric) nor do we assume that it has the strong

Feller property. Results on O-U processes obtained in several papers [Ch-G, . . . ] enable

us to consider quite a general class of O-U semigroups (Section 2), which also contains

the Malliavin semigroup (RMt ) as well as a certain important subclass of strongly Feller

semigroups. Applications to non-reversible systems and recently also to Mathematical

Finance ([M]) provide some motivation here.

We make weak assumptions on the nonlinear term, namely our basic assumption on

F is

(F1) F : H → imB is a Borel function and\
H

exp(δ‖B−1F (x)‖2)µ(dx) <∞ for some δ > 0,

where B−1 means the pseudoinverse of B. By the Fernique theorem, functions F of

linear growth satisfy the exponential integrability condition in (F1). Extensions of the

Fernique theorem and conditions for (F1) to hold have been given e.g. in [A-Ms-Sh], [A-St]

and [L].

Starting from the observation that under (A1) and (F1) for any T > 0 equation (∗)
has a solution Xxt , 0 ≤ t ≤ T , given by the Girsanov transform (a Girsanov solution for
short), we define a family (Pt)0≤t≤T of operators on L

∞(H,µ) by

(0.4) Ptϕ(x) = Eϕ(X
x
t ), 0 ≤ t ≤ T.

If uniqueness in law holds for (∗) (in particular, if F is bounded), then any realization
of the martingale solution to (∗) is a Markov process and the (Pt) defined above is its
transition semigroup. If there is no uniqueness, we use one of solutions to (∗), which is
constructed on compact intervals [0, T ], to define (PTt )0≤t≤T in (0.4). But it follows from

the properties of the Girsanov transform that for a fixed t ≥ 0 the operator P Tt does
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not depend on T , T ≥ t (Remark 1.5a). We show that the operators Pt, t ≥ 0, form a
semigroup and the Girsanov solution Xxt , 0 ≤ t ≤ T , has a quasi Markov property with
respect to (Pt) (Remark 1.7), so roughly speaking (Pt) is a transition semigroup for any

Girsanov solution to (∗).
We prove that, in the case of F bounded, (Pt) is a C0-semigroup on L

p(H,µ) for all

1 < p < ∞, and in the case of F exponentially integrable the same holds for p suitably
large. Then we study basic analytic properties of the semigroup (Pt), first for F bounded

and then in the general case. We investigate hyperboundedness, Logarithmic Sobolev

Inequality (LSI), the domain of the generator and invariant measures with densities

w.r.t. (with respect to) µ, obtaining new results for nonsymmetric non-strongly Feller

systems. Hyperboundedness and LSI have been investigated mainly for reversible (Pt) or

for perturbations of symmetric systems (see [Gr2], [Ba] and references therein). Invariant

measures with densities were an object of intensive study starting from the results of

[Sh; E], [vV] obtained for a semilinear equation (∗) corresponding to the Malliavin process
on Wiener space. In both the papers the theory of Fredholm operators was used, and F

was assumed either to be bounded ([Sh; E]) or to satisfy a stronger condition than our

(F1b) in Section 7 ([vV]). Recently, many results have been obtained for strongly Feller

processes ([D-Z; R], [Ch-G; E], [D-Z; E] and references therein, [D-G,2]) and for processes

corresponding to Dirichlet forms (e.g. [B-R], [H; E], [B-R-Zh], and references therein) but

they do not cover our results even in the case of bounded F .

In view of recent results in [H; P] the hyperboundedness of (Pt) is important for the

existence of an invariant measure with density. It is well known ([Gr1], [Gr2]) that in the

case of (Pt) symmetric, hyperboundedness and LSI are equivalent but in the nonsymmet-

ric case LSI is a stronger property (see [F; H], [Ch-G; N] and also Sections 2, 5, 6).

The LSI, established in the case of F bounded, enables us to obtain crucial estimates

related to (F1). Thanks to these estimates, we prove by approximation that for general F ,

(Pt) is a hyperbounded C0-semigroup in L
p(H,µ) for p > p0, p0 being given explicitly. As

a corollary we get a result on an invariant measure analogous to the previous one for F

bounded. In the particular case of A = −1/2, a similar result was obtained in [H; E] by the
Dirichlet form approach and the hyperboundedness of (Pt) was proved by tedious direct

calculations. For gradient systems (see [D-Z; E]), i.e. where Pt is symmetric w.r.t. its own

invariant measure, the same Lp-regularity of the invariant density as in Corollary 7.3 has

been obtained in a different setting in [L] and [A-Ms-Sh].

Finally, we give a characterization of the domain of the generator LF , extending the

result in [Sh; N] and partially generalizing a result in [D]. An LSI is also proved.

Our main tools are the Girsanov transform and Miyadera perturbation method. The

first one gives good estimates for the norm and the second one provides some information

about the domain of LF . Let us mention that the advantage of using the Girsanov trans-

form in the study of the strong Feller property of (Pt) has recently been demonstrated

in [Ma-Se].

Roughly speaking, we show that (Pt) has similar properties to those of the correspond-

ing O-U semigroup. Therefore the results obtained in [Ch-G,. . . ] are of basic importance.

In Section 2 we extend them to the case where µ need not be a full measure.
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Annotated contents

0. Introduction

1. Preliminaries

It is shown that under (F1), equation (∗) has a martingale solution given by the Girsanov
transform (Prop. 1.2 and Cor. 1.3) and in particular Pt is well defined on L

∞(H,µ). Lemma 1.6
on convergence of Girsanov martingales is proved.

2. The O-U semigroup (Rt) and Gaussian Sobolev spaces

Some properties from [Ch-G; . . . ] are recalled in a more general setting.

3. The semigroup (Pt) on L
p(H,µ)—existence for bounded F

3.1. Probabilistic approach

Using the Girsanov transform it is shown that (Pt) is a C0-semigroup on L
p(H,µ), 1 < p <∞.

3.2. Analytic approach and equivalence

A C0-semigroup (Vt) on L
2(H,µ) is constructed by a Miyadera perturbation of L (Thm. 3.4)

and the equality Vt = Pt is proved (Thm. 3.6). Consequently, dom2(LF ) = dom2(L) (where LF
is the generator of (Pt) and L is the corresponding O-U generator).

4. Properties of (Pt)—the case of bounded F

4.1. Hyperboundedness

• “Iff” conditions (Thm. 4.1).

• Pt improves positivity (Prop. 4.2).

4.2. Domains of generators

In L2 and in Lp, some consequences of results for O-U generators.

4.3. Invariant measures with densities

• Thm. 4.7—existence; uniqueness of the density ̺; ̺ > 0, ̺ ∈
⋂
p≥1 L

p(H,µ).

• Exponential convergence of Pt (Prop. 4.8) and W
1,2
Q∞
-regularity of ̺ (Prop. 4.9).

5. Examples

Simple examples show that, even in the case of F (x) ≡ b ∈ imB and under (A1), it may happen
that equation (∗) has no invariant measure or (∗) has a unique invariant measure which is
singular with respect to µ. An example of (Pt) hyperbounded for t ≥ t0 and non-hyperbounded
for t < t0 is also given.

6. Logarithmic Sobolev inequality—the case of bounded F

• “Iff” conditions are given for LF to satisfy a defective LSI (Thm. 6.1). To prove the LSI for
all 1 < p < ∞ some domain consideration is needed, since we only have information about
dom2(LF ).

• The LSI enables us to obtain some auxiliary estimates for ‖Pt‖p→q , corresponding to (F1)
(Lem. 6.2 and Cor. 6.3)

7. The semigroup (Pt) on L
p(H,µ)—the case of general F

This section contains the main results.

• Under (F1) with some lower bound on δ (i.e. (F1a)), (Pt) is shown to be a C0-semigroup on
Lp(H,µ) for p > p0, where p0 is given explicitly. Moreover, (Pt) is hyperbounded (Thm. 7.1).
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In the proof F is approximated by bounded Fn and the estimates obtained in Section 6 are
essential.

• As a corollary concerning invariant measures we obtain the statements of Thm. 4.7 and Prop.
4.8 but with a weaker Lp-regularity (Cor. 7.3).

• As another corollary, dom2(LF ) is characterized in case the corresponding O-U semigroup
(Rt) is symmetric (Cor. 7.5).

• Under assumption (F1b), a bit stronger than (F1a), it is proved that in the case of an arbitrary
(nonsymmetric) (Rt) we have dom2(LF ) = dom2(L) and LF satisfies a defective LSI for p ≥ 2
(Thm. 7.4).

Appendix

Technical lemmas on approximation.

1. Preliminaries

We assume that (Ω,F , P ) is a fixed probability space with a filtration (Ft)t≥0 satisfying
the usual conditions, W = (Wt) is a standard cylindrical K-valued Wiener process w.r.t.

(Ft) and η is an H-valued F0-measurable random variable. If trQt <∞, t > 0 (see (0.1)),
then the process

(1.1) Zt(η) = Stη +

t\
0

St−sB dWs, t ≥ 0,

is a unique mild solution to the equation
{
dZt = AZtdt+BdWt,
Z0 = η,

on the given (Ω,F , (Ft), P ) w.r.t. the fixed Wiener process W . For preliminaries on
stochastic integration and equations in Hilbert spaces see e.g. [D-Z; S].

For the equation

(∗)
{
dXt = [AXt + F (Xt)]dt+BdW̃t,
X0 = x ∈ H,

we consider so-called martingale solutions (see ibid.):

Definition 1.1. Fix x ∈ H. If there exist: a probability space (Ω̃x, F̃x, P̃ x) with a
filtration (F̃xt ) satisfying the usual conditions, a K-valued standard cylindrical Wiener
process W̃ x relative to (F̃xt ) and an (F̃xt )-adapted process X̃x satisfying

(1.2) X̃xt = Stx+

t\
0

St−sF (X̃
x
s ) ds+

t\
0

St−sB dW̃
x
s , t ≥ 0, P̃ x-a.e.,

then the process X̃x is called a martingale solution to equation (∗). More precisely, the
martingale solution is the sequence ((Ω̃x, F̃x, P̃ x); (F̃xt ); W̃ x; X̃x).
We first prove, by means of the Girsanov theorem, that under our basic assumptions

(A1) and (F1) below, equation (∗) has a martingale solution. Under condition (A1) the
nonlinear term F in (∗) is assumed to satisfy
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(F1) F : H → imB is a Borel function and\
H

exp(δ‖B−1F (x)‖2)µ(dx) <∞ for some δ > 0,

where µ = N (0, Q∞) is well defined by (0.3) in view of (A1) and B−1 stands for the
pseudoinverse of the operator B (see e.g. [D-Z; S], p. 407). (Recall that dom(B−1) = imB

and for y ∈ imB, B−1y = x, where x is the element in B−1{y} of minimal norm.
Moreover, imB−1 is orthogonal to kerB.)

For the O-U process (Zxt ) given by (0.2) and (1.1), define the following processes:

(1.3) Ψ(t, x) := B−1F (Zxt ), x ∈ H, t ≥ 0,

(1.4) Uxt = U
x
t (Ψ) := exp

( t\
0

〈Ψ(s, x), dWs〉 −
1

2

t\
0

‖Ψ(s, x)‖2 ds
)
.

Proposition 1.2. Assume (A1) and (F1). Then for µ-a.a. x,

E(Uxt ) = 1 for all t ≥ 0.
(Equivalently , (Uxt ) is an (Ft)-martingale.)
Proof. Let (Zµt ) denote the process (1.1) with the initial distribution µ, i.e. the random

variable η in (1.1) has the probability distribution L(η) = µ. Then L(Zµt ) = µ for t ≥ 0
and hence\

H

exp(δ‖B−1F (x)‖2)µ(dx) = E[exp(δ‖B−1F (Zµt )‖2)](1.5)

=
\
H

E[exp(δ‖B−1F (Zxt )‖2)]µ(dx) for every t ≥ 0,

the latter equality being a consequence of the Markov property of Z.

Let Ψ be as in (1.3) and fix t, T > 0, x ∈ H. Since the function s 7→ exp s is convex
we obtain by Jensen’s inequality

t+T\
t

exp(δ‖Ψ(s, x)‖2) ds = T
t+T\
t

exp(δ‖Ψ(s, x)‖2) ds
T

(1.6)

≥ T exp
[
δ

T

t+T\
t

‖Ψ(s, x)‖2 ds
]
.

Note that (x, s, ω) 7→ Zxs is B(H)⊗B(R)⊗F-measurable, where B(H) denotes the Borel
σ-field in H. Then from (F1), (1.5), (1.6) and the Fubini theorem it follows that

∞ >

t+T\
t

\
H

E[exp(δ‖Ψ(s, x)‖2)]µ(dx) ds ≥ T
\
H

E

[
exp

(
δ

T

t+T\
t

‖Ψ(s, x)‖2 ds
)]

µ(dx).

Hence, if we take T = 2δ, then for a set Gt ∈ B(H) with µ(Gt) = 1 the Novikov condition

(1.7) E

[
exp

(
1

2

t+T\
t

‖Ψ(s, x)‖2 ds
)]

<∞

holds for x ∈ Gt. The rest of the proof runs as in [K-S, Cor. 3.5.14] and [D-Z; S, p. 299].
Namely, set tk := 2kδ, k = 0, 1, 2, . . . , and G =

⋂
k Gtk . Then µ(G) = 1. For a fixed x ∈ G,



Transition semigroups 11

it follows from [D-Z; S, Prop. 10.17] or [K-S, Cor. 3.5.13] that for any k = 0, 1, 2, . . . the

process

Mkt := exp

( t\
tk

〈Ψ(s, x), dWs〉 −
1

2

t\
tk

‖Ψ(s, x)‖2 ds
)
, t ∈ [tk, tk+1],

is an (Ft)-martingale. In particular we have E(Mkt | Ftk) = 1. If t ∈ [tm, tm+1], then
Uxt =M

0
t1 · . . . ·M

m−1
tm ·Mmt and hence EUxt = 1, which finishes the proof.

As an immediate consequence of Proposition 1.2 and the Girsanov theorem [D-Z; S,

Thm. 10.14 and p. 300] we obtain

Corollary 1.3. Assume (A1) and (F1). Then for µ-a.a. x and any T > 0 there exists a

martingale solution of equation (∗) on the interval [0, T ]. Namely , the process X̃xt = Zxt ,
t ∈ [0, T ], considered on (Ω,F , (Ft), P̃ xT ), where
(1.8) dP̃ xT (ω) = U

x
T (ω)dP (ω),

is a martingale solution of (∗) relative to the Wiener process W̃ xt = Wt −
Tt
0
Ψ(s, x) ds,

t ∈ [0, T ].
Remark 1.4. Let (A1) be satisfied. If for a constant c > 0,

‖B−1F (x)‖ ≤ c(1 + ‖x‖), x ∈ H,
then (F1) holds by the Fernique theorem.

Remark 1.5. If for all t > 0 the operators Qt defined by (0.1) are nuclear and

(F2) ‖B−1F‖∞ := sup
x∈H
‖B−1F (x)‖ =: β <∞,

then for every x ∈ H and T > 0 equation (∗) has a unique-in-law martingale solution on
[0, T ]. (Indeed, for any x ∈ H the Novikov condition (1.7) holds for t = 0 and all T > 0,

which implies the existence by [D-Z; S, Prop. 10.17]. The uniqueness follows as in [K-S,

Cor. 5.3.11].)

Let Bb(H) denote the space of real-valued bounded Borel functions on H. Assume

(A1), (F1) and let G be the set defined in the proof of Proposition 1.2. Then, in view of
Proposition 1.2, for x ∈ G, t ≥ 0 and φ ∈ Bb(H) we can define
(1.9) Ptφ(x) := E[φ(Z

x
t )U

x
t ].

By (1.9), Ptφ is µ-measurable and

‖Ptφ‖∞ = ess sup
x∈H

|Ptφ(x)| ≤ ‖φ‖∞,

which implies that Pt is a contraction on L
∞(H,µ).

Note that by Proposition 1.2 and Corollary 1.3 we have the following equality for any

x ∈ G any T > 0 and 0 ≤ t ≤ T , φ ∈ Bb(H):
(1.9a) Ptφ(x) = Ẽ

x
T (φ(X̃

x
t )),

where ẼxT means the expectation w.r.t. the probability measure P̃
x
T defined by (1.8) and

X̃xt is a martingale solution of (∗) given in Corollary 1.3. Hence Ptφ corresponds to
equation (∗).
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Remark 1.5a. Even if there is no uniqueness in law of martingale solutions to (∗), the
RHS (right hand side) of (1.9a) does not depend on T . For 0 < T1 < T2 let X̃

1,x and X̃2,x

be the solutions on [0, T1] and [0, T2], respectively, starting from x ∈ G and constructed
by the Girsanov transform on different probability systems. Then the expected values of

φ(X̃1,xt ) and φ(X̃
2,x
t ) are equal for 0 ≤ t ≤ T1.

The following simple lemma, about convergence of Girsanov martingales, will be useful

in Sections 3 and 7.

Let

Ψn(t, x) := B
−1Fn(Z

x
t ) and Uxn,t := U

x
t (Ψn),

where Uxt is given by (1.4).

Lemma 1.6. Assume (A1). Let F, Fn, n = 1, 2, . . . , satisfy (F1) and

(1.10)
\
H

‖B−1(Fn(x)− F (x))‖2 dµ→ 0 as n→∞.

Then for any T > 0 there exists a subsequence (nm) such that

(1.11) E|Uxnm,T − UxT | → 0 as m→∞, for µ-a.a. x.
Proof. Analogously to (1.5) we have\
H

E
( T\
0

‖Ψn(t, x)−Ψ(t, x)‖2 dt
)
µ(dx) =

T\
0

\
H

E[‖B−1(Fn(Zxt )− F (Zxt ))‖2]µ(dx) dt

=

T\
0

E‖B−1(Fn(Zµt )− F (Zµt ))‖2 dt

= T
\
H

‖B−1(Fn(x)−F (x))‖2 dµ→ 0 as n→∞.

Hence for a subsequence

(1.12) E

T\
0

‖Ψnm(t, x)− Ψ(t, x)‖2 dt→ 0 as m→∞, for µ-a.a. x.

Fix x ∈ H such that (1.12) holds. Then
T\
0

〈Ψnm(t, x), dWt〉 →
T\
0

〈Ψ(t, x), dWt〉 in mean square, as m→∞,

which implies that Uxnm,T → UxT in probability as m→∞. Since Uxnm,T , UxT are nonneg-
ative random variables with mean one, (1.11) follows by [D-Z; S, Lem. 10.16].

Remark 1.7. It follows from the general definition that the Girsanow solution X̃xt = Z
x
t ,

0 ≤ t ≤ T , defined in Corollary 1.3 is a Markov process with the transition semigroup

(Pt) iff

(1.13) ẼxT (ϕ(Z
x
t ) | Fs) = Pt−sϕ(Zxs ) for 0 ≤ s ≤ t ≤ T, ϕ ∈ Bb(H).

Since for 0 ≤ s ≤ t, Zxt = Z(t, s;Zxs ) P -a.e., where Z(t, s; η) = St−sη +
Tt
s
St−uB dWu

with Fs-measurable η, repeating the argument from the proof of [D-Z; S, Thm. 9.9] we
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see that (1.13) follows from the equality

(1.14) ẼxT (ϕ(Z(t, s; y) | Fs) = Pt−sϕ(y) for ϕ ∈ Cb(H), y ∈ H.
If F = BF̂ with F̂ ∈ C1b(H,K), then (1.14) holds, since (∗) has a pathwise unique mild
solution. Approximating UxT as in Lemma 1.6 (compare the proofs of Theorem 7.1 and

Proposition 3.2) one can prove that if F satisfies (F1), then (1.14) holds for µ-a.a. y, for

all 0 ≤ s < t ≤ T and if F satisfies (F2), then (1.14) holds for all y ∈ H. Therefore in the
latter case the Girsanov solution to (∗) is Markov w.r.t. (Pt). In the former case it has
a weaker Markov-like property and one can show that it satisfies (1.13) w.r.t. P̃ νT , where

P̃ νT is defined in Remark 4.6 and ν is absolutely continuous w.r.t. µ.

2. The O-U semigroup (Rt) and Gaussian Sobolev spaces

Here we discuss some properties of O-U semigroups to be used in the next sections. Some

results from several papers [Ch-G, . . . ] are reviewed in a more general setting. In contrast

to [Ch-G, . . . ], in the present paper it is not assumed that

(2.1) kerQ∞ = {0}.
Recall that the O-U semigroup (Rt) (i.e. the transition semigroup for the O-U process

Z in (0.2)) is given by

Rtφ(x) = Eφ(Z
x
t ) =

\
H

φ(Stx+ y)µt(dy), φ ∈ Bb(H),

where µt = N (0, Qt) with Qt as in (0.1). (Rt) is a C0-semigroup of contractions on
Lp(H,µ) for 1 ≤ p <∞.
We define the following class of cylindrical functions:

(2.1a) FC∞b := {ϕ : H → R : ϕ(x) = f(〈x, h1〉, . . . , 〈x, hm〉) for some m ∈ N
and h1, . . . , hm ∈ dom(A∗), f ∈ C∞b (Rm)}.

and the differential operator, for φ ∈ FC∞b ,
L0φ(x) := 12 tr(QD

2φ(x)) + 〈Ax,Dφ(x)〉, x ∈ dom(A),
where Q := BB∗ and D denotes the Fréchet derivative.

It was proved in [Ch-G; E, Lem. 1] (see also [Z2]) that under (A1) the generator L

of (Rt) in L
p(H,µ), 1 ≤ p < ∞, is the closure of L0 and moreover FC∞b is invariant

for (Rt).

Assume (A1) and (2.1). Then it was shown in [Ch-G; Q] and [Ch-G; R] that the

equality of images

(A2) imQ
1/2
t = imQ

1/2
∞

assures many regularizing properties of Rt, for instance (A2) is a sufficient and necessary

condition for hypercontractivity of (Rt) in L
p(H,µ) (see also [F; H]). It was proved in

[Ch-G; N] that under (A1) and (2.1), the inclusion

(A3) imQ1/2∞ ⊂ imQ1/2
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is equivalent to the Log Sobolev Inequality for L (and it is equivalent to the existence

of a spectral gap for L). It follows from this section that the same is true without the

assumption (2.1).

Let us remark that (A3) is stronger than (A2)—see Lemma 2.1(iv) and Corollary 2.3

below. Note that (A3) is satisfied in two important cases: for the Malliavin process

(Q = Q∞) and for Q = I. In the latter case the corresponding semigroup (Rt) is strongly

Feller ([D-Z; S, Cor. 9.23]) and it has many regularity properties.

2.1. Preliminaries—the semigroup (S0(t)). We first investigate an auxillary semi-

group S0(t) which plays an important role in the study of properties of (Rt) (see

[Ch-G; Q], [Ch-G; R]).

It has been proved in [Ch-G; R, Prop. 1] that under (A1) the subspace

H0 := Q
1/2
∞ (H)

is invariant for the semigroup (St):

(2.2) St(H0) ⊂ H0 for all t ≥ 0.
(For the reader’s convenience the proof of (2.2) is given in the Appendix.)

We denote by π the orthogonal projection in H onto H0, the closure of H0 in H. (We

always consider H0 with the scalar product induced from H.) For a mapping T on H let

(2.3) Tπ := T |H0
be the restriction of T to H0. Obviously, by (2.2),

Sπt : H0 → H0 is a C0-semigroup on H0.

Observe that Q
−1/2
∞ , the pseudoinverse of Q

1/2
∞ , satisfies

(2.4) imQ−1/2∞ = H0, Q−1/2∞ Q1/2∞ = π, Q1/2∞ Q−1/2∞ = IH0 .

It also follows from (2.2) that

(2.5) S0(t) := (Q
−1/2
∞ StQ

1/2
∞ )

π = Q−1/2∞ Sπt (Q
1/2
∞ )

π

is a bounded operator from H0 to H0 with the adjoint operator on H0:

(2.5a) S∗0(t) = Q
1/2
∞ (Sπt )

∗Q
−1/2
∞ .

Below we prove modifications of some propositions from [Ch-G; . . . ].

Lemma 2.1 (comp. [Ch-G; R, Prop. 2]). Assume (A1).

(i) For all t ≥ 0 the following identities hold :
(2.6) (Sπt )

∗ = π(S∗t )
π,

(2.7) S∗0(t)x = Q
1/2
∞ S∗tQ

−1/2
∞ x for x ∈ H0,

and S∗0 (t) restricted to H0 is a C0-semigroup in the norm ‖ · ‖H0 (where ‖x‖H0 :=
‖Q−1/2∞ x‖).
(ii) For all t ≥ 0 we have the equality

(2.8) Q1/2∞ [I
π − S0(t)S∗0(t)]Q1/2∞ y = Qty, y ∈ H0.

(iii) (S0(t)) is a C0-semigroup of contractions on H0.
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(iv) For any t > 0,

‖S0(t)‖ < 1 iff (A2) holds for t.

Proof. (i) For x, y ∈ H0 we have
〈(Sπt )∗x, y〉H0 = 〈x, Sty〉H = 〈S

∗
t x, y〉H = 〈πS∗t x, y〉H0 ,

which yields (2.6). Observe that Q
1/2
∞ y = Q

1/2
∞ πy for y ∈ H, which together with (2.6)

gives (2.7). The rest of (i) follows from (2.5a) and (2.4), since (Sπt )
∗ is a C0-semigroup

on H0.

(ii) For y ∈ H0, from (2.7) and (2.4) we obtain
Q1/2∞ S0(t)S

∗
0(t)Q

1/2
∞ y = StQ∞S

∗
t y.

Since, as a consequence of (A1), we always have

(2.8a) Q∞ − StQ∞S∗t = Qt,
the equality (2.8) follows.

(iii) By (2.8) the operator I−S0(t)S∗0(t) is nonnegative on H0 and hence ‖S0(t)‖ ≤ 1.
Strong continuity of S0(t) follows as in [Ch-G; R, Prop. 2].

(iv) Let Vt := S0(t)S
∗
0(t) : H0 → H0 and observe that ‖S0(t)‖ < 1 iff Iπ − Vt has

a bounded inverse. By (2.8a) we have Q
1/2
t (H0) ⊂ Q

1/2
∞ (H) = Q

1/2
∞ (H0) and hence

Jt := Q
−1/2
∞ (Q

1/2
t )

π is a bounded operator from H0 to H0. Note that by (2.8),

Iπ − Vt = JtJ∗t .
If (A2) holds, then ker (Q

1/2
t )

π = {0} and Q−1/2t (Q
1/2
∞ )π = J−1t is bounded from H0 to

H0. Hence I
π − Vt has a bounded inverse. By (2.8) and [D-Z; S, Prop. B1],

im (Q
1/2
t )

π = imQ1/2∞ (I
π − Vt)1/2

and if Iπ − Vt has a bounded inverse then Q1/2t (H0) = Q1/2∞ (H0), which implies (A2).
Remark. With respect to the decomposition H = H0 ⊕ H⊥0 the operator St has the
form

St =

[
S11t S12t
0 S22t

]
with S11t = S

π
t .

Recall that Q := BB∗. Then

kerQ1/2∞ ⊂ kerQ1/2.
Indeed,

〈Q∞x, x〉 =
∞\
0

‖Q1/2S∗t x‖2 dt, x ∈ H,

and hence for x ∈ kerQ1/2∞ we have Q1/2S∗t x = 0 for a.a. t ∈ [0,∞) and by continuity
Q1/2x = 0.

The above inclusion yields

(2.8b) Q1/2y = Q1/2πy for y ∈ H,
(2.8c) H0 ⊃ imQ1/2 (= imB).
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Let V := Q1/2Q
−1/2
∞ be an operator from H0 to H with domain H0. By H1 we denote

dom(A∗0|H0), the domain of A∗0 considered as the generator of the semigroup (S∗0(t))
acting on H0 (see Lemma 1(i)). Note that by [Da, Thm. 1.9, p. 8], H1 is a core for A

∗
0

in H0. It is easy to check that H1 = Q
1/2
∞ (dom(Aπ)∗), where Aπ is the generator of the

semigroup (Sπt ). Let H2 := Q
1/2
∞ (dom(A∗)).

Lemma 2.2 (for (a) comp. [Ch-G; Sp, Lem. 1.2]). Assume (A1).

(a) For x, y ∈ H1 the following (Lyapunov) equation holds :
(2.9) −〈A∗0x, y〉 − 〈x,A∗0y〉 = 〈V x, V y〉.
(b) If h ∈ dom(A∗) then πh ∈ dom((Aπ)∗) and (Aπ)∗πh = πA∗h.
(c) H2 ⊂ H1, H2 is invariant for (S∗0 (t)) and it is a core for A∗0 in H0.

Proof. (a) The following identity follows from (2.8) for h, g ∈ H0:

〈Q1/2∞ h,Q1/2∞ g〉 − 〈S∗0(t)Q1/2∞ h, S∗0(t)Q
1/2
∞ g〉H0(= 〈Qth, g〉) =

t\
0

〈Q1/2S∗sh,Q1/2S∗sg〉 ds.

Assume that Q
1/2
∞ h,Q

1/2
∞ g ∈ H1. Then we can differentiate at t = 0 both sides of the

above equality to obtain

−〈A∗0Q1/2∞ h,Q1/2∞ g〉H0 − 〈Q
1/2
∞ h,A∗0Q

1/2
∞ g〉H0 = 〈Q

1/2h,Q1/2g〉.

Putting x = Q
1/2
∞ h and y = Q

1/2
∞ g we get (2.9).

(b) By (2.2), πS∗t π
⊥x = 0 and hence πS∗t πx = πS

∗
t x. Therefore for h ∈ dom(A∗),

t−1[(Sπt )
∗(πh)− πh] = t−1π(S∗t h− h) −→

t→0+
πA∗h,

and (b) follows.

(c) Let g ∈ H2. Then g = Q1/2∞ h, where h ∈ dom(A∗) and Q−1/2∞ g = πh ∈ dom((Aπ)∗)
by (b). Hence g ∈ H1, since A∗0 = Q1/2∞ (Aπ)∗Q−1/2∞ on H0. We have

S∗0 (t)g = Q
1/2
∞ πS∗t πh = Q

1/2
∞ πS∗t h = Q

1/2
∞ S∗t h ∈ H2.

Finally, H2 is dense in (H0, ‖ ‖0). Therefore, by [Da, Thm. 1.9], H2 is a core for A∗0 in
H0 and hence in H0.

Corollary 2.3. Assume (A1).

(i) For any α > 0 the following conditions are equivalent :

(2.10) ‖V x‖ ≥ α‖x‖, x ∈ H0,
(2.11) ‖S0(t)‖ ≤ exp(−α2t/2) for all t ≥ 0.
(ii) (A3) is satisfied iff (2.10) holds for some α > 0.

Proof. (i) SinceH1 is a core for A
∗
0 inH0, we see from Lemma 2.2 that (2.10) is equivalent

to the inequality

〈A∗0x, x〉H0 ≤ −
α2

2
‖x‖2 for x ∈ dom(A∗0),

which is equivalent to (2.11).
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(ii) For y ∈ H, putting x = Q1/2∞ y in (2.10) and using (2.4) and (2.8b) we obtain

(2.12) ‖Q1/2y‖ ≥ α‖Q1/2∞ y‖.
Conversely, for x ∈ H0, setting y = Q

−1/2
∞ x in (2.12) we get (2.10). Finally, by e.g.

[D-Z; S, Prop. B.1] or [Z1], (A3) is satisfied iff (2.12) holds for some α > 0.

2.2. The semigroups (Rt) and (R̂t). By well known properties of Gaussian measures

µ(H0) = 1 and therefore for any 1 ≤ p ≤ ∞ the spaces Lp(H,µ) and Lp(H0, µ) are
isometrically isomorphic. Indeed, if φ, ψ ∈ Lp(H,µ) and φπ(x) = ψπ(x) for µ-a.a. x ∈ H0
(φπ as in (2.3)) then φ = ψ µ-a.e., in particular φ(x) = φ(πx) for µ-a.a. x ∈ H. Hence
e.g. the mappings

(2.13) Lp(H,µ) ∋ φ 7→ φπ ∈ Lp(H0, µ) and Lp(H0, µ) ∋ f 7→ f ◦ π ∈ Lp(H,µ)
define the suitable isomorphisms.

If T is a bounded linear operator on H0, then the operator Q
1/2
∞ TQ

−1/2
∞ is bounded

on H0 and therefore it can be uniquely extended to a µ-measurable linear transformation

TQ∞ on H0 such that

(2.14)
\
H0

‖TQ∞x‖2 µ(dx) = tr(Q1/2∞ TT ∗Q1/2∞ ).

It has been proved in [Ch-G; Q] that the so-called generalized Mehler formula

(2.15) R̂tf(x) :=
\
H0

f((S0(t))Q∞x+ (I − S0(t)S∗0(t))
1/2
Q∞

y)µ(dy)

for f ∈ Bb(H0) and µ-a.a. x ∈ H0
defines a C0-semigroup of contractions in all spaces L

p(H0, µ), 1 ≤ p <∞, and moreover
in L2(H0, µ),

R̂t = Γ (S
∗
0 (t)),

where Γ is the second quantization operator as defined in [S2] (see also [Ch-G; Q]).

Using (2.14), (2.8) and the equality πQtπ = Qt we obtain from (2.15)

(2.16) R̂tf(x) =
\
H

f(Sπt x+ πz)µt(dz) = Rt(f ◦ π)(x)

for f ∈ Bb(H0) and x ∈ H0 (where µt = N (0, Qt)).
In much the same way we get

(2.17) (Rtϕ)(πx) = R̂tϕ
π(πx) for ϕ ∈ Bb(H), x ∈ H.

Remark. Note that R̂tf(x) = Ef(Z
x
t ) and Z

x
t = S

π
t x+

Tt
0
SπsB dWs = πZ

x
t , x ∈ H0.

It follows from (2.16), (2.17) and (2.13) that

(2.18) ‖Rtϕ‖p = ‖R̂tϕπ‖p and ‖Rt‖p→q = ‖R̂t‖p→q.
Let L̂ be the generator of the semigroup R̂t in L

p(H0, µ). As a consequence of (2.13),

(2.16)–(2.18) we find that

• if ϕ ∈ domp(L), then ϕπ ∈ domp(L̂) and L̂ϕπ(y) = Lϕ(y) for µ-a.a. y ∈ H0,
• if f ∈ domp(L̂), then f ◦ π ∈ domp(L) and L(f ◦ π)(x) = L̂f(πx) for µ-a.a. x ∈ H.
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Therefore, if D̃ is a core for L in Lp(H,µ) then {ϕπ : ϕ ∈ D̃} is a core for L̂ in Lp(H0, µ),
and if D is a core for L̂ in Lp(H0, µ) then
(2.19) Dπ := {f ◦ π : f ∈ D}
is a core for L in Lp(H,µ). By (2.13) we see that in particular

(2.20) if D̃ is a core for L in Lp(H,µ) then so is D̃π = {ϕ ◦ π : ϕ ∈ D̃}.

2.3. Sobolev spaces. Let

FC∞(H) := {ϕ : H → R : ϕ(x) = f(〈x, h1〉, . . . , 〈x, hm〉) for some m ∈ N
and h1, . . . , hm ∈ H, f ∈ C∞(Rm)}.

For a bounded selfadjoint operator T in H and ϕ ∈ FC∞(H) we define
(2.21) DTϕ(x) := T

1/2πDϕ(x),

where Dϕ(x) denotes the Fréchet derivative of ϕ at the point x. Then in particular

DQ∞ϕ(x) = Q
1/2
∞ Dϕ(x) and

(2.22) DTϕ(x) = (T
1/2Q−1/2∞ )DQ∞ϕ(x).

Note also that by (2.8b) we have

(2.23) DQφ(x) = Q
1/2Dφ(x).

Observe that D(ψ ◦ π)(x) = πDψ(πx) = Dψπ(πx), and hence
(2.24) DT (ψ ◦ π)(x) = DTψπ(πx).
It also follows that if ϕ(x) = ψ(πx), where ψ ∈ FC∞(H), then

DTϕ(x) = T
1/2Dϕ(x).

(Indeed, Dϕ(x) = πDψ(πx) = π(πDψ(πx)) = πDϕ(x).)

For h ∈ H0 we denote by fh the linear functional on H0 defined by fh(y) :=

〈y,Q−1/2∞ h〉. If K0 is a subspace of H0, we set
P(K0) := lin{1, fh1 · fh2 · . . . · fhn : n = 1, 2, . . . , h1, . . . , hn ∈ K0}

and Pπ(K0) is defined as in (2.19).
Then P(K0) and Pπ(K0) are subspaces of FC∞(H0) and FC∞(H), respectively, and

their elements may be identified with polynomials of n variables, n = 0, 1, . . . If K0 = H0,

then P(K0) is dense in Lp(H0, µ) and hence Pπ(K0) is dense in Lp(H,µ).
For ϕ ∈ Pπ(H0) and T as in (2.21) we define the first Sobolev norm of ϕ by

‖ϕ‖p1,p =
\
H

|ϕ(x)|p µ(dx) +
\
H

‖DTϕ(x)‖pH µ(dx)

and for n = 2, 3, . . . ,

‖ϕ‖pn,p = ‖ϕ‖pn−1,p +
\
H

‖(T 1/2π)⊗nDnϕ(x)‖pH⊗n µ(dx).

The Sobolev space Wn,pT is defined as the completion of Pπ(H0) in the norm ‖ ‖n,p,
n = 1, 2, . . . Note that

(2.25) W 1,pT is continuously embedded in L
p(H,µ)
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iff the operator DT with domain Pπ(H0) is closable in Lp(H,µ) and then Wn,pT is con-

tinuously embedded in Wn−1,pT .

It is well known that (2.25) holds for T = Q∞, p > 1 (see e.g. [W]). In the general

case it can be shown as in [G] (see also [Ch-G; M]) that (2.25) holds (p > 1) iff the

operator T 1/2Q
−1/2
∞ : H0 → H is closable (in H ×H). Here we deal with T equal to Q

or Q∞. Finally, note that by (2.24), W
n,p
T is isometrically isomorphic to Wn,pT (H0) (the

isomorphism (2.13)), n = 1, 2, . . .

2.4. Properties of L and (Rt). First recall the Ito–Wiener decomposition

L2(H0, µ) =
∞⊕

n=0

Hn,

where the spaces Hn are defined as follows: H0 = H≤0 is the space of constants; for
n ≥ 1, H≤n denotes the closed subspace spanned by all products fh1 · . . . · fhm ∈ P(H0)
of order m ≤ n and Hn is the orthogonal complement of H≤n−1 in H≤n. Let In be the
orthogonal projection in L2(H0, µ) onto Hn. Then for h ∈ H0,\

H0

|In(fnh )(x)|2 µ(dx) = n!‖h‖2n, n = 1, 2, . . . ,

and note that I1(fh) = fh.

In particular, if ‖h‖ = 1, then In(fnh ), n = 0, 1, 2, . . . , may be identified with the usual
Hermite polynomials. It follows by polarization that

P(K0) = lin{In(fnh ) : n = 0, 1, 2, . . . , h ∈ K0}.
Let H1 := dom(A

∗
0|H0) as in Section 2.1. By [Ch-G; N] the space P(H1) is a core for

L̂ in Lp(H0, µ), 1 ≤ p <∞. Hence Pπ(H1) is a core for L in Lp(H,µ).
Let DQ∞ be the closure of DQ∞ with domain Pπ(H0) in L2(H,µ) and D∗Q∞ be the

adjoint of the operator DQ∞ acting in L
2-space. We denote by G the maximal domain

of the operator D∗Q∞A
∗
0DQ∞ , that is, φ ∈ G iff φ ∈ W 1,2Q∞ , DQ∞φ ∈ L2(H,µ; dom(A∗0))

and A∗0DQ∞φ ∈ dom2(D∗Q∞). Below we show a basic identity. Part (i) has been proved
in [Ch-G; Sp, Thm. 1.6] for exponential functions. Let FC∞b be as in (2.1a).

Lemma 2.4. Assume (A1). Then:

(i) L̂f = D∗Q∞A
∗
0DQ∞f for f ∈ P(H1).

(ii) G ⊂ dom2(L) and Lφ = D∗Q∞A∗0DQ∞φ for φ ∈ G.
(iii) FC∞b ⊂ G and Lφ = D∗Q∞A∗0DQ∞φ for φ ∈ FC∞b .

Proof. (i) Let h ∈ H1. Then by [Ch-G; Q] we have
(2.25a) LIn(f

n
h ) = nIn(fA∗0h · fn−1h ).

On the other hand

DQ∞(In(f
n
h ))(x) = nhIn−1(f

n−1
h )(x) ∈ H1

and hence A∗0DQ∞(In(f
n
h )) is an H0-valued polynomial. Recall that for an H0-valued

polynomial Ψ and x ∈ H0 we have
(2.25b) (D∗Q∞Ψ)(x) = − tr(DQ∞Ψ)(x) + 〈x,Q−1/2∞ Ψ(x)〉.
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Therefore taking into account that 〈x,Q−1/2∞ A∗0h〉 = fA∗0h(x) we obtain
(2.25c) D∗Q∞A

∗
0DQ∞(In(f

n
h ))

= −n(n− 1)〈A∗0h, h〉In−2(fn−2h ) + nfA∗0hIn−1(f
n−1
h ) for n ≥ 2,

and for n = 1,D∗Q∞A
∗
0DQ∞fh = fA∗0h = L̂fh. Then for f = In(f

n
h ) and n ≥ 2 the equality

(i) follows from (2.25a), (2.25c) and the well known identity for Hermite polynomials:

In(fgf
n−1
h ) = fgIn−1(f

n−1
h )− (n− 1)〈g, h〉In−2(fn−2h ).

Thus (i) holds for f ∈ P(H1).
(ii) It follows from (2.9) that 〈A∗0x, x〉 ≤ 0 for x ∈ H1 and hence for x ∈ dom(A∗0),

since H1 is a core for A
∗
0. Let φ ∈ G. Then by the definition of G, DQ∞φ(x) ∈ dom(A∗0)

for µ-a.a. x. Therefore

〈D∗Q∞A∗0DQ∞φ, φ〉L2 =
\
H

〈A∗0DQ∞φ(x),DQ∞φ(x)〉µ(dx) ≤ 0,

which means that the operatorD∗Q∞A
∗
0DQ∞ with domain G, denoted by LG , is dissipative

in L2(H,µ) and hence closable (see e.g. [P]). Obviously, Pπ(H1) ⊂ G. Then by (i),
(2.25d) LG = L on Pπ(H1) and Pπ(H1) is a core for L.
Since L generates a C0-semigroup of contractions, (α−L)(Pπ(H1)) is dense in L2(H,µ)
for α > 0 and by (2.25d) so is (α − LG)(G). From this, the dissipativity of LG and the
Lumer–Phillips theorem (see e.g. [P]) we conclude that LG (the closure of LG) generates
a C0-semigroup on L

2(H,µ). Then it follows from (2.25d) and Lemma 3.5 of Section 3

that LG = L, which implies (ii).
(iii) Let φ ∈ FC∞b . Then φ(x) = ψ(Πx), where Π is a finite-dimensional orthogonal

projection in H with Π(H) ⊂ dom(A∗) and ψ ∈ C∞b (H). Therefore,
DQ∞φ(x) = DQ∞φ(x) = Q

1/2
∞ ΠDφ(x) ∈ Q1/2∞ (dom(A∗)) ⊂ H1,

where the first equality holds for µ-a.a. x ∈ H by well known properties of the Sobolev
spaceW 1,2Q∞ and the inclusion follows from Lemma 2.2(c). Taking into account that Q

1/2
∞ Π

is a bounded operator from H to (H0, ‖ ‖H0), Q1/2∞ Π(H) ⊂ H1 and A
∗
0 with domain

H1 is a closed operator in (H0, ‖ ‖H0), we conclude by the closed graph theorem that
A∗0Q

1/2
∞ Π is a bounded operator from H to (H0, ‖ ‖H0). Therefore, Ψ := A∗0DQ∞φ is a

bounded H0-valued function on H and for this Ψ the RHS of (2.25b) defines a bounded

function on H. The former implies that DQ∞φ ∈ L2(H,µ; dom(A∗)), and the latter that
A∗0DQ∞φ ∈ dom2(D∗Q∞). Thus φ ∈ G and the equality follows from (ii).
The proposition below is a slight modification of [Ch-G; Sp, Prop. 1.7] but we prove

it in a different and simpler way.

Proposition 2.5. Assume (A1). Then:

(i) For ϕ, ψ ∈ Pπ(H1) or for ϕ, ψ ∈ FC∞b ,
−〈Lϕ,ψ〉 − 〈ϕ,Lψ〉 = 〈DQϕ,DQψ〉.

(ii) The operator DQ with domain Pπ(H1) has a unique extension to an operator DQ
bounded on dom2(L) endowed with the graph norm. The operator DQ is also the unique

extension of DQ with domain FC
∞
b .
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(iii) For any ϕ ∈ dom2(L) and t > 0,
t\
0

‖DQRsϕ‖22 ds = ‖ϕ‖22 − ‖Rtϕ‖22.

Proof. (i) By Lemmas 2.4 and 2.2, for f ∈ P(H1) we have
−2〈L̂f, f〉L2(H0,µ) = −2〈A

∗
0DQ∞f,DQ∞f〉 =

\
H0

‖V DQ∞f(y)‖2H µ(dy)

=
\
H

‖Q1/2πDf(πx)‖2H µ(dx) =
\
H

‖DQ(f ◦ π)(x)‖2H µ(dx)

(the last equality being a consequence of (2.24)). Therefore

−2〈L(f ◦ π), f ◦ π〉L2(H,µ) = ‖DQ(f ◦ π)‖2L2(H,µ:H),
which implies the first part of (i). The second part follows similarly from Lemma 2.4(iii).

(ii) From (i) we have the estimate

‖DQϕ‖22 ≤ 2‖Lϕ‖2‖ϕ‖2 ≤ ‖Lϕ‖22 + ‖ϕ‖22 for ϕ ∈ Pπ(H1).
Since Pπ(H1) is dense in dom2(L) in the graph norm, DQ with domain Pπ(H1) can be

uniquely extended to an operator DQ defined on dom2(L) and L-bounded (i.e. bounded

in the norm of the graph of L). It follows from (i) that DQϕ = DQϕ for ϕ ∈ FC∞b and
since FC∞b is also a core for L we obtain the second statement.

(iii) By (i) and (ii), for ϕ ∈ dom2(L) we have −2〈LRsϕ,Rsϕ〉 = ‖DQRsϕ‖22, and
integration from 0 to t gives the equality in (iii).

Now we recall some properties of (Rt), which are equivalent to (A3) and analogous

to those of (S0(t)) in Corollary 2.3. (2.27) is a spectral gap inequality for L.

Let

L20(H,µ) := {φ ∈ L2(H,µ) : 〈φ, 1〉 = 0}.
Then L20(H,µ) is invariant for the semigroup (Rt). The restriction of Rt to L

2
0(H,µ) will

be denoted by R0t .

Corollary 2.6 (comp. [Ch-G; N, Thm. 3.1]). Assume (A1). Then for any α > 0, the

condition (2.10) holds iff

(2.26) ‖R0t‖2 ≤ exp(−α2t/2)
and iff

(2.27) 〈−Lφ, φ〉 ≥ 12α2‖φ‖2, φ ∈ dom2(L) ∩ L20(H,µ).
Moreover , if (2.10) holds then for each 1 < p <∞,

(2.26a) ‖R0t ‖p ≤ exp
(
− α2t

max(p, p′)

)
.

Proof. (2.26) and (2.27) are equivalent by the properties of contraction semigroups. Sup-

pose (2.10) holds for some α > 0. Then for ϕ ∈ Pπ(H1)∩L02(H,µ), by Proposition 2.5(i)
and (2.22) we have

〈−Lφ, φ〉 = 12 〈V DQ∞φ, V DQ∞φ〉 ≥ 12α2‖DQ∞φ‖22 ≥ 12α2‖φ‖22,
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where the last inequality follows from the well known properties of the Malliavin deriva-

tive DQ∞ (see e.g. [W]). Since Pπ(H1) is a core for L, we get (2.27).
For h ∈ H0, let ψh(x) := 〈x,Q−1/2∞ h〉. Then ψh ∈ L02(H,µ), ψh(x) = fh(πx) and

‖ψh‖2 = ‖h‖2. By the definition of Rt we have
Rtψh(x) =

\
H

〈Stx+ y,Q−1/2∞ h〉µ(dy) = 〈πx, S∗tQ−1/2∞ h〉+ 〈π⊥x, S∗tQ−1/2∞ h〉

= 〈x,Q−1/2∞ S∗0 (t)h〉+ 〈x, π⊥S∗tQ−1/2∞ h〉,
where π⊥ is the projection orthogonal to π. Therefore ‖Rtψh‖2 = ‖S∗0(t)h‖2. Thus (2.26)
implies (2.11) and hence (2.10) by Corollary 2.3.

Finally (2.26a) follows from (2.26), the inequality ‖R0t ‖∞ ≤ 1 and the Riesz–Thorin
Interpolation Theorem (see [Ch-G; Sp]).

Now we formulate some consequences of (A3) for the domain of L.

Corollary 2.7. Assume (A1) and (A3). Then dom2(L) is continuously embedded in

W 2,2Q∞ and

(2.28) ‖D2Q∞ϕ‖2 ≤
2

a2
‖Lϕ‖2,

where a = sup{α : (2.10) holds} and
‖D2Q∞ϕ‖22 =

\
H

‖D2Q∞ϕ(x)‖2H⊗H µ(dx).

Proof. The close inspection of the proof of [Ch-G; N, Thm. 4.3] shows that for ϕ ∈
L02(H,µ) we have the estimate

(2.29) ‖LML−1ϕ‖2 ≤
1

a2
‖ϕ‖2.

Indeed, to prove (2.29) first note that

(2.30) ‖LML−1‖L20→L20 = sup
n≥1
‖LML−1In‖

(because for n ≥ 1 the space Hn is invariant for L and for LM ). It follows from the
properties of LM

(
or from (2.25a) with A∗0 = −12I

)
that for ϕ ∈ P(H0),

LMInϕ = −
n

2
Inϕ.

Hence, taking into account that Rt and LM commute and by [Ch-G; Q, Lem. 1c

and Thm. 1],

‖RtIn‖ ≤ exp(−na2t/2),
for n ≥ 1 we obtain

‖LML−1Inϕ‖ ≤
∞\
0

‖RtLMInϕ‖ dt ≤
n

2

∞\
0

e−na
2t/2‖Inϕ‖ dt =

1

a2
‖Inϕ‖.

This and (2.30) imply (2.29).

From (2.29), for ϕ ∈ dom2(L) we have

‖LMϕ‖2 ≤
1

a2
‖Lϕ‖2.

This and the known inequality ‖D2Q∞ϕ‖2 ≤ 2‖LMϕ‖2 (see e.g. [Sh; D]) give (2.28).
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Finally, the hypercontractivity of Rt and the Log Sobolev Inequality for L are recalled

in Sections 4.1 and 6, respectively.

3. The semigroup (Pt) on L
p(H,µ)—existence for bounded F

In this section we assume (A1) and

(F2) ‖B−1F‖∞ := sup
x∈H
‖B−1F (x)‖ =: β <∞,

Then, in view of Remark 1.5, for φ ∈ Bb(H) and for every x ∈ H, Ptφ(x) is well defined
by formula (1.9) which is recalled below:

(1.9) Ptφ(x) := E[φ(Z
x
t )U

x
t ]

(where Z is the O-U process corresponding to (∗) and U is the Girsanov martingale given
in (1.4)).

3.1. Probabilistic approach

Proposition 3.1. Let (A1) and (F2) be satisfied. Then for any p ∈ (1,∞) the following
conditions hold :

(i) For every t ≥ 0, Pt has a unique extension (still denoted by Pt) to a bounded
operator from Lp(H,µ) to Lp(H,µ). Moreover

(3.1) ‖Pt‖p→p ≤ exp
(

β2

2(p− 1) t
)
.

(ii) For φ ∈ Lp(H,µ), ‖Ptφ− φ‖p → 0 as t→ 0.

Proof. (i) We first prove a more general estimate (3.4) which will be useful in Section 4.

Let φ ∈ Bb(H) and 1 < r ≤ p. Hölder’s inequality with exponents r and r′ = r/(r − 1)
yields

‖Ptφ‖pp =
\
H

|Ptφ(x)|p µ(dx) ≤
\
H

[ \
Ω

|φ(Zxt )|Uxt dP
]p
µ(dx)(3.2)

≤
\
H

( \
Ω

|φ(Zxt )|r dP
)p/r
·
( \
Ω

(Uxt )
r′ dP
)p/r′

µ(dx).

Next, from (1.4), (F2) and Proposition 1.2 we have

E([Uxt (Ψ)]
r′) = E

(
exp

[ t\
0

〈r′Ψ, dWs〉 −
(r′)2

2

t\
0

‖Ψ‖2 ds+ r′(r′−1)
2

t\
0

‖Ψ‖2 ds
])

(3.3)

= E

[
Uxt (r

′Ψ) · exp
(
r′(r′ − 1)
2

t\
0

‖Ψ‖2 ds
)]

≤ exp
(
1

2
· r′(r′ − 1)β2t

)
=: [ct(r

′)]r
′

.
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Taking into account that p ≥ r and the O-U semigroup Rt is a contraction in L
q for

q ≥ 1, from (3.2) and (3.3) we obtain

(3.4) ‖Ptφ‖pp ≤ [ct(r′)]p
\
H

(Rt(|φ|r)(x))p/r µ(dx) ≤ [ct(r′)]p‖|φ|r‖p/rp/r.

Therefore

‖Ptφ‖p ≤ exp
(
r′ − 1
2

β2t

)
‖φ‖p

for φ ∈ Bb(H) and then for φ ∈ Lp(H). Hence

‖Ptφ‖p→p ≤ exp
(
r′ − 1
2

β2t

)

for any r′ ≥ p′ = p/(p− 1). Setting r′ = p′, we obtain (3.1).
To prove (ii), first consider φ ∈ C1b(H). Let

‖φ‖∞ + ‖Dφ‖∞ =: cφ.
Then for every x ∈ H, t ∈ [0, 1], by Hölder’s inequality and (3.3) we have
(3.5) |Ptφ(x)− φ(x)|2 ≤ [E(|φ(Zxt )− φ(x)|Uxt )]2 ≤ exp(β2) · E([φ(Zxt )− φ(x)]2).
Since, by our assumption, E([φ(Zxt ) − φ(x)]2) ≤ c2φE((Z

x
t − x)2) and the process Zxt is

mean square continuous, estimate (3.5) implies that for all x ∈ H, Ptφ(x) → φ(x) as

t→ 0. Moreover, |Ptφ(x)| ≤ ‖φ‖∞ ≤ cφ for all x.
Therefore, by the Lebesgue Dominated Convergence Theorem, (ii) follows for φ ∈

C1b(H). For φ ∈ Lp(H,µ) we can choose a sequence (φn) ⊂ C1b(H) converging to φ in Lp.
The standard estimate

‖Ptφ− φ‖ ≤ ‖Pt(φ− φn)‖+ ‖Ptφn − φn‖+ ‖φn − φ‖
and (3.1) yield, for t ∈ [0, 1],

‖Ptφ− φ‖p ≤
[
1 + exp

β2

2(p− 1)

]
‖φn − φ‖p + ‖Ptφn − φn‖.

Hence, for an arbitrary ε > 0 we can take nε large enough to make the first term on the

RHS less than ε/2 and then for nε we can choose δε > 0 such that for t ∈ [0, δε] the
second term is less than ε/2, which finishes the proof.

Proposition 3.2. Let (A1) hold. Assume that F̂ , F̂n ∈ Bb(H,K), n = 1, 2, . . . , and

(F̂n) converges µ-a.s. and boundedly to F̂ . Let Fn = BF̂n, F = BF̂ , let U
x
n,t denote the

Girsanov martingale corresponding to Fn and

Pnt φ(x) = E[φ(Z
x
t )U

x
n,t] for φ ∈ Bb(H), x ∈ H.

Then for every T > 0 there exists a subsequence (nm) such that for every φ ∈ Lp(H,µ),
(3.6) sup

0≤t≤T
‖Pnmt φ− Ptφ‖p → 0 as m→∞.

Moreover , if (F̂n) converges pointwise to F̂ , then for every x ∈ H,
E|Uxn,T − UxT | → 0 as n→∞
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and

(3.6′) sup
0≤t≤T

‖Pnt φ− Ptφ‖p → 0 as n→∞.

Proof. Since B−1B is an orthogonal projection, it follows easily that Fn, F satisfy (F2)

and (1.10). Then by Lemma 1.6, for some subsequence (nm),

(3.7) E|Uxnm,T − UxT | → 0 as m→∞, for µ-a.a. x.

If φ ∈ Bb(H), then by Proposition 1.2 and Remark 1.5, for any x ∈ H we have

(3.8) |Pnt φ(x)− Ptφ(x)| ≤ E|φ(Zxt ) · (Uxn,t − Uxt )| ≤ ‖φ‖∞ · E|Uxn,T − UxT | ≤ 2‖φ‖∞.

Therefore, for the subsequence satisfying (3.7) we obtain (3.6) from (3.8) and the Lebesgue

Dominated Convergence Theorem.

For φ ∈ Lp(H,µ) let (φm) ⊂ Bb(H) be such that φm → φ in Lp. Then for t ∈ [0, T ],
Proposition 3.1(i) yields

‖Pnt φ− Ptφ‖p ≤ ‖Pnt (φ− φm)‖p + ‖Pnt φm − Ptφm‖p + ‖Pt(φm − φ)‖p(3.9)

≤ 2c(p, T )‖φm − φ‖p + ‖Pnt φm − Pφm‖p,

where c(p, T ) = exp
(
γ2

2(p−1)T
)
and γ = supn ‖F̂n‖∞. From (3.9) we obtain (3.6) by the

same argument as in the proof of Proposition 3.1(ii).

Finally, let F̂n(x)→ F̂ (x) boundedly for all x. Then (under the notation of Lemma 1.6)

for every x, Ψn(t, x)→ Ψ(t, x) P -a.s. and boundedly, therefore Uxn,T → UxT in probability

and in L1(Ω,F , P ) by [D-Z; S; Lem. 10.16]. Arguing as before, we obtain (3.6′).

Corollary 3.3. Under assumptions (A1) and (F2), for any p ∈ (1,∞), (Pt)t≥0 is a
C0-semigroup in L

p(H,µ).

Proof. By Proposition 3.1 it suffices to show that

(3.10) Pt(Psφ)(x) = Pt+sφ(x) for Bb(H), t, s > 0, for µ-a.a. x.

First assume that F is a Lipschitz function. Then equation (∗) has a unique mild solution
X on the given probability space (Ω,F , (Ft), P ) w.r.t. the fixed Wiener process W .
Therefore, in virtue of Remark 1.5, for any T > 0,

Ptφ(x) = Ẽ
x
Tφ(X̃

x
t ) = Eφ(X

x
t ), 0 ≤ t ≤ T,

for φ ∈ Bb(H) and x ∈ H. By [D-Z; S, Thm. 9.8, Cor. 9.9] the process X is Markovian
and (3.10) holds for all x ∈ H. For every F satisfying (F2) we can find a sequence of
bounded Lipschitz functions F̂n : H → K, converging µ-a.s. and boundedly to F̂ :=

B−1F ∈ Bb(H,K). For fixed T > 0, by Proposition 3.2 we can choose a subsequence

(Pnmt , 0 ≤ t ≤ T ) satisfying (3.6). By the first part of the proof

Pnmt (P
nm
s φ) = Pnmt+sφ, φ ∈ Bb(H), m = 1, 2, . . .

Letting m → ∞, from (3.6) and the uniform boundedness of ‖Pnmt ‖, m = 1, 2, . . . ,
t ∈ [0, T ], we obtain (3.10).
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3.2. Analytic approach and equivalence. On the other hand, with equation (∗) one
can associate, at least formally, the differential operator L0F on H given by the formula

(3.11) L0Fφ(x) =
1
2 tr(QD

2φ(x)) + 〈Ax,Dφ(x)〉+ 〈F (x), Dφ(x)〉, x ∈ dom(A),
for φ ∈ dom(L0F ) = FC∞b , where FC∞b is defined in (2.1a). Then L0Fφ = Lφ+G0φ, where
L is the generator of the O-U semigroup (Rt) and G0φ(x) = 〈F (x), Dφ(x)〉, dom(G0) =
FC∞b .

Theorem 3.4. Assume (A1) and (F2). Then the operator L0F is closable in L
2(H,µ), its

closure LF is the generator of a C0-semigroup (Vt, t ≥ 0) on L2(H,µ) and dom(LF ) =
dom(L). Moreover , LF = L+G, where G is the unique extension of G0 to an L-bounded

operator with domain dom(L). The semigroup (Vt) is a unique C0-semigroup on L2(H,µ)
satisfying

Vtφ = Rtφ+
t\
0

Vt−sGRsφ ds(3.12)

= Rtφ+

t\
0

Rt−sGVsφ ds for all φ ∈ dom(L), t ≥ 0.

Proof. (A version of this theorem has been proved in an unpublished paper [Ch-G; P]

and it follows from a result in [V; P] on Miyadera perturbations.) Note that by (2.23) for

φ ∈ FC∞b we have G0φ(x) = 〈Q−1/2F (x), DQφ(x))〉. By [D-Z; S, Cor. B.4], we have
(3.13) ‖Q−1/2h‖ = ‖B−1h‖ for h ∈ imQ1/2 = imB

(where Q−1/2 is the pseudoinverse of Q1/2).

Therefore

(3.14) ‖G0φ‖2 ≤ ‖B−1F‖∞ · ‖DQφ‖2.
Recall that FC∞b is a core for L. By Proposition 2.5(ii), DQ uniquely extends to an

L-bounded operator (still denoted by DQ) with domain dom(L) and hence so does G0.

Thus, by [V; P, Thm. 1] it is enough to show that there exist T, γ > 0 such that

(3.15) γ < 1 and

T\
0

‖GRtφ‖2 dt ≤ γ‖φ‖2 for all φ ∈ dom(L).

To this end we estimate the integral in (3.15) using the Hölder inequality, (3.14) and

finally Proposition 2.5(iii):

T\
0

‖GRtφ‖2 dt ≤
√
T
( T\
0

‖GRtφ‖22 dt
)1/2

(3.16)

≤
√
Tβ
( T\
0

‖DQRtφ‖22 dt
)1/2
≤
√
T β‖φ‖2.

Hence, for T sufficiently small, (3.15) holds and the theorem follows from [V; P, Thm. 1].

The next theorem shows that both the probabilistic and analytic constructions of the

transition semigroup for (∗) coincide. We will need the following lemma about general
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C0-semigroups. This fact is known (see e.g. [E]) but, for completeness, we give a simple

proof different from that in [E].

Lemma 3.5. Let (St) and (Tt) be C0-semigroups of bounded linear operators on a Banach
space E with generators A and B, respectively. If D is a core for A and Ax = Bx for
all x ∈ D, then St = Tt for all t ≥ 0.
Proof. Because D is a core for A, for every x ∈ dom(A) there exists a sequence (xn) ⊂ D
such that xn → x and Axn → Ax as n → ∞. But Axn = Bxn for all n and from the
closedness of B it follows that x ∈ dom(B) and Bx = Ax. Consequently, A ⊂ B.
Next, for fixed t > 0 and y ∈ dom(A) consider the function [0, t] ∋ s 7→ Tt−sSsy ∈ E,

which is differentiable since Ss(dom(A)) ⊂ dom(A) ⊂ dom(B). Basic properties of C0-
semigroups and A ⊂ B yield

d

ds
[Tt−sSsy] = −BTt−sSsy + Tt−sASsy = −Tt−sBSsy + Tt−sBSsy = 0.

Therefore, for all s ∈ [0, t], Tt−sSsy = Tty and, in particular Sty = Tty. It follows that
St = Tt on dom(A) and then on E.
Theorem 3.6. Let (A1) and (F2) hold. Then for every t ≥ 0,

Ptφ = Vtφ for all φ ∈ L2(H,µ),
where (Vt) is the semigroup given by Theorem 3.4.
Proof. Step 1. Here we assume that F ∈ C2b(H,H). Then (∗) has a unique mild solution
(Xxt ) on (Ω,F , (Ft), P, (Wt)) and for ψ ∈ Bb(H),

Ptψ(x) = Eψ(X
x
t ), x ∈ H.

Let AF denote the generator of the semigroup (Pt) in L2(H,µ). Because FC∞b is a core
in L2(H,µ) for the O-U generator L and, by Theorem 3.4, dom(LF ) = dom(L), it follows

that FC∞b is a core for LF . Therefore, by Lemma 3.5, in order to prove the theorem it is

enough to show that

(3.17) AFφ = LFφ for φ ∈ FC∞b ,
which is equivalent to the condition:

for φ ∈ FC∞b , t−1(Ptφ− φ) −→
t→0+

LFφ in L2(H,µ).

Because we do not assume that Q := BB∗ is nuclear, the relevant result on the Kol-

mogorov equation [D-Z; S, Thm. 9.17], [D-Z; E, Thm. 5.4.2], [Z2] is not directly applica-

ble. We use approximations as in [P-Z], [D-Z; E, Thm. 7.1.1]. Let Ak := kA(kI − A)−1,
for sufficiently large k, be the Yosida approximation of A. Let (en) be an ON basis in H

and πk be the orthogonal projection onto lin{e1, . . . , ek}. For each k, let (Xk,xt ) denote
the solution to the stochastic equation

(3.18)

{
dXkt = [AkX

k
t + F (X

k
t )]dt+ πkBdWt,

Xk0 = x.

Then for any T > 0,

(3.19) sup
0≤t≤T

E[(Xk,xt −Xxt )2] −→
k→∞

0.
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Fix ϕ ∈ FC∞b . Then ϕ(x) = f(Πx), where, for a certain natural number N , Π is an

N -dimensional orthogonal projection such that Π(H) ⊂ dom(A∗) and f ∈ C∞b (H).

Therefore

(3.20)
Dϕ(x) = ΠDf(Πx) = Π ◦ΠDf(Πx) = ΠDϕ(x),
D2ϕ(x) = ΠD2f(Πx)Π = ΠD2ϕ(x)Π.

Write

(3.21)
v(t, x) := Eϕ(Xxt ) = Ptϕ(x),

vk(t, x) := Eϕ(X
k,x
t ),

t ≥ 0, x ∈ H.

Since (Xk,xt ) is the strong solution to (3.18), using the Ito lemma [D-Z; S, Thm. 4.17],

(3.20) and differentiating with respect to t, we obtain

∂vk
∂t
(t, x) = 12E(tr[ΠD

2ϕ(Xk,xt )ΠQk])(3.22)

+ E〈Xk,xt , A∗kΠDϕ(X
k,x
t )〉+ E〈F (Xk,xt ), Dϕ(Xk,xt )〉,

where Qk := πkQπk.

Because ϕ is a bounded Lipschitz function, it follows from (3.21), (3.19) and the

Lebesgue Dominated Convergence Theorem (LDCT for short) that for x ∈ H,
(3.23) sup

0≤t≤T
|vk(t, x)− v(t, x)| → 0.

Consider the RHS of (3.22). Note that A∗Π is a bounded operator on H and

|trΠD2ϕ(Xk,xt )ΠQk| ≤ (trΠ) · ‖Qk‖L(H,H) · ‖D2ϕ(Xk,xt )‖L(H,H)(3.24)

≤ N‖Q‖L(H,H)‖D2ϕ‖∞
(where ‖D2ϕ‖∞ = supx∈H ‖D2ϕ(x)‖L(H,H)). For t ≥ 0, x ∈ H define

u(t, x) = 12E(trΠD
2ϕ(Xxt )ΠQ)(3.25)

+ E〈Xxt , A∗ΠDϕ(Xxt )〉+ E〈F (Xxt ), Dϕ(Xxt )〉.
Because ϕ, F , Dϕ and D2ϕ are bounded Lipschitz mappings, from (3.19), (3.22), (3.24)

and LDCT for x ∈ H we obtain

sup
0≤t≤T

∣∣∣∣
∂vk
∂t
(t, x)− u(t, x)

∣∣∣∣ −→k→∞ 0,

which combined with (3.23) implies that v(·, x) is t-differentiable and

(3.26)
∂v

∂t
(t, x) = u(t, x), t ≥ 0, x ∈ H.

It is well known that for some constant cT > 0,

sup
t∈[0,T ]

E((Xxt )
2) ≤ cT (1 + ‖x‖2)

and therefore by (3.24) and (3.25),

sup
t∈[0,T ]

∣∣∣∣
∂v

∂t
(t, x)

∣∣∣∣
2

≤ c̃(T, ϕ)(1 + ‖x‖2), x ∈ H,
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where c̃(T, ϕ) > 0 is a constant independent of x. This combined with (3.26) and LDCT

gives

(3.27) lim
t→0+

\
H

[
v(t, x)− v(0, x)

t
− u(0, x)

]2
dµ = 0.

Note that u(0, x) = L0Fϕ(x) (see (3.11)). Hence, recalling that v(t, x) = Ptϕ(x), we can

write (3.27) as

lim
t→0+

Ptϕ− ϕ
t

= LFϕ (in L2(H,µ)),

which implies (3.17) and completes the proof of Step 1.

Step 2. We proceed as in the proof of Corollary 3.3. If F satisfies (F2), then F̂ :=

B−1F ∈ Bb(H,K) and one can find a sequence (F̂n)∞n=1 ⊂ C2b(H,K) converging to F̂

µ-a.s. and boundedly.

Let (Pnt )t≥0 be the semigroup defined in Proposition 3.2, which corresponds to Fn :=

BF̂n. Then for φ ∈ Bb(H),
Pnt φ(x) = Eφ(X

x
n,t),

where (Xxn,t) is the mild solution to equation (∗) with nonlinear term Fn. According

to Theorem 3.4, let (Vnt ) denote the semigroup with generator LFn = L + G(n), where

G(n)φ(x) = 〈Fn(x), Dφ(x)〉 for φ ∈ dom(L0F ). By (3.14) and (3.16) for any t > 0 and
φ ∈ dom(L) we have

(3.28)

t\
0

‖G(n)Rsφ‖2 ds ≤
√
t β̃ ‖φ‖2, where β̃ := sup

n
‖F̂n‖∞ <∞,

(3.29)

t\
0

‖(G(n) −G)Rsφ‖2 ds

≤
√
t

t\
0

\
H

‖F̂n(x)− F̂ (x)‖2‖DQRsφ(x)‖2 µ(dx) ds→ 0 as n→∞,

where the convergence follows from LDCT, since by Section 2,

t\
0

\
H

‖DQRsφ(x)‖2 µ(dx) ds ≤ ‖φ‖22.

From (3.28) and (3.29) we conclude, using [V; A, Thm. 1.4], that for every T > 0 and

φ ∈ L2(H,µ),
(3.30) sup

0≤t≤T
‖Vnt φ− Vtφ‖2 → 0 as n→∞.

Since by Step 1,

Vnt φ = Pnt φ, n = 1, 2, . . . , t ≥ 0, φ ∈ L2(H,µ),
it follows from (3.30) and (3.6) in Proposition 3.2 that Vtφ = Ptφ.
According to Theorem 3.6, in what follows we denote by LF the generator of the

semigroup (Pt).



30 A. Chojnowska-Michalik

Remark 3.7. It is interesting to compare the estimate (3.1) of the norm ‖Pt‖2→2 with
the estimate that follows from Theorems 3.4 and 3.6.

Write u :=
√
T β, where T satisfies (3.15) and (3.16). Then 0 < u < 1. Theorem 3.4

and [V; P, (1.3)] imply

(3.31) ‖Pt‖2→2 ≤
1

1− u exp
[(

β2

u2
log

1

1− u

)
t

]
=:Mu exp[α(u)t], t ≥ 0.

Let us find a lower bound of α(u). As α(u) > 0, limu→0+ α(u) = ∞ and limu→1− α(u)
= ∞, it follows that α(·) achieves its minimum at some u ∈ (0, 1). Then dαdu (u) = 0 and
by an easy computation we have

log(1− u) = − u

2(1− u) ,

which yields

α(u) =
β2

2u(1− u) ≥ 2β
2.

Therefore in (3.31)

Mu exp[α(u)t] > exp(2β
2t),

while (3.1) gives

‖Pt‖2→2 ≤ exp(β2t/2).

4. Properties of (Pt)—the case of bounded F

4.1. Hyperboundedness. First, recall that for t > 0 the condition

(A2) imQ
1/2
t = imQ

1/2
∞

is equivalent to

(4.1) ‖S0(t)‖ < 1 (where S0(t) = Q
−1/2
∞ StQ

1/2
∞ |H0

) (see Sect. 2),

which, finally, is equivalent to the hypercontractivity of Rt. By the result in [Ch-G; Q]

and (2.18), for every p, q ≥ 1,

(4.2) ‖Rt‖p→q =
{
1 if q ≤ q(t, p),
∞ if q > q(t, p),

where

(4.3) q(t, p) := 1 +
p− 1
‖S0(t)‖2

.

(Recall that always ‖S0(t)‖ ≤ 1.)
The theorem below says that the semigroup (Pt) has a similar property with hyper-

contractivity replaced by hyperboundedness.

Theorem 4.1. Assume (A1) and (F2).

(i) If (A2) holds for some t0 > 0, then for every t ≥ t0, p > 1, q ≥ 1 the operator
Pt : L

p(H,µ)→ Lq(H,µ) is bounded for q < q(t, p) and unbounded for q > q(t, p), where

q(t, p) is defined by (4.3).
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(ii) Conversely , if Pt0 : L
p0(H,µ) → Lq0(H,µ) is bounded for some t0 > 0 and

q0 > p0 > 1, then (A2) holds for all t ≥ t0.
Proof. (i) Fix p > 1, t ≥ t0 and r such that 1 < r < p. Let ϕ ∈ Bb(H) and q > p. Then

the first inequality in (3.4) with p replaced by q takes the form

(4.4) ‖Ptϕ‖q ≤ ct(r′)‖Rt(|ϕ|r)‖1/rq/r.

From what has been recalled, Rt is a contraction from Lp/r to Lq/r for

q

r
= 1 +

p/r − 1
‖S0(t)‖2

.

Hence taking

qr := r +
p− r
‖S0(t)‖2

,

in (4.4) we obtain

(4.5) ‖Ptϕ‖qr ≤ ct(r′) · ‖|ϕ|r‖1/rp/r = ct(r′)‖ϕ‖p,

where by (3.3), ct(r
′) = exp

(
β2t
2(r−1)

)
. Writing q(t, p) and qr in the form

(4.6) q(t, p) =
p

‖S0(t)‖2
−
(

1

‖S0(t)‖2
− 1
)
, qr =

p

‖S0(t)‖2
− r
(

1

‖S0(t)‖2
− 1
)
,

we see that for any q < q(t, p) (q ≥ 1), one can find ε > 0 such that for rε = 1 + ε,
qrε = q, which by (4.5) completes the proof of the first part of (i).

(ii) Let q > r > 1, t > 0, ϕ ∈ Bb(H). Next, let Uxt be the Girsanov martingale defined
by (1.3), (1.4). Since Uxt > 0, P -a.e., using Hölder’s inequality with exponents r and

r′ = r/(r − 1), we have

‖Rtϕ‖qq =
\
H

∣∣∣
\
Ω

ϕ(Zxt )(U
x
t )
1/r(Uxt )

−1/r dP
∣∣∣
q

µ(dx)(4.7)

≤
\
H

( \
Ω

|ϕ(Zxt )|rUxt dP
)q/r
·
( \
Ω

(Uxt )
−1/(r−1) dP

)q/r′
µ(dx)

=
\
H

[Pt(|ϕ|r)]q/r(E[(Uxt )−1/(r−1)])q/r
′

µ(dx).

For v > 0, in much the same way as in (3.3) we obtain the estimate

E[(Uxt )
−v] ≤ exp

(
v(v + 1)

2
β2t

)
=: c̃t(v),

which combined with (4.7) yields

‖Rtϕ‖q ≤ ˜̃ct(r)‖Pt(|ϕ|r)‖1/rq/r, where(4.8)

˜̃ct(r) :=
[
c̃t

(
1

r − 1

)]1/r′
= exp

(
β2t

2(r − 1)

)
.

Fix r > 1. Setting t = t0, q = q := q0r in (4.8) and using the notation

M := ‖Pt0‖p0→q0 <∞, cr := ˜̃ct0(r), p := p0r,



32 A. Chojnowska-Michalik

we get

(4.9) ‖Rt0ϕ‖q ≤ cr‖Pt0(|ϕ|r)‖1/rq0 ≤ crM1/r‖|ϕ|r‖1/rp0 = crM1/r‖ϕ‖p.
Therefore ‖Rt0‖p→q <∞, and since q > p, we deduce from (4.2), (4.3) that necessarily

‖S0(t0)‖ < 1. This implies that ‖S0(t)‖ < 1 for all t ≥ t0 and hence (ii) follows.
(i) (cont.) Finally, to prove the latter claim of (i), suppose conversely that for p > 1,

‖Pt‖p→q <∞ for some q > q(t, p). Then it follows from (4.9) that

(4.10) ‖Rt‖pr→qr <∞ for any r > 1.

Since by assumption ‖S0(t)‖ < 1, we can set

ε :=
q − q(t, p)

2(‖S0(t)‖−2 − 1)
> 0.

Thus from (4.6) we have

q(1 + ε) = (1 + ε)q(t, p) + (1 + ε)[q − q(t, p)]
> (1 + ε)[p‖S0(t)‖−2 − (‖S0(t)‖−2 − 1)] + 2ε(‖S0(t)‖−2 − 1)
> p(1 + ε)‖S0(t)‖−2 − (‖S0(t)‖−2 − 1) = q(t, p(1 + ε)).

Therefore, taking r = 1 + ε in (4.10), we obtain a contradiction with (4.2).

Below we show another consequence of (A2): Pt improves positivity. Since in Propo-

sition 4.2 assumption (F2) is replaced by the weaker condition (F1), we treat Pt defined

by (1.9) as an operator on L∞(H,µ).

Proposition 4.2. Assume (A1), (F1) and let (A2) be satisfied for some t0 > 0. Then

for each t ≥ t0,
(4.11) if ϕ ∈ Bb(H) is nonnegative and ϕ 6≡ 0, then Ptϕ(x) > 0 for µ-a.a. x.
Proof. Because any nonnegative Borel function is a pointwise limit of a nondecreasing

sequence of simple nonnegative functions and Pt is a linear and positivity preserving

operator, it suffices to prove (4.11) for φ = 1C , the indicator function of a Borel set C

with µ(C) > 0.

Since (A2) holds for t0 > 0, by (4.1) we have

(4.12) ‖S∗0 (t)‖ < 1 for all t ≥ t0.
By the result of [Ch-G; Q], Rt = Γ (S

∗
0 (t)), where Γ is the second quantization operator.

Hence from (4.12) and [S2, Thm. I.16] we conclude that for t ≥ t0, Rt improves positivity,
in particular Rt1C(x) > 0 for µ-a.a. x. Let G be the set mentioned above (1.9). Then
µ(G) = 1 and for each x ∈ G,

E(Uxt ) = 1 and
dP̃ xt
dP
(ω) = Uxt (ω) > 0, P -a.e.,

which means the probability measures P̃ xt and P are equivalent. Consequently, for x ∈ G
if Rt1C(x) = P (Zxt ∈ C) > 0, then Pt1C(x) = P̃ xt (Z

x
t ∈ C) > 0. This finishes the

proof.

4.2. Domains of generators. In some results of this subsection we assume

(A3) imQ1/2∞ ⊂ imQ1/2,
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which is stronger than (A2) (see Section 2). Corollaries 4.3 and 4.5(i) below concerning

dom2(LF ) are immediate consequences of Theorem 3.4 and the analogous results for the

O-U generator L, obtained in [Ch-G; N] (see also Proposition 2.5 and Corollary 2.7).

Corollary 4.3. (i) If (A1), (F2) hold and the operator V := Q1/2Q
−1/2
∞ with dom(V ) =

imQ
1/2
∞ is closable, then dom2(LF ) is continuously embedded in W

1,2
Q .

(ii) If (A1), (A3), and (F2) are satisfied , then dom2(LF ) is continuously embedded

into W 2,2Q∞ and into the Orlicz space L
2 logr L for 0 ≤ r < 2.

To consider domp(LF ) we need the following assumption:

(F3) F : H → imQ1/2∞ is a Borel function and β0 := ‖Q−1/2∞ F‖∞ <∞.
Proposition 4.4. Assume (A1), (A3), and (F3). Then for every p ∈ (1,∞),
(i) domp(LF ) = domp(L) and in particular

(ii) domp(LF ) is continuously embedded in the Orlicz space L
p logr L for 0 < r < p.

Proof. (i) Note that in the notation of Theorem 3.4 by (2.21), (2.22) we have

LFϕ = Lϕ+Gϕ, Gϕ(x) = 〈Q−1/2∞ F (x), DQ∞ϕ(x)〉, ϕ ∈ FC∞b .
Hence

(4.13) ‖Gϕ‖p ≤ β0‖DQ∞ϕ‖p,
which means that G can be uniquely extended to a bounded operator (still denoted by G)

acting from W 1,pQ∞ to L
p(H,µ). By [Ch-G; R, Thm. 1, (15)], under (A3),

(4.14) ‖DQ∞Rtϕ‖p ≤ c(p)‖(I − Vt)−1Vt‖1/2‖ϕ‖p,
where Vt := S0(t)S

∗
0(t). Because (A3) implies that ‖S0(t)‖ ≤ e−tλ/2 for some λ > 0 (see

Section 2), we have

(4.15) ‖(I − Vt)−1Vt‖ ≤
‖Vt‖
1− ‖Vt‖

≤ e−λt

λte−λt
=
1

λt
.

It follows from (4.13)–(4.15) that for any T > 0,

T\
0

‖GRtϕ‖p dt <∞ and domp(G) =W
1,p
Q∞
⊃ domp(L)

(the latter is due to [Da; Lem. 3.4, p. 70]). Hence G is a Phillips perturbation of L and

(i) follows by [H-Ph; Cor. 1, p. 400 and Thm. 13.5.3]. Next, (i) and [Ch-G; N, Thm. 4.4]

imply at once (ii).

If the O-U generator L is symmetric, the Lp-domains of LF can be characterized

explicitly, as a consequence of the corresponding result for L obtained in [D-G,1] for

p = 2 and in [Ch-G; M], [Ch-G; N] for 1 < p <∞. Recall that if kerQ∞ = {0}, the O-U
semigroup (Rt) is self-adjoint in L

2(H,µ) iff

(A4) Q(dom(A∗)) ⊂ dom(A) and AQx = QA∗x, x ∈ dom(A∗)
(see [Ch-G; S]). Under (A4) the operator −AQ has a Friedrichs extension to a self-adjoint
nonnegative operator in H (see ibid.).
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Corollary 4.5. Assume (A1) and let kerQ∞ = {0}.
(i) If (A4) and (F2) are satisfied , then dom2(LF ) =W

2,2
Q ∩W

1,2
−AQ.

(ii) If (A2), (A4), and (F3) hold , then domp(LF ) =W
2,p
Q ∩W

1,p
−AQ.

Proof. (i) is an easy consequence of Theorem 3.4 and [D-G,1, Thm. 3.2] (see also [Ch-G;

M, Cor. 5.4] or [Ch-G; N, Thm. 2.4]) and (ii) follows from this last result, Proposition

4.4 and the fact that under (A4) conditions (A2) and (A3) are equivalent.

4.3. Invariant measures with densities. Recall that a Borel measure ν on H is

invariant for the semigroup (Pt) if

(4.16)
\
H

Ptϕ(x) ν(dx) =
\
H

ϕ(x) ν(dx), ϕ ∈ Bb(H), t ≥ 0.

We consider only probability invariant measures.

Remark 4.6. Under the assumptions of Remark 1.5 and notation of Proposition 1.2, it

follows from an obvious modification of [K-S, Cor. 5.3.11] that equation (∗) has a unique
martingale solution (X̃νt )0≤t≤T with initial distribution ν on (Ω,F , (Ft), P̃ νT ), where

P̃ νT (dω) =
\
H

P̃ xT (dω) ν(dx)

and

P̃ νT (X̃
ν
t ∈ C) =

\
H

P̃ xT (X̃
x
t ∈ C) ν(dx), C ∈ B(H).

The latter together with the equality

Ptϕ(x) = Ẽ
x
T (ϕ(X̃

x
t )), 0 ≤ t ≤ T,

shows that (4.16) holds iff

P̃ νT (X̃
ν
t ∈ C) = ν(C), C ∈ B(H), 0 ≤ t ≤ T.

Hence, ν is an invariant measure for (Pt) iff ν is a stationary distribution for (∗). If F sat-
isfies (F1) the same holds, except the uniqueness of solution, for ν absolutely continuous

w.r.t. µ.

We are concerned with the existence of invariant measures for (Pt) that are absolutely

continuous w.r.t. µ. Equivalently, we look for ̺ ∈ L1(H,µ) such that
(4.17) ̺ ≥ 0, ‖̺‖1 = 1,

\
H

(Ptϕ)̺ dµ =
\
H

ϕ̺ dµ for ϕ ∈ Bb(H), t ≥ 0.

Note that if ̺ ∈ Lp(H,µ) for some p ∈ (1,∞), then (4.17) holds iff P ∗t ̺ = ̺, t ≥ 0,
and hence iff ̺ ∈ domp(L∗F ) and L∗F̺ = 0, where L∗F denotes the generator of the
semigroup (P ∗t ) on L

p(H,µ) and (P ∗t ) is adjoint to the semigroup (Pt) acting on L
p′(H,µ),

p′ = p/(p− 1).
The theorem below is a counterpart of [Ch-G; E, Thm. 5] which was proved by the

compactness method.

Theorem 4.7. Assume (A1) and (F2). If (A2) holds for some t0 > 0, then

(a) there exists an invariant measure ν for (Pt) which is absolutely continuous w.r.t. µ;

(b) ̺ := dν/dµ ∈ ⋂p≥1 Lp(H,µ);
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(c) ̺(x) > 0 for µ-a.a. x;

(d) ν is a unique invariant measure for (Pt) in the class of probability measures ab-

solutely continuous w.r.t. µ.

Proof. Fix p > 1 and let p′ = p/(p− 1). (Pt) is considered in Lp
′

(H,µ), so (P ∗t ) acts in

Lp(H, ν).

(a) The proof of existence is based on a result obtained recently in [H; P]. It fol-

lows from (A2) and Theorem 4.1 that for some q′ > p′, Pt0 : L
p′(H,µ) → Lq

′

(H,µ) is

bounded. Combining this with the observation that 1 ∈ ker(I−Pt), t ≥ 0, we deduce from
[H; P, Thm. 2.8 and Lem. 2.2] that there exists a nonnegative nonzero ˜̺̃ ∈ ker(I − P ∗t0)
in Lp(H,µ). Then it is easy to verify that

˜̺ :=
t0\
0

P ∗s
˜̺̃ds ∈ ker(I − P ∗t ) for every t ≥ 0,

˜̺ ≥ 0 and ˜̺ 6≡ 0 (see [H; P, Rem. 2.10]). Hence ̺ := ˜̺/‖˜̺‖1 ∈ Lp(H,µ) and ̺ satisfies
(4.17). In particular the measure dν = ̺dµ is invariant for (Pt), which proves (a).

(c), (d), (b). In this part of the proof we use the result [Da, Thm. 7.3] on irreducible

positive semigroups. According to [Da, p. 174], a set C ∈ B(H) is called invariant for the
operator Pt acting on L

p′(H,µ) if for any f ∈ Lp′(H,µ),
supp(f) ⊂ C implies supp(Ptf) ⊂ C

(with all inclusions up to sets of measure zero).

We will show that under condition (A2) for t0, the semigroup (Pt) is irreducible, that

is, the only sets which are invariant for all Pt, t ≥ 0, are sets of measure zero or one. To
this end suppose that C ∈ B(H), µ(C) > 0 and C is an invariant set w.r.t. Pt for some
t ≥ t0. Then supp(Pt1C) ⊂ C. But, by Proposition 4.2, Pt1C(x) > 0 for µ-a.a. x and

hence µ(C) = 1.

Consequently, (P ∗t ) acting on L
p(H,µ) is also irreducible. Indeed, let U be invariant

for P ∗t for some t ≥ t0, 0 < µ(U) < 1. If 0 ≤ f ∈ Lp(H,µ) and supp(f) ⊂ U then for

every nonnegative g ∈ Lp′(H,µ) with supp(g) ⊂ H − U we get

0 =
\
H

(P ∗t f) · g dµ =
\
H

f · (Ptg) dµ

and since f and g are arbitrary we conclude that supp(Ptg) ⊂ H − U . This contradicts
the irreducibility of (Pt).

(P ∗t ) is obviously a positive semigroup (i.e. f ≥ 0 implies P ∗t f ≥ 0).
In [Da, Thm. 7.3] it is assumed that (Tt) is a semigroup of contractions but a close

inspection of the proof enables us to reformulate this theorem as follows:

Theorem [Da, Thm. 7.3]. Let (Tt) be a positive irreducible C0-semigroup on Lp(H,µ)
for some p ∈ [1,∞).
(i) If there exists a nonnegative f 6≡ 0 such that Ttf = f for all t ≥ 0, then f(x) > 0

for µ-a.a. x.

(ii) If K := ⋂t≥0 ker(I − Tt) is a sublattice, then dimK ≤ 1.
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Therefore, for Tt = P ∗t the assumptions of the theorem quoted above are satisfied. By
(a) we can put f = ̺ in (i). Thus (c) follows.

In the proof of (d) we use an idea from [B-R-Zh, Cor. 2.13]. Since P ∗t is positive,

|P ∗t g| ≤ P ∗t |g| for g ∈ Bb(H), and hence

‖P ∗t g‖1 ≤
\
H

P ∗t |g| dµ =
\
H

|g|Pt1 dµ = ‖g‖1,

which implies that P ∗t can be extended to a contraction P̃
∗
t on L

1(H,µ). It is standard to

prove that (P̃ ∗t ) is strongly continuous in L
1(H,µ) since so is (P ∗t ) in L

p(H,µ), 1 < p <∞.
Consequently, (P̃ ∗t ) is a positive irreducible C0-semigroup of contractions on L

1(H,µ),

i.e. Tt = P̃ ∗t satisfies the assumptions of the theorem above. It follows easily from (4.17)
that if 0 ≤ ̺ ∈ L1(H,µ) and ̺ is an invariant density for (Pt) then P̃ ∗t ̺ = ̺ for all t ≥ 0.
Therefore to prove (d) it is enough to show that

(4.18) ker(I − P̃ ∗t ) is a sublattice for each t ≥ 0
and invoke (ii).

(4.18) follows from [Da, Thm. 7.2] or [B-R-Zh, Cor. 2.13] and we repeat here the latter

simple proof for completeness. It is sufficient to show that

(4.18a) f ∈ ker(I − P̃ ∗t ) implies f+ ∈ ker(I − P̃ ∗t ).
Let f = P̃ ∗t f . Since P̃

∗
t f ≤ P̃ ∗t f+ we have f ≤ P̃ ∗t f+ and hence

(4.19) f+ = max(f, 0) ≤ P̃ ∗t f+.
Therefore

0 =
\
H

f+(Pt − I)1 dµ =
\
H

(P ∗t f
+ − f+) dµ,

which combined with (4.19) yields f+ = P̃ ∗t f
+ and (4.18a) follows. This finishes the proof

of (d).

Finally, (b) follows from (d) and the proof of (a).

Proposition 4.8. If (A1), (A3) and (F2) are satisfied , then all the statements of The-

orem 4.7 hold and moreover for each p ∈ (1,∞) there exist constants Mp > 0, λp > 0
such that

(4.20)
∥∥∥Ptϕ−

\
H

ϕ̺ dµ
∥∥∥
p
≤Mpe−λpt‖ϕ‖p

for all ϕ ∈ Lp(H,µ).

Proof. If (A3) holds then by (2.26a) for each p ∈ (1,∞) and for a constant αp > 0,
∥∥∥Rtϕ−

\
H

ϕdµ
∥∥∥
p
≤ e−αpt‖ϕ‖p, ϕ ∈ Lp(H,µ).

Hence by [H; P, Thm. 3.6], (Rt) satisfies condition (E) of Definition 3.1 ibid . Then by

[H; P, Prop. 4.5], (E) holds for (Pt) and (4.20) follows again by [H; P, Thm. 3.6].

The proposition below is some generalization of the result obtained in [Sh; E].



Transition semigroups 37

Proposition 4.9. Assume (A1), (A3) and (F3). Then

(4.21) dom2(L
∗
F ) ⊂W 1,2Q∞ .

In particular ̺ ∈ W 1,2Q∞ , where ̺ is the (Pt)-invariant density (which exists by Theo-

rem 4.7).

Proof. To show (4.21) we follow the proof of [Sh; E, Thm. 2.1], where a similar inclusion

was proved in the case of L = LM , the Malliavin generator. We write 〈·, ·〉2, ‖ · ‖2 and
‖ · ‖2→2 for the scalar product and norm in L2(H,µ) and the norm of operators on
L2(H,µ), respectively. The norm in Wα,2Q∞ is denoted by | · |α and the norm of operators
from Wα,2Q∞ to W

β,2
Q∞
is denoted by | · |α→β , α, β ∈ R. Recall that

|ϕ|α = ‖(I − LM )α/2ϕ‖2, α ∈ R, ϕ ∈Wα,2Q∞ .

For ϕ ∈ L2(H,µ), let I0ϕ := 〈ϕ, 1〉21 and ϕ0 := ϕ − I0ϕ. Hence ϕ0 is the orthogonal
projection of ϕ onto

L20(H,µ) := H⊥0 = {f ∈ L2(H,µ) : 〈f, 1〉2 = 0}

(where H0 is the subspace of constant functions).
Recall that both H0 and H⊥0 are invariant for any O-U semigroup and accordingly

write

R0t := Rt|L20(H,µ) and L0 := L|L20(H,µ).
By Corollary 2.6, (R0t ) is exponentially stable. Hence J , defined as

(4.22) Jϕ :=
∞\
0

Rtϕ0 dt, ϕ ∈ L2(H,µ),

is a bounded operator on L2(H,µ) and

(4.23) Jϕ := −L−10 ϕ0dt, LJϕ = −ϕ0.

We first show that for any α ∈ R,
(4.24) J : Wα,2Q∞ → Wα+2,2Q∞

is bounded and |J |α→α+2 ≤ σ < ∞, with σ independent
of α.

Indeed, by [Ch-G; Q], L and LM commute and by Corollary 2.7, (A3) implies

(4.25) dom2(L) ⊂W 2,2Q∞ .

Combining this with (4.23) we obtain

|Jϕ|α+2 = ‖(I − LM )(α+2)/2L−10 ϕ0‖2 = ‖(I − LM )L−10 (I − LM )α/2ϕ0‖2
≤ ‖(I − LM )L−10 ‖2→2 · |ϕ0|α =: σ|ϕ|α.

Since by (4.25), σ <∞, (4.24) follows.
Throughout the rest of the proof we assume that ψ ∈ dom2(L∗F ). Then (4.24) yields

(4.26) |〈Jϕ,L∗Fψ〉| ≤ σ‖L∗Fψ‖2|ϕ|−2, ϕ ∈ L2(H,µ).
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Since, by Theorem 3.4, dom2(LF ) = dom2(L), it follows from (4.23) that Jϕ ∈ dom2(LF )
for ϕ ∈ L2(H,µ). From this and the formula for LF (Theorem 3.4) we obtain

〈Jϕ,L∗Fψ〉2 = 〈LFJϕ, ψ〉2 = 〈LJϕ+GJϕ, ψ〉2
= −〈ϕ, ψ〉2 + 〈I0ϕ, ψ〉2 + 〈GJϕ, ψ〉2

using (4.23) in the last equality. This and (4.13) yield

|〈ϕ, ψ〉2| ≤ |〈Jϕ,L∗Fψ〉2|+ |〈I0ϕ, ψ〉2|+ |〈〈Q−1/2∞ F (·),DQ∞Jϕ(·)〉, ψ〉2|(4.27)

=: J1 + J2 + J3.

Then by (4.26) we have

(4.28) J1 + J2 ≤ σ‖L∗Fψ‖2 · |ϕ|−2 + |I0|−2→0 · ‖ψ‖2 · |ϕ|−2;
(4.29) J3 ≤ ‖Q−1/2∞ F‖∞ · ‖DQ∞Jϕ‖2 · ‖ψ‖2 ≤ β0|Jϕ|1 · ‖ψ‖2 ≤ β0σ|ϕ|−1 · ‖ψ‖2,
the last inequality being a consequence of (4.24).

Thus, for ψ ∈ dom(L∗F ) and ϕ ∈ L2(H,µ) we obtain from (4.27)–(4.29) the estimate
|〈ϕ, ψ〉L2 | ≤ c(ψ) · |ϕ|−1,

where c(ψ) is a finite constant depending on ψ. This means that 〈ψ, ·〉2 has an extension
to a continuous functional on W−1,2Q∞

, which implies that ψ ∈ W 1,2Q∞ . Hence dom(L
∗
F )

⊂W 1.2Q∞ .

5. Examples

Example 1 shows that our assumption, F (H) ⊂ imB, is in some sense justified. In
Examples 2 and 3 we consider the simplest case of system (∗), namely equation (5*′),
which satisfies (A1) and (F2). However, in Example 2 the unique invariant measure

for (5*′) is singular w.r.t. µ and in Example 3 there is no invariant measure for (5*′). By

virtue of Theorem 4.7, in both examples for no t > 0 does (A2) hold. Equivalently, for

no t > 0 can Rt and Pt be hyperbounded in L
p(H,µ). An example similar to Example 2,

but not so explicit, has also been given in [F; L].

Finally, in Example 4 we present a model (∗) (with nonconstant F ) which satisfies
precisely the assumptions of Theorem 4.7. That is, (A2) is satisfied for some t0 > 0

but does not hold for 0 < t < t0. Equivalently the corresponding O-U semigroup (Rt) is

hypercontractive for t ≥ t0 but it is not hyperbounded for 0 < t < t0. Such a phenomenon

cannot happen when (Rt) is symmetric or H has finite dimension. Moreover, (A3) is

not satisfied here. It should be mentioned that Example 4 is of some importance in

Mathematical Finance ([M], [Z3]). A shortened version of Example 4 has been given in

[Ch-G; N].

As an illustration we first consider the simplest semilinear equation (∗) with constant
nonlinear term:

(5∗) dXt = AXtdt+ bdt+BdWt, t > 0, where b ∈ H, Q := BB∗.
We are mainly interested in invariant measures with densities. Let us recall the following

known facts.
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Proposition 5.1 ([Ch, Prop. 3.5, Cor. 3.4], [D-Z; E, p. 185]). There exists an invariant

measure ν for (5*) iff (A1) holds and

(5.1) the deterministic equation ẏ = Ay + b has an invariant measure ν1.

Then ν = ν1 ∗ N (0, Q∞).

Corollary 5.2 (see e.g. [Ch, Prop. 6.1]). Let (St) be a stable semigroup (i.e. limt→∞ Stx

= 0 for all x ∈ H). Then (5*) has an invariant measure iff (A1) holds and

(5.2) the improper integral

∞\
0

Stb dt := lim
T→∞

T\
0

Stb dt exists.

If ν is an invariant measure for (5*), then

ν = N (a∞, Q∞), where a∞ :=

∞\
0

Stb dt.

(Note that for stable (St), (5.2) implies that b ∈ imA and a∞ = −A−1b.)

If (St) is stable and (A1), (5.2) hold then, by the Cameron–Martin Theorem (see e.g.

[D-Z; S, Thm. 2.21]), ν = N (a∞, Q∞) is absolutely continuous w.r.t. µ = N (0, Q∞) iff
(5.3) a∞ ∈ imQ1/2∞ = H0
and then

̺b(x) :=
dν

dµ
(x) = exp

(
〈Q−1/2∞ a∞, Q

−1/2
∞ x〉 − 1

2
‖Q−1/2∞ a∞‖2

)
.

The last equality implies that for h ∈ H0,
〈D̺b(x), h〉 = 〈Q−1/2∞ a∞, Q

−1/2
∞ h〉̺b(x)

and hence DQ∞̺b = ̺bQ
−1/2
∞ a∞. Therefore ̺b ∈W 1,pQ∞ for p > 1 iff (5.3) holds. Note that

under condition (5.3), ̺b ∈Wn,pQ∞ for all n ≥ 1 and p > 1.

Example 1. Let A = A∗ be a bounded operator with spectrum in (−∞, 0). Hence (St)
is exponentially stable and A−1 is bounded. Suppose that Q is nuclear and

(5.4) QA = AQ.

Then the corresponding O-U semigroup is symmetric in L2(H,µ). By Corollary 5.2,

N (a∞, Q∞) is a unique invariant measure for (∗). By (5.4), Q∞ =
T∞
0
S(t)QS∗(t) dt =T∞

0
S(2t)Qdt = − 12A−1Q. Hence by (5.4),

Q1/2∞ =
1√
2
Q1/2(−A)−1/2,

which yields

(5.5) imQ1/2∞ = imQ
1/2.

In particular, (A3) holds. By (5.4) we have

A−1b = Q1/2h iff b = AQ1/2h = Q1/2(Ah)
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and sinceA is a bijection, we conclude from (5.5) that (5.3) holds iff b ∈ imQ1/2. Therefore
if we look for invariant measures for (∗) absolutely continuous w.r.t. µ, our assumption
that F (H) ⊂ imB = imQ1/2 is justified.
Example 2. Here H = L2(0,∞), the operator A = ∂/∂θ with dom(A) = H1(0,∞)
generates the left shift semigroup

S(t)x(θ) = x(t+ θ), x ∈ H, b(θ) = exp(−θ2/2), θ ≥ 0,
and w is a one-dimensional Wiener process. Consider the particular case of (5*):

(5*′) dXt = AXtdt+ bdt+ bdwt.

Then Q = b⊗ b and
∞\
0

trStQS
∗
t dt =

∞\
0

‖Stb‖2 dt =
∞\
0

∞\
t

e−s
2

ds dt <∞.

Hence (A1) holds.

Consider (5.2). Note first that for every θ ≥ 0, the function t 7→
Tt
0
Ssb(θ) ds is

increasing in t and
∞\
0

Ssb(θ) ds = lim
t→∞

t\
0

Ssb(θ) ds exists.

Then to prove (5.2) it is enough to observe that
T∞
0
Ssb(·) ds ∈ L2(0,∞).

Since (St) is stable, by Corollary 5.2, N (a∞, Q∞) is a unique invariant measure
for (5*′).

Finally, suppose that (5.3) holds. By a result in [D-Z; S], imQ
1/2
∞ = imL∞, where

L∞ : L2(0,∞)→ H, L∞u =
∞\
0

Ssbu(s) ds.

(Note that by the estimate
∞\
0

‖Ssbu(s)‖ ds ≤
[∞\
0

‖Ssb‖2 ds
]1/2
·
[∞\
0

u2(s) ds
]1/2

the operator L∞ is well defined.) Therefore a∞ ∈ imL∞, which means that for some
u ∈ L2(0,∞),

∞\
0

Ssb ds =

∞\
0

Ssbu(s) ds.

Hence
∞\
0

b(s+ θ) ds =

∞\
0

b(s+ θ)u(s) ds

for a.a. θ and by continuity for all θ ∈ [0,∞). Then for every θ ≥ 0 we have

(5.6) 0 =

∞\
0

b(s+ θ)[1− u(s)] ds = e−θ2/2
∞\
0

e−θs[e−s
2/2(1− u(s))] ds.

Therefore the Laplace transform of the function

[0,∞) ∋ s 7→ e−s
2/2[1− u(s)]
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vanishes identically, which implies that u(s) ≡ 1. But u(s) ≡ 1 6∈ L2(0,∞), a contradic-
tion. Hence the measures N (a∞, Q∞) and N (0, Q∞) are singular.
Example 3. Consider equation (5*′) in Example 2, where b is now replaced by

b̃(θ) = (θ + 1)−3/2, θ ≥ 0.
Then

∞\
0

‖Stb̃‖2 dt =
∞\
0

(∞\
0

(t+ θ + 1)−3dθ
)
dt =

1

2

∞\
0

(t+ 1)−2 dt =
1

2

and (A1) holds. Hence the corresponding O-U process has an invariant measure.

We will show that (5.2) is not satisfied. Conversely, suppose that (5.2) holds. This

means that

ft :=

t\
0

Ssb̃ ds converges in L
2(0,∞), as t→∞,

to some f . Therefore, for some sequence (tn) with tn → ∞, we have ftn(θ) → f(θ) for

a.a. θ ∈ [0,∞). Hence

f(θ) =

∞\
0

(s+ θ + 1)−3/2 ds = 2(θ + 1)−1/2

but f 6∈ L2(0,∞), a contradiction. It follows from Corollary 5.2 that now there is no
invariant measure for (5*′).

Example 4. Consider the equation

(5.7)

{
dXt = [AXt + bf(Xt)]dt+ bdwt,
X0 = x,

in the space H = L2(0, 1), where A = ∂/∂θ with dom(A) = {x ∈ H1(0, 1) : x(1) = 0}
generates the semigroup (St) given by

St(θ) =

{
x(t+ θ) if t+ θ ≤ 1,
0 if t+ θ > 1.

Let w be a one-dimensional Wiener process, f ∈ Bb(H) and b ∈ H, b 6≡ 0. Then Q∞ = Q1
and (A2) holds for t ≥ 1. Hence for t ≥ 1 the corresponding O-U semigroup (Rt) is
hypercontractive and (Pt) is hyperbounded in L

p(H,µ), by Theorem 4.1. For simplicity

take b ≡ 1. Then

L∞u =
∞\
0

Ssbu(s) ds =

1\
0

(Ss1)u(s) ds, u ∈ L2(0,∞).

For un(s) := (n+ 1)s
n1[0,1] we have

L∞un(θ) = (1− θ)n+1, θ ∈ [0, 1], n = 1, 2, . . . ,

which implies that imQ
1/2
∞ = H. In particular, (A3) is not satisfied. By [D-Z; S], imQ

1/2
t

= imLt, where

Ltu =
t\
0

Ssbu(s) ds, u ∈ L2(0, t).
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For 0 < t < 1 we have

Ltu(θ) =
t∧(1−θ)\
0

u(s) ds, θ ∈ [0, 1],

and consequently any function in imLt is constant on the interval [0, 1 − t]. Thus for
0 < s < t < 1 we have

imQ
1/2
s  imQ

1/2
t  H

and for no t ∈ (0, 1) does (A2) hold. Hence for any 0 < t < 1, Rt and Pt are not

hyperbounded in Lp(H,µ).

However, all the assumptions of Theorem 4.7 are satisfied and (5.7) has an invariant

measure equivalent to µ = N (0, Q1).

6. Logarithmic Sobolev inequality—the case of bounded F

It has been proved in [Ch-G; N] that under (2.1) the O-U generator L satisfies the

Logarithmic Sobolev Inequality (LSI, for short) (6.3) below iff

(A3) imQ1/2∞ ⊂ imQ1/2.
(Hence, by Section 2, the same is true without assumption (2.1).)

Recall that (A3) is equivalent to the following condition (see e.g. [D-Z; S, Prop. B.1]):

There exists α > 0 such that

(6̃.1) ‖Q1/2x‖ ≥ α‖Q1/2∞ x‖ for all x ∈ H.
By Corollary 2.3 condition (6̃.1) holds iff

(6.1) ‖V x‖ ≥ α‖x‖ for all x ∈ H0 := im Q
1/2
∞ ,

where V = Q1/2Q
−1/2
∞ with dom(V ) = H0. Define

(6.2) a := sup{α > 0 : (6.1) holds}.
Then a is easily seen to be the maximum, i.e. a is the best constant in the inequality (6.1).

It follows from [Ch-G; N] and Section 2 that if (A3) holds, then for p > 1 and

φ ∈ domp(L),

(6.3)
\
H

|φ(x)|p log |φ(x)|µ(dx) ≤ p

p− 1 ·
1

a2
〈−Lφ, φp〉+ ‖φ‖pp log ‖φ‖p,

where the constant a is given in (6.2) and

(6.4) φp := sgnφ · |φ|p−1.
Below we prove that the generator LF of the semigroup (Pt) enjoys a similar property.

We do not use (6.3) for L in the proof but we apply the well known LSI for the Malliavin

generator LM . We still assume (F2), now writing it in the equivalent form (see (3.13))

(F2) F : H → imQ1/2 is a Borel function and β := ‖Q−1/2F‖∞ <∞.
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Note that for ϕ ∈ FC∞b , by Theorem 3.4 and Proposition 2.5(ii),
LFϕ = Lϕ+Gϕ, where Gϕ(x) = 〈Q−1/2F (x), DQϕ(x)〉.

Theorem 6.1. Assume (A1), (F2).

I. If (A3) holds , then for every p > 1 and 0 < ε < 1,

(6.5)
\
H

|ϕ(x)|p log |ϕ(x)|µ(dx)

≤ cε(p)〈(γε(p)− LF )ϕ,ϕp〉+ ‖ϕ‖pp log ‖ϕ‖p, ϕ ∈ domp(LF ),
where

cε(p) =
p

(p− 1)a2 · (1− ε)
−1,(6.6)

γε(p) =
β2

2(p− 1) · ε
−1,(6.7)

a, β are the constants given above and ϕp is defined in (6.4).

II. Conversely , if (6.5) holds for some p0 > 1 and constants c(p0) > 0 and γ(p0) ≥ 0,
then (A3) is satisfied.

Proof of I. We first consider p ≥ 2.
Step 1. First (6.5) will be proved for ϕ ∈ FC∞b . Then ϕ(x) = f(Πmx), where Πm is

an orthogonal projection such that for some m, dimΠm = m, Πm(H) ⊂ dom(A∗) and
f ∈ C∞b (H). It follows by Lemma 2.2(c) that

DQ∞ϕ(x) = Q
1/2
∞ ΠmDf(Πmx) = Q

1/2
∞ ΠmDϕ(x) is in dom(A∗0|H0)

and by Lemma 2.4(iii),

(6.8) Lϕ = D∗Q∞A
∗
0DQ∞ϕ.

Observe that for s ≥ 1 the function g(y) = sgn y · |y|s, y ∈ R, is differentiable and
g′(y) = s|y|s−1 (where we adopt the convention that 00 = 1). Therefore, for p ≥ 2,
ϕp := sgnϕ · |ϕ|p−1 is Fréchet differentiable and from (6.8) we obtain
〈−Lϕ,ϕp〉 = 〈−A∗0DQ∞ϕ,DQ∞ϕp〉L2(H,µ;H) = 〈−A∗0DQ∞ϕ, (p− 1)|ϕ|p−2DQ∞ϕ〉

=
\
H

(p− 1)|ϕ(x)|p−2〈−A∗0DQ∞ϕ(x), DQ∞ϕ(x)〉H µ(dx).

Since 〈−2A∗0x, x〉 = 〈V x, V x〉 for x ∈ dom(A∗0|H0) and V DQ∞ϕ(x) = DQϕ(x) for

ϕ ∈ FC∞b by (2.22), we get

(6.9) 〈−Lϕ,ϕp〉 =
p− 1
2
〈|ϕ(·)|p−2, 〈DQϕ(·), DQϕ(·)〉H〉.

Similarly, for r := 1 + p/2,

(6.10) ‖DQϕr‖2L2(H,µ;H) =
p2

4
〈|ϕ(·)|p−2, 〈DQϕ(·), DQϕ(·)〉H〉

and

(6.11) 〈Gϕr, ϕr〉 =
\
H

〈Q−1/2F (x), DQϕr(x)〉ϕr(x)µ(dx) =
p

2
〈Gϕ,ϕp〉.
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It follows from (6.9) and (6.10) that

〈−Lϕ,ϕp〉 =
2(p− 1)
p2

‖DQϕr‖2.

From this and (6.11) we have

(6.12) 〈−LFϕ,ϕp〉 =
2(p− 1)
p2

(
‖DQϕr‖2 −

p

p− 1 〈Gϕr, ϕr〉
)
.

By (F2) we can estimate the last term as follows, for σ > 0:

p

p− 1 |〈Gϕr, ϕr〉| ≤
pβ

p− 1

∣∣∣∣
〈√

σ ‖DQϕr(·)‖H ,
|ϕr(·)|√

σ

〉∣∣∣∣(6.13)

≤ p

p− 1 ·
βσ

2
‖DQϕr‖2 +

p

p− 1 ·
β

2σ
‖ϕr‖2.

Therefore the RHS of (6.12) can be estimated from below by c‖DQϕr‖2 with some
constant c > 0, independent of ϕ, if

(6.14) 0 < σ <
2(p− 1)
pβ

=:
1

β̃
.

Then, assuming (6.14) and taking into account that ‖ϕr‖2 = ‖ϕ‖pp and DQϕr = V DQ∞ϕr
for ϕ ∈ FC∞b , from (6.12) and (6.13) we obtain

(6.15)
p2

2(p− 1) 〈−LFϕ,ϕp〉+
β̃

σ
‖ϕ‖pp

≥ (1− β̃σ)‖V DQ∞ϕr‖2 ≥ a2(1− β̃σ)‖DQ∞ϕr‖2,
the last inequality being a consequence of (6.2). Since ϕr, r = p/2 + 1, is in dom(DQ∞),

the well known LSI for the quadratic form ‖DQ∞ψ‖2 ([Gr1, 2]) with ψ = ϕr takes the

form

‖DQ∞ϕr‖2 ≥
p

2

[ \
H

|ϕ|p log |ϕ| dµ− ‖ϕ‖pp log ‖ϕ‖p
]
.

If 0 < σ < 1/β̃, from this and (6.15) we get (6.5) for ϕ ∈ FC∞b with the constants

c(σ, p) =
p

(p− 1)a2 [1− σβ̃]
−1, γ(σ, p) =

β

pσ
.

Putting ε = σβ̃, we obtain (6.6) and (6.7).

Step 2. Let ϕ ∈ dom2(LF ) be bounded. By Theorem 3.4, dom2(LF ) = dom2(L) and the
graph norms are equivalent. Hence, by Lemma 2 from Appendix, we can approximate ϕ

in the graph norm and µ-a.e. by a sequence ϕn ∈ FC∞b with ‖ϕn‖∞ ≤ ‖ϕ‖∞. Therefore
for any p ≥ 2 we can pass to the limit in (6.5) for ϕn: using Fatou’s lemma to the LHS
and LDCT to the RHS, we conclude that ϕ satisfies (6.5) for each p ≥ 2.
Step 3. Finally, fix p ≥ 2 and consider domp(LF ). It follows from the last part of
[P, Thm. 5.5, p. 123] that

(6.16) domp(LF ) = {ϕ ∈ Lp(H,µ) ∩ dom2(LF ) : LFϕ ∈ Lp(H,µ)}.
Let Kp := domp(LF ) ∩ L∞(H,µ). Note that for ϕ ∈ FC∞b , LFϕ ∈ Lp(H,µ) and hence
FC∞b ⊂ Kp, which implies the density of Kp in L

p(H,µ). Moreover, because Pt is a
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bounded operator from L∞ to L∞, t ≥ 0, we have

Pt(Kp) ⊂ Kp, t ≥ 0.

Therefore, by [Da, Thm. 1.9] the space Kp is dense in domp(LF ) in the graph norm.

By Step 2 and (6.16), the inequality (6.5) holds for ϕ ∈ Kp and hence, by a limiting
argument, for ϕ ∈ domp(LF ).
Consider now the case p ∈ (1, 2).

Step 1′. Let ϕ ∈ FC∞b , ϕ ≥ δ > 0. Then ϕs(x) = ϕs−1(x) (s = p or s = p/2 + 1) is

Fréchet differentiable and we can repeat Step 1 of the proof.

Step 2′. Let ϕ ∈ dom2(LF ) be a nonnegative bounded function. By Lemma 2 in Ap-
pendix, we can find a sequence (ϕn) such that ϕn ∈ FC∞b , 0 ≤ ϕn ≤ ‖ϕ‖∞ and ϕn → ϕ

in the graph norm and µ-a.e. Let 0 < δn ≤ 1 be a sequence of numbers converging to 0.
Then ϕn + δn ∈ FC∞b , 0 < δn ≤ ϕn + δn ≤ ‖ϕ‖∞ + 1 and since LF δn = 0, we have
ϕn+ δn → ϕ in the graph norm. By Step 1′, (6.5) holds for ϕn+ δn and a passage to the

limit similar to that in Step 2 yields (6.5) for ϕ.

Step 3′. Recall that K2 = dom2(LF ) ∩ L∞(H,µ) is dense in Lp(H,µ), 1 < p < 2,

and Pt(K2) ⊂ K2, t ≥ 0. Because Pt preserves positivity we conclude from Lemma 1
in Appendix that each ϕ, 0 ≤ ϕ ∈ domp(LF ) can be approximated in the graph norm
by 0 ≤ ϕn ∈ K2. Hence by a limiting argument we show (6.5) for every nonnegative

ϕ ∈ domp(LF ). Finally, using again the fact that Pt preserves positivity, we can apply
[Gr2, Cor. 3.10 and Thm. 3.12] to prove (6.5) for all ϕ ∈ domp(LF ). This completes the
proof of Part I.

Proof of II. Let

(6.17) F+C
∞
b := {ϕ ∈ FC∞b : ϕ ≥ δϕ > 0 for some δϕ ∈ R}.

It follows from (6.12) and (6.13) that for some constants d1 > 0, d2 ≥ 0,

〈−LFϕ,ϕp0〉 ≤ d1‖DQϕr0‖2 + d2‖ϕr0‖2 for all ϕ ∈ F+C∞b (where ϕr0 = ϕp0/2).

Therefore, by assumption we obtain

(6.18)
\
H

ϕp0 logϕdµ ≤ ˜̃cp0(‖DQϕr0‖2 + ˜̃γp0‖ϕr0‖2) + ‖ϕ‖p0p0 log ‖ϕ‖p0

for some constants ˜̃cp0 > 0, ˜̃γp0 ≥ 0 and all ϕ ∈ F+C∞b .
For a fixed p ∈ (1,∞) and an arbitrary ψ ∈ F+C∞b we can put ϕ := ψp/p0 ∈ F+C∞b

into (6.18) and then we get the LSI of the form (6.18) with ψ instead of ϕ and with the

index p instead of p0. This and the equality below (6.11) imply that the O-U generator

L satisfies for each p ∈ (1,∞) and all ϕ ∈ F+C∞b the defective LSI of the form (6.5) with
coefficients c̃(p) > 0 and γ̃(p) ≥ 0 continuous in p. Arguing as in Step 2′ we deduce from
Lemma 2 in Appendix that this LSI for L holds for all nonnegative ϕ ∈ domp(L) and
hence, by [Gr2, Cor. 3.10 and Thm. 3.12], for all ϕ ∈ domp(L). Therefore, it follows as
in the proof of [Ch-G; N, Thm. 3.2] that (6.1) holds. Hence (A3) is satisfied.
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Lemma 6.2. Assume (A1), (A3), (F2) and let the constant a be given in (6.2). If

p ∈ (1,∞) and θ > 0 are such that

(6.20)

(
p

p− 1

)2
· 2
a2

< θ

then the generator LF satisfies the LSI (6.5) with the principal coefficient

(6.21) cθ(p) =
p

(p− 1)a2
[
1− p

√
2

(p− 1)a
√
θ

]−1

and the local norm

(6.22) γθ(p) =
a2(p− 1)
2p2

(κθ − 1),

where

κθ :=
\
H

exp(θ‖Q−1/2F (x)‖2)µ(dx).

Proof. We will now estimate the expression in (6.13) using the Hausdorff–Young (H-Y)

inequality: for s ∈ R, t > 0,
st ≤ es + t log t− t.

Let ϕ ∈ FC∞b and write ψ := ϕr. Then
(6.23) 〈Gψ,ψ〉 =

\
H

〈Q−1/2F (x)ψ(x), DQψ(x)〉µ(dx) = 〈bψ,DQψ〉,

where to shorten notation we have set b(x) := Q−1/2F (x). Then

〈bψ,DQψ〉2 ≤ θ−1‖DQψ‖22‖ψ‖22
\
H

θ‖b(x)‖2 · ψ
2(x)

‖ψ‖22
µ(dx)

and applying the H-Y inequality with

s = θ‖b(x)‖2, t =
ψ2(x)

‖ψ‖2 ,

yields

〈bψ,DQψ〉2 ≤ θ−1‖DQψ‖2‖ψ‖2 ·
[ \
H

exp(θ‖b(x)‖2)dµ+ 2
\
H

ψ2(x)

‖ψ‖2 log
|ψ(x)|
‖ψ‖ dµ− 1

]
.

(We omit the subscript 2 in the L2-norm.) Hence, using the LSI (6.3) with p = 2 and

taking into account that 〈−2Lψ,ψ〉 = ‖DQψ‖2 and κ := κθ for brevity, we obtain

〈bψ,DQψ〉2 ≤ θ−1‖DQψ‖2
[
(κ− 1)‖ψ‖2 + 2

a2
‖DQψ‖2

]

=
2

θa2
‖DQψ‖4 +

κ− 1
θ
‖DQψ‖2 · ‖ψ‖2

≤
( √
2

a
√
θ
‖DQψ‖2 +

a(κ− 1)
2
√
2θ
‖ψ‖2
)2
.

This and (6.23) give

(6.24)
p

p− 1 |〈Gψ,ψ〉| ≤
p
√
2

(p− 1)a
√
θ
‖DQψ‖2 +

pa(κ− 1)
(p− 1)2

√
2θ
‖ψ‖2.
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Consequently, the RHS of (6.12) can be estimated from below by c‖DQϕr‖2 with some
absolute constant c > 0 if

σθ :=
p
√
2

(p− 1)a
√
θ
< 1,

which is equivalent to (6.20). If (6.2) holds, then proceeding analogously to the proof of

Theorem 6.1, from (6.12), (6.24) and the Gross LSI for ‖DQ∞‖2 we get the inequality
p2

2(p−1)

(
〈−LFϕ,ϕp〉+

a(κ−1)
p
√
2θ
‖ϕ‖pp
)
≥ a2(1−σθ)

p

2

[ \
H

|ϕ|p log |ϕ|dµ−‖ϕ‖pp log ‖ϕ‖p
]
.

Consequently, LF satisfies (6.5) with the principal coefficient cθ(p) of the form (6.21).

Finally, by (6.20),

√
θ >

√
2 p

a(p− 1)
and hence

a(κθ − 1)
p
√
2θ
≤ a2(p− 1)

2p2
(κθ − 1).

Therefore, (6.5) holds for ϕ ∈ FC∞b and p satisfying (6.20) with cθ(p) given by (6.21) and
γθ(p) of the form (6.22).

Then in much the same way as in Step 2 of the proof of Theorem 6.1 we deduce that

for each bounded ϕ ∈ dom2(LF ) and each p satisfying (6.20) the inequality (6.5) holds
with c(θ, p) and γ(θ, p) given by (6.21) and (6.22). The proof is completed by repeating

Steps 3 and 1′–3′ of the proof of Theorem 6.1.

Corollary 6.3 (Auxiliary estimates). Let (A1), (A3), (F2) hold and the constant a be

given in (6.2). Assume that

θ > 2/a2.

Let p satisfy (6.20) and p′ := p/(p− 1) denote the conjugate exponent of p. Then for
t ≥ 0,

(a) ‖Pt‖p→p ≤ exp
[
a2

2pp′
(κθ − 1)t

]
,

(b) ‖Pt‖p→q ≤ exp
[
a2

8
(κθ − 1)t

]
,

for p ≤ q ≤ q̃(t, p), where

(6.25) q̃(t, p) := 1 + (p− 1) exp
[
a2
(
1− p′

√
2

a
√
θ

)
t

]

and κθ is defined in Lemma 6.2.

Proof. (a) By Lemma 6.2, the LSI (6.5) holds with γ(θ, p) given by (6.22). Because the

function g : [0,∞) → R, g(s) = s log s, s 6= 0, g(0) = 0, is convex, using Jensen’s
inequality we have

〈(γ(θ, p)− LF )ϕ,ϕp〉 ≥ 0 for ϕ ∈ domp(LF ),
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which implies that (LF − γ(θ, p)I) generates a contraction semigroup in Lp(H,µ) (see
[Gr2, Rem. 3.5]). Hence (a) follows.

(b) By an easy calculation, p satisfies (6.20) iff

(6.26) p >

(
1−
√
2

a
√
θ

)−1
.

Fix p satisfying (6.26) and for q ≥ p define

c̃p(q) =
q′

a2

[
1− p′

√
2

a
√
θ

]−1
,

where q′ := q/(q − 1). Then for q ≥ p,

c̃p(q) ≥ c̃q(q) = c(θ, q),

where c(θ, q) is given by (6.21). For (1−
√
2/(a
√
θ))−1 < q < p define c̃p(q) = c(θ, q).

Since 1/(qq′) ≤ 1/4, from (6.22) we have

γ(θ, q) ≤ a2

8
(κθ − 1) =: γ.

Therefore, by Lemma 6.2, for q satisfying (6.26) the LSI (6.5) holds with the prin-

cipal coefficient c̃p(q) and the local norm γ̃(q) ≡ γ. Moreover, c̃p(·) is continuous in
q ∈ ((1 −

√
2/(a
√
θ))−1,∞). Consequently, all the assumptions of [Gr2, Thm. 3.7] are

satisfied and one can consider the initial value problem

(6.27) c̃p(q)
dq(t)

dt
= q(t), q(0) = p, t ≥ 0.

Observe that q(·) in (6.27) is an increasing function and hence, using the notation

α := a2
[
1− p′

√
2

a
√
θ

]
,

we can write (6.27) in the explicit form

dq

q − 1 = αdt, q(0) = p, t ≥ 0.

Therefore, the solution q(t, p) to (6.27) is given by the formula

q(t, p) = (p− 1) exp(αt) + 1 = q̃(t, p), t ≥ 0,

where q̃(t, p) is defined by (6.25).

From [Gr2, Thm. 3.7] we conclude that Pt is a bounded operator from Lp(H,µ) to

Lq̃(t,p)(H,µ) and ‖Pt‖p→q̃(t,p) ≤ expM(t, p), where

M(t, p) =

t\
0

γ̃(q(s, p)) ds = t · γ = t · a
2

8
(κθ − 1).

Thus (b) follows.
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7. The semigroup (Pt)—the case of general F

In this section we assume (A1) and (A3). Let a be the constant corresponding to (A3) via

(6.2). The nonlinear term F in equation (∗) is required to satisfy the following condition
(F1a) which is a bit stronger than (F1):

(F1a) F : H → imB is a Borel function and
κ :=

\
H

exp(δ‖B−1F (x)‖2)µ(dx) <∞ for some δ > 2/a2

(where B−1 denotes the pseudoinverse of B).

Recall that for ϕ ∈ Bb(H),
Ptϕ(x) = E(ϕ(Z

x
t )U

x
t ) for µ-a.a. x and all t ≥ 0,

where Uxt is the Girsanov martingale corresponding to F (see (1.9), (1.4)). It is shown in

Theorem 7.1 below that under the assumption (F1a), (Pt) is a C0-semigroup in L
p(H,µ)

for sufficiently large p and (Pt) is hyperbounded. In the proof we approximate F by a

suitable sequence (Fn) of functions satisfying (F2) and then we use the auxiliary estimates

from Corollary 6.3.

Recall that (see (3.11)) for ϕ ∈ dom(L0F ) = FC∞b ,
L0Fϕ(x) = Lϕ(x) +G0ϕ(x) = Lϕ(x) + 〈F (x), Dϕ(x)〉.

(Note that by (F1), G0ϕ ∈ Lq(H,µ) for all q ∈ (1,∞).)
Theorem 7.1. Assume (A1), (A3), (F1a) and let a and (δ, κ) be the constants corre-

sponding to (6.2) and (F1a) respectively. Then for each p ∈ (1,∞) such that

(7.1) p′ :=
p

p− 1 <
a
√
δ√
2
,

we have:

(a) (Pt) is a C0-semigroup on L
p(H,µ) and its generator LF is an extension of L

0
F .

Moreover ,

(7.2) ‖Pt‖p→p ≤ exp
[
a2

2pp′
(κ− 1)t

]
, t ≥ 0.

(b) For each t > 0, Pt is a bounded operator from Lp(H,µ) to Lq(H,µ) for p ≤ q

≤ qδ(t, p), where

(7.3) qδ(t, p) = 1 + (p− 1) exp
[
a2
(
1− p′

√
2

a
√
δ

)
t

]
,

and in this case

‖Pt‖p→q ≤ exp
[
a2

8
(κ− 1)t

]
.

Proof. Clearly, (F1) implies that

(7.4)
\
H

‖B−1F (x)‖2 µ(dx) <∞.
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For F̂ := B−1F define

F̂n(x) =

{
F̂ (x) if ‖F̂ (x)‖ ≤ n,
0 otherwise,

Fn(x) = BF̂n(x).

Then

‖B−1Fn(x)‖ ≤ ‖F̂n(x)‖ ≤ n
and in particular Fn satisfies (F2) for each n.

By definition

F̂n(x)→ F̂ (x) for µ-a.a. x and ‖F̂n(x)‖ ≤ ‖F̂ (x)‖.
Hence by (7.4) and LDCT, the condition (1.10) of Lemma 1.6 is satisfied.

Let (Uxn,t) and (U
x
t ), t ≥ 0, be the Girsanov martingales corresponding to Fn and F ,

respectively (see (1.4) and Lemma 1.6). Let

Pnt ϕ(x) = E(ϕ(Z
x
t )U

x
n,t), ϕ ∈ Bb(H),

be the transition semigroup for equation (∗) with nonlinear term Fn. In virtue of Lem-

ma 1.6, for any T > 0 one can choose a subsequence (nm) such that for µ-a.a. x,

(7.5) E|Uxnm,T − UxT | → 0 as m→∞.
From the estimate (3.8) (in the proof of Proposition 3.2) and (7.5) we deduce that for

µ-a.a. x and for every ϕ ∈ Bb(H),
(7.6) sup

0≤t≤T
|Pnmt ϕ(x)− Ptϕ(x)| → 0 as m→∞.

Since for each n, Fn satisfies the condition (F2) and the remaining assumptions of

Corollary 6.3 hold for p satisfying (7.1) and θ = δ (δ given in (F1a)) we conclude from

Corollary 6.3(a) that

‖Pnt ‖p→p ≤ exp
[
a2

2pp′
(κnδ − 1)t

]
,

where

κnδ =
\
H

exp(δ‖Q−1/2Fn(x)‖2 µ(dx) =
\
H

exp(δ‖B−1Fn(x)‖2)µ(dx) ≤ κ,

with κ given in (F1a). (The second equality holds because imB = imQ1/2 and ‖Q−1/2y‖
= ‖B−1y‖ for y ∈ imB.)
Therefore

(7.7) ‖Pnt ‖p→p ≤ exp
[
a2

2pp′
(κ− 1)t

]
=: k(p, t).

In much the same way we deduce from Corollary 6.3(b) that

(7.8) ‖Pnt ‖p→q ≤ exp
[
a2

8
(κ− 1)t

]

for p ≤ q ≤ qδ(t, p), where qδ(t, p) is given by (7.3). Then (7.6), (7.7) and the Fatou

lemma yield for ϕ ∈ Bb(H),\
H

|Ptϕ(x)|p µ(dx) ≤ lim inf
m→∞

\
H

|Pnmt ϕ(x)|p µ(dx) ≤ (k(p, t))p‖ϕ‖pp,
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which means that Pt extends to a bounded operator on L
p(H,µ) and (7.2) holds. Simi-

larly, from (7.6), (7.8) and the Fatou lemma we obtain our assertion (b).

To prove the remaining claims of (a) first note that (7.7) and (7.2) imply that for any

T > 0,

(7.9) sup
n
sup
0≤t≤T

‖Pnt ‖p→p ≤ k(p, T ), sup
0≤t≤T

‖Pt‖p→p ≤ k(p, T ).

Then from (7.6), (7.9) and LDCT we obtain, first for ϕ ∈ Bb(H) and next for ϕ ∈
Lp(H,µ),

(7.10) sup
0≤t≤T

‖Pnmt ϕ− Ptϕ‖p −→
m→∞

0.

(Compare the proof of (3.6) in Proposition 3.2.)

Since by Corollary 3.3 for each n and ϕ ∈ Lp(H,µ),
Pnt (P

n
s ϕ) = P

n
t+sϕ, s ≥ 0, t ≥ 0, and lim

t→0+
Pnt ϕ = ϕ,

we deduce easily from (7.9) and (7.10) that (Pt) has the same properties.

It remains to prove that

(7.11) L0F ⊂ LF in Lp(H,µ).

Recall that FC∞b = dom(L
0
F ) = dom(L

0
Fn
), FC∞b as in (2.1a), and by Theorem 3.4

and (6.16) for each q ∈ (1,∞) we have L0Fn ⊂ LFn in Lq(H,µ). Hence for ϕ ∈ FC∞b ,
‖LFnϕ− L0Fϕ‖p = ‖L0Fnϕ− L0Fϕ‖p = ‖〈B−1(F (·)− Fn(·)), BDϕ(·)〉H‖p(7.12)

≤ ‖B‖ · ‖Dϕ‖∞ · ‖B−1(Fn − F )‖p → 0 as n→∞.
Note also that the semigroup property implies that for the subsequence (nm) in (7.10)

we have for all t ≥ 0 and ϕ ∈ Lp(H,µ),
(7.13) ‖Pnmt ϕ− Ptϕ‖p → 0 as m→∞.
Taking into account (7.7), (7.12) and (7.13), we will have shown (7.11) if we prove the

following simple lemma.

Lemma 7.2. Let (Tt), (T nt ) be C0-semigroups on a Banach space E, with generators A,
An, respectively , n = 1, 2, . . . Assume that for some constants M ≥ 1 and λ0,

‖T nt ‖ ≤M exp(λ0t), n = 1, 2, . . . ,

and

T nt ϕ −→n→∞ Ttϕ for all t > 0, ϕ ∈ E.
If a linear operator B with domain dom(B) =: D has the properties

D ⊂ dom(An) for every n, lim
n
Anϕ = Bϕ for ϕ ∈ D,

then A ⊃ B.
Proof. Fix a real λ > λ0. It follows easily that the resolvent operators satisfy R(λ,An)ψ
→ R(λ,A)ψ for ψ ∈ E and ‖R(λ,An)‖ are bounded uniformly in n. Therefore for
ϕ ∈ D we have

lim
n
R(λ,An)(λI − B)ϕ = R(λ,A)(λϕ− Bϕ)
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and on the other hand

R(λ,An)(λϕ− Bϕ) = ϕ+R(λ,An)(Anϕ− Bϕ)→ ϕ as n→∞.
Hence ϕ ∈ dom(A) and Aϕ = Bϕ.
Corollary 7.3. If the assumptions of Theorem 7.1 are satisfied , then

(a) the semigroup (Pt) has an invariant measure ν absolutely continuous w.r.t. µ;

(b) ̺ := dν/dµ ∈ Lp′(H,µ) for all p′ < a
√
δ/
√
2;

(c) ̺(x) > 0 for µ-a.a. x;

(d) for each p satisfying (7.1) there exist constants Mp, λp > 0 such that∥∥∥Ptϕ−
\
H

ϕ̺ dµ
∥∥∥
p
≤Mpe−λpt‖ϕ‖p

for all ϕ ∈ Lp(H,µ), t > 0;
(e) ν is a unique (Pt)-invariant probability measure which is absolutely continuous

w.r.t. µ.

Proof. (a)–(c), (e) are proved in much the same way as Theorem 4.7 and (d) follows as

Proposition 4.8.

Theorem 7.4. Assume (A1), (A3) and let a = sup{α > 0 : (6.1) holds}. If
(F1b) F : H → imQ1/2∞ is a Borel function and

κ̃ :=
\
H

exp(δ‖Q−1/2∞ F (x)‖2)µ(dx) <∞ for some δ > 8/a4,

then

(a) for every p ≥ 2, (Pt) is a C0-semigroup in Lp(H,µ) and its generator LF ⊃ L0F ;
(b) dom2(LF ) = dom2(L);

(c) dom2(LF ) is continuously embedded into W
2,2
Q∞
and into the Orlicz space L2 logr L

for 0 ≤ r < 2;
(d) for p ≥ 2, the generator LF satisfies the LSI (6.5) with the principal coefficient

c(δ, p) and the local norm γ(δ, p) as in (6.21), (6.22) (respectively) with θ = δ = a2δ.

Proof. (a) We will show that (F1a) is satisfied. Note that by (A3) the operator Q−1/2Q
1/2
∞

is bounded on H. If y ∈ HQ := imQ
1/2, then z := Q

1/2
∞ Q−1/2y ∈ H0 and by (6.1),

‖V z‖ ≥ a‖z‖, i.e.
1

a
‖y‖ ≥ ‖Q1/2∞ Q−1/2y‖.

Recall that the image imU−1 of the pseudoinverse of an operator U is orthogonal to

kerU , so in particular imQ−1/2 ⊂ HQ and hence for x ∈ H,
sup
‖y‖≤1

|〈Q−1/2Q1/2∞ x, y〉| = sup
‖y‖≤1, y∈HQ

|〈Q−1/2Q1/2∞ x, y〉|

= sup
‖y‖≤1, y∈HQ

|〈x,Q1/2∞ Q−1/2y〉| ≤ 1
a
‖x‖.

Consequently, ‖Q−1/2Q1/2∞ ‖ ≤ 1/a, and hence by (F1b) we have

‖Q−1/2F (x)‖2 = ‖Q−1/2Q1/2∞ Q−1/2∞ F (x)‖2 ≤ 1
a2
‖Q−1/2∞ F (x)‖2,
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which implies that (F1a) holds for δ = a2δ. Since δ > 8/a2, all the statements of Theo-

rem 7.1 hold for p ≥ 2 and with κ = κ(δ) as in (F1a). In particular (a) follows.
(b) To prove that L0F = L + G0 with dom(L

0
F ) = FC

∞
b has an extension L̃F with

dom(L̃F ) = dom2(L), which generates a C0-semigroup on L
2(H,µ), we proceed similarly

to [Sh; N], where perturbations of the Malliavin generator LM were considered.

We first show that for some constants 0 < α < 1 and σ > 0,

(7.14) ‖G0ϕ‖2 ≤ α‖Lϕ‖2 + σ‖ϕ‖2, ϕ ∈ FC∞b .
Let b̃(x) = Q

−1/2
∞ F (x). Then by the H-Y inequality (see above (6.23)) we have, for

ϕ ∈ FC∞b such that ‖DQ∞ϕ‖2 6= 0,
〈b̃(x), DQ∞ϕ(x)〉2 ≤ δ‖b̃(x)‖2 · δ−1‖DQ∞ϕ(x)‖2

≤ δ−1‖DQ∞ϕ‖22
(
eδ‖b̃(x)‖

2

+ 2
‖DQ∞ϕ(x)‖2
‖DQ∞ϕ‖22

log
‖DQ∞ϕ(x)‖
‖DQ∞ϕ‖2

− ‖DQ∞ϕ(x)‖
2

‖DQ∞ϕ‖22

)
.

This and the LSI for the quadratic form ‖DQ∞ ψ̃‖2 of the H-valued function ψ̃ = ψ/‖ψ‖,
where ψ = DQ∞ϕ ([Sh; C, (2.12)]), yield

(7.15) ‖G0ϕ‖22 ≤ δ−1‖DQ∞ϕ‖22
(
κ̃+ 2

‖D2Q∞ϕ‖22
‖DQ∞ϕ‖22

− 1
)
.

By Corollary 2.7 we have the estimate

‖D2Q∞ϕ‖2 ≤
2

a2
‖Lϕ‖2,

which together with (7.15) implies

‖G0ϕ‖22 ≤
8

δa4
‖Lϕ‖22 + δ−1(κ̃− 1)‖DQ∞ϕ‖22

and hence

‖G0ϕ‖2 ≤
2
√
2

a2
√
δ
‖Lϕ‖2 +

√
κ̃− 1√
δ
‖DQ∞ϕ‖2.

Since δ > 8/a4, for some ε > 0 we have

2
√
2

a2
√
δ
= 1− 2ε.

It follows from (4.14), (4.15) that

1\
0

‖DQ∞Rtϕ‖2 dt <∞

and hence by [Da, Lem. 3.4, p. 70], DQ∞ has L-bound zero. Therefore, for σε sufficiently

large, (7.14) holds with α = 1− ε. Because FC∞b is dense in dom2(L) in the graph norm,
G0 can be uniquely extended to an operator G defined on dom2(L) and satisfying (7.14)

for ϕ ∈ dom2(L).
For δ = a2δ and κ(δ) as in (F1a) let

γ :=
a2

8
[κ(δ)− 1] and L(γ) := L− γI.
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It follows from the proof of (a) and (7.2) that for each u ∈ [0, 1], the operator LuF − γI
generates a C0-semigroup of contractions on L

2(H,µ) and LuF ⊃ L0uF . In particular for
ϕ ∈ FC∞b ,
(7.16) 0 ≥ 〈(L0uF − γI)ϕ,ϕ〉 = 〈L(γ)ϕ,ϕ〉+ u〈G0ϕ,ϕ〉.
Because FC∞b is a core in L

2 for L (and hence for L(γ)) and G0 satisfies (7.14), inequality

(7.16) can be extended to dom2(L), i.e.

(7.17) L(γ) + uG with domain dom2(L) is dissipative in L
2(H,µ), u ∈ [0, 1].

Clearly,

(7.18) L(γ) with domain dom2(L) is m-dissipative in L
2(H,µ).

Then using [P, Thm. 3.2, p. 81] we conclude from (7.14), (7.17), (7.18) that L(γ) + G

defined on dom2(L) is m-dissipative, and hence L+G, with domain dom2(L), generates

a C0-semigroup on L
2(H,µ). Since for ϕ ∈ FC∞b ,

(L+G)ϕ = L0Fϕ = LFϕ

and FC∞b is a core for L+G, as a consequence of Lemma 3.5 we find that L+G = LF ,

which implies (b).

(c) follows from (b) and the results of [Ch-G; N] (compare Corollary 4.3(iii)).

(d) It is proved in (a) that (F1a) holds with δ = a2δ > 8/a2. Let (Fn) be the sequence

approximating F defined in the proof of Theorem 7.1.

Applying Lemma 6.2 with θ = δ to the generators LFn , we see that for each p ≥ 2
and n = 1, 2, . . . , LFn satisfies the LSI (6.5) with c(δ, p) as in (6.21) and γ(δ, p) defined

as in (6.22), where

κ(δ) =
\
H

exp(δ‖Q−1/2F (x)‖2)µ(dx).

Therefore c(δ, p) and γ(δ, p) are independent of n. For a fixed ϕ ∈ FC∞b and p ≥ 2, letting
n→∞, we see from (7.12) that L0F satisfies (6.5) for all p ≥ 2 with the above coefficients.
Since L0F ⊂ LF and FC∞b is a core for LF in L2(H,µ), the proof of (d) is completed by
repeating Steps 2 and 3 of the proof of Theorem 6.1.

Corollary 7.5 (The case of symmetric O-U). Assume (A1), (2.1), (A3) and let Rt = R
∗
t

in L2(H,µ). If (F1a) holds with δ > 8/a2, then

(i) dom2(LF ) = dom2(L) =W
2,2
Q ∩W

1,2
−AQ;

(ii) statement (d) of Theorem 7.4 holds.

Proof. (i) The first equality follows by the same method as in the proof of Theorem

7.4(b) with DQ∞ replaced by DQ. Now, the above-mentioned LSI for H-valued functions

[Sh; C, (2.12)] is a counterpart of (6.3) with L = − 12D∗QDQ, which gives the constant
factor 2/a2 instead of 2 in the middle term in brackets in (7.15). By [Ch-G; N] we have

‖D2Qϕ‖2 ≤ 2‖Lϕ‖2. Therefore G0 now has L-bound equal to 2
√
2/(a
√
δ) < 1 and the

rest of the proof runs as before.

The second equality of (i) follows from [D-G,1] or [Ch-G; N]. Note that (ii) has actually

been shown in the proof of Theorem 7.4(d).
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Appendix

Proof of (2.2). By a result in [D-Z; S], H0 = imL∞, where

L∞ : L2((0,∞);H)→ H, L∞u =
∞\
0

SsQ
1/2u(s) ds

(L∞ is well defined by (A1)).
For any u ∈ L2((0,∞);H) we have

StL∞u =
∞\
0

St+sQ
1/2u(s) ds = L∞ũt, where ũt(s) =

{
0 if 0 ≤ s ≤ t,
u(s− t) if s > t,

and hence St(H0) ⊂ H0.
Lemma 1. Let p ≥ 1 be fixed.
(a) Let Tt be a positivity preserving strongly continuous semigroup on L

p(H,µ) with

generator A. Let G be a linear subspace of Lp(H,µ) such that G ⊂ dom(A), TtG ⊂ G and
G+ is dense in Lp+(H,µ) (where the subscript + means the cone of nonnegative functions
in the suitable space). Then G+ is dense in dom+(A) in the graph norm.
(b) Moreover , if Tt restricted to L

∞(H,µ) is a contraction semigroup on L∞ and

any ϕ ∈ L∞+ (H,µ) can be approximated in Lp-norm by (ψn)∞n=1 such that
(1) ψn ∈ G+, ‖ψn‖∞ ≤ ‖ϕ‖∞, n = 1, 2, . . . ,

then any ϕ ∈ dom+(A) can be approximated in the graph norm by a sequence (ϕn)n=1
satisfying (1).

Proof. The lemma is a modification of [Da; Thm. 1.9] and we adapt the proof given there.

To prove (a) let ϕ ∈ dom+(A) and define

Jnϕ = 2
n
2−n\
0

Tsϕds, n = 1, 2, . . .

Then Jnϕ ∈ dom+(A). Let ||| · ||| denote the graph norm in dom(A). From the strong
continuity of Ts it follows that s 7→ Tsϕ is continuous in ||| ||| norm. Hence
(2) |||Jnϕ− ϕ||| → 0 as n→∞.
From semigroup properties we have for 0 ≤ t ≤ 1,

∣∣∣
∣∣∣
∣∣∣
t\
0

Tsϕds
∣∣∣
∣∣∣
∣∣∣
2

=
∥∥∥A
t\
0

Tsϕds
∥∥∥
2

+
∥∥∥
t\
0

Tsϕds
∥∥∥
2

(3)

≤ ‖Ttϕ− ϕ‖2 +
1\
0

‖Tsϕ‖2 ds ≤ 2(M + 1)2‖ϕ‖,

where M = sup0≤t≤1 ‖Tt‖.
Let now (ψm) be a sequence such that

(4) ‖ψm − ϕ‖ → 0 as m→∞, ψm ∈ G+.
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The estimate (3) implies that for any fixed n,

(5) |||Jnψm − Jnϕ||| → 0 as m→∞.
Finally, for ψ ∈ dom(A) and any fixed n, it follows again from the strong continuity of
s→ Tsψ in ||| · ||| norm that Jnψ is the limit in ||| · ||| norm of the Stieltjes sums:

(6) |||Jnψ − Snk ψ||| → 0 as k →∞, where Snkψ = 2n−k
2k−n∑

j=1

Tj/2kψ.

Note that if ψ ∈ G+, then Snkψ ∈ G+. From (2), (5), and (6) we conclude that ϕ is the
limit in ||| · ||| norm of some subsequence of (Snkψm) and hence part (a) follows.
To prove (b) note that if the functions ψm in (4) satisfy additionally the estimate

‖ψm‖∞ ≤ ‖ϕ‖∞, m = 1, 2, . . . ,

then

‖Snk ψm‖∞ ≤ ‖ϕ‖∞ for all n,m, k

(because Tt is a contraction on L
∞).

Lemma 2. Let p ≥ 1. Recall that
FC∞b := {ϕ : H → R : ϕ(x) = f(〈x, h1〉, . . . , 〈x, hm〉) for some m ∈ N

and h1, . . . , hm ∈ dom(A∗), f ∈ C∞b (Rm)}.
Then for any bounded ϕ ∈ domp(L) there exists (ϕn)∞n=1 such that

ϕn ∈ FC∞b , ‖ϕn‖∞ ≤ ‖ϕ‖∞ for all n, and |||ϕn − ϕ||| → 0,
where ||| · ||| means the graph norm in domp(L). Moreover , if ϕ ≥ 0, then one can choose
ϕn ≥ 0.
Proof. Obviously FC∞b is a linear subspace of L

p(H,µ) and FC∞b ⊂ domp(L). Moreover,
Rt(FC

∞
b ) ⊂ FC∞b for t ≥ 0 (see the proof of [G-Ch; E, Lem. 1]). Since Rt preserves

positivity and is a contraction on L∞ we can apply Lemma 1(b). Hence it suffices to

prove that for any given ϕ ∈ Bb(H), ϕ ≥ 0, one can find a sequence (ϕn) such that
(7) ϕn ∈ FC∞b , 0 ≤ ϕn ≤ ‖ϕ‖∞ =:M, ‖ϕn − ϕ‖Lp → 0.
First, by Lusin’s theorem

∀ε > 0 ∃C ⊂ H,C closed µ(H \ C) < ε and ϕ|C is continuous.
Next, by the Tietze–Urysohn theorem ϕ|C can be extended to a function ϕε which is
continuous on the whole of H and such that 0 ≤ ϕε ≤M . Then
(8) ‖ϕε − ϕ‖Lp ≤ 2εM.

Since dom(A∗) is dense in H, there exists a sequence (Πm)
∞
m=1 of orthogonal projections

such that dimΠm = m, Πm(H) ⊂ dom(A∗) and Πmx→ x as m→∞, x ∈ H. If ψ ≥ 0,
ψ ∈ Cb(H), then

(9)
ψm := ψ(Πmx)→ ψ(x) for all x ∈ H,
0 ≤ ψm ≤ ‖ψ‖∞, ψm(x) = fm(〈x, h1〉, . . . , 〈x, hm〉),
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where fm ∈ Cb(Rm), h1, . . . , hm ∈ Πm(H). Finally, any nonnegative f ∈ Cb(Rm) can be
pointwise approximated by functions f̃k ∈ C∞0 (Rm) with 0 ≤ f̃k ≤ ‖f‖∞, which together
with (8) and (9) proves (7). Hence the lemma follows.
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[B-R] V. I. Bogachev and M. Röckner, Regularity of invariant measures on finite and
infinite dimensional spaces and applications, J. Funct. Anal. 133 (1995), 168–223.
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