
I. Ulam’s stability problem and twisted sums:

two faces of a coin

Ulam’s stability problem for additive maps and the theory of extensions of Banach spaces

have remained so far unaware of each other. To support this assertion it is enough to

peruse the survey articles [36, 52] or the recent book [51] and observe that no single

reference is made to papers in Banach space theory; and, conversely, a monograph on

extensions of Banach spaces such as [20] does not say a word about Ulam’s problem and

its relatives. Or e.g. that the problem posed by Rassias in 1990 [83] had been essentially

solved by Ribe in 1979 [89].

In fact, both worlds constitute two faces of the same coin. In this spirit, the purpose

of this paper is to progress towards a global understanding of the problem, and we shall

do so by developing a theory of vector-valued nearly additive mappings on semigroups.

While a unified theory seems to be out of reach by now, the part of the theory involving

quasi-normed groups and maps with values in Banach spaces seems to be ripe with these

pages. We hasten to alert the reader that this paper can by no means be considered a

survey, although it contains occasional historical comments; two excellent survey papers

are [36, 52].

1. Background on Ulam’s problem. More than half a century ago, S. M. Ulam (see

[101, 102, 103] or [104]) posed the problem of finding conditions under which a “nearly

additive” mapping must be “near” to an additive mapping. More precisely, Ulam asked:

Problem 1.1. Let G1 be a group and let G2 be a metric group with metric d(·, ·). Given

δ > 0, does there exist ε > 0 such that to each mapping F : G1 → G2 satisfying

d(F (x + y), F (x) + F (y)) ≤ ε for all x, y ∈ G1 there corresponds a homomorphism

A : G1 → G2 with d(F (x), A(x)) ≤ δ for all x ∈ G1?

In this paper, we shall mainly think about maps with values in Banach (or quasi-

Banach) spaces. Thus, we speak of additive maps instead of homomorphisms. Of course,

the problem for representations (i.e., with G2 either the unitary group of a Hilbert space

or the group of automorphisms of a Banach space) or characters (i.e., with G2 = T, the

circle group) also received attention (explicitly in [68, 48, 45, 22, 23, 94, 12] and also

implicitly in [56, 57, 54]), but we restrict ourselves to the case in which the target group

is a Banach space with the usual metric induced by the norm.

To motivate the problem and to fix ideas, throughout this chapter we consider maps

acting between real Banach spaces. An additive mapping A : Z → Y is one satisfying

A(x+ y) = A(x) +A(y)
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for all x, y ∈ Z. Consider now a “small” perturbation of A, say F (x) = A(x)+B(x) with

‖B(x)‖ ≤ ε for all x ∈ Z. Then the perturbed map F is “approximately additive” in the

sense that F (x+ y) is not too far from F (x) + F (y). In fact,

‖F (x+ y)− F (x)− F (y)‖ = ‖B(x+ y)−B(x)−B(y)‖ ≤ 3ε.

This is the obvious way of constructing a “nearly additive” map. The question of Ulam

is whether that is the only way. Needless to say, there are several possibilities, as we shall

see, for understanding a small perturbation or a nearly additive map.

The first partial answer to Ulam’s problem was given by D. H. Hyers [50] as follows.

Theorem 1.2. Let F : Z → Y be a mapping acting between Banach spaces and satisfying

‖F (x + y) − F (x) − F (y)‖ ≤ ε for some ε ≥ 0 and every x, y ∈ Z. Then there exists a

unique additive map A : Z → Y such that , for all x ∈ Z, ‖F (x)−A(x)‖ ≤ ε.

Proof. The hypothesis about F and a straightforward induction argument yield

‖F (2nx)− 2nF (x)‖ ≤ (2n − 1)ε.

Thus for n, k ∈ N one has

‖F (2n+kx)− 2kF (2nx)‖ ≤ 2kε.

Dividing by 2n+k one obtains the estimate
∥∥∥∥
F (2n+kx)

2k+n
−
F (2nx)

2n

∥∥∥∥ ≤
ε

2n
,

which shows that for every x ∈ Z, the sequence F (2nx)/2n converges in Y . Define

A(x) = lim
n→∞

F (2nx)

2n
.

Clearly, ‖F (x)−A(x)‖ ≤ ε for all x. Let us verify that A is additive. Fix x, y ∈ Z. Then

‖A(x+ y)−A(x)−A(y)‖ = lim
n→∞

∥∥∥∥
F (2n(x+ y))

2n
−
F (2nxn)

2n
−
F (2ny)

2n

∥∥∥∥ ≤ limn→∞
ε

2n
= 0,

as desired. The uniqueness of the approximating map is clear.

Nowadays this result is commonly considered as one that originated the Hyers–Ulam

stability theory. Nevertheless, as pointed out by the referee, one should remember that al-

ready in 1925 Pólya and Szegő in their famous book “Problems and Theorems in Analysis

I” proved a similar result for real sequences:

Theorem 1.3 [79, Chapter 3, Problem 99]. For any real sequence (an) satisfying the in-

equality |an+m−an−am| < 1 for all n,m ∈ N, there exists a finite limit ω = limn→∞ an/n

and one has |an − ωn| < 1 for all n ∈ N.

In the case where Y = R Hyers’ theorem becomes an immediate consequence of this

result. Be that as it may, later, Rassias [81] considered mappings with unbounded Cauchy

differences and proved the next Theorem 1.4 for 0 ≤ p < 1 thus generalizing Hyers’ result.

Rassias [81] observed that the same proof also worked for p < 0 and asked about the

possibility of extending the result for p ≥ 1; the affirmative answer for p > 1 was provided

by Gajda [37]. Thus one has the following starting result. The case p = 0 is Theorem 1.2.
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Theorem 1.4 (Hyers, Rassias, Gajda). Let p be a fixed real number different from 1.

Suppose F : Z → Y is a mapping satisfying

‖F (x+ y)− F (x)− F (y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ Z. Then there exists a unique additive map A : Z → Y such that

‖F (x)−A(x)‖ ≤
2ε

|2p − 2|
‖x‖p

for all x ∈ Z.

Proof. The case −∞ < p < 1 is as follows. By induction on n one sees that
∥∥∥∥
F (2nx)

2n
− F (x)

∥∥∥∥ ≤ ε‖x‖
p
n−1∑

i=0

2(p−1)i ≤
2ε

2− 2p
‖x‖p

for every n and x. On the other hand, for n, k ∈ N and x ∈ Z one has
∥∥∥∥
F (2n+kx)

2k+n
−
F (2nx)

2n

∥∥∥∥ ≤ 2
n(p−1) 2ε

2− 2p
‖x‖p,

so that A(x) = limn→∞ F (2nx)/2n defines a map from Z to Y with ‖F (x) − A(x)‖ ≤

(2ε/(2− 2p))‖x‖p. Finally, since

‖F (2n(x+ y))− F (2nx)− F (2ny)‖ ≤ 2npε(‖x‖p + ‖y‖p),

dividing by 2n and letting n→∞ we obtain the additivity of A. This ends the proof in

case p < 1.

The proof for p > 1 is similar. In this case we use the behavior of F near zero. The

approximating additive map is now given by

A(x) = lim
n→∞
2nF

(
x

2n

)
.

In any case the uniqueness of the additive map is obvious.

For more general results in this direction the reader can consult Rassias [81, 84],

Gajda [37], Isac and Rassias [53], Rassias and Šemrl [86], Găvruţa [40], Jung [59] and the

surveys of Hyers and Rassias [52] and Forti [36]. It should be noted that most of these

results are particular cases of a general result of Forti [33] about stability of functional

equations of the form g(F (x, y)) = G(f(x), f(y)). See [51] for an account.

Unfortunately, Theorem 1.4 gives no information about homogeneous maps; recall

that a mapping F : E → F acting between vector spaces is homogeneous provided

F (λx) = λF (x) for all x ∈ E and all scalars λ ∈ R. In fact, it is easily seen that

a homogeneous map (or even a 2-homogeneous map, i.e., such that F (2x) = 2F (x))

which satisfies the hypothesis of Theorem 1.4 is already additive. So, in a sense, to

prove Theorem 1.4 one only needs to find a 2-homogeneous map near F and then the

commutativity of the domain automatically gives additivity.

The remainder case p = 1 is exceptional. The following is more than a mere example.

Example 1.5 (mainly Ribe [89]). Let F : R→ R be given by F (t) = t log2 |t|, assuming

0 log2 0 = 0. Then |F (s + t) − F (s) − F (t)| ≤ |s| + |t| for all s, t ∈ R but there is no

additive function A : R→ R satisfying |F (t)−A(t)| ≤ C|t|.
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Proof. To verify the first part, let us consider first the case in which s and t have the

same sign. One has

|F (s+ t)− F (s)− F (t)| = |(s+ t) log2(s+ t)− s log2 s− t log2 t|

= |s log2(s+ t) + t log2(s+ t)− s log2 s− t log2 t|

=

∣∣∣∣s log2
(

s

s+ t

)
+ t log2

(
t

s+ t

)∣∣∣∣

≤ (|s|+ |t|)

∣∣∣∣
s

s+ t
log2

(
s

s+ t

)
+

t

s+ t
log2

(
t

s+ t

)∣∣∣∣.

Since the maximum of |t log2 t| for 0 ≤ t ≤ 1 is 1/2 (attained at t = 1/2) we obtain

|F (s+ t)− F (s)− F (t)| ≤ |s|+ |t|.

Now, if s and t have distinct signs, we may and do assume that s > 0, t < 0 and s+t > 0.

Taking into account that F is an odd map, we have

|F (s+ t)− F (s)− F (t)| = |F (s)− F (−t)− F (s+ t)| ≤ |−t|+ |s+ t| ≤ |s|+ |t|.

To end the proof, observe that limt→∞ F (t)/t =∞, which makes impossible an estimate

|F (t) − A(t)| ≤ C|t| for any continuous additive (i.e., linear) mapping A, let alone dis-

continuous additive A.

This example also appears in Johnson’s paper [57]. Other examples were found by

Gajda [38] and Rassias and Šemrl [86] and will be presented in Section 3.

At this point, it is convenient to introduce some notation and terminology. Thus, a

mapping F : Z → Y is called quasi-additive if it satisfies

‖F (x+ y)− F (x)− F (y)‖ ≤ K(‖x‖+ ‖y‖)

for some K and all x, y ∈ Z. A quasi-linear map is a quasi-additive homogeneous map.

The smallest possible constant K in the preceding inequality is called the quasi-additivity

constant of F and denoted by Q(F ). Given two maps F and G acting between the same

spaces, we consider the (possibly infinite) distance

dist(F,G) = inf{C : ‖F (x)−G(x)‖ ≤ C‖x‖ for all x},

where the infimum of the empty set is treated as +∞. Observe that for homogeneous

maps one has

dist(F,G) = sup
‖x‖≤1

‖F (x)−G(x)‖.

By a bounded map B we mean one satisfying an estimate ‖B(x)‖ ≤ C‖x‖ for some

constant C and all x (that is, bounded maps are maps at finite distance from the zero

map). A mapping F is asymptotically additive (respectively, asymptotically linear) if it is

at finite distance from some additive (respectively, linear) map. This means that it can

be written as F = A+B, with A additive and B bounded. Thus Example 1.5 shows that

not every quasi-additive map is asymptotically additive.

The problem of the lack of stability for p = 1 led Ger [41, 42] to consider mappings

satisfying either

(P) |F (x+ y)− F (x)− F (y)| ≤ ε(‖x‖+ ‖y‖ − ‖x+ y‖)
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or

(G) |F (x+ y)− F (x)− F (y)| ≤ ε‖x‖,

and undertake the first serious attempt to formalize a theory for nearly additive maps

(see also Johnson’s final comments in [57]). Maps satisfying the first condition will be

called here pseudo-additive in accordance with the pseudo-linearity introduced by Lima

and Yost [71] for the study of properties of semi-L-summands in Banach space theory (an-

other token of the extant fracture between Banach space theory and functional equations

theory; see Subsection 2.4 in this chapter). For maps satisfying the second condition we

have coined the term Ger-additive. We shall show that the corresponding homogeneous

notion, i.e. Ger-linear maps, allows a nice formulation of some open problems in Banach

space theory.

Returning to the history of Ulam’s problem and its derivations, Ger shows in [41]

that a map F : Z → Rn satisfying (P) admits an additive map A at distance at most nε.

The strange bound “n” is due to the method of proof, which uses a sandwich theorem

of Kranz [70] (see also Gajda and Kominek [39], or Section 2 in Chapter II). Ger gives

some sufficient conditions for the uniqueness of A and displays an example to show that

the additive approximating map is not necessarily unique.

Ger himself is aware of the fact that the poor estimate (useless, in principle, to extend

the results to infinite-dimensional Banach spaces) is due to the method of proof. In the

subsequent paper [42] he uses invariant means to show (among other results, and in a

more general setting; see Section 4 in Chapter IV) that pseudo-additive or Ger-additive

mappings F : Z → R are asymptotically additive. Ger also realizes that the target space

can be replaced by, say, a reflexive Banach space.

This point deserves a comment. Two remarkable achievements in the theory were

given by Székelyhidi in the papers [97, 99]: in the first one he introduces invariant means

to get a proof of Hyers’s Theorem 1.2, a new technique that shaked the basement of the

theory; in the second paper he observed that, thanks to the use of invariant means, when-

ever there exists an affirmative answer to Ulam’s problem for real-valued nearly additive

functions in the sense of Hyers, there is also an affirmative solution for Hyers-additive

functions with values in a reflexive Banach space (actually, a semi-reflexive locally convex

space). Forti [35] and Gajda [37] extend this result replacing “semi-reflexive” by “sequen-

tially complete”... returning to the original divide-by-2n proof of Hyers! Let us observe

that such extensions are no longer valid for other types of nearly additive mappings, as we

shall see later. The reader is cordially invited to peruse [8] for a comprehensive treatment

of the vector-valued situation.

2. Background on twisted sums. Returning to the exceptional case p = 1, the ex-

istence of a non-trivial quasi-additive (in fact, quasi-linear) map ℓ1 → R was obtained

independently and almost simultaneously by Ribe [89], Kalton [60] and Roberts [90]. In

Banach space theory quasi-linear maps have been introduced by Kalton [60]; see also

[62] in connection with the so-called twisted sums of Banach or quasi-Banach spaces, i.e.,

spaces X containing a given subspace Y in such a way that the quotient space X/Y is a

given space Z. Recall from [64] that a quasi-norm on a (real or complex) vector space X
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is a non-negative real-valued function on X satisfying:

(1) ‖x‖ = 0 if and only if x = 0;

(2) ‖λx‖ = |λ| · ‖x‖ for all x ∈ X and λ ∈ R;

(3) ‖x+ y‖ ≤ ∆(‖x‖+ ‖y‖) for some fixed ∆ ≥ 1 and all x, y ∈ X.

A quasi-normed space is a vector space X together with a specified quasi-norm. On such

a space one has a (linear) topology defined as the smallest linear topology for which the

set

B = {x ∈ X : ‖x‖ ≤ 1}

(the unit ball of X) is a neighborhood of 0. A warning is in order here: a quasi-norm

need not be continuous with respect to itself! Of course, it is continuous at 0, but not

necessarily at every point. Fortunately, the Aoki–Rolewicz theorem shows that every

quasi-norm admits an equivalent quasi-norm that is continuous with respect to the former.

Topologized in that way, X becomes a locally bounded space (i.e., it has a bounded

neighborhood of 0); and, conversely, every locally bounded topology on a vector space is

induced by a quasi-norm. A quasi-Banach space is a complete quasi-normed space.

At this point, some elements borrowed from homological algebra greatly simplify the

exposition.

2.1. Exact sequences of quasi-Banach spaces. This section and Chapter VII are the only

places in which we shall adopt the language of categorical algebra: a small annoyance for

some readers, rewarded with precise statements of the problems.

We denote by Q the category of quasi-Banach spaces, in which objects are quasi-

Banach spaces and arrows are continuous linear maps. The full subcategory in which

the objects are Banach spaces is denoted by B. A short exact sequence in Q or B is a

diagram 0 → Y → X → Z → 0 in the category with the property that the kernel of

each arrow coincides with the image of the preceding one. The open mapping theorem

[64] guarantees that Y is a subspace of X such that the corresponding quotient X/Y is

Z. Two exact sequences 0 → Y → X → Z → 0 and 0 → Y → X1 → Z → 0 are said to

be equivalent if there exists an arrow T : X → X1 making commutative the diagram

0 → Y → X → Z → 0

‖ ↓T ‖

0 → Y → X1 → Z → 0

The three-lemma [49] and the open mapping theorem imply that T must be an iso-

morphism. An exact sequence is said to split if it is equivalent to the trivial sequence

0→ Y → Y ⊕ Z → Z → 0; equivalently, Y is complemented in X (the injection Y → X

admits a left inverse) or, equivalently, the quotient map X → X/Y admits a right inverse.

2.2. Quasi-linear maps. The by now classical theory of Kalton and Peck [60, 62] (see

also the monograph [20]) describes twisted sums of quasi-Banach spaces in terms of

quasi-linear maps.

A quasi-linear map F : Z → Y gives rise to a twisted sum of Y and Z, denoted by

Y ⊕F Z, endowing the product space Y ×Z with the quasi-norm ‖(y, z)‖F = ‖y−F (z)‖
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+ ‖z‖. To verify that ‖ · ‖F is a quasi-norm, note that

‖(y + u, z + v)‖F = ‖y + u− F (z + v)‖Y + ‖z + v‖Z

≤ ‖y − F (z) + u− F (v) + F (z) + F (v)− F (z + v)‖Y + ‖z + v‖Z

≤ ∆Y (‖y − F (z) + u− F (v)‖Y + ‖F (z) + F (v)− F (z + v)‖Y ) +∆Z(‖z‖Z + ‖v‖Z)

≤ ∆Y (∆Y (‖y − F (z)‖Y + ‖u− F (v)‖Y ) +Q(F )(‖z‖Z + ‖v‖Z)) +∆Z(‖z‖Z + ‖v‖Z)

≤ C(‖(y, z)‖F + ‖(u, v)‖F ).

Clearly, the map Y → Y ⊕F Z sending y to (y, 0) is an into isometry while the map

Y ⊕F Z → Z sending (y, z) to z is surjective and continuous. In this way Y can be thought

of as a subspace of Y ⊕F Z such that the corresponding quotient space is Z. Conversely,

given an exact sequence 0 → Y → X → Z → 0, if one takes a bounded homogeneous

selection B for the quotient map (which always exists, by the open mapping theorem)

and then a (not necessarily bounded) linear selection L, their difference F = B−L takes

values in Y instead of X and is a quasi-linear map Z → Y since

‖F (z + v)− F (z)− F (v)‖Y = ‖B(z + v)−B(z)−B(v)‖X ≤ C(‖z‖Z + ‖v‖Z).

The two processes are inverse to each other in a strong sense: equivalent sequences

correspond to “equivalent” quasi-linear maps (here, two quasi-linear maps acting between

the same spaces are said to be equivalent if their difference is asymptotically linear). In

particular, trivial exact sequences correspond to trivial quasi-linear maps. This funda-

mental result of Kalton [60] establishes the basic connection between the theory of twisted

sums and Ulam’s problem; we state it again:

Theorem 1.6. A twisted sum Y ⊕F Z defined by a quasi-linear map F : Z → Y is trivial

if and only if there there exists a linear map L : Z → Y such that dist(F,L) <∞.

In other words, a twisted sum is trivial (a direct sum) if and only if the corresponding

quasi-linear map is asymptotically linear. Notice that a homogeneous map is asymptoti-

cally additive if and only if it is asymptotically linear (see Lemma 1.8 below). Hence, the

existence of non-trivial twisted sums, such as 0 → c0 → ℓ∞ → ℓ∞/c0 → 0, immediately

provides the existence of quasi-linear non-asymptotically linear maps, hence a negative

answer to the case p = 1 in Ulam’s problem. A generalization of Theorem 1.6 will be

proved in Chapter V (Theorem 5.12).

Remark 1.7. Some comments about the rôle of homogeneity are in order. Consider now

additive maps R → R. Linear maps are of course additive; however, additive but non-

linear functions can be obtained by considering a Hamel basis {tα : α ∈ Γ} of the vector

space R over Q and assigning arbitrary values t′α to the elements of the basis. Then, since

every real number t can be represented in a unique way as a finite linear combination of

elements of the basis with rational coefficients t =
∑
α qαtα, one can define an additive

map A : R → R as A(t) =
∑

α qαt
′
α (actually, this was the original purpose of Hamel to

introduce what are now called “Hamel” bases; see [47]). The resulting map is not linear

unless t′α = ctα for some fixed real number c and all α ∈ Γ . Moreover, it is well known

that additive maps are linear if and only if one of the following conditions holds (the



12 F. Cabello Sánchez and J. M. F. Castillo

list is by no means exhaustive): bounded on some bounded set, integrable, continuous at

some point, measurable, . . . (See [27] or [1]. Extensions of these results to other types of

nearly additive maps have been considered in [25].) Thus, every “reasonable” map which

is asymptotically additive must be asymptotically linear:

Lemma 1.8. Let F : Z → Y be a mapping acting between quasi-normed spaces with

dist(F,A) < ∞ for some additive A : Z → Y . Suppose that , for every fixed z ∈ Z,

the map t ∈ R 7→ F (tx) ∈ Y is continuous at t = 0. Then A is linear. In particular ,

an asymptotically additive map which is continuous at zero along lines is asymptotically

linear.

Proof. The hypotheses imply that A itself is continuous along lines, hence linear.

It remains, however, to find out what happens with maps Z → R, i.e., if there exists

a non-trivial sequence 0 → R → X → Z → 0 with Z a Banach space. If the answer is

affirmative then observe that X cannot be isomorphic to a Banach space (i.e., it cannot

be locally convex); hence one is asking for a negative solution to the three-space problem

for local convexity (see Subsection 3.4 in this chapter and Proposition 5.9; or else, [20]).

Ribe’s example [89] of a twisted sum of R and ℓ1 that is not a direct sum (that is, an

exact sequence 0 → R→ X → ℓ1 → 0 that is not trivial) gives an affirmative answer to

the problem; so, there exist quasi-linear mappings F : ℓ1 → R that are not asymptotically

linear. Ribe’s map (see Subsection 3.4 of this chapter for a detailed exposition) is defined

(except for some technicalities involving that we only define the map over the finite

sequences of ℓ1, and putting 0 log 0 = 0) as

F (x) =
∑

n

xn log |xn| −
(∑

n

xn

)
log
(∑

n

|xn|
)
.

In fact, it is very difficult to define explicitly quasi-linear maps on infinite-dimensional

Banach spaces. Fortunately, quasi-linear maps extend from dense subspaces:

Lemma 1.9 (Kalton and Peck [62]; see also [20]). A quasi-linear map F0 : Z0 → Y defined

on a dense subspace Z0 of a quasi-Banach space Z can be extended to a quasi-linear map

F : Z → Y . Moreover , F is asymptotically linear if and only if F0 is.

2.3. Locally convex twisted sums and zero-linear maps. The local convexity of twisted

sums of Banach spaces can be characterized in terms of the quasi-linear maps defining

them. Following [13, 18, 20], let us say that a homogeneous mapping F : Z → Y acting

between normed spaces is zero-linear if there is a constant K such that
∥∥∥

n∑

i=1

F (xi)
∥∥∥ ≤ K

( n∑

i=1

‖xi‖
)

whenever {xi}
n
i=1 is a finite subset of Z such that

∑n
i=1 xi = 0. The smallest constant

K satisfying the preceding inequality will be called the zero-linearity constant of F and

denoted by Z(F ). Observe that zero-linearity is equivalent to satisfying an estimate

∥∥∥F
( n∑

i=1

xi

)
−

n∑

i=1

F (xi)
∥∥∥ ≤ K

( n∑

i=1

‖xi‖
)

for a possibly different constant K.
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Proposition 1.10 ([20]). A twisted sum of Banach spaces Y ⊕FZ is locally convex (being

thus isomorphic to a Banach space) if and only if F is zero-linear.

The proof can be found in Proposition 5.9. For this reason, one of the five types of

nearly additive maps considered in Chapter II are the zero-additive maps. Observe that,

for instance, Ribe’s map is not zero-linear: F (ei) = 0 while F (
∑n
i=1 ei) = −n log n; hence

an estimate ‖F (
∑n
i=1 ei)−

∑n
i=1 F (ei)‖ ≤ K(

∑n
i=1 ‖ei‖) would imply that n logn ≤ Kn,

which is absurd.

We are going to show that, on Banach spaces, real-valued zero-additive maps actu-

ally coincide with asymptotically additive maps. Clearly, the Hahn–Banach theorem in

combination with Theorem 1.6 and the preceding proposition says that every zero-linear

map F : Z → R admits a linear map at finite distance. However, this indirect argument

gives no information about the distance to the approximating linear map. We present

now a direct proof with sharp estimates for the distance to linear maps.

Proposition 1.11. Let F : Z → R be a zero linear mapping. There is a linear functional

A : Z → R such that dist(F,A) ≤ Z(F ).

Proof. The proof goes as the classical proof of the Hahn–Banach theorem via Zorn’s

lemma. The main problem is that an induction hypothesis such as: “there is a linear

functional A defined on a subspace U of Z such that

|F (z)−A(z)| ≤ Z(F )‖z‖(1)

for all z ∈ U” is not strong enough to ensure that A can be extended onto a larger

subspace, say W = [w]⊕ U , in such a way that (1) still holds for z ∈W .

Our strategy is to use as induction hypothesis that, given a zero-linear map F , there

is a linear mapping A : U → R satisfying
∣∣∣
∑

i

F (zi)−A
(∑

i

zi

)∣∣∣ ≤ Z(F )
(∑

‖zi‖
)

(2)

for every finite set {zi} ⊂ Z such that
∑
zi ∈ U . Plainly, this implies, when U = Z, that

dist(F,A) ≤ Z(F ).

Assume that a linear mapping A has been defined on a subspace U ⊂ Z in such a

way that (2) holds when z =
∑
zi ∈ U . Fixing w 6∈ U , we want to see that it is possible

to define A(w) = a ∈ R in such a way that (2) holds for z =
∑
zi ∈ [w] ⊕ U . Since U is

a linear subspace, one can assume that z = w − u with u ∈ U . In this case it suffices to

prove that there exists a number a satisfying
∣∣∣a−A(u)−

∑

i

F (zi)
∣∣∣ ≤ Z(F )

(∑

i

‖zi‖
)

when w − u =
∑
zi and u ∈ U . This is equivalent to

A(u) +
∑

i

F (zi)− Z(F )
(∑

i

‖zi‖
)
≤ a ≤ A(u) +

∑

i

F (zi) + Z(F )
(∑

i

‖zi‖
)
.

So, the question is whether

Au+
∑

i

F (zi)− Z(F )
(∑

i

‖zi‖
)
≤ Av +

∑

j

F (sj) + Z(F )
(∑

j

‖sj‖
)
,
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whenever w− u =
∑
zi, w− v =

∑
sj , u, v ∈ U and zi, sj ∈ Z. The preceding inequality

can be written as

A(u)−A(v) +
∑

i

F (zi)−
∑

j

F (sj) ≤ Z(F )
(∑

i

‖zi‖+
∑

j

‖sj‖
)
,

and follows from the induction hypothesis, which yields∣∣∣A(u− v)−
(∑

i

F (−zi) +
∑

j

F (sj)
)∣∣∣ ≤ Z(F )

(∑

i

‖ − zi‖+
∑

j

‖sj‖
)
,

since u− v = −(w − u) + (w − u) =
∑
i−zi +

∑
j sj and u− v ∈ U .

Observe that only the homogeneity of F has been needed so far. In fact, the induction

step holds independently of the “value” (or meaning) of Z(F ). The zero-additivity of F

only appears as the condition one needs to make this inductive procedure start: when

U = {0} the inequality of the proof states that whenever (zi) is a finite collection of

points of Z with
∑
zi = 0 then∣∣∣

∑
F (zi)

∣∣∣ ≤ Z(F )
(∑

‖zi‖
)
.

Now, the rest of the proof is a typical application of Zorn’s lemma. (Of course, there

is no need for Zorn if Z is finite-dimensional.)

The preceding result (and its proof) should be compared to [93] (see also [51, pp.

25–30]).

2.4. Pseudo-linear maps and semi-L-summands. Proposition 1.10 characterizes those

quasi-linear maps F for which the induced quasi-norm ‖(·, ·)‖F is equivalent to a norm.

As David Yost remarked to us, the question of when ‖(·, ·)‖F is itself a norm can be easily

answered in terms of F :

Proposition 1.12 (Lima and Yost [71]). Let F be a homogeneous mapping acting be-

tween Banach spaces. Then ‖(·, ·)‖F is a norm if and only if F is pseudo-linear with

constant 1.

The proof can be found in Proposition 5.11. However, making ‖ · ‖F a norm has

unexpected side-effects. Recall that a Chebyshev subspace of a Banach space is one whose

metric projection is single-valued (i.e., for each x in the larger space there is a unique

point π(x) in the subspace minimizing ‖x−π(x)‖). A subspace Y of a Banach space X is

called absolutely Chebyshev if it is Chebyshev and there is some function Ψ : R2 → R such

that, for all x ∈ X, ‖x‖ = Ψ(‖π(x)‖, ‖x−π(x)‖). In the case Ψ(s, t) = s+t the subspace Y

is said to be a semi-L-summand in X. It can be proved that every absolutely Chebyshev

subspace in a Banach space becomes a semi-L-summand after a suitable renorming [71]

(thus, from the isomorphic point of view, every absolutely Chebyshev subspace is a semi-

L-summand). We list without proofs some elementary facts concerning metric projections

onto semi-L-summands.

Lemma 1.13. Let Y be a semi-L-summand in X and let π : X → Y be the metric

projection. Then:

• π is homogeneous ;

• π(x+ y) = π(x) + y for all x ∈ X, y ∈ Y ;
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• ‖π(x+ y)− π(x)− π(y)‖Y ≤ ‖x+ Y ‖X/Y + ‖y + Y ‖X/Y − ‖x+ y + Y ‖X/Y .

We obtain (see also [20, Appendix 1.9]):

Proposition 1.14. The exact sequence 0 → Y → X → Z → 0 of Banach spaces is

defined by a pseudo-linear map F : Z → Y if and only if Y is a semi-L-summand of X.

Proof. If Y is a semi-L-summand then the properties of the metric projection appearing

in Lemma 1.13 hold, and we shall show that, if we pick a linear selection L : Z → X for

the quotient map, the map

F (x+ Y ) = x− π(x)− L(x+ Y )

is (well defined and) pseudo-linear:

‖F (x+ z + Y )− F (x+ Y )− F (z + Y )‖ = ‖π(x+ z)− π(x)− π(z)‖

= ‖π(x+ z − π(x)− π(z))‖

= ‖x+ z − π(x)− π(z)‖ − ‖(x+ z − π(x)− π(z))− (π(x+ z)− π(x)− π(z))‖

≤ ‖x− π(x)‖+ ‖z − π(z)‖ − ‖x+ z − π(x+ z)‖

= ‖x+ Y ‖+ ‖z + Y ‖ − ‖x+ z + Y ‖.

Conversely, if a quasi-linear map F : Z → Y is actually pseudo-linear then ‖ · ‖F is a

norm on X and Y is a semi-L-summand since π(y, z) = y−F (z), which obviously is the

metric projection, satisfies

‖(y, z)‖F = ‖y − F (z)‖+ ‖z‖ = ‖π(y, z)‖+ ‖(y, z)− π(y, z)‖.

An obvious question, to which some partial answer will be given in Chapter IV, is:

Problem 1.15. Is every absolutely Chebyshev subspace a complemented subspace?

It should now be clear that this problem is equivalent to the following one:

Problem 1.16. Is every pseudo-linear map at finite distance from some linear map?

3. Examples of nearly additive maps. In this section we shall exhibit examples of

nearly additive (non-asymptotically additive) maps. First of all let us observe that for

most purposes quasi-additive maps on quasi-Banach spaces can be assumed to be odd.

Lemma 1.17. Let F be a quasi-additive map acting between Banach spaces and let

Fo(x) =
F (x)− F (−x)

2

be its odd part. Then Fo is quasi-additive, with Q(Fo) ≤ Q(F ) and dist(F, Fo) ≤ Q(F ).

Proof. That Q(Fo) ≤ Q(F ) is obvious. To see that dist(F, Fo) ≤ Q(F ), consider the even

part of F :

Fe(X) =
F (x) + F (−x)

2
.

Since F = Fo+Fe, the proof will be complete if we show that ‖Fe(x)‖ ≤ Q(F )‖x‖. From

‖F (x+ y)− F (x)− F (y)‖ ≤ Q(F )(‖x‖+ ‖y‖),
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by taking x = 0 and y = 0, it follows that F (0) = 0. Hence

2‖Fe(x)‖ = 2‖F (0)− F (x)− F (−x)‖ ≤ Q(F )(‖x‖+ ‖−x‖) ≤ 2Q(F )‖x‖.

When the corresponding definitions are given, it is equally easy to show that this

holds for pseudo-additive and Ger-additive maps.

3.1. The Kalton–Peck maps. Kalton and Peck consider in [62] quasi-additive odd maps

f such that limt→0 f(tx) = 0. Perhaps the simplest examples of such maps are provided

by functions R→ R having the form

fθ(t) = tθ(log2 |t|)

(if t 6= 0; and fθ(0) = 0), where θ : R → R is a Lipschitz map. Observe that the map in

Example 1.5 corresponds to the choice of θ as the identity function on R.

Let Lip(θ) denote the Lipschitz constant of the map θ.

Lemma 1.18. The function fθ is quasi-additive with Q(fθ) ≤ Lip(θ).

Proof. The proof follows the lines of that of Example 1.5. If s, t > 0 then

|fθ(s+ t)− fθ(s)− fθ(t)| = |(s+ t)θ(log2(s+ t))− sθ(log2 s)− tθ(log2 t)|

≤ |tθ(log2(s+ t))− tθ(log2 t)|+ |sθ(log2(s+ t))− sθ(log2 s)|

= Lip(θ) ·

∣∣∣∣s log2
(

s

s+ t

)
+ t log2

(
t

s+ t

)∣∣∣∣

≤ Lip(θ) · (|s|+ |t|)

∣∣∣∣
s

s+ t
log2

(
s

s+ t

)
+

t

s+ t
log2

(
t

s+ t

)∣∣∣∣
≤ Lip(θ) · (|s|+ |t|).

Now, if s and t have different signs, we may assume that s > 0, t < 0 and s+ t > 0.

Taking into account that fθ is odd, we have

|fθ(s+ t)− fθ(s)− fθ(t)| = |fθ(s)− fθ(−t)− fθ(s+ t)| ≤ Lip(θ)(|−t|+ |s+ t|)

≤ Lip(θ)(|s|+ |t|).

Finally, the odd character of fθ shows that it is quasi-additive with Q(fθ) ≤ Lip(θ).

The result can be completed as follows.

Proposition 1.19. The map fθ is asymptotically additive if and only if θ is uniformly

bounded.

Proof. It is obvious that if θ is uniformly bounded then dist(fθ, 0) <∞.

Conversely, if fθ is asymptotically additive, then by Lemma 1.8 it is asymptotically

linear and, therefore, dist(fθ, 0) <∞. Hence there is a constant C such that

|tθ(log2 |t|)| ≤ C|t|,

that is,

sup
−∞<s<∞

|θ(s)| = sup
−∞<t<∞

|θ(log2 |t|)| ≤ C.

Moreover, Kalton and Peck ([62, Theorem 3.7]) establish that those are essentially

all such maps. The proof can be seen as a clever returning to Hyers’ proof:
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Proposition 1.20. Let F : R → R be a quasi-additive function which is continuous at

zero. Then there exists a Lipschitz function θ : R→ R such that dist(F, fθ) <∞.

Proof. By Lemma 1.17, we may assume that F is odd. It obviously suffices to construct

a Lipschitz map θ with

sup
0<t<∞

∣∣∣∣
F (t)

t
− θ(log2 |t|)

∣∣∣∣ <∞.

Let Q denote the quasi-additivity constant of F . Then

|F (2n+1)− 2F (2n)| ≤ 2n+1Q,

hence ∣∣∣∣
F (2n+1)

2n+1
−
F (2n)

2n

∣∣∣∣ ≤ Q.

The Lipschitz function θ is chosen with Lip(θ) ≤ Q and such that, for all n ∈ Z,

θ(n) = 2−nf(2n).

The function fθ satisfies fθ(2
n) = f(2n) for all integers n and is quasi-additive, with

constant at most Q. We close the proof with a couple of observations:

Lemma 1.21. Every quasi-additive odd map R → R which is continuous at zero is

bounded on compact sets.

Proof. Consider, for instance, the interval [0, 1]; if F is not bounded on it there would

be some sequence tn in [0, 1] for which |F (tn)| > n+ 1. There is no loss of generality in

assuming that tn converges (in any case, a subsequence will do) to some t ∈ [0, 1]. Since

|F (t)− F (t− tn)− F (tn)| ≤ Q(F )(|t− tn|+ |tn|) ≤ 2Q(F )

it follows that

|F (tn)| ≤ 2Q(F ) + |F (t)|+ |F (t− tn)|.

Taking now limits as n→∞, since limF (t− tn) = F (0) = 0 one finds that eventually

n ≤ 2Q(F ) + |F (t)|,

which is absurd.

The following estimate is due to Kalton [60]. The proof is a straightforward induction

that we leave to the reader.

Lemma 1.22. Let F be a quasi-additive function on the line. Then, for all s1, . . . , sm,

one has ∣∣∣F
( m∑

n=1

sn

)
−

m∑

n=1

F (sn)
∣∣∣ ≤ Q

m∑

n=1

n|sn|,

where Q is the quasi-additivity constant of F .

Lemma 1.23. Suppose F : R → R is a quasi-additive odd map which is continuous at

zero. If F (2n) = 0 for all integers n, then F is bounded (in the sense of being at finite

distance from the zero map). More precisely , if C is a (uniform) bound for F in [0, 1]

and Q its quasi-additivity constant , then

|F (t)| ≤ 2(Q+ C)|t|.
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Proof. Since F is odd, it is enough to work with positive t. We proceed inductively on

the interval [2n−1, 2n), n ∈ N, where t falls. If t ∈ [1/2, 1) the result is clear. Let t ∈ [1, 2).

Then

|F (t)| = |F (t)− F (1)− F (t− 1) + F (t− 1)| ≤ Qt+ C ≤ (Q+ C)t.

Let now t ∈ [2, 4). One has to consider two cases, depending on whether 2 ≤ t < 3 or

3 ≤ t < 4. In the first case,

|F (t)| = |F (t)− F (2)− F (t− 2) + F (t− 2)| ≤ Qt+ C ≤ (Q+ C)t;

in the second case (recall that F is odd),

|F (t)| = |F (t)− F (4)− F (t− 4) + F (t− 4)| ≤ Qt+ C ≤ (Q+ C)t.

Now, the induction argument. Consider t ∈ [2n−1, 2n]. If t < 2n−2 + 2n−1, then

|F (t)| = |F (t)− F (2n−1)− F (t− 2n−1) + F (t− 2n−1)| ≤ Qt+ |F (t− 2n−1)|

≤ Qt+Q(t− 2n−1) + C = Q(2t− 2n−1) + C ≤ Q2n + C

≤ (Q+ C)2n ≤ (Q+ C)2t.

If 2n−2 + 2n−1 ≤ t then (recalling again that F is odd)

|F (t)| = |F (t)− F (2n)− F (t− 2n) + F (t− 2n)| ≤ Qt+ |F (t− 2n)|

≤ Qt+Q(2n − t) + C = Q2n + C ≤ (Q+ C)2n ≤ 2(Q+ C)t.

We now examine the situation for t ∈ [0, 1/2]. Any t ∈ [2−n, 2−n+1] can be written as

t = 2−n
∑∞
j=1 δj2

−j , where δj is 0 or 1. Set tm= 2
−n
∑m
j=1 δj2

−j ; since |F (t)−F (t−tm)

− F (tm)| ≤ Q|t| one then has

|F (t)| ≤ |F (t− tm)|+ |F (tm)|+Q|t|,

and since F is continuous at 0, F (t− tm)→ 0 as m→∞. Hence,

|F (t)| ≤ Q|t|+ lim sup
m→∞

|F (tm)|.

Finally, we can use Lemma 1.22 to estimate F (tm):

|F (tm)| =
∣∣∣F
(
2−n

m∑

j=1

δj2
−j
)∣∣∣ ≤ Q

m∑

j=1

jδj2
−n−j ≤ KQ2−n ≤ 8Qt

since
∑∞
n=1 n2

−n = 2.

The proof of Proposition 1.20 is now complete.

3.2. The Rassias–Šemrl map. This was considered to be the first example (see [86, The-

orem 2]) of a continuous quasi-additive but non-asymptotically additive map R → R

(although, as we already mentioned, Ribe’s example came first). It is defined as

f(x) = x log2(1 + |x|).

This function is odd, continuous and convex on R+. We show that Q(f) = 1. Since f is

convex, for positive x, y one has

|f(x+ y)− f(x)− f(y)| ≤ f(x+ y)− 2f

(
x+ y

2

)
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and the estimate holds. For negative x, y it also holds since f is odd. Thus, there remains

the case in which x and y have different signs. There is no loss of generality to assume

that x > 0, y < 0 and |y| < |x|. By the convexity of f one has

|f(x+ y)− f(x)− f(y)| = −f(x+ y) + f(x) + f(y) = f(x)− f(x+ y)− f(−y);

since both x+ y and −y are positive, the proof is complete.

According to Proposition 1.20 there is a Kalton–Peck map fθ such that dist(f, fθ)

<∞. In fact, the Rassias–Šemrl map is a Kalton–Peck map. To see this, define

θ(t) = log2(1 + 2
t).

Then

θ(log2 |x|) = log2(1 + |x|),

so that f = fθ. On the other hand,

dθ

dt
(t) =

2t

1 + 2t
,

which yields Lip(θ) = 1. In view of Lemma 1.18 this also shows that Q(f) ≤ 1.

3.3. Gajda’s map. In [38] (see also [51, pp. 24–25], the following example of a uniformly

bounded quasi-additive but non-asymptotically additive map f : R → R is presented.

The idea is that if f is continuous at zero and satisfies

lim
x→0

f(x)

x
=∞

then it cannot be asymptotically additive, since the additive map approximating f has

to be linear (a possibility that the previous condition prevents). It remains to get such

an f that is quasi-additive, though. Fix Q > 0, and define

f(x) =

∞∑

n=0

φ(2nx)

2n

where φ is the function given by

φ(x) =





−Q/6 if x ≤ −1,

Qx/6 if −1 < x < 1,

Q/6 if x ≥ −1.

Gajda proves that f is quasi-additive with constant Q.

Also, uniformly bounded quasi-additive non-asymptotically additive maps can be pro-

duced as Kalton–Peck maps fθ for suitable choices of θ. Simply take

θ(s) =

{
s if x ≤ 0,

0 if x ≥ 0.

3.4. Ribe’s map. Requiring the maps to be homogeneous, one cannot expect to have

non-trivial examples R → R. Or Rn for that matter. Passing to infinite-dimensional

Banach spaces, however, let us show the existence of quasi-linear (i.e., quasi-additive

homogeneous) maps ℓ1 → R that are not asymptotically linear. Kalton and Peck show in

[62] that a quasi-additive odd map f that is continuous at 0 along lines can be rendered



20 F. Cabello Sánchez and J. M. F. Castillo

quasi-linear by the process

F (x) = ‖x‖f

(
x

‖x‖

)
.

Thus, it is enough to describe a suitable quasi-additive map that is not asymptotically

additive. To do that, observe that a quasi-additive map f : R→ R yields a quasi-additive

map defined on the dense subspace of ℓ1 spanned by the finitely supported sequences

as follows: g(x) =
∑
f(xn). Moreover, such a map can be extended to the whole ℓ1 by

Lemma 1.9. So, taking as starting point the map f(t) = x log2 |t| one arrives at the map

defined on the subspace of finite sequences of ℓ1 by

F (x) =
∑

i

xi log2 |xi| −
(∑

i

xi

)
log2

∣∣∣
∑

i

xi

∣∣∣.

That F is quasi-linear with Q(F ) = 2 is not difficult to prove and has been es-

sentially done in Example 1.5. This map is not asymptotically linear since an estimate

‖F (x)−A(x)‖ ≤ C‖x‖ and F (en) = 0 would imply that A is bounded by, say, M on en.

Hence |A(
∑n
i=1 ei)| ≤Mn. On the other hand, F (

∑n
i=1 ei) = n log2 n.

3.5. K-spaces. Ribe’s map F : ℓ1 → R yields a twisted sum of R and ℓ1 that cannot

be locally convex: otherwise, by the Hahn–Banach theorem, the copy of R would be

complemented, the sequence would split and F would be asymptotically linear.

There exist Banach spaces Z such that every quasi-linear map Z → Y is zero-linear

(i.e., every twisted sum of no matter which Banach space and Z is locally convex). In

particular, every twisted sum of R and Z is trivial (i.e., every quasi-linear map Z → R

is asymptotically linear). A theorem of Dierolf [28] states that the two statements are

actually equivalent: every twisted sum with a Banach space is locally convex if and only

if every twisted sum with the line is. This last formulation, however, has the advantage

that it can also be applied to quasi-Banach spaces. One has:

Definition 1.24. A quasi-Banach space Z is said to be aK-space if every exact sequence

0→ R→ X → Z → 0 splits.

This notion was introduced by Kalton and Peck [63]. Let us recall again that a quasi-

Banach space is a K-space if and only if every quasi-linear map Z → R is asymptotically

additive.

The main examples of K-spaces are, amongst Banach spaces, the B-convex spaces

[60] (recall that B-convexity means “having non-trivial type”) and those of type L∞ (cf.

[66]); and, in general, the Lp-spaces for 0 < p ≤ ∞, p 6= 1 (see [60]). Thus every exact

sequence 0 → R → X → Z → 0 in which Z is either a B-convex or an Lp-space with

p 6= 1 splits. Since, on the other hand, there exist non-trivial exact sequences of reflexive

Banach spaces, it is clear that the results of Gajda, Székelyhidi and Ger we mentioned in

Section 1 for Hyers-additive and pseudo-additive maps no longer work for zero-additive

maps. Let us display an example.

3.6. The Kalton–Peck–Ribe maps. In some sense, these are the “coordinate-by-coordinate”

version of Ribe’s map obtained by Kalton and Peck in [62] as follows. Let X be a quasi-

Banach space having an unconditional basis (en)
∞
n=1 so that, for every x ∈ X, one has
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x =
∑∞

n=1 x(n)en. We assume that X does not contain a copy of c0. First consider the

map defined on the finitely supported sequences of X by

f(x)(n) = x(n)(− log |x(n)|),

and then make it homogeneous:

F (x) = ‖x‖f

(
x

‖x‖

)
.

Of course, it is also possible to replace the invisible identity by a Lipschitz function; that

is, given a Lipschitz function ψ : R+ → R+ we set

fψ(x)(n) = x(n)ψ(− log |x(n)|)

and then homogenize the function to

Fψ(x) = ‖x‖fψ

(
x

‖x‖

)
.

It is a highly non-trivial task now to show that two such functions Fψ and Fθ are

equivalent if and only if ψ − θ is uniformly bounded. Hence, Fψ is trivial if and only

if ψ is uniformly bounded. See the original paper [62] or the monograph [20] for a full

treatment.

II. Nearly additive mappings on controlled groups

In this chapter we introduce “nearly additive” maps on arbitrary groups and semigroups,

taking values in Banach or quasi-Banach spaces.

1. Controlled groups and asymptotically additive maps. In what follows, G and S

stand, respectively, for groups and semigroups acting as domains of mappings. Despite the

use of additive notation for the operations these are not assumed to be commutative. We

shall consider semigroups equipped with a certain “control” functional ̺ : S → R+ which

provides a rudimentary “topological” structure. We remark that by a control functional

we mean any non-negative function on the (semi)group under consideration. If some

additional property is required, we shall state it explicitly. We write (S, ̺) if it is necessary

to explicitly mention both the semigroup and the control functional.

The most interesting type of control functional are the quasi-norms. A quasi-norm is

a non-negative real-valued map on a group G such that ̺(x) = 0 if and only if x = 0,

the function is symmetric in the sense that ̺(x) = ̺(−x) for all x ∈ G, and the following

condition holds: ̺(x+ y) ≤ ∆(̺(x) + ̺(y)) for some constant ∆ and all x, y ∈ G. If this

condition holds for ∆ = 1, then ̺ is called a norm. A (quasi-) normed group is a group

together with a specified (quasi-) norm.

Let S be a semigroup with control functional ̺ and let Y be a quasi-Banach space

(or even a commutative quasi-normed group) with quasi-norm ‖ · ‖. Given two maps

F,G : S → Y , one can consider the following possibly infinite “distance”:

dist(F,G) = inf{K : ‖F (x)−G(x)‖ ≤ K̺(x) for all x ∈ S}.
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As before, the infimum of an empty set is treated as +∞. By a bounded map we mean

one at finite distance from the zero map. Following tradition we sometimes write ‖F‖

instead of dist(F, 0). The group of all bounded maps B : S → Y is denoted by B(S, Y ).

It is a quasi-normed group under the quasi-norm ‖B‖B(S,Y ) = dist(B, 0). Observe that

B(S, Y ) is a quasi-Banach or Banach space if (and only if) Y is.

A map A : S → Y will be called additive if

A(x+ y) = A(x) +A(y)

for all x, y ∈ S. The set of all additive maps from S to Y is a group (a linear space if Y

is) that we denote by Hom(S, Y ). The set

HomB(S, Y ) = Hom(S, Y ) ∩ B(S, Y )

is a closed subgroup of B(S, Y ) and therefore a quasi-normed group. When Y = R we

write S∗ or (S, ̺)∗ instead of HomB(S, Y ) and we speak of the dual space of S. Notice

that S∗ is always a Banach space.

As before, we say that a map F : S → Y is asymptotically additive if dist(F,A) is finite

for some additive map A or, in other words, if it is at finite distance from Hom(S, Y ).

These (trivial) maps are just perturbations of additive maps by bounded maps. The

group of all asymptotically additive maps between S and Y is denoted by T (S, Y ) or

T ((S, ̺), Y ). Notice that

T (S, Y ) = Hom(S, Y ) + B(S, Y ).

Remark 2.1. The only places in which mappings with values in general (commutative)

quasi-normed groups are considered are Chapters V and VII.

2. Five definitions of nearly additive maps. Let F be a mapping defined on a

controlled semigroup (S, ̺) and taking values in a (quasi-) Banach space or a commutative

quasi-normed group Y . There are several possibilities open to decide in which sense F

behaves like an additive map. They usually take the form

‖F (x+ y)− F (x)− F (y)‖ ≤ KΛ(x, y)

for some constant K and some function Λ related to the control functional of S. We

pass to give five definitions of nearly additive mapping that articulate the theory. It

is true that, at first sight, they are much of a muchness; but we expect to have been

able to emphasize the striking differences between the theories they originate. See also

Chapter V.

Hyers additivity. It is defined by the choice

Λ(x, y) = 1.

The name comes from [50] where Hyers proved that a nearly additive mapping (in this

sense) between Banach spaces is asymptotically additive with respect to ̺ = 1. See

[36, 52] for a sound background, and the comments made in the introductory chapter

for an overall panorama. The space of Hyers-additive maps acting between (G, ̺) and

(Y, ‖ · ‖) is denoted by H(G, Y ).
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Quasi-additivity. It is defined by the choice

Λ(x, y) = ̺(x) + ̺(y).

The smallest constant K for which the inequality holds is referred to as the quasi-

additivity constant of F and denoted by Q(F ). This notion constitutes the bridge towards

the theory of extensions of (quasi-) Banach spaces in which, as we have seen, homoge-

neous quasi-additive maps are called quasi-linear. The space of quasi-additive maps acting

between (G, ̺) and (Y, ‖ · ‖) is denoted by Q(G, Y ).

Pseudo-additivity. It is defined by the choice

Λ(x, y) = ̺(x) + ̺(y)− ̺(x+ y)

and inspired by pseudo-linearity of Lima and Yost [71]. We denote by P (F ) the pseudo-

additivity constant of F . As we have seen, in Banach space theory pseudo-linear maps

generate semi-L-summands. Observe the rather restrictive character of this notion: the

mere existence of pseudo-additive mappings forces ̺ to be subadditive. The space of

pseudo-additive maps acting between (G, ̺) and (Y, ‖ · ‖) is denoted by P(G, Y ).

Ger-additivity. It is defined by the choice

Λ(x, y) = ̺(x)

or, equivalently, Λ(x, y) = min{̺(x), ̺(y)}. For F odd this is equivalent to the original

definition Λ(x, y) = ̺(x+ y). See also [25] and the remarks below.

The meaning of G(F ) should be clear. The space of Ger-additive maps acting between

(G, ̺) and (Y, ‖ · ‖) is denoted by G(G, Y ). There are close connections between Ger-

additive maps and the existence of Lipschitz selectors for the metric projection in Banach

spaces. See Chapter V, Section 6.

Zero-additivity. It appears when considering relations between an arbitrary (but finite)

number of variables. Following [18, 20, 13, 9], we say that a map F is zero-additive if

there is a constant K such that
∥∥∥

n∑

i=1

F (xi)−
m∑

j=1

F (yj)
∥∥∥ ≤ K

( n∑

i=1

̺(xi) +

m∑

j=1

̺(yj)
)

for each n and m whenever xi and yj are such that
∑n
i=1 xi =

∑m
j=1 yj .

The smallest constant for which the inequality holds is denoted by Z(F ) and re-

ferred to as the zero-additivity constant of F . The space of all zero-additive maps acting

between (G, ̺) and (Y, ‖ · ‖) is denoted by Z(G, Y ). We have already mentioned that

these mappings appear in connection with locally convex extensions of Banach spaces;

see [18, 20, 13] and also Section 3 in Chapter V.

Remarks 2.2. • Although it may seem at first glance that Hyers additivity is the most

restrictive of those notions, what is more true is that this notion stands apart from the

others. Observe that Hyers’s condition reduces to pseudo-additivity with respect to the

control functional ̺ = 1. Thus, the constant functions are Hyers-additive although they

are usually not quasi-additive.
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• The interested reader could pay some attention to the paper [25], in which the

general definition of Λ-additive map is introduced, and regular Λ-additive maps R → R

are considered. That approach makes one realize that there are two (different) things

that could be called Ger-additive maps: when, as in the text, one makes the choice

Λ(x, y) = ̺(x), or else, when one makes the choice Λ(x, y) = ̺(x + y). They are not

equivalent.

• It is quite clear that Lemma 1.17 is true for our five types of nearly additive maps,

as it is true for any class A of quasi-additive maps satisfying two conditions: (a) if F ∈ A

then the composition of F with the automorphism x 7→ −x is in A; (b) A is a real vector

space. These two conditions ensure that the odd and even parts of a map in A are in A.

For maps taking values in Banach spaces, the following implications hold.

Lemma 2.3. Let S be a controlled semigroup and Y be a Banach space. Then:

(a) P(S, Y ) ⊂ Q(S, Y ) and Q(F ) ≤ P (F ) for every F ∈ P(S, Y ).

(b) P(S, Y ) ⊂ Z(S, Y ) and Z(F ) ≤ P (F ) for every F ∈ P(S, Y ).

(c) G(S, Y ) ⊂ Q(S, Y ) and Q(F ) ≤ G(F ) for every F ∈ G(S, Y ).

(d) G(S, Y ) ⊂ Z(S, Y ) and Z(F ) ≤ G(F ) for every F ∈ G(S, Y ).

If G is a group endowed with a symmetric control functional one moreover has

(e) P(S, Y ) ⊂ G(S, Y ) with G(F ) ≤ 2P (F ) for every F ∈ P(S, Y ).

If , in addition, G is a quasi-normed group then

(f) Z(S, Y ) ⊂ Q(S, Y ) with Q(F ) ≤ (1+∆)Z(F ), where ∆ is the constant appearing

in the definition of the quasi-norm ̺.

Proof. The implications (a), (c) and (f) are obvious. That pseudo-additivity implies zero-

additivity even in a not necessarily commutative semigroup deserves some comments. Let

us show that a pseudo-additive mapping F : (S, ̺) → Y with P (F ) = 1 satisfies the

inequality
∥∥∥F
( n∑

i=1

xi

)
−

n∑

i=1

F (xi)
∥∥∥ ≤

n∑

i=1

̺(xi)− ̺
( n∑

i=1

xi

)

for each n and all xi ∈ S. We proceed by induction on n. For n = 1 and n = 2 it is obvious

and the definition of pseudo-additivity, respectively. We assume it is true for n = k and

proceed for k + 1:

∥∥∥F
( k+1∑

i=1

xi

)
−
k+1∑

i=1

F (xi)
∥∥∥

=
∥∥∥F
( k+1∑

i=1

xi

)
− F
( k∑

i=1

xi

)
+ F
( k∑

i=1

xi

)
−
k+1∑

i=1

F (xi)
∥∥∥

≤
∥∥∥F
( k+1∑

i=1

xi

)
− F
( k∑

i=1

xi

)
− F (xk+1)

∥∥∥+
∥∥∥F
( k∑

i=1

xi

)
−

k∑

i=1

F (xi)
∥∥∥
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≤ ̺
( k∑

i=1

xi

)
+ ̺(xk+1)− ̺

( k+1∑

i=1

xi

)
+

k∑

i=1

̺(xi)− ̺
( k∑

i=1

xi

)

=
k+1∑

i=1

̺(xi)− ̺
( k+1∑

i=1

xi

)
.

This shows the containment (b).

That Ger-additivity implies zero-additivity is quite easy: in fact, a straightforward

induction argument shows that Ger-additive maps satisfy the estimate

∥∥∥F
( n∑

i=1

xi

)
−

n∑

i=1

F (xi)
∥∥∥ ≤ G(F )

( n−1∑

i=1

̺(xi)
)
.

This proves (d).

To see (e), note that if F is pseudo-additive with respect to ̺, then ̺ must be sub-

additive. Hence, for every x, y ∈ G, one has

̺(y)− ̺(x+ y) ≤ ̺(−x).

Thus, if ̺ is symmetric, then every pseudo-additive map is Ger-additive with G(F ) ≤

2P (F ).

3. Forti’s example. In general, no “approximate additivity” condition guarantees that

a quasi-additive map F : (G, ̺)→ R defined on an arbitrary controlled group is asymp-

totically additive. Thus, there is no room for a “simple” theory. The following crucial

example due to Forti makes this apparent. In what follows, F2 denotes the free group

generated by the symbols a and b, the operation being juxtaposition.

Example 2.4 (Forti [34, 35]). There is a map F : F2 → R with F (xy)− F (x)− F (y) ∈

{−1, 0, 1} for every x, y ∈ F2 and such that F − A is (uniformly) unbounded on F2 for

every A ∈ Hom(F2,R).

Proof. Let x ∈ F2 be written in the “reduced” form, that is, x does not contain pairs

of the form aa−1, a−1a, bb−1 or b−1b, and it is written without exponents different from

1 and −1. Let r(x) be the number of pairs of the form ab in x and let s(x) be the

number of pairs of the form b−1a−1 in x. Now, put F (x) = r(x)− s(x). Clearly, one has

F (xy)− F (x)− F (y) ∈ {−1, 0, 1} for all x, y ∈ F2.

To end, let S ⊂ F2 be the semigroup generated by the commutator aba
−1b−1. Then

S ⊂ kerA for all A ∈ Hom(F2,R), while F is unbounded on S. Hence there in no additive

A which (uniformly) approximates F on F2.

Now, let δ : F2 → R+ be the discrete norm given by

δ(x) =

{
0 for x = ∅ (the “empty” word),

1 for x 6= ∅.

Since F (∅) = 0, it is clear that F : (F2, δ) → R is pseudo-additive, Ger-additive, zero-

additive and quasi-additive with constant 1 yet not asymptotically additive.

Remark 2.5. This example also shows that Hyers’ Theorem 1.2 does not hold for Z

an arbitrary group. Notice that, for each x, the sequence F (2nx)/2n still converges, but
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the resulting map is not additive. The reason for that disaster is that 2n(x+ y) may be

different from 2nx+ 2ny in absence of commutativity.

For related examples, see [55, 30, 31, 32].

4. Four stability properties. In view of the preceding example, we consider the fol-

lowing properties. Let S be a controlled semigroup and Y a quasi-Banach or Banach

space.

Definition 2.6. We say that the pair [S, Y ] has property (Z) (respectively, (Q), (G) or

(P)) if every zero-additive (respectively, quasi-additive, Ger-additive or pseudo-additive)

map F : S → Y is asymptotically additive.

In the spirit of Problem 1.1, one could require for every δ > 0 the existence of some

ε > 0 such that, for each F : S → Y with Z(F ) ≤ ε (respectively, Q(F ) ≤ ε, G(F ) ≤ ε

or P (F ) ≤ ε) there is A ∈ Hom(S, Y ) satisfying dist(F,A) ≤ δ. Since the numbers

Z(F ), Q(F ), G(F ), P (Z) and dist(F,Hom(S, Y )) depend homogeneously on F , that

requirement would lead to some of the following properties.

Definition 2.7. Let (S, ̺) be a controlled semigroup, Y a (quasi-) Banach space and M

a constant. We define the following properties of the pair [(S, ̺), Y ]:

(MP) For each F ∈ P((S, ̺), Y ) there is A ∈ Hom(S, Y ) such that dist(F,A) ≤MP (F ).

(MG) For each F ∈ G((S, ̺), Y ) there is A ∈ Hom(S, Y ) such that dist(F,A) ≤MG(F ).

(MZ) For each F ∈ Z((S, ̺), Y ) there is A ∈ Hom(S, Y ) such that dist(F,A) ≤MZ(F ).

(MQ) For each F ∈ Q((S, ̺), Y ) there is A ∈ Hom(S, Y ) such that dist(F,A) ≤MQ(F ).

Our immediate objective will be to show that, in fact, a pair [G, Y ] has property

(Z) (respectively, (Q), (G) or (P)) if and only if it has, for some constant M , property

(MZ) (respectively, (MQ), (MG) or (MP)). For obvious reasons we understand this as

a “uniform boundedness principle”. Let us prove the principle without further delay.

III. Uniform boundedness principles

The search for uniform boundedness principles for nearly additive maps is paved by the

somewhat astonishing result of Forti [35] that we report now.

Theorem 3.1 (Forti [35]). Let S be a semigroup and Y a Banach space. Let F : S → Y

be a mapping satisfying ‖F (x + y) − F (x) − F (y)‖ ≤ ε for all x, y ∈ S. Suppose A is

an additive mapping such that F −A is uniformly bounded on S. Then, in fact , one has

‖F (x)−A(x)‖ ≤ ε for all x ∈ S.

We recognize here a uniform boundedness principle, namely: if every Hyers-additive

mapping F is at finite distance from additive maps, then the distance depends only on

the Hyers additivity constant of F .

In this chapter we prove the following generalization of Forti’s result (see [10]).
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Theorem 3.2. Let (G, ̺) be a controlled group and Y a Banach space. Suppose that

every zero-additive map G → Y is asymptotically additive. Then the pair [(G, ̺), Y ] has

property (KZ) for some K ≥ 0.

Although we shall concentrate on zero-additive maps, only minor changes are needed

to prove the corresponding results for other types of maps (and also for Y a quasi-Banach

space). Let us also remark that the scalar case Y = R is not simpler than the general

one. The somewhat involved proof combines ideas of Giudici (see [36], pp. 149–150) with

the following general results about decomposition of groups that will be used extensively

in what follows.

1. Decomposition of groups. Let (G,+) be a group. A commutator is an element

x ∈ G which can be written as x = a+b−a−b. The commutator subgroup G1 of G is the

subgroup spanned by the commutators. It is easily seen that G1 is a normal subgroup of

G and also that A(G) = G/G1 is abelian, so that one has the “abelianizing” sequence

0→ G1 → G→ A(G)→ 0

which decomposes G into the commutator G1 and the “abelian part” A(G). The quotient

map π1 : G→ A(G) has the following universal property: every group homomorphism ψ

from G into a commutative group H factorizes through π1 in the sense that there exists

a unique homomorphism ψ1 : A(G)→ H for which ψ = ψ1 ◦ π1.

Now consider the torsion subgroup of A(G), that is,

T = {x ∈ A(G) : nx = 0 for some n ∈ N}.

Thus, we have another exact sequence

0→ T → A(G)→ A(G)/T → 0

in which A(G)/T is torsion-free (although not generally free). So, we have a diagram

G
π1−→ A(G)

i
← T which can be completed to give the so-called pull-back diagram

0 0

↑ ↑

A(G)/T = A(G)/T

↑ ↑

0→ G1 → G → A(G) → 0

‖ ↑ ↑

0→ G1 → PB → T → 0

↑ ↑

0 0

where PB = π−11 (i(T )) is a normal subgroup of G containing both the commutator

subgroup and the torsion elements of G, and which we denote by G0 (actually, the

sequence 0 → G1 → G0 → T → 0 shows that G0 can be regarded as a “mixture” of G1
and T ).
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We are, however, interested in the middle vertical sequence

0→ G0 → G→ G/G0 → 0

which decomposes G into the “bad part” G0 and the “good part” G/G0. In fact, we prove

now that G/G0 is the greatest quotient of G which embeds in a vector space. This is the

content of the next lemmata.

Lemma 3.3. G/G0 is a subgroup of a vector space over Q.

Proof. Since G/G0 is both abelian and torsion-free, it obviously suffices to show that

every abelian torsion-free group M is a subgroup of a vector space over Q.

Consider M as a Z-module in the obvious way and let ϕ : M → M ⊗Z Q be the

homomorphism given by the usual change of base procedure (that is, ϕ(x) = x⊗ 1). It is

easily seen that ϕ is injective if (and only if) M is torsion-free (see [4]). So the obvious

observation that M ⊗Z Q is a vector space over Q ends the proof.

Lemma 3.4. Every homomorphism from G into a torsion-free abelian group factorizes

through the natural quotient map π0 : G → G/G0. In particular , such homomorphisms

must vanish on G0.

Proof. Suppose ψ : G → H is a homomorphism, where H is abelian. Then ψ factorizes

through the quotient map π1 : G→ A(G), so that ψ = ψ1 ◦ π1 for some homomorphism

ψ1 : A(G) → H. If, besides this, H is torsion-free, then ψ1 = ψ2 ◦ π2, where ψ2 :

A(G)/T → H is a homomorphism and π2 : A(T )→ A(T )/T is the natural quotient map.

Since A(G)/T is isomorphic to G/G0 the result follows.

An obvious consequence is the following.

Corollary 3.5. For every Banach space Y one has G0 =
⋂
A∈Hom(G,Y ) kerA.

So, if we want to approximate a given map F : (G, ̺)→ Y by some additive mapping,

then F must be bounded on G0. Keep this in mind: sometimes it will be sufficient.

2. Proof of Theorem 3.2. The main step in the proof of Theorem 3.2 is the following

result, which has its own intrinsic interest. The result seems to be new even for ̺ = 1

and shows that the space of Hyers-additive maps (modulo homomorphisms) is always a

Banach space under the norm ‖F‖H = sup{‖F (x+ y)− F (x)− F (y)‖ : x, y ∈ G}. (See

the papers [31–33] for a description of some related spaces.)

Theorem 3.6. Let (G, ̺) be a controlled group. Then there exists a function ̺∗ : G →

R (depending only on ̺) with the following property: for every Banach space Y and

every zero-additive map F : G → Y there is an additive map A : G → Y such that

‖F (x)−A(x)‖ ≤ Z(F )̺∗(x) for all x ∈ G. Moreover , when Y is fixed , A depends linearly

on F .

A crucial property of G0 is isolated in Lemma 3.8. Lemma 3.7 will simplify the proof.

Lemma 3.7. Let F be a zero-additive map from an arbitrary controlled group (G, ̺) into

a Banach space. Then

‖F (x) + F (−x)‖ ≤ Z(F )(̺(x) + ̺(−x)).
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Proof. For each n ∈ N one has

‖nF (x) + nF (−x)− F (0)‖ ≤ Z(F )(n̺(x) + n̺(−x) + ̺(0)),

which gives
∥∥∥∥F (x) + F (−x)−

1

n
F (0)

∥∥∥∥ ≤ Z(F )
(
̺(x) + ̺(−x) +

1

n
̺(0)

)
.

The result follows on taking limits as n→∞.

Lemma 3.8. Let (G, ̺) be a controlled group. There is a functional η : G0 → R such that ,

for every zero-additive map F from G into a Banach space, one has ‖F (x)‖ ≤ Z(F )η(x)

for all x ∈ G0.

Proof. For each x ∈ G0 there is n(x) ≥ 0 such that n(x)x ∈ G1. Since G1 is generated by

the set of commutators {z + y − z − y : z, y ∈ G}, there is an integer m(x) and elements

zi(x), yi(x), 1 ≤ i ≤ m(x), such that

n(x)∑

i=1

x =

m(x)∑

i=1

(zi(x) + yi(x)− zi(x)− yi(x))

Hence

‖n(x)F (x)‖ ≤
∥∥∥n(x)F (x)−

m(x)∑

i=1

(F (zi(x)) + F (yi(x)) + F (−zi(x)) + F (−yi(x)))
∥∥∥

+

m(x)∑

i=1

‖(F (zi(x)) + F (yi(x)) + F (−zi(x)) + F (−yi(x)))‖

≤ Z(F )
(
n(x)̺(x) + 2

m(x)∑

i=1

̺(zi(x)) + ̺(yi(x)) + ̺(−zi(x)) + ̺(−yi(x))
)
.

Thus, the choice

η(x) = ̺(x) +
2

n(x)

m(x)∑

i=1

(̺(zi(x)) + ̺(yi(x)) + ̺(−zi(x)) + ̺(−yi(x)))

does what was announced.

Proof of Theorem 3.6. Let {ei} be a fixed basis for G/G0 ⊗Z Q over Q. Without loss

of generality we may assume that ei belongs to G/G0 for all i. Let π : G → G/G0 be

the quotient map. For each i, choose gi ∈ G such that π(gi) = ei. Now, let Y be a

Banach space and let F : (G, ̺)→ Y be a zero-additive map. We define a Q-linear map

L : G/G0 ⊗Z Q → Y by putting L(ei) = F (gi). Finally, let A : G → Y be given by

A(x) = L(π(x)).

Clearly, A is additive and depends linearly on F . We shall estimate ‖F (x) − A(x)‖

as a function of Z(F ) and x ∈ G. Since {ei} is a basis for G/G0 ⊗Z Q there are rational

numbers qi such that π(x) =
∑
i qiei. Write qi = mi/ni as an irreducible fraction with

ni > 0. Let moreover N =
∏
i ni and Mi = mi

∏
j 6=i nj . Clearly,

π(Nx) = Nπ(x) =
∑

i

Miei.
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Let y =
∑

iMigi. Obviously, Nx− y lies in G0, so that ANx = A(y). One has

∥∥∥
N∑

j=1

F (x)−
N∑

j=1

A(x)
∥∥∥ =
∥∥∥

N∑

j=1

F (x)−A(y)
∥∥∥ =
∥∥∥

N∑

j=1

F (x)−
∑

i

MiF (gi)
∥∥∥

≤ Z(F ) · η
(
Nx−

∑

i

Migi

)
+
∥∥∥

N∑

j=1

F (x)−
∑

i

MiF (gi)− F
( N∑

j=1

x−
∑

i

Migi

)∥∥∥

≤ Z(F )
{
η
(
Nx−

∑

i

Migi

)
+ ̺
(
Nx−

∑

i

Migi

)
+N̺(x) +

∑

i

Mi̺(gi)
}
.

Therefore, the choice

̺∗(x) =
1

N

{
η
(
Nx−

∑

i

Migi

)
+ ̺
(
Nx−

∑

i

Migi

)
+N̺(x) +

∑

i

Mi̺(gi)
}

is as expected.

2.1. Completeness of the space of all zero-additive maps. For the proof of Theorem 3.2

we still need to develop some ideas. Let (G, ̺) be a controlled group and Y a Banach

space. Let Z(G, Y ) be the (real) vector space of all zero-additive maps from G to Y .

Consider the zero-additivity constant Z(·) as a seminorm on Z(G, Y ). It is clear that

the kernel of Z(·) is Hom(G, Y ), so that Z(·) defines a norm on the quotient space

Z(G, Y )/Hom(G, Y ).

Proposition 3.9. The space Z(G, Y )/Hom(G, Y ) endowed with Z(·) is a Banach space.

Proof. Let ([Gn])n be a Z(·)-Cauchy sequence in Z(G, Y )/Hom(G, Y ). We want to see

that there are representatives Fn of [Gn] such that (Fn)n is pointwise convergent on G:

if An is the additive map associated with Gn as in the proof of Theorem 3.6 then we set

Fn = Gn −An. If ̺
∗ is chosen as in Theorem 3.6, one has

‖Fn(x)− Fm(x)‖ ≤ Z(Gn −Gm)̺
∗(x)

so that Fn is pointwise convergent on G. We set

F (x) = lim
n→∞

Fn(x).

It is not hard to see that F is zero-additive on G and that [Gn] = [Fn] converges to [F ]

with respect to Z(·).

The space obtained from the space of trivial maps by taking quotient with respect to

additive maps carries the natural quotient quasi-norm; we show that it is also complete:

Lemma 3.10. Let (G, ̺) be a controlled group, Y a Banach space and B(G, Y ) the linear

space of all bounded maps G → Y . Then (B(G, Y ) + Hom(G, Y ))/Hom(G, Y ) endowed

with the norm

‖[F ]‖ = dist(F,Hom(G, Y ))

is a Banach space.

Proof. Simply observe that (B(G, Y ) + Hom(G, Y ))/Hom(G, Y ) endowed with the met-

ric dist(·,Hom(G, Y )) is naturally isometric to B(G, Y )/(B(G, Y ) ∩ Hom(G, Y )), where

B(G, Y ) is equipped with the natural norm ‖F‖ = dist(F, 0), which is a Banach space.
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2.2. The end of the proof. After all this machinery, we are ready to end the

Proof of Theorem 3.2. First observe that since for any controlled group G the space

Z(G, Y ) contains B(G, Y ) + Hom(G, Y ), the hypothesis “zero-additive maps G → Y

are at finite distance from additive ones” means that both spaces coincide. Thus both

Z(·) and dist(·,Hom(G, Y )) are defined on Z(G, Y )/Hom(G, Y ), making it complete

by Theorem 3.6 and Lemma 3.10. Since Z(·) is dominated by dist(·,Hom(G, Y )), the

open mapping theorem implies that Z(·) and dist(·,Hom(G, Y )) are K-equivalent on

Z(G, Y )/Hom(G, Y ) for some K ≥ 0, which is nothing but a restatement of property

(KZ).

The proofs of Theorems 3.6 and 3.2 can be adapted for other types of nearly additive

maps:

Theorem 3.11. Let (G, ̺) be a controlled group and Y a Banach space. Suppose that

every Ger-additive (respectively , pseudo-additive, quasi-additive) map from G to Y is

asymptotically additive. Then the pair [(G, ̺), Y ] has property (KG) (respectively , (KP),

(KQ)) for some K ≥ 0.

We also have

Proposition 3.12. Let (G, ̺) be a controlled group and Y a Banach space.

• The space G(G, Y )/Hom(G, Y ) endowed with G(·) is a Banach space.

• The space P(G, Y )/Hom(G, Y ) endowed with P (·) is a Banach space.

• The space Q(G, Y )/Hom(G, Y ) endowed with Q(·) is a Banach space.

IV. Asymptotically additive maps

This chapter contains some positive answers to Ulam’s problem for various types of

nearly additive mappings. In view of Forti’s Example 2.4 quoted in Chapter II some

restriction on the domain group is necessary to get stability. In this regard, we follow the

lines along which Hyers’ Theorem 1.2 has been generalized to weakly commutative and

amenable groups. For the sake of completeness, these groups are introduced in Section 1.

Section 2 concentrates on separation of subadditive and superadditive functionals by

additive functions. That this topic is the third face of our strange coin will be proved

in Section 3 where we study the stability of real-valued functions. Section 4 deals with

vector-valued maps.

1. Amenable and weakly commutative groups and semigroups. Let S be a

semigroup and let ℓ∞(S) be the real Banach space of all uniformly bounded functions

S → R. Linear functionals on ℓ∞(S) can be viewed as (signed, finitely additive) measures

on the power set of S, so we write
T
S
f dµ (instead of µ(f)) for the value of µ ∈ ℓ∞(S)

∗

at f ∈ ℓ∞(S).

A mean on S is a linear functional µ :ℓ∞(S)→R which is positive (that is,
T
S
f dµ ≥ 0

for f ≥ 0) and normalized (
T
S
1S dµ = 1). These conditions imply that µ is bounded and,
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in fact, that ‖µ‖ = 1. A mean is said to be left invariant on S if for every y ∈ S and

f ∈ ℓ∞(S) one has \
S

f(x+ y) dµ(x) =
\
S

f(x) dµ(x)

and is said to be right invariant if\
S

f(y + x) dµ(x) =
\
S

f(x) dµ(x).

A semigroup is called left (respectively right) amenable if it admits at least one left

(respectively right) invariant mean. A group is left amenable if and only if it is right

amenable. The following classes of groups and semigroups are amenable: commutative

groups and semigroups; finite groups; solvable groups; directed limits of amenable groups;

normal subgroups and quotient groups of amenable groups. If G has an amenable normal

subgroup H with G/H amenable, then G is itself amenable [26]. We refer the reader to

Greenleaf’s booklet [44] for background on amenability.

Our interest in amenability stems from the fact that some partial affirmative answers

to Ulam’s problem are available for amenable groups.

We consider now a quite different generalization of commutativity. A semigroup S is

said to be weakly commutative if given x, y ∈ S there is n ∈ N so that

2n(x+ y) = 2nx+ 2ny.

The main tool for dealing with weakly commutative semigroups is the following simple

Lemma 4.1. If x and y are fixed elements of a weakly commutative semigroup, then there

exists an infinite sequence n(k) such that

2n(k)(x+ y) = 2n(k)x+ 2n(k)y.

Proof. We construct the sequence n(k) by induction on k. The first term is given by the

weak commutativity of S. Suppose n(k) has been choosen in such a way that 2n(k)(x+y) =

2n(k)x + 2n(k)y. Put u = 2n(k) and v = 2n(k) and let m ≥ 1 be such that 2m(u + v) =

2mu+ 2mv. We have

2m+n(k)(x+ y) = 2m(2n(k)(x+ y)) = 2m(2n(k)x+ 2n(k)y) = 2m(u+ v)

= 2mu+ 2mv = 2m(2n(k)x) + 2m(2n(k)y) = 2m+n(k)x+ 2m+n(k)y.

So, we can take n(k + 1) = m+ n(k).

2. Sandwich theorems. This section has a preparatory character and is mainly taken

from [39]. We discuss the following two related problems.

Problem 4.2. Suppose α, β : G→ R are maps with α superadditive (that is , α(x+ y) ≥

α(x) + α(y) for all x, y ∈ G), β subadditive, and α(x) ≤ β(x) for all x ∈ G. Does there

exist an additive map A : G→ R separating α from β, that is , satisfying

α(x) ≤ A(x) ≤ β(x)

for every x ∈ G?
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Problem 4.3. Let β : G → R be a subadditive mapping. Does there exist an additive

map A : G→ R dominated by β, that is , with A(x) ≤ β(x) for every x ∈ G?

After the equivalence Theorems 4.14 and 4.15 (to be proved in the next section), the

close connections between this kind of problems and Ulam’s problem for real-valued maps

will become apparent.

First of all, let us show that Problem 4.3 is a restriction of Problem 4.2. Suppose β

is subadditive on G. Then the mapping α : G→ R given by α(x) = −β(−x) is superad-

ditive, with α ≤ β. (Thus, subadditive functionals always dominate some superadditive

functional.) Moreover, it is easily seen that, if A : G→ R is additive, then A is dominated

by β if and only if it separates α from β.

The following partial affirmative answer to the first problem is due to Gajda and

Kominek [39] and generalizes previous results of Mazur and Orlicz [76], Sikorski [95],

Pták [80], Kaufman [67] and Kranz [70].

Theorem 4.4 ([39]). Suppose G is a weakly commutative group and that α, β : G → R

are such that α is superadditive, β is subadditive and α ≤ β. Then there exists an additive

A separating α from β.

For the proof, we need the following simple results.

Lemma 4.5 ([39]). Let S be a semigroup and let γ : S → R be subadditive or super-

additive. If γ is 2-homogeneous (that is , γ(2x) = 2γ(x) for all x ∈ S), then it is N-

homogeneous : γ(nx) = nγ(x) for all x ∈ S and n ∈ N.

Proof. We only consider the case in which γ is subadditive. If γ is 2-homogeneous, then

a simple induction shows that γ(2kx) = 2kγ(x) for all x ∈ S and k ∈ N.

Now, let x ∈ S and let n be a positive integer which is different from 2k for any k.

Then either n = 1 and the result is trivial or n = 2k + r with k ∈ N and 1 ≤ r ≤ 2k − 1.

Hence

2k+1γ(x) ≤ γ(2k+1x) = γ((nx) + (2k − r)(x)) ≤ γ(nx) + (2k − r)γ(x).

Thus, nγ(x) ≤ γ(nx), whereas the converse inequality follows from the subadditivity

of γ.

Lemma 4.6 ([39]). Let S be a semigroup and let γ : S → R be subadditive or superaddi-

tive. If γ is 2-homogeneous , then γ(x+ y) = γ(y + x) for all x, y ∈ S.

Proof. We only consider the subadditive case. By the previous lemma, γ is N-homogen-

eous. Hence,

γ(x+ y) =
γ(k(x+ y))

k
=
γ(x+ (k − 1)(y + x) + y)

k
≤
γ(x) + γ(y)

k
+
k − 1

k
γ(y + x).

Letting k →∞, we get γ(x+y) ≤ γ(y+x) and, by symmetry, we have γ(x+y) = γ(y+x),

as desired.

The following lemma allows us to replace the original functionals of Theorem 4.4 we

want to separate by new ones with some additional properties.
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Lemma 4.7 ([39]). Let S be a weakly commutative semigroup, and let α, β : S → R be

respectively superadditive and subadditive, with α(x) ≤ β(x) for all x ∈ S. Then there

exist α̃, β̃ : S → R such that :

(a) α(x) ≤ α̃(x) ≤ β̃(x) ≤ β(x) for all x ∈ S.

(b) α̃ is superadditive and β̃ subadditive.

(c) α̃ and β̃ are N-homogeneous.

(d) For every x, y ∈ S, one has α̃(x+ y) = α̃(y + x) and β̃(x+ y) = β̃(y + x).

Proof. First of all note that, for x ∈ S and n ∈ N, one has

α(x) ≤
α(2nx)

2n
≤
α(2n+1x)

2n+1
≤
β(2n+1x)

2n+1
≤
β(2nx)

2n
≤ β(x).

So, we can define α̃, β̃ : S → R by

α̃(x) = lim
n→∞

α(2nx)

2n
, β̃(x) = lim

n→∞

β(2nx)

2n
.

Obviously, (a) holds. Let us prove (b). To verify the subadditivity of α̃, let x, y ∈ S. Take

a sequence n(k) so that

2n(k)(x+ y) = 2n(k)x+ 2n(k)y.

One has

α̃(x)(x+ y) = lim
n→∞

α(2n(x+ y))

2n
= lim
k→∞

α(2n(k)(x+ y)

2n(k)
= lim
k→∞

α(2n(k)x+ 2n(k)y)

2n(k)

≤ lim
k→∞

α(2n(k)x)

2n(k)
+ lim
k→∞

α(2n(k)y)

2n(k)
= α̃(x) + α̃(y),

as required. The superadditivity of β̃ can be proved analogously. Finally, (c) and (d)

follow from the obvious 2-homogeneity of α̃ and β̃ and the previous lemmata.

Proof of Theorem 4.4. Consider the family F of all pairs (φ, ψ), where φ is superadditive

on G, ψ is subadditive and φ ≤ ψ. We introduce a partial ordering in F by

(φ1, ψ1) ≤ (φ2, ψ2) ⇔ φ1 ≤ φ2 ≤ ψ2 ≤ ψ1.

It is obvious that every linearly ordered subfamily of F has an upper bound in F . Since

F is not empty (it contains (α, β)), the Kuratowski–Zorn lemma yields a maximal pair

(a, b) with (α, β) ≤ (a, b). Let ã, b̃ be the functionals obtained by applying Lemma 4.7

to a and b. By the maximality of the pair (a, b), we see that a = ã and b = b̃ and, in

particular, we have

a(x+ y) = a(y + x), b(x+ y) = b(y + x)

for all x, y ∈ G.

On the other hand, a(0) = b(0) = 0 (for if not, then taking into account that super-

additive functionals take non-positive values at 0 and that subadditive functionals take

non-negative values at 0, one could obtain a new pair exceeding (a, b) by redefining the

values at 0).

After these preparations, we prove that a = b on the whole of G. In this case, it is

clear that A = a = b is an additive functional separating α from β.
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For the indirect proof, suppose there is c ∈ G and a number r such that

a(c) < r < b(c).

We claim that either

(1) mr + b(s) ≥ a(mc+ s) for every m = 0, 1, . . . and all s ∈ G, or

(2) b(nc+ t) ≥ nr +G(t) for every n = 0, 1, . . . and all t ∈ G

(with the convention that 0x = 0 for all x ∈ G). Suppose that neither (1) nor (2) holds.

Then there exist m,n ∈ Z and s, t ∈ G such that

mr + b(s) < a(mc+ s), b(nc+ t) < nr + a(t),

whence

nb(s) +mb(nc+ t) < ma(t) + na(mc+ s).

Since a is superadditive and b is subadditive (and taking into account that a(x + y) =

a(y + x) and b(x+ y) = b(y + x) for all x, y) we would obtain

b(ns+mt+ nmc) ≤ nb(s) + b(mt+ nmc) = nb(s) + b((m− 1)t+ n(m− 1)c+ nc+ t)

= nb(s) + b((m− 1)t+ n(m− 1)c) + b(nc+ t)

≤ . . . ≤ nb(s) +mb(nc+ t) < ma(t) + na(mc+ s)

≤ a(mt) + (n− 2)a(mc+ s) + a(mc+ s) + a(s+mc)

≤ a(mt) + (n− 2)a(mc+ s) + a(mc+ 2s+mc)

= a(mt) + (n− 2)a(mc+ s) + a(2mc+ 2s)

≤ . . . ≤ a(mt) + a(nmc+ ns) ≤ a(nmc+ ns+mt)

= a(ns+mt+ nmc),

which is impossible, since b dominates a.

Suppose (1) holds. For each x ∈ G, put

b0(x) = inf{mr + b(s) : x = mc+ s, s ∈ G, m = 0, 1, . . .}.

It follows that a(x) ≤ b0(x) ≤ b(x) for all x ∈ G and b0(c) ≤ r < b(c). Next, let m and n

be arbitrarily chosen. Clearly,

(m+ n)r + b(−(m+ n)c+ x+ y) = (m+ n)r + b(y − (m+ n)c+ x)

≤ (m+ n)r + b(y − nc) + b(−mc+ x)

= mr + b(−mc+ x) + nr + b(−nc+ y).

Hence, by the very definition of b0, we get

b0(x+ y) ≤ b0(x) + b0(y),

that is, b0 is subadditive and (a, b) ≤ (a, b0). Since b0(c) < b(c), this contradicts the

maximality of the pair (a, b) and ends the proof in case (1).

Assuming (2), we define

a0(x) = sup{nr + a(t) : x = nc+ t, t ∈ G, m = 0, 1, . . .}
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for x ∈ G. Then, similarly to case (1), one can show that a0 is superadditive and also

that a(x) ≤ a0(x) ≤ b(x) and a(c) < r < a0(c), again contradicting the maximality of

(a, b).

We do not know if Theorem 4.4 is true for amenable groups. Nevertheless, a subad-

ditive functional on an amenable group always dominates some additive map:

Theorem 4.8. Let β : G→ R be a subadditive functional. If G is amenable, then there

exists an additive map A such that A ≤ β.

Proof. Let β : G→ R be subadditive. Then, for all x, y ∈ G, one has

−β(−x) ≤ β(x+ y)− β(y) ≤ β(x),

so that the mapping y ∈ G 7→ β(x+ y) − β(y) is bounded (in the usual sense) on G for

each x. Let dy denote a (left) invariant mean for G and define A : G→ R as

A(x) =
\
G

(β(x+ y)− β(y)) dy.

Obviously, A is dominated by β. We claim that A is additive. Indeed, take x, z ∈ G.

Using linearity and invariance of the mean, we get

A(x+ z) =
\
G

(β(x+ z + y)− β(y)) dy =
\
G

(β(x+ z + y)− β(y)) dy

=
\
G

(β(x+ z + y)− β(z + y) + β(z + y)− β(y)) dy

=
\
G

(β(x+ z + y)− β(z + y)) dy +
\
G

(β(z + y)− β(y)) dy

=
\
G

(β(x+ y)− β(y)) dy +
\
G

(β(z + y)− β(y)) dy = A(x) +A(z).

Theorem 4.8 (and also 4.4) is a “global” result which explains a common property of

all subadditive functionals defined on an amenable group. One may wonder under which

conditions a (particular) given subadditive functional must dominate an additive one. A

simple criterion is the following (a similar result holds for the analogous question about

separation).

Corollary 4.9. Let β be a subadditive functional on an arbitrary group G. Then there

exists an additive map dominated by β if and only if β is non-negative on the commutator

subgroup of G.

Proof. Since additive functionals vanish on the commutator subgroup, the necessity of

the condition is clear. Let us prove its sufficiency. Suppose β is a subadditive functional

on G. Denote by G1 the commutator subgroup of G and by π the natural homomorphism

G→ G/G1. Consider the functional γ : G/G1 → [−∞,∞) defined as

γ(π(x)) = inf{β(y) : y ∈ π(x)}.

We show that γ is subadditive. Indeed, let x, y ∈ G. Take sequences (xn), (yn) so that
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xn ∈ π(x), yn ∈ π(y) and

γ(π(x)) = lim
n→∞

β(xn), γ(π(y)) = lim
n→∞

β(yn).

Since xn + yn belongs to π(x) + π(y), we have

γ(π(x) + π(y)) ≤ inf
n
β(xn + yn) ≤ inf

n
{β(xn) + β(yn)}

≤ lim
n→∞

β(xn) + lim
n→∞

β(yn) = γ(π(x) + γ(π(y)).

Next, assume that β is non-negative on G1. We prove that γ takes only finite values.

Suppose on the contrary there is x ∈ G with γ(π(x)) = −∞. Then

γ(0) ≤ γ(π(x)) + γ(−π(x)) = −∞,

and therefore

γ(0) = inf{β(y) : y ∈ G1} = −∞,

which is a contradiction. Hence γ is everywhere finite and subadditive on G/G1. But

G/G1 is abelian, so according to Theorem 4.4 (or Theorem 4.8) there exists an additive

functional a : G/G1 → R dominated by γ. Taking A = a ◦ π, we obtain an additive map

on G with

A(x) = a(π(x)) ≤ γ(π(x)) ≤ β(x)

for all x ∈ G.

We do not know whether the conclusion of Theorem 4.8 implies the separation prop-

erty. It seems very likely that amenable groups must have the separation property, but

we only have the following partial result.

Proposition 4.10 ([39]). Let S be a (left or right) amenable semigroup and let α and β

be respectively superadditive and subadditive, with α ≤ β. If moreover either α(x+ y) =

α(y + x) or β(x + y) = β(y + x) holds true for every x, y ∈ S, then α and β can be

separated by an additive mapping.

Proof. We may assume that S is left amenable and that β(x + y) = β(y + x) for every

x, y ∈ S. Notice that

β(x+ y)− α(y) ≥ α(x+ y)− α(y) ≥ α(x), x, y ∈ S.

Hence one can define a functional h on S by

h(x) = inf{β(x+ y)− α(y) : y ∈ S}.

The subadditivity of β yields

h(x+ y) = inf{β(x+ y + z)− α(z) : z ∈ S} ≤ inf{β(x) + β(y + z)− α(x) : z ∈ S}

= β(x) + inf{β(y + z)− α(x) : z ∈ S} = β(x) + h(y).

On the other hand,

h(x+ y) = inf{β(x+ y + z)− α(z) : z ∈ S}

≥ inf{β(y + x+ z)− α(z + x) + α(x) : z ∈ S}

= α(x) + inf{β(y + x+ z)− α(z + x) : z ∈ S}

≥ α(x) + inf{β(y + w)− α(w) : w ∈ S} = α(x) + h(y).
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Putting these estimates together, we infer that, for every x, y,

α(x) ≤ h(x+ y)− h(y) ≤ β(x).

So, we obtain the desired separating (additive) functional by taking

A(x) =
\
S

(h(x+ y)− h(y)) dy,

where dy represents a left invariant mean for S.

Theorem 4.8 is, quite plainly, a “Hahn–Banach” type result (see [5, théorème 2]). The

following nice result, also due to Gajda and Kominek, generalizes another well known

theorem by Banach about supporting functionals: for every point x0 of a Banach space

there is a norm-one linear functional f such that f(x0) equals ‖x0‖.

Lemma 4.11 ([39]). Let β : G → R be a 2-homogeneous subadditive functional. If the

group G is either weakly commutative or amenable then, for every x0 ∈ G, there exists

an additive mapping A : G→ R such that A(x0) = β(x0) with A(x) ≤ β(x) for all x ∈ G.

Proof. Let β : G → R be a 2-homogeneous (hence N-homogeneous) subadditive func-

tional. One has

β(x0) + β(nx0) = β((n+ 1)x0), β(−x+ (n+ 1)x0) ≤ β(−x+ nx0) + β(x0).

Hence

β(nx0)− β(−x+ nx0) ≤ β((n+ 1)x0)− β(−x+ (n+ 1)x0),

so that the sequence (β(nx0)− β(−x+ nx0))n is non-decreasing and bounded above by

β(x) for every fixed x ∈ S. Put

α(x) = lim
n→∞
(β(nx0)− β(−x+ nx0)).

Clearly, α(x) ≤ β(x) for all x ∈ G and α(x0) = β(x0). Thus the proof will be complete if

we show that α and β can be separated by an additive functional. In view of Theorem 4.4

(if G is weakly commutative) and Proposition 4.10 (for G amenable) it suffices to verify

that α is superadditive. Indeed, let x, y ∈ G. By Lemma 4.6 one has

α(x) + α(y) = lim
n→∞
(β(nx0)− β(−x+ nx0)) + lim

n→∞
(β(nx0)− β(−y + nx0))

= lim
n→∞
(β(2nx0)− β(−x+ nx0)− β(−y + nx0))

≤ lim
n→∞
(β(2nx0)− β(−x+ nx0 − y)) = lim

n→∞
(β(2nx0)− β(−y − x+ nx0))

= α(x+ y).

2.1. Embedding quasi-normed groups into Banach spaces. In some aspects, amenable and

weakly commutative normed groups behave like Banach spaces. As an application of the

results of this section, we now show that, under rather mild assumptions, an amenable

or weakly commutative normed group (G, ̺) must be an additive subgroup of a Banach

space (̺ being the restriction of the norm).

Proposition 4.12. Let (G, ̺) be a normed group. Assume that ̺ is 2-homogeneous. If

G is either weakly commutative or amenable, then there exists a Banach space X and a
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group homomorphism δ : G→ X such that ̺(x) = ‖δ(x)‖ for all x ∈ G. If in addition ̺

is non-degenerate, then δ is an into isomorphism.

Proof. Let (G, ̺)∗ be the Banach space of all real-valued bounded homomorphisms on

(G, ̺) equipped with the norm

‖A‖ = inf{K : |A(x)| ≤ K̺(x)}

and let X be the dual space of (G, ̺)∗ with the dual norm. Define δ : G → X by

δ(x)(A) = A(x). Obviously, δ is a group homomorphism. Moreover,

‖δ‖ = sup{|A(x)| : ‖A‖ ≤ 1} ≤ ̺(x).

It remains to prove that ‖δ(x)‖X ≥ ̺(x) for each x ∈ G. Fix x ∈ G. By the lemma just

proved, the hypothesis on G together with the subadditivity and the 2-homogeneity of ̺

implies the existence of an additive map A : G→ R satisfying

A(x) = ̺(x), A(y) ≤ ̺(y) for all y ∈ G.

Since ̺ is symmetric and non-negative one has |A(y)| ≤ ̺(y) for all y ∈ G, so that

‖A‖ = 1. It follows that

‖δ(x)‖X ≥ |δ(x)(A)| = |A(x)| = ̺(x),

which proves the first statement. The second is now obvious.

Corollary 4.13. Let G be an arbitrary group endowed with a 2-homogeneous norm ̺.

There exists a group homomorphism δ from G into a Banach space X such that ‖δ(x)‖X =

̺(x) for every x ∈ G if and only if ker ̺ is a normal subgroup of G containing the

commutator subgroup of G.

3. The scalar case. In this section we only consider real-valued maps. Vector-valued

maps will be considered in the next section. We begin with the following somewhat

surprising result.

Theorem 4.14 ([9]). Let S be a semigroup and let M ≥ 1 be a fixed number. The

following statements are equivalent:

(a) For every ̺, the pair [(S, ̺),R] has property (MZ).

(b) For every subadditive ̺, the pair [(S, ̺),R] has property (MP).

Moreover , for M = 1, (a) and (b) are equivalent to

(c) For every α, β : S → R such that α is superadditive, β is subadditive and α ≤ β,

there exists an additive A separating α from β.

Proof. That (a) implies (b) for any M is clear since pseudo-additivity implies zero-

additivity (see Lemma 2.3(b)). We now prove that (c) implies (a) for M = 1. We need

some notation. For a real-valued mapping a on a semigroup S, define

a∗(x) = sup
{ n∑

i=1

a(xi) : x =

n∑

i=1

xi

}
, a∗(x) = inf

{ n∑

i=1

a(xi) : x =

n∑

i=1

xi

}
.

Obviously, a∗ ≤ a ≤ a
∗. Moreover, a∗ is superadditive and a∗ is subadditive.
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Suppose that S has property (c) and let F : S → R be zero-additive with respect to ̺.

We may assume Z(F ) = 1. We claim that (F −̺)∗(x) ≤ (F +̺)∗(x) for all x ∈ S (which

implies that both functions take only finite values). Indeed, let
∑n

i=1 xi =
∑m
j=1 yj . One

has to verify that

n∑

i=1

F (xi)−
n∑

i=1

̺(xi) ≤
m∑

j=1

̺(yj) +
m∑

j=1

F (yj)

or, in other words, that
n∑

i=1

F (xi)−
m∑

j=1

F (yj) ≤
n∑

i=1

̺(xi) +

m∑

j=1

̺(yj),

which immediately follows from zero-additivity. The hypothesis on S implies the existence

of an additive A separating (F − ̺)∗ from (F + ̺)∗. Hence

F (x)− ̺(x) ≤ A(x) ≤ F (x) + ̺(x)

for all x ∈ S or, which is the same, dist(F,A) ≤ 1, and thus, S satisfies the condition (a)

for M = 1.

It remains to show that the property (b) forM = 1 implies the separation property (c).

We need a way to translate a problem about separation into an equivalent problem about

approximation of pseudo-additive mappings by additive mappings. So, let α and β be

respectively superadditive and subadditive mappings such that α ≤ β. Define

F =
β + α

2
, ̺ =

β − α

2
,

Obviously, ̺ is non-negative and subadditive. The pseudo-additivity of F with respect

to ̺ follows from the hypotheses on α and β by routine computations. Finally, observe

that dist(F,A) ≤ 1 implies that A separates α from β. Hence property (b) for M = 1

implies (c).

To complete the proof we show that (b) implies (a) for any M ≥ 1. Assume that S

has property (b) for some M ≥ 1 and let F be zero-additive with respect to a given ̺.

We may assume that Z(F ) = 1. Put

α = (F − ̺)∗, β = (F + ̺)∗.

As above, α is superadditive, β is subadditive and α ≤ β. Hence taking

G =
β + α

2
=
(F − ̺)∗ + (F + ̺)∗

2
, σ =

β − α

2
=
(F + ̺)∗ − (F − ̺)

∗

2
,

one sees that G is pseudo-additive with respect to σ. The hypothesis gives an additive A

such that dist(G,A) ≤M . This can be written as

(1−M)(F + ̺)∗ + (1 +M)(F − ̺)
∗

2
≤
(1 +M)(F + ̺)∗ − (1−M)(F − ̺)

∗

2
.

Since M ≥ 1, taking into account that (F + ̺)∗ ≤ F + ̺ and (F − ̺)∗ ≥ F − ̺ one

deduces that also

(1−M)(F + ̺) + (1 +M)(F − ̺)

2
≤ A ≤

(1 +M)(F + ̺)− (1−M)(F − ̺)

2
.
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Rearranging the parentheses, one obtains

F −M̺ ≤ A ≤ F +M̺.

It should be noted that (a), (b) (and (c)) are statements about S and not about a

particular pair (S, ̺).

It will be convenient to have a version of Theorem 4.14 for symmetric control func-

tionals (that is, with ̺(−x) = ̺(x) for all x) when dealing with quasi-normed groups.

Theorem 4.15. For a group G the following statements are equivalent:

(a) For every symmetric ̺ the pair [(G, ̺),R] has the property (1Z) for odd maps.

(b) For every symmetric ̺ the pair [(G, ̺),R] has the property (1P) for odd maps.

(c) For every subadditive (but not necessarily symmetric) mapping β : G → R there

exists an additive map A : G→ R such that A(x) ≤ β(x) for all x ∈ G.

Moreover , each of these conditions implies the following :

(d) For every symmetric ̺ the pair [(G, ̺),R] has property (1G) for odd maps.

Proof. That (a) implies (b) and (d) is trivial. We show that (b) implies (c). Let β : G→ R

be subadditive. Define F and ̺ by

F (x) =
β(x)− β(−x)

2
, ̺(x) =

β(x) + β(−x)

2
.

Clearly, F is odd and ̺ even. Moreover, it is easily seen that F is pseudo-additive with

respect to ̺, with constant 1. The hypothesis about G implies the existence of an additive

map A : G→ R satisfying |A(x)− F (x)| ≤ ̺(x) for all x ∈ G. This can be written as

−β(x)− β(−x) ≤ 2(A(x)− β(x) + β(−x)) ≤ β(x) + β(−x),

which yields A(x) ≤ β(x), as desired.

Finally, we prove the implication (c)⇒(a). Let F be zero-additive with respect to ̺,

with F odd and ̺ even. Put

β(x) = inf
{ n∑

i=1

F (xi) +

n∑

i=1

Z(F )̺(xi) : x =

n∑

i=1

xi

}
.

(Note that β is well defined and, in fact, one has β(x) ≥ F (x)−Z(F )̺(x).) Clearly, β is

subadditive. Hence, it dominates some additive map A : G→ R. Therefore,

A(x) ≤ β(x) ≤ F (x) + Z(F )̺(x)

for every x ∈ G. In particular, we have A(x) − F (x) ≤ Z(F )̺(x). Since ̺ is even and

both F and A are odd maps, one also has

|A(x)− F (x)| ≤ Z(F )̺(x).

Theorem 4.16 ([9]). If G is a weakly commutative group, then for every ̺ the pair

[(G, ̺),R] has property (1Z) (hence (1P) and (1G)).

Proof. This is an obvious consequence of Theorems 4.14 and 4.4.

We do not know if this is true for amenable groups. Fortunately, the following “sym-

metric” version of Theorem 4.16 holds.



42 F. Cabello Sánchez and J. M. F. Castillo

Theorem 4.17. Let ̺ : G→ R be a symmetric control functional on an amenable group.

Then the pair [(G, ̺),R] has property (1Z) (hence (1P) and (1G)) for odd maps.

Proof. This obviously follows from Theorems 4.15 and 4.8.

This result shows, in combination with Forti’s Example 2.4, that F2 is not an amenable

group.

Corollary 4.18. Let ̺ : G → R be a symmetric control functional on an amenable

group. Then the pair [(G, ̺),R] has property (2Z) (hence (2P) and (2G)).

Proof. This follows from the inequality of Lemma 3.7.

Remark 4.19. No semigroup has properties (a), (b) or (d) of Theorem 4.15 for any

M < 1: given a semigroup S, consider the constant mapping F = 1 which is pseudo-

additive, Ger-additive and zero-additive with respect to ̺ = 1. Since an additive map

A : S → R should satisfy A(0) = 0, we have |F (0)−A(0)| = 1.

Further results on the asymptotically additive character of Λ-additive maps can be

found in [25] and [7].

4. Vector-valued maps. In this section we give some partial affirmative answers to

Ulam’s problem for vector-valued maps. Non-trivial exact sequences of Banach spaces

do exist, hence zero-additive maps may be (and generally are) far from additive ones.

However, as the following result shows, Ger-additive maps behave very well on amenable

semigroups when the range is a Banach space complemented in its bidual.

Theorem 4.20 (Mainly Ger [41]; see also [11]). Let S be an amenable semigroup and

Y a Banach space which is complemented in its second dual by a projection of norm K.

Then, for every ̺, the pair [(S, ̺), Y ] has property (KG). If , besides this , S is a group

and ̺ is symmetric, then [(S, ̺), Y ] has property (2KP).

Proof. Suppose F : S→Y is a Ger-additive map. We may, and do, assume that G(F )=1.

First of all, observe that for each fixed x ∈ S the map y ∈ S 7→ F (x+ y)− F (y) ∈ Y is

bounded by ̺(x)+‖F (x)‖. Fix a (say left) invariant mean dy for S and define B(x) ∈ Y ∗∗

by the “Pettis integral”

B(x)(y∗) =
\
S

y∗(F (x+ y)− F (y)) dy.

Clearly, B(x) belongs to Y ∗∗ for all x ∈ S and, in fact, one has ‖B(x)−F (x)‖Y ∗∗ ≤ ̺(x)

for all x ∈ S. That B is additive can be proved as in Theorem 4.8, by using the invariance

and linearity of dy.

Finally, if P is a bounded linear projection from Y ∗∗ onto Y with ‖P‖ ≤ K, we see

that A = P ◦B is an additive mapping S → Y with dist(F,A) ≤ K.

The second assertion is obvious.

One may wonder about the necessity of some extra hypothesis on Y in the theorem

and about the behavior of invariant means in the proof. The first question posed below

will be solved at the end of Chapter V. The second question has been considered in the

paper [8], which the interested reader is invited to peek.
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Problem 4.21. Is it true that every Ger-additive map from an amenable group G into a

Banach space is asymptotically additive? What if G is itself a Banach space?

It follows from Theorem 3.2 that an affirmative answer to this problem would imply

the existence of a universal constant C such that all pairs [(G, ̺), Y ] with G amenable

have property (CG). Unfortunately, the answer to this problem, which will be proved at

the end of Chapter V, is no.

The following result is, in a sense, a vector-valued version of Theorem 4.4.

Theorem 4.22. Let (G, ̺) be a weakly commutative group endowed with a symmetric

functional and let Y be a Banach space complemented in its second dual by a projection

of norm K. Then [(G, ̺), Y ] has property (3KP)

Beginning of the proof of Theorem 4.22. Let F : G→ Y be pseudo-additive with respect

to ̺. In this part of the proof we assume neither that Y is complemented in its bidual

nor that ̺ is symmetric, but only that G is weakly commutative. Moreover, without loss

of generality, we may suppose P (F ) = 1.

First of all, we replace F and ̺ by new maps having certain additional properties.

Define

σ(x) = lim
n→∞

̺(2nx)

2n
(x ∈ G).

This definition makes sense because, for every x ∈ G, the sequence ̺(2nx)/2n is non-

negative and decreasing (this follows from the subadditivity of ̺). Clearly, σ(2x) = 2σ(x)

for all x ∈ G. Moreover, σ is subadditive (see Lemma 4.7) and σ ≤ ̺. Now, put

H(x) = lim
n→∞

F (2nx)

2n
(x ∈ G).

Again, the limit defining H exists for every x ∈ G: fix x ∈ G and let n,m ∈ N. It is easily

seen that

|F (2n+mx)− 2mF (2nx)| ≤ 2m̺(2nx)− ̺(2n+mx).

Thus, letting n→∞, we have
∣∣∣∣
F (2n+mx)

2n+m
−
F (2nx)

2n

∣∣∣∣ ≤
̺(2nx)

2n
−
̺(2n+mx)

2n+m
→ σ(x)− σ(x) = 0.

Next, we prove that H is pseudo-additive with respect to σ with constant at most 1.

Let x, y ∈ G. Take a sequence n(k) so that

2n(k)(x+ y) = 2n(k)x+ 2n(k)y.

Then, for every k, one has

‖F (2n(k)(x+ y))− F (2n(k)x)− F (2n(k)y)‖ ≤ ̺(2n(k)x) + ̺(2n(k)y)− ̺(2n(k)(x+ y)).

Hence,

‖H(x+ y)−H(x)−H(y)‖ = lim
k→∞

∥∥∥∥
F (2n(k)(x+ y))

2n(k)
−
F (2n(k)x)

2n(k)
−
F (2n(k)y)

2n(k)

∥∥∥∥

≤ lim
k→∞

̺(2n(k)x)

2n(k)
+
̺(2n(k)y)

2n(k)
−
̺(2n(k)(x+ y))

2n(k)

= σ(x) + σ(y)− σ(x+ y).
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The main step of the proof appears now.

Lemma 4.23. The maps H and σ factorize through the quotient π : G→ G/G0.

Proof. First, we show that both σ and H vanish on G0. For σ this is an obvious conse-

quence of Lemma 4.11, which asserts that our σ can be written as a pointwise supremum

of additive functionals, and additive functionals must vanish on G0. On the other hand,

if y∗ ∈ Y ∗ with ‖y∗‖ ≤ 1, then σ + y∗ ◦ H is 2-homogeneous (since σ and H are) and

subadditive and hence it vanishes on G0. Since y
∗ is arbitrary and σ vanishes on G0, so

does H. Let x ∈ G and h ∈ G0. Then

σ(x+ h) ≤ σ(x) + σ(h) = σ(x) ≤ σ(x+ h− h) ≤ σ(x+ h) + σ(−h) = σ(x+ h),

so that σ(x+ h) = σ(x). This clearly implies the existence of a map σ̃ : G/G0 → R such

that σ = σ̃ ◦ π.

Now, take x ∈ G and h ∈ G0. Then

‖H(x+ h)−H(x)‖ = ‖H(x+ h)−H(x)−H(h)‖ ≤ σ(x) + σ(h)− σ(x+ h) = 0.

Thus H = H̃ ◦ π for some H̃ : G/G0 → Y . Clearly, one has

‖H̃(x+ y)− H̃(x)− H̃(y)‖ ≤ σ̃(x) + σ̃(y)− σ̃(x+ y)

for all x, y ∈ G/G0 and H̃ is pseudo-additive with respect to σ̃.

End of the proof of Theorem 4.22. Let H̃, σ̃ be as above. Observe that σ̃ is symmetric if

̺ is. Since G/G0 is commutative and commutative groups are always amenable, we can

apply the “besides this” part of Theorem 4.20 to get an additive map B : G/G0 → Y

such that ‖B(π(x)) − H̃(π(x))‖ ≤ 2Kσ̃(π(x)) for every x ∈ G. Taking A = π ◦ B one

obtains

‖A(x)−H(x)‖ ≤ 2Kσ(x) (x ∈ G).

Finally, let us estimate dist(F,A) on (G, ̺). From

|F (2nx)− 2nF (x)| ≤ 2n̺(x)− ̺(2nx),

it follows that dist(F,H) ≤ 1 on (G, ̺). Since dist(A,H) ≤ 2K on (G, σ), and taking into

account that ̺ dominates σ, we see that dist(F,A) ≤ 3K on (G, ̺). Thus [(G, ̺), Y ] has

(3KP), and the proof is complete.

An interesting consequence of the first part of the proof of Theorem 4.22 is the

following.

Proposition 4.24. Suppose there exists a pseudo-additive mapping f : (G, ̺)→ Y that

is not asymptotically additive, where G is some weakly commutative group and ̺ is some

symmetric control functional. Then there is a pseudo-linear map from a Banach space Z

to Y which is far from any linear (or additive) mapping Z → Y .

Proof. If such an f exists, then we can construct another counterexample (which we

also denote by f) as in Lemma 4.23. Thus we may assume that the domain group G

is commutative and torsion-free (hence it embeds via G → G ⊗Z Q into a linear space

over the rationals), that both f and σ are 2-homogeneous and also that σ is symmetric

and non-degenerate. Since the even part of f is bounded, we may assume even that f is
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odd. It follows that σ and f are, respectively, N-homogeneous and Z-homogeneous. Put

Z = G→ G⊗Z Q and define Σ : Z → R as

Σ
(∑

i

gi ⊗ qi
)
=
σ(n(
∑
i gi ⊗ qi))

n
,

where n is the least positive integer for which n(
∑
i gi ⊗ qi) belongs to (the image of) G.

It is easily verified that Σ is a non-degenerate, positively Q-homogeneous, subadditive

(= sublinear) functional which extends σ to Z. Actually, these properties determine Σ

completely. The same procedure provides us with a Q-homogeneous extension F for f .

Just looking at the definitions, one sees that F is pseudo-linear (with constant 1, say)

with respect to Σ, but the distance from F to the set of additive maps Z → Y is infinite.

Now, using the theory developed in the first chapter, we construct the “twisted sum”

Y ⊕F Z which is the linear space (over Q) Y × Z endowed with the “norm”

‖(y, z)‖F = ‖y − F (z)‖Y +Σ(z).

Clearly, ‖(·, ·)‖F is positively Q-homogeneous, symmetric and subadditive. Obviously, Y

embeds isometrically as a (rational) subspace of Y ⊕F Z via y ∈ Y 7→ (y, 0) ∈ Y ⊕F Z.

Moreover, there is no bounded additive projection of Y ⊕F Z onto Y , since F is not

asymptotically additive.

Consider the “metric” projection m : Y ⊕F Z → Y given by

m(y, z) = y − F (z).

(This map finds, for each (y, z) ∈ Y ⊕F Z, the nearest point in Y .) The pseudo-linearity

of F with respect to the norm of Z implies that, for every x ∈ Y ⊕F Z, one has

‖x‖F = ‖m(x)‖F + ‖x−m(x)‖F ,

and also that m is a Lipschitz map.

Let X denote the completion of Y ⊕F Z as a metric space. Clearly, it is a real Banach

space whose norm ‖ · ‖X is obtained by extending Σ to the whole of X. Finally, observe

that Y was complete, so it becomes a closed subspace of X. Let m̃ : X → Y be the

extension of m by (uniform) continuity. It is easily seen that m̃ is now an R-homogeneous

semiprojection onto Y satisfying again

‖x‖X = ‖m̃(x)‖Y + ‖x− m̃(x)‖X

for all x ∈ X. Therefore Y is a semi-L-summand in X, corresponding to some pseudo-

linear mapping F̃ : X/Y → Y . Since Y is uncomplemented in X (otherwise Y would be

boundedly complemented in Y ⊕F Z), this map F̃ is not asymptotically additive.

V. Nearly additive mappings and exact sequences

We now arrive at one of the central themes of the paper. We are going to establish the

connections between nearly additive maps and exact sequences of quasi-normed groups

and bounded group homomorphisms. Then we shall consider different types of nearly

additive maps and shall see how the different properties of the maps reflect different

properties of the exact sequences they define.
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1. Quasi-normed groups as topological groups. In this section we collect some

specific features of quasi-normed groups in order to clarify the exposition.

As we already said, the most interesting control functionals are the quasi-norms.

These are functionals ̺ : G→ R+ satisfying

• ̺(x) = 0 if and only if x = 0.

• ̺(−x) = ̺(x) for all x.

• ̺(x+ y) ≤ ∆(̺(x) + ̺(y)) for some constant ∆ independent of x, y ∈ G.

A quasi-normed group is a group together with a specified quasi-norm. Such a group

admits a unique structure of topological group for which the sets

{x ∈ G : ̺(x) ≤ ε} (ε > 0)

form a base of neighborhoods at zero.

A group homomorphism ψ : (G1, ̺1) → (G2, ̺2) is called bounded if there exists

some constant K such that ̺2(ψ(x)) ≤ K̺1(x) for all x ∈ G1. Observe that all bounded

group homomorphisms between quasi-normed groups are continuous (observe also that

continuous homomorphisms between quasi-normed groups need not be bounded). Quasi-

normed groups and bounded homomorphisms constitute a category that we denote by G.

Note that G includes Q and B.

Two quasi-norms ̺1, ̺2 defined on the same group are called equivalent if Id :

(G, ̺1)→ (G, ̺2) is an isomorphism in G. This means that

k̺1(x) ≤ ̺2(x) ≤ K̺1(x)

for some k,K > 0 and all x ∈ G.

Simple examples show that a quasi-norm ̺ is not necessarily continuous with respect

to the topology it itself induces. For instance, the quasi-norm defined on R by

̺(x) =

{
|x| if x ∈ Q,

2|x| otherwise,

has constant ∆ = 2 and induces the usual topology on R, but it is discontinuous at all

points save 0. Also, the “balls”

{x : ̺(x) ≤ ε} = [−ε/2, ε/2] ∪ ([−ε, ε] ∩Q)

are not closed (they are only neighborhoods of 0) and, similarly, the sets {x : ̺(x) < ε}

are not open.

An interesting class of continuous quasi-norms are the so-called p-norms (0 < p ≤ 1).

These are quasi-norms satisfying the inequality

̺(x+ y)p ≤ ̺(x)p + ̺(y)p.

The following generalization of the Aoki–Rolewicz theorem due to Peetre and Sparr

[77] asserts that every quasi-norm on a commutative group is equivalent to a (continuous)

p-norm. Precisely,

Theorem 5.1. Let ̺ be a quasi-norm on a commutative group G. Then there is a p-norm

σ such that σ(x) ≤ ̺(x) ≤ 21/pσ(x) for all x, where p is obtained from ∆̺ = 2
1/p−1.
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Proof. Let ∆ be the quasi-norm constant of ̺. Clearly,

̺(x+ y) ≤ 2∆max{̺(x), ̺(y)} (x, y ∈ G).

Write ∆ = 21/p−1, that is, 2∆ = 21/p. One then has

̺(x+ y)p ≤ 2max{̺(x)p, ̺(y)p} (x, y ∈ G).

Let α : G→ R+ be given by α(x) = ̺(x)p. We have

α(x+ y) ≤ 2max{α(x), α(y)}.(1)

Now, define

β(x) = inf
{ n∑

i=1

α(xi) : x =

n∑

i=1

xi

}
.

On the one hand, it is clear that β(x) ≤ α(x) and that β is subadditive; on the other

hand, if x =
∑n
i=1 xi then a simple induction on the inequality (1) yields

α
( n∑

i=1

xi

)
≤ sup
1≤i≤n

2kiα(xi)

whenever
∑n

i=1 2
−ki ≤ 1. So, choose ki so that

2−ki ≤
α(xi)∑n
j=1 α(xj)

≤ 21−ki .

Since
∑n
i=1 2

−ki ≤ 1, we have

α
( n∑

i=1

xi

)
≤ sup
1≤i≤n

2kiα(xi) ≤ 2
n∑

i=1

α(xi).

It follows that β ≤ α ≤ 2β, that is,

β(x)1/p ≤ ̺(x) ≤ 21/pβ(x)1/p.

Thus, we complete the proof by taking σ(x) = β(x)1/p.

Problem 5.2. Can the hypothesis of commutativity be removed in the Aoki–Rolewicz

theorem?

The following criterion will be useful.

Lemma 5.3. Let ̺ be a quasi-norm on an arbitrary group G. Then ̺ is equivalent to a

p-norm (0 < p ≤ 1) if and only if there is K such that

̺
( n∑

i=1

xi

)p
≤ K

n∑

i=1

̺(xi)
p

for each n and all xi.

Proof. The necessity of the condition is obvious. As for the sufficiency, observe that the

p-convex envelope of ̺ given by

σ(x) = inf
{(∑

i

̺(xi)
p
)1/p
: x =

∑

i

xi

}

is a p-norm satisfying σ(x) ≤ ̺(x) ≤ K1/pσ(x) for all x ∈ G.
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Suppose (xn) is a sequence convergent to x in the quasi-normed group (G, ̺). Since

̺ need not be continuous one cannot guarantee that ̺(x) = limn→∞ ̺(xn). We do have

the following result.

Lemma 5.4. Let (xn) be a sequence convergent to x in (G, ̺). Then

∆−1 lim sup
n→∞

̺(xn) ≤ ̺(x) ≤ ∆ lim inf
n→∞

̺(xn),

where ∆ is the quasi-norm constant of ̺.

Proof. The first inequality follows from

̺(xn) ≤ ∆(̺(xn − x) + ̺(x)),

while the second one follows from

̺(x) ≤ ∆(̺(x− xn) + ̺(xn)).

Corollary 5.5. Let G0 be a dense subgroup of the quasi-normed group G and let Y be

a complete and commutative quasi-normed group. Suppose A0 : G0 → Y is an additive

mapping satisfying ‖A0(x)‖ ≤ K̺(x) for x ∈ G0. Then there exists a unique continuous

additive A : G → Y extending A0. Moreover , ‖A(x)‖Y ≤ K∆Y∆G̺(x) holds for all

x ∈ G, where ∆Y and ∆G are the quasi-norm constants of Y and G.

Proof. The first part is obvious by taking

A(x) = lim
y
A(y)

for y ∈ G0 converging to x in (G, ̺). Now, fix x ∈ G and take a sequence (xn) in G0
converging to x. Then A0(xn) converges to A(x) in Y . Applying Lemma 5.4 twice, we

get

‖A(x)‖Y ≤ ∆Y lim inf
n→∞

‖A0(xn)‖ ≤ K∆Y lim sup
n→∞

̺(xn) ≤ K∆Y∆G̺(x),

as desired.

2. Extensions of quasi-normed groups. Let G be a quasi-normed group and let

S ⊂ G be a closed normal subgroup. The quotient group G/S is then quasi-normed by

̺G/S(π(x)) = inf{̺(z) : π(x) = π(z)},

where π : G→ G/S is the canonical quotient map. This suggests the following notion of

extension which is the natural one in G.

Definition 5.6. A short exact sequence 0→ Y
j
→ X

q
→ Z → 0 of quasi-normed groups

is said to be an extension (of Y by Z in G) if both j : Y → j(Y ) and the natural map

X/j(Y )→ Z are isomorphisms in G.

Two extensions 0 → Y → X → Z → 0 and 0 → Y → X1 → Z → 0 are said to be

equivalent if there exists an isomorphism T : X → X1 in G making commutative the

diagram
0 → Y → X → Z → 0

‖ ↓T ‖

0 → Y → X1 → Z → 0
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An extension 0 → Y
j
→ X

q
→ Z → 0 is said to split in G if it is equivalent to the

trivial extension 0 → Y → Y ⊕ Z → Z → 0. Here, the quasi-norm of Y ⊕ Z is given

by ‖(y, z)‖ = ‖y‖Y + ‖z‖Z . This means that j admits a retraction in G, or equivalently,

that q admits a section in G. An extension 0 → Y
j
→ X

q
→ Z → 0 is called singular

if it splits when regarded algebraically (that is, j admits a, not necessarily bounded

or even continuous, left inverse in Hom(X,Y ) or, equivalently, q has a right inverse in

Hom(Z,X)).

3. Nearly additive maps and twisted quasi-norms. In a number of constructions

it will be convenient to consider only odd mappings. When F : G→ Y is a quasi-additive

mapping on a quasi-normed group and Y is a quasi-Banach space there is no serious

loss of generality in assuming F to be odd because of the following lemma. The proof is

almost the same as that of Lemma 1.17 and will be omitted.

Lemma 5.7. Let F : (G, ̺)→Y be a quasi-additive map and let Fo(x)=(F (x)−F (−x)/2

be its odd part. Then Fo is quasi-additive, with Q(Fo) ≤ ∆YQ(F ) and dist(F, Fo) ≤

∆YQ(F ).

Given an odd mapping F : (G, ̺) → Y (where Y is an abelian quasi-normed group)

it is possible to construct a “twisted” symmetric control functional on the product group

Y ×G by putting

‖(y, x)‖F = ‖y − F (x)‖Y + ̺(x).

Proposition 5.8. The functional ‖(·, ·)‖F is a quasi-norm on the group Y × G if and

only if F is quasi-additive.

Proof. Assume that F is quasi-additive with constant K. Then

‖(u, x) + (v, y)‖F
= ‖(u+ v, x+ y)‖F = ‖u+ v − F (x+ y)‖Y + ̺(x+ y)

≤ ∆Y {‖u+ v − F (x)− F (y)‖Y + ‖F (x) + F (y)− F (x+ y)‖}+∆̺{̺(x) + ̺(y)}

≤ ∆2Y {‖u− F (x)‖Y + ‖v − F (y)‖Y }+ (K∆Y +∆̺)(̺(x) + ̺(y))

≤ max{∆2Y ,K∆Y +∆̺} · (‖(u, x)‖F + ‖(v, y)‖F ),

so that ‖ · ‖F satisfies the ∆-condition. For the converse, assume that

‖(u, x) + (v, y)‖F ≤ ∆{‖(u, x)‖F + ‖(v, y)‖F }.

Taking u = F (x) and v = F (y), one obtains

‖F (x) + F (y)− F (x+ y)‖+ ̺(x+ y) ≤ ∆(̺(x) + ̺(y))

and the result follows.

Now we consider some stronger properties of ‖ · ‖F .

Proposition 5.9. Let F : (G, ̺)→ Y be an odd map. Suppose that ̺ is (equivalent to)

a p-norm (0 < p ≤ 1). Then ‖ · ‖F is equivalent to a p-norm on Y × G if and only if
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there is K such that
∥∥∥

n∑

i=1

F (xi)−
m∑

j=1

F (yj)
∥∥∥
p

Y
≤ K
( n∑

i=1

̺(xi)
p +

m∑

j=1

̺(yj)
p
)

for each n and m whenever xi and yj are such that
∑n
i=1 xi =

∑m
j=1 yj. In particular , if

̺ is a norm, then ‖ · ‖F is equivalent to a norm if and only if F is zero-additive.

Proof. We consider the case p = 1, the other being analogous. Assume that F is zero-

additive with constant K. It is straightforward that

∥∥∥
n∑

i=1

(yi, zi)
∥∥∥
F
≤ 2K

n∑

i=1

‖(yi, xi)‖F ,

and therefore ‖ · ‖F is equivalent to a norm. Conversely, assume that ‖ · ‖F is equivalent

to a norm ‖ · ‖. We may assume that ‖x‖ ≤ ‖x‖F ≤ K‖x‖ for some K and all x ∈ Y ×G.

If
∑n
i=1 zi = 0, then

∥∥∥
n∑

i=1

F (zi)
∥∥∥
Y
=
∥∥∥

n∑

i=1

(F (zi), zi)
∥∥∥
F
≤ K

n∑

i=1

‖(F (zi), zi)‖F ≤ K
n∑

i=1

̺(xi);

it follows that F is zero-additive with constant at most K.

Corollary 5.10. Suppose G is commutative and F : (G, ̺) → Y quasi-additive. Then

there exist 0 < p ≤ 1 and K ≥ 0 such that
∥∥∥

n∑

i=1

F (xi)−
m∑

j=1

F (yj)
∥∥∥
p

Y
≤ K
( n∑

i=1

̺(xi)
p +

m∑

j=1

̺(yj)
p
)

for each n and m whenever xi and yj are such that
∑n
i=1 xi =

∑m
j=1 yj.

Proposition 5.11. Suppose that ̺ is a norm. Then ‖ · ‖F is a norm if and only if F is

pseudo-additive with constant 1.

Proof. This also appears in [20, Appendix 1.9]. If F is pseudo-additive with constant 1,

then ‖ · ‖F is quite clearly a norm. Conversely, if ‖ · ‖F is a norm then

‖F (x+ y)− F (x)− F (y)‖+ ̺(x+ y) = ‖(F (x) + F (y), x+ y)‖F

≤ ‖(F (x), x)‖F + ‖(F (y), y)‖F = ̺(x) + ̺(y),

and F is pseudo-additive with constant 1.

4. Singular extensions of quasi-normed groups. Let us write Y ⊕F G for the quasi-

normed group (Y ×G, ‖·‖F ). Observe that Y ⊕FG contains a normal subgroup “isometric”

to Y (namely, {(y, 0) : y ∈ Y }) such that the corresponding quotient is isometric to (G, ̺),

so that there is an extension in G:

0→ Y
i
→ Y ⊕F G

π
→ (G, ̺)→ 0

The following result asserts that while these sequences are always singular their splitting

in the category of quasi-normed groups and bounded homomorphisms is connected to

the problem of finding a (not necessarily bounded, or continuous) group homomorphism

A : G→ Y approximated by F .
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Theorem 5.12. Let 0 → Y
i
→ Y ⊕F G

π
→ (G, ̺) → 0 be a sequence induced by a

quasi-additive odd map F : (G, ̺)→ Y . The following are equivalent:

(a) There is a bounded additive section for π.

(b) There is a bounded additive retraction for i.

(c) There is an additive map A : G→ Y at finite distance from F .

Proof. (a)⇒(c). Assume that S : (G, ̺)→ Y ⊕F G is a homomorphism such that π ◦S =

IdG and ‖S(x)‖F ≤ M̺(x). Observe that S must have the form S(x) = (A(x), x) for

some A ∈ Hom(G, Y ). Moreover, one has

‖F (x)−A(x)‖Y + ̺(x) = ‖(A(x), x)‖F ≤M̺(x),

which yields (c).

(c)⇒(b). If (c) holds, letK be the distance between F and A and define R : Y ⊕FG→

Y by R(u, x) = u−A(x). Clearly,

‖R(u, x)‖Y = ‖u−A(x)‖Y ≤ ∆Y (‖u− F (x)‖Y + ‖F (x)−A(x)‖Y )

≤ ∆Y (‖u− F (x)‖Y +K̺(x)) ≤ max{1,K}∆Y ‖(u, x)‖F .

The implication (b)⇒(a) is left to the reader as an easy exercise.

We now identify singular extensions in G as those extensions that can be obtained

by quasi-additive maps. Observe that, for instance, every short exact sequence of quasi-

Banach spaces is a singular extension.

Proposition 5.13. Let Z and Y be quasi-normed abelian groups. Every singular exten-

sion 0 → Y
j
→ X

q
→ Z → 0 is equivalent to an extension 0 → Y → Y ⊕F Z → Z → 0

induced by a quasi-additive map F : Z → Y .

Proof. Since 0 → Y
j
→ X

q
→ Z → 0 is an extension, we may (and do) assume that Y

is a normal subgroup of X with X/Y isomorphic to Z as quasi-normed groups. This

obviously implies the existence of a bounded odd selection B : Z → X for the quotient

map X → Z.

On the other hand, if the given extension is singular, there is L ∈ Hom(Z,X) such

that q ◦L = IdZ . Set F (z) = B(z)−L(z) for all z ∈ Z; then q ◦F = 0 and F takes values

in Y instead of X. We see that F : Z → Y is quasi-additive. Take x, y ∈ Z. Then

‖F (x+ y)− F (x)− F (y)‖Y = ‖F (x+ y)− F (x)− F (y)− L(x+ y) + L(x) + L(y)‖Y

= ‖B(x+ y)−B(x)−B(y)‖Y

≤ ∆X‖B(x+ y)‖X +∆
2
X(‖B(x)‖X + ‖B(y)‖X)

≤ ‖B‖(∆X∆Z +∆
2
X)(‖x‖Z + ‖y‖Z).

It remains to exhibit an isomorphism T : Y ⊕F Z → X in G making commutative

the diagram

0→ Y
i
→ Y ⊕F Z

π
→ Z → 0

‖ ↓T ‖

0→ Y
j
→ X

q
→ Z → 0
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Define T (y, z) = y − L(z). It is easily seen that T is a homomorphism (this requires

commutativity in X, which is guaranteed by the singular character of the extension X).

It is also clear that T ◦ i = j and q ◦ T = π. We show that T is bounded:

‖T (y, z)‖X = ‖y − F (z) + F (z)− L(z)‖X ≤ ∆X(‖y − F (z)‖Y + ‖F (z)− L(z)‖X)

≤ max{∆X , ‖B‖}‖(y, z)‖F .

To end, observe that T−1(x) = (x − L(q(x)), q(x)). Thus, the following computation

shows that T−1 is bounded and completes the proof:

‖T−1(x)‖F = ‖(x− L(q(x)), q(x))‖F = ‖x− L(q(x))− F (q(x))‖X + ‖q(x)‖Z

= ‖x−B(q(x))‖X + ‖q(x)‖Z ≤ const · ‖x‖X .

5. The behavior of nearly additive maps on dense subgroups. At first sight,

nearly additive maps have nothing to do with continuity. The possibility of thinking

about such maps as “objects that generate short exact sequences of quasi-normed groups”

provides us a link between quasi-additive maps and topology. An illustrative example is

the following theorem.

Theorem 5.14. Let (G, ̺) be a quasi-normed group, G0 a dense subgroup and Y a quasi-

Banach space. Let further F : (G, ̺)→ Y be a quasi-additive mapping. Assume that there

is A0 ∈ Hom(G0, Y ) such that ‖F (x)− A0(x)‖Y ≤ M̺(x) for some M and all x ∈ G0.

Then there exists a unique A ∈ Hom(G, Y ) extending A0 and satisfying ‖F (x)−A(x)‖Y ≤

K̺(x) for some K and all x ∈ G.

Proof. We give the proof for odd mappings. Taking into account Lemma 5.7 it is not

hard to adapt the proof for arbitrary mappings.

Let F : (G, ̺)→ Y be quasi-additive and odd. Before embarking on the proof, let us

observe that Y ×G0 is a dense subgroup of Y ⊕F G. Indeed, let (y, x) ∈ Y ×G and ε > 0.

Choose x ∈ G0 such that ̺(ξ − x) ≤ ε and let ψ = y − F (ξ − x). Then

‖(y, x)− (ψ, ξ)‖F = ‖(y − ψ)− F (x− ξ)‖Y + ̺(x− ξ) ≤ ε,

as desired. Assume that there is A0 ∈ Hom(G0, Y ) such that

‖F (ξ)−A0(ξ)‖ ≤M̺(ξ)

for all ξ ∈ G0. Putting R0(y, x) = y−A0(x), one obtains a homomorphism Y ×G0 → Y

such that R0(y, 0) = y for all y ∈ Y and satisfying

‖R0(ψ, ξ)‖ ≤ max{1,M}‖(ψ, ξ)‖F

for all (ψ, ξ) ∈ Y ×G0. An obvious “homogeneity” argument shows that, in fact,

‖R0(ψ, ξ)‖ ≤M‖(ψ, ξ)‖F ((ψ, ξ) ∈ Y ×G0).

According to Corollary 5.5, taking

R(y, x) = lim
‖(ψ−y,ξ−x)‖F→0, (ψ,ξ)∈Y×G0

R0(ψ, ξ),

we obtain a homomorphism R : Y × G → Y extending R0, satisfying again R(y, 0) = y

and

‖R(y, x)‖ ≤M∆F ‖(y, x)‖F
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for all y and x, where ∆F denotes the quasi-norm constant of ‖ · ‖F . It follows from the

proof of Proposition 5.8 that ∆F ≤ Q(F ) +∆̺.

Finally, observe that R must have the form R(y, x) = y − A(x) for some A ∈

Hom(G, Y ) extending A0 and satisfying

‖F (x)−A(x)‖ ≤M(Q(F ) +∆̺)̺(x)

for every x ∈ G. The uniqueness of A is clear.

Remark 5.15. Again, a “homogeneity” argument shows that one actually has

dist(F,A) ≤ (1 +∆̺)max{Q(F ), dist(F |G0 , A0)}.

For an arbitrary map F , Lemma 5.7 yields

dist(F,A) ≤ 2(1 +∆̺)max{Q(F ), dist(F |G0 , A0)}.

Corollary 5.16. Let (G, ̺) be a quasi-normed group and let G0 be a dense subgroup.

Let further F : G0 → Y be asymptotically additive. Then every quasi-additive map G→ Y

extending F is asymptotically additive.

Corollary 5.17. Let (G, ̺) be a normed group and let G0 be a dense subgroup. Let

further F : G0 → Y be zero-additive. Then every quasi-additive map G → Y extending

F is zero-additive.

6. Ger-additive maps and exact sequences. In this section we shall show that not

every Ger-additive map between Banach spaces is asymptotically additive. This will be

done by exhibiting a Banach space X having an uncomplemented subspace Y admitting

a Lipschitz semiprojection. The precise statement of the equivalence between the two

assertions is the following:

Proposition 5.18. Let 0 → Y → X → Z → 0 be an exact sequence of quasi-Banach

spaces. The following are equivalent:

(a) The quotient map X → Z admits a Lipschitz selection.

(b) The inclusion Y → X admits a Lipschitz semiprojection (i.e., there is a Lipschitz

map π : X → Y such that π(x+ π(y)) = π(x) + πy for all x, y ∈ X).

(c) Some quasi-linear map defining the sequence is Ger-additive.

To obtain its proof, let us consider the problem of finding the nearest point in Y for

a given point (y, x) ∈ Y ⊕F G. Clearly, the best approximation is given by the “metric

projection” (y, x) ∈ Y ⊕F G 7→ m(y, x) = y − F (x) ∈ Y , corresponding to the “optimal

selection” x ∈ G 7→ S(x) = (F (x), x) ∈ Y ⊕F G for the quotient map. Both maps are

bounded, but generally discontinuous. One has

Proposition 5.19. For a quasi-additive odd map F , the following are equivalent:

(a) The “metric projection” m : Y ⊕F G→ Y is a Lipschitz continuous map.

(b) The “optimal selection” S : G→ Y ⊕F G is Lipschitz continuous.

(c) F is Ger-additive.

Proof. (c)⇔(b). Observe that ‖S(x+ z)−S(x)‖F = ‖F (x+ z)−F (x)−F (z)‖Y + ̺(z),

hence one has ‖S(x+z)−S(x)‖F ≤ K̺(z) for all x, z ∈ G if and only if F is Ger-additive.
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(a)⇔(c). Observe that the condition ‖m(y+ u, x+ z)−m(y, x)‖Y ≤ K‖(u, z)‖F can

be written as ‖u− F (x+ z)− F (x)‖Y ≤ K{‖u− F (z)‖Y + ̺(z)}. Taking u = F (z) one

deduces that (a) implies (c). And conversely, if F is Ger-additive, then

‖u− F (x+ z)− F (x)‖Y ≤ ∆Y (‖u− F (z)‖Y + ‖F (z)− F (x+ z)− F (x)‖Y )

≤ max{1, G(F )} ·∆Y · (‖u− F (z)‖Y + ̺(z)).

From the above the proof of Proposition 5.18 is straightforward.

Moreover, the preceding argument yields the following.

Corollary 5.20. Let F be a Ger-additive map. If F is at finite distance from an additive

map A then the difference B = F − A is a Lipschitz map (instead of a mere bounded

map).

From Proposition 5.18 it is clear that the existence of a Lipschitz semiprojection

onto an uncomplemented subspace is equivalent to the existence of a Ger-linear map

between Banach spaces that is not asymptotically linear. We already know that Ger-linear

maps are asymptotically linear when the target space is complemented in its bidual (see

Theorem 4.20). The following example of what we shall call a Johnson–Lindenstrauss

space in Chapter VII provides a counterexample in the general case.

Example 5.21. An uncomplemented subspace admitting a Lipschitz semiprojection. A

Ger-additive map F : c0(Γ )→ c0 which fails to be asymptotically additive.

Proof. The construction has been taken from [58], while the argument that it admits a

Lipschitz semiprojection comes from [2]. Consider an uncountable family Γ of infinite

subsets of N with the property that for two different γ and µ in Γ the intersection γ ∩ µ

is finite. Let JL∞ be the closed linear span of c0 and the characteristic functions of the

sets in Γ in ℓ∞. Via the natural embedding one has the exact sequence

0→ c0
i
→ JL∞

q
→ c0(Γ )→ 0.

The sequence clearly does not split because c0(Γ ) is not a subspace of ℓ∞.

In view of Proposition 5.18, it will suffice to show that the quotient map q admits a

Lipschitz selection.

Let c00(Γ ) be the linear subspace spanned by the “basis” (eγ)γ∈Γ . Clearly, it is a

dense subspace of c0(Γ ). For x ∈ c00(Γ ), let

x =

N∑

n=1

aneγn −
M∑

m=1

bmeµm

with a1 ≥ a2 ≥ . . . , b1 ≥ b2 ≥ . . . be the unique representation of x as the difference of

two disjointly supported positive elements x+ and x−. Put

γ∗n = γn \
n−1⋃

i=1

γi, µ∗m = γm \
m−1⋃

j=1

γj (1 ≤ n ≤ N, 1 ≤ m ≤M)

and set

ψ(x) =

N∑

n=1

an1γ∗
n
−

M∑

m=1

bm1µ∗
m
.
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Clearly, q ◦ψ is the identity on c00(Γ ). That ψ is a Lipschitz map easily follows from the

equality

ψ(x)(k) = dist(x+, Zk)− dist(x
−, Zk) (k ∈ N),

in which Zk = span{eγ : k 6∈ γ}.

Finally, since c00(Γ ) is dense in c0(Γ ) we can extend ψ to a Lipschitz mapping ψ̃ :

c00(Γ )→ JL∞, which is quite clearly a Lipschitz selection for the quotient map.

Remark 5.22. Taking into account the Corson–Klee lemma (uniformly continuous map-

pings between Banach spaces are Lipschitzian for large distances [24, Proposition 4.3]),

and the obvious fact that every invariant mean on a normed space vanishes on boundedly

supported functions, one can extract from Proposition 5.18 and the proof of Theorem 4.20

the following: Let Y be a subspace of a Banach space X; assume that there is a (not

necessarily homogeneous) uniformly continuous projection π : X → Y (i.e., a mapping

satisfying π(y) = y for all y ∈ Y ). If Y is complemented in its second dual then it is a

complemented subspace of X. This result, which is essentially known (see [72] and [78,

pp. 61–62]), can be regarded in some sense as a result on stability of linear projections

on Banach spaces.

A related open question is:

Problem 5.23. Given a sequence 0 → Y → X → Z → 0 of quasi-Banach spaces , how

to detect if it comes defined by some Ger-linear map?

VI. Duality theory and localization techniques

This chapter aims to translate the standard techniques of Banach space theory (duality,

localization) to quasi-normed groups. We shall show that this can be done with success

for what concerns nearly additive mappings.

We start with duality theory for quasi-normed groups. The duality we are going to

consider is not Pontryagin duality as topological groups (that is, taking as dual the group

of characters). We shall rather consider the Banach space (G, ̺)∗ = HomB(G,R) as a dual

object for the quasi-normed group (G, ̺) (in a similar sense to making the Banach space

C(K) of continuous functions over a compact space K a dual object for K). Recall from

Chapter II that the map

f ∈ (G, ̺)∗ 7→ ‖f‖ = inf{K > 0 : |f(x)| ≤ K̺(x) for all x ∈ G}

defines a complete norm on (G, ̺)∗ (even when ̺ is only a quasi-norm). Recall also

that the canonical homomorphism δ : (G, ̺) → (G, ̺)∗∗ defined by δ(x)(f) = f(x) is

continuous, with ‖δ(x)‖ ≤ δ(x); it is also injective when (G, ̺)∗ separates the points

of G.

1. The containing Banach space of a quasi-normed group. The containing Banach

space of a quasi-normed group (G, ̺) is the closed subspace co(G, ̺) ⊂ (G, ̺)∗∗ spanned

by δ(G), with the (restriction of the) norm of (G, ̺)∗∗. The Banach space co(G, ̺) is de-

fined by the following universal property: every bounded homomorphism from (G, ̺) into
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a Banach space factorizes through δ : (G, ̺)→ co(G, ̺), with equal norm. In particular,

the Banach spaces (G, ̺)∗ and co(G, ̺)∗ are naturally isometric.

Our aim is to prove that zero-additive maps on (G, ̺) with values in a Banach space

“approximately” factorize through co(G, ̺). Let us recall again that the absence of a

Hahn–Banach theorem forces us to state as hypotheses facts that the Banach space

structure gives for free. Thus, although, as proved in Chapter IV, every R-valued zero-

additive map in a linear space is asymptotically additive, this is not necessarily so for

zero-additive maps on arbitrary quasi-normed groups (see Example 2.4). Hence, to some

extent, the following notion of Z-group is the “group version” of being a K-space.

Definition 6.1. We say that a quasi-normed group (G, ̺) is a Z-group if every real-

valued zero-additive mapping on (G, ̺) is asymptotically additive.

Of course, it is also possible to define Q-, G-, P - and H-groups. However, observe that

Q-groups must be very scarce, while the theory for G-, P - and H-groups is contained in

that of Z-groups. By Theorems 4.17 and 4.16, amenable and weakly commutative groups

are Z-groups. Moreover, as we proved in Chapter III, Theorem 3.2, Z-groups (respectively,

G- and P -groups) coincide with groups (G, ̺) for which the pair {(G, ̺),R} has, for some

M ≥ 0, the property (MZ) (respectively, (MG) or (MP)).

Lemma 6.2. A quasi-normed group (G, ̺) is a Z-group if and only if , given an exact

sequence 0 → Y → Y ⊕F G → (G, ̺) → 0 defined by a zero-additive odd map F :

(G, ̺)→ Y , the dual sequence 0→ (G, ̺)∗ → (Y ⊕F G)
∗ → Y ∗ → 0 is exact.

Proof. (⇒) The only non-trivial point is to verify that the restriction map (Y ⊕F G)
∗

→ Y ∗ is onto. Let y∗ ∈ Y ∗. Then y∗ ◦ F is zero-additive on (G, ̺) and there exists

A ∈ Hom(G,R) at finite distance from y∗ ◦F . It is easily seen that the mapping (y, s) 7→

y∗(y)−A(s) is a bounded additive extension of y∗ to Y ⊕F G.

(⇐) Let F : (G, ̺) → R be a zero-additive map. Since the sequence 0 → (G, ̺)∗ →

(R⊕F G)
∗ → R∗ → 0 is exact the identity of R can be lifted to a bounded additive map

R on R⊕F G. Clearly, R must have the form R(t, x) = t−A(x), where A is a real-valued

additive map on G at finite distance from F .

Theorem 6.3. Let (G, ̺) be a Z-group and Y Banach space complemented in its bidual.

Let F : co(G, ̺)→ Y be zero-linear. Then F is asymptotically linear if (and only if ) F ◦δ

is asymptotically additive.

Proof. Let F : co(G, ̺)→ Y be zero-linear. Clearly, F ◦ δ : (G, ̺) → Y is zero-additive,

δ : (G, ̺)→ co(G, ̺) being the canonical map. One has the commutative diagram

0→ Y → Y ⊕F co(G, ̺)→ co(G, ̺)→ 0

‖ ↑ ↑δ

0→ Y → Y ⊕F G → (G, ̺) → 0

where all arrows represent bounded group homomorphisms. Since F ◦ δ is asymptotically

additive the lower row splits. By dualization one obtains the following diagram of Banach
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spaces and operators:

0 ← Y ∗ ← (Y ⊕F co(G, ̺))
∗ ← (co(G, ̺))∗ ← 0

‖ ↓ ‖

0 ← Y ∗ ← (Y ⊕F G)
∗ ← (G, ̺)∗ ← 0

Since the lower row splits, so does the upper row. Hence, its dual sequence

0→ Y ∗∗ → (Y ⊕F co(G))
∗∗ → (G, ̺)∗∗ → 0

also splits. Since Y is complemented in its bidual the starting sequence

0→ Y → Y ⊕F co(G, ̺)→ co(G, ̺)→ 0

splits (see [13]). Therefore, F is asymptotically linear.

Corollary 6.4. If every zero-additive map (G, ̺) → Y is asymptotically additive then

every locally convex twisted sum of Y and co(G, ̺) is trivial.

The converse implication also holds under the assumption that Y is complemented in

its bidual. The proof is a consequence of the following technical result, worth the awkward

computations it contains.

Theorem 6.5. Let (G, ̺) be a Z-group and Y a Banach space. Let j : Y → Y ∗∗ denote

the natural inclusion map. Given a zero-additive map F : (G, ̺)→ Y there is a zero-linear

map H : co(G, ̺)→ Y ∗∗ such that the difference j ◦ F −H ◦ δ can be decomposed as the

sum of an additive map G→ Y ∗∗ and a bounded map G→ Y ∗∗.

Proof. The proof uses the technique developed in [13] for the construction of the adjoint

zero-linear map. Let F : (G, ̺)→ Y be zero-additive. Consider the sequence

0→ Y → Y ⊕F G→ (G, ̺)→ 0.

By Lemma 6.2, the dual sequence of Banach spaces

0→ (G, ̺)∗ → (Y ⊕F G)
∗ → Y ∗ → 0

is exact. The open mapping theorem implies that for every y∗ ∈ Y ∗ there is Φ(y∗) ∈

Hom(G,R) such that ‖y∗ ◦ F − Φ(y∗)‖ ≤ C‖y∗‖, where C is a constant depending on F

but not on y∗. Obviously, one can assume that Φ : Y ∗ → Hom(G,R) is homogeneous.

Fix a Hamel basis {fi} for Y
∗ over R and define a linear map LΦ : Y

∗ → Hom(G,R)

by LΦ(
∑
i λifi) =

∑
i λiΦ(fi). We claim that F

∗ = LΦ − Φ is a zero-linear map from Y ∗

into (G, ̺)∗. To see this, let y∗ =
∑
i λifi. Then, for every x in G one has

|F ∗(y∗)(x)| = |LΦ(y
∗)(x)− Φ(y∗)(x)| =

∣∣∣
∑

i

λiΦ(fi)(x)− Φ
(∑

i

λifi

)
(x)
∣∣∣

=
∣∣∣
∑

i

λiΦ(fi)(x)−
∑

i

λifiF (x) +
∑

i

λifiF (x)− Φ
(∑

i

λifi

)
(x)
∣∣∣

≤ 2C
(∑

i

|λi| · ‖fi‖
)
̺(x),
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hence F ∗(y∗) ∈ (G, ̺)∗. Moreover, given gi, hj ∈ Y
∗ such that

∑n
i=1 gi =

∑m
j=1 hj , one

has
∥∥∥

n∑

i=1

F ∗(gi)−
m∑

j=1

F ∗(hj)
∥∥∥ = dist

( n∑

i=1

Φ∗(gi),

m∑

j=1

Φ∗(hj)
)

= dist
( n∑

i=1

Φ∗(gi)−
n∑

i=1

gi ◦ F,
m∑

j=1

Φ∗(hj)−
m∑

j=1

hj ◦ F
)

≤ C
( n∑

i=1

‖gi‖+
m∑

j=1

‖hj‖
)
,

so that F ∗ is zero-linear (actually, this map defines the sequence 0→(G, ̺)∗→(Y ⊕F G)
∗

→ Y ∗ → 0).

With the same procedure we can construct the bitranspose zero-linear map F ∗∗ :

(G, ̺)∗∗ → Y ∗∗ by considering, for each x∗∗ ∈ (G, ̺)∗∗, a functional Ψ(x∗∗) ∈ Hom(Y ∗,R)

such that ‖x∗∗F ∗ − Ψ(x∗∗)‖ ≤ K‖x∗∗‖ and putting F ∗∗(x∗∗) = LΨ (x
∗∗) − Ψ(x∗∗). We

want to see that F ∗∗ ◦ δ − F is asymptotically additive as a map (G, ̺) → Y ∗∗. Take

x ∈ G and y∗ ∈ (G, ̺)∗. Then

F ∗∗(δ(x))y∗ − y∗F (x)

= LΨ (δ(x))y
∗ − Ψ(δ(x))y∗ − y∗F (x)

= LΨ (δ(x))y
∗ − Ψ(δ(x))y∗ + δ(x)F ∗y∗ − δ(x)F ∗y∗ − y∗F (x)

= LΨ (δ(x))y
∗ − Ψ(δ(x))y∗ + δ(x)F ∗y∗ − LΦ(y

∗)x+ Φ(y∗)x− y∗F (x)

= A(x)(y∗) +B(x)(y∗),

where

B(x)(y∗) = −Ψ(δ(x))y∗ + δ(x)F ∗y∗ + Φ(y∗)x− y∗F (x)

is bounded since

|B(x)(y∗)| ≤ (K + C)‖y∗‖̺(x),

while

A(x)(y∗) = LΨ (δx)y
∗ − LΦ(y

∗)x

is additive and takes values in Y ∗∗, instead of Hom(Y ∗,R), B is bounded and F ∗∗◦δ(x)−

F (x) belongs to Y ∗∗.

Corollary 6.6. If , moreover , Y is complemented in Y ∗∗ by a projection π then π ◦H :

co(G, ̺) → Y gives a zero-linear map such that π ◦ H − F is a trivial map G → Y .

In particular , if every locally convex twisted sum of Y and co(G, ̺) is trivial then every

zero-additive map (G, ̺)→ Y is asymptotically additive.

Corollary 6.7. Let (G, ̺) be a quasi-normed group admitting a dense subgroup that is

either weakly commutative or amenable and let Y be a Banach space complemented in

the bidual. Then [(G, ̺), Y ] has property (Z) if and only if [co(G, ̺), Y ] does.

2. Projective and almost projective groups. It is well known that the Banach

spaces ℓ1(I) are projective: every exact sequence of Banach spaces 0 → Y → X →
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ℓ1(I) → 0 splits; equivalently, every zero-linear map ℓ1(I) → Y admits a linear map at

finite distance. The following stronger fact holds.

Theorem 6.8. For every Banach space Y and every index set I the pair [ℓ1(I), Y ] has

property (8Z).

Proof. Let F : ℓ1(I) → Y be a zero-additive mapping. Consider the following dense

subgroup of ℓ1(I):

G0 = {x ∈ ℓ1(I) : x(i) ∈ Q for all i and x(i) = 0 for almost all i}.

It is not hard to see that the formula A(
∑
i qiei) =

∑
i qiF (ei) defines an additive

mapping A : G0 → Y such that

‖F (x)−A(x)‖ =
∥∥∥F
(∑

i

qiei

)
−
∑

i

qiF (ei)
∥∥∥ ≤ 4Z(F )

Hence [G0, Y ] has property (4Z), and thus [ℓ1(I), Y ] (using the results in Section 5 of

Chapter V) has property (8Z).

L1-spaces are not “as projective” as ℓ1(I)-spaces; after all, only exact sequences (of

Banach spaces) 0 → Y → X → L1(µ) → 0 in which Y is complemented in the bidual

split [72]; that is, the couples (L1(µ), Y ) in which Y is complemented in the bidual have

some property (KZ) for homogeneous maps. This property, called “almost projectivity”

in [14], actually characterizes L1-spaces in the following sense:

Proposition 6.9. A Banach space X is an L1-space if and only if every exact sequence

0→ Y → E → X → 0 in which Y is reflexive splits.

Definition 6.10. We say that a quasi-normed group (G, ̺) is almost projective if

every zero-additive map from (G, ̺) into a Banach space complemented in its bidual

is asymptotically additive.

Theorem 6.11. If (G, ̺) is an almost projective quasi-normed group, then co(G, ̺) is

an almost projective Banach space.

Proof. This follows from Theorem 6.3 on taking into account that R is complemented in

its bidual.

The previous results are also significant when translated to the domain of quasi-

Banach spaces. In Banach spaces, the hypothesis of the following theorem means that

Z is an L1-space (see [14]). Thus, we are asking for quasi-Banach spaces whose Banach

envelope is an L1-space.

Corollary 6.12. Let Z be a quasi-Banach space such that every twisted sum of a re-

flexive Banach space with Z is trivial. Then co(Z) is an almost projective Banach space.

This assertion is a weaker form of Theorem 6.11 for homogeneous maps. The converse

holds under the additional hypothesis of being a K-space:

Corollary 6.13. Let Z be a quasi-Banach K-space. If co(Z) is an almost projective

Banach space, then every twisted sum of a Banach space complemented in its bidual and

Z is trivial.

Again, this is a weaker form of Theorem 6.5 for homogeneous maps.
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These results assert something sensible about K-spaces with trivial dual since 0 is an

almost projective Banach space. Precisely, they say that if Z is a quasi-Banach K-space

with trivial dual and Y is a Banach space complemented in the bidual, then every twisted

sum of Y with Z splits. In [64, pp. 46–47] it is mentioned that “the containing Banach

space of a non-locally convex space exhibits a certain degree of ℓ1-like behavior”; this

consists in that when Z∗ separates points, ℓ1 is finitely represented in co(Z). Corollary

6.13 displays another aspect of this ℓ1-like behavior for the opposite case, when Z
∗ = 0.

The two cases are represented by the spaces ℓp and Lp for 0 < p < 1. In the first case,

in which the dual separates points, co(ℓp) = ℓ1; in the second case, in which L
∗
p = 0

and thus co(Lp) = 0, Corollary 6.13 asserts that every twisted sum of a Banach space

complemented in its bidual and Lp is trivial.

3. Injective spaces. The following result characterizes Banach spaces capable of playing

the rôle of the scalar field in the results we proved in Section 3 of Chapter IV. A Banach

space is said to be injective if it is complemented in every larger space that contains it.

Typical injective spaces are the spaces ℓ∞(I), while all injective spaces are complemented

subspaces of some ℓ∞(I).

Theorem 6.14. For a Banach space Y the following are equivalent:

(a) Y is an injective space.

(b) There exists K ≥ 0 such that [(S, ̺), Y ] has property (KMZ) whenever [(S, ̺),R]

has property (MZ).

Proof. (b)⇒(a). Assume that (b) holds and let Y → ℓ∞(I) be an isometric embedding.

Let F : ℓ∞(I)/Y → Y be a zero-linear mapping defining the sequence

0→ Y → ℓ∞(I)→ ℓ∞(I)/Y → 0.

Since ℓ∞(I)/Y is commutative, the pair [ℓ∞(I)/Y,R] has property (1Z) and the hypoth-

esis implies that [ℓ∞(I)/Y, Y ] has property (KZ) for some K, so that there is an additive

A : ℓ∞(I)/Y → Y such that dist(F,A) ≤ K. By Theorem 5.12 there is a (necessarily

homogeneous) additive bounded projection from ℓ∞(I) onto Y . Thus Y is complemented

in ℓ∞(I) and, therefore, injective.

(a)⇒(b). For the converse, suppose Y injective and let the pair [(S, ̺),R] have the

property (MZ). Let F : (S, ̺) → Y be a zero-additive map. Fix an isometric linear

embedding Φ : Y → ℓ∞(I) and consider the map Φ ◦ F : (S, ̺) → ℓ∞(I). Writing

Φ◦F = (Fα)α∈I , we can find for every α ∈ I an Aα ∈ Hom(S,R) such that dist(Fα, Aα) ≤

MZ(Fα) and thus dist(Φ ◦ F,A) ≤ MZ(Φ ◦ F ), where A = (Aα)α. Finally, let π be a

bounded projection from ℓ∞(I) onto Y . Then F = π ◦ Φ ◦ F and

dist(F, π ◦A) = dist(π ◦ ΦF, π ◦A) ≤ ‖π‖dist(Φ ◦ F,A) ≤M‖π‖Z(F ),

and thus [(S, ̺), Y ] has property (‖π‖MZ).

4. Sobczyk’s theorem Hyers’s way. Sobczyk’s theorem [96, 17] asserts that a copy

of the space c0 inside a separable Banach space is always complemented; after Zippin’s

theorem [106] this weaker form of injectivity in fact characterizes c0. Separability being
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a 3-space property [20], the statement is equivalent to saying that every zero-linear map

from a separable Banach space into c0 must be asymptotically linear. We think it is

worthwhile to present an uncanny interpretation from the point of view of nearly additive

maps on semigroups.

Theorem 6.15. Let S be a countable semigroup such that [(S, ̺),R] has property (MZ)

for some M. For every index set I the pair [(S, ̺), c0(I)] has property (2MZ).

Proof. Let F : (S, ̺)→ c0(I) be zero-additive. If one writes F = (Fα)a∈I , then every Fα
is again zero-additive with Z(Fα) ≤ Z(F ), hence for each α, there exists Aα ∈ Hom(S,R)

such that dist(Fα, Aα) ≤ MZ(F ). This implies that the map x ∈ S 7→ A(x) = (Aα(x))

takes values in ℓ∞(I) being, in fact, at distance at most MZ(F ) from F . We set

ℑ =

{
B ∈ Hom(S,R) : sup

x∈S

B(x)

1 + ‖A(x)‖∞
<∞

}

endowed with the distance

d(B,C) =

∞∑

n=1

|B(xn)− C(xn)|

2n(1 + ‖A(xn)‖∞)
,

where {xn} is an enumeration of the elements of S. Bounded sets are relatively compact

in ℑ, and so is the closure of {Aβ}β∈I . For each α ∈ I, let Bα be a point in ℑ minimizing

the distance from Aα to the set of accumulation points of {Aβ}β∈I in ℑ. It is easily seen

that, for each x ∈ S, one has (A−B)(x) = ((Aα −Bα)(x))α ∈ c0(I). Moreover, and this

is the key point, the Bα’s are uniformly bounded on S. Indeed, let β ∈ I. Then there is a

sequence Bα(n) converging to Bβ in the metric of ℑ, which obviously implies that Bα(n)
converges to Bβ pointwise on S. Thus, fixing x ∈ S, one has

|Bβ(x)| = lim
n→∞

|Aα(n)(x)| ≤ lim sup
n→∞

(|Aα(n)(x)− Fα(n)(x)|+ |Fα(n)(x)|)

≤ dist(Fα, Aα)̺(x) + lim
n→∞

|Fα(n)(x)| ≤MZ(F )̺(x).

Therefore,

‖F (x)− (A−B)(x)‖c0 ≤ ‖F (x)−A(x)‖ℓ∞ + ‖B(x)‖ℓ∞ ≤ 2MZ(F )̺(x),

so that the pair [(S, ̺), c0(I)] has property (2MZ).

Corollary 6.16. Let G be a countable Z-group. Then, for every index set I, the pair

[S, c0(I)] has property (Z).

Thus, taking into account the extension results in Section 5 of Chapter V) one has.

Theorem 6.17 (Sobczyk’s theorem). Let (G, ̺) be a quasi-normed group admitting a

countable dense subgroup that is either amenable or weakly commutative. Then, for any

index set I , the pair [(G, ̺), c0(I)] has property (Z).

This approach not only re-proves known results; once it has been shown that there is

a proof that does not involve the Banach space structure at all, the following non-locally

convex extension is possible.

Theorem 6.18. Every twisted sum of c0(I) with a separable quasi-Banach K-space splits.
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5. Localization techniques. The purpose of this section is to show that, despite the

poorer structure involved, it is possible to derive information about asymptotic stability

on a semigroup when some information about the subgroups is available. The quasi-

Banach analogue, considered afterwards, is that of Lp-spaces, 0 < p ≤ ∞.

Theorem 6.19. Let (S, ̺) be a controlled semigroup and let Y be a Banach space com-

plemented in its second dual by a projection π. Assume that S is a directed union of

a system of semigroups {Sα} such that [(Sα, ̺), Y ] has property (MZ) for all α. Then

[(S, ̺), Y ] has property (‖π‖MZ).

Proof. Let F : (S, ̺) → Y be a zero-additive map. Consider the net {Sα} ordered by

inclusion, and, for each α, let Fα be the restriction of F to Sα. Clearly, Z(Fα) ≤ Z(F )

for all α. The hypothesis yields additive maps Aα : Sα → Y such that dist(Aα, Fα) ≤

MZ(F ). Let U be an ultrafilter refining the Fréchet filter on {Sα} and define a mapping

B : S → Y ∗∗ as follows:

B(x) = weak*-lim
U
Aα(x)

(observe that for each x ∈ S, Aα(x) is eventually well defined). The definition of B(x)

makes sense because for each x ∈ S, one has

‖Aα(x)− Fα(x)‖ ≤MZ(F )̺(x)

and thus {Aα(x)} is bounded in Y (hence in Y
∗∗) by MZ(F )̺(x) + ‖F (x)‖. Moreover,

it is clear that B ∈ Hom(S, Y ∗∗) and also that

‖B(x)− F (x)‖ ≤ lim
U
‖Aα(x)− F (x)‖ = lim

U
‖Aα(x)− Fα(x)‖ ≤MZ(F )̺(x).

Now, A = π ◦B is an additive map at distance at most ‖π‖MZ(F ) from π ◦ F = F .

Of course, “zero-additive” can be replaced by “quasi-additive”, “Ger-additive” and

“pseudo-additive” with no changes in the proof.

Corollary 6.20. Let Z be an Lp-space, 0 < p ≤ ∞, and let Y be a Banach space

complemented in its second dual by a projection π. Assume that [ℓnp , Y ] has property

(MQ) for all n. Then [Z, Y ] has property (‖π‖MQ).

The result can be dualized by imposing the “local conditions” on the quasi-Banach

target space. In that case only the values 1 ≤ p ≤ ∞ can be considered since the result

yielding the existence of projections on an Lp-space no longer works on quasi-Banach

spaces.

Theorem 6.21. Let (S, ̺) be a controlled group and 1 ≤ p ≤ ∞. The following state-

ments are equivalent:

(a) For any Lp-space Y complemented in its bidual the pair [(S, ̺), Y ] has property

(MZ).

(b) The pair [(S, ̺), ℓp(N)] has property (MZ) for some M .

(c) There is C ≥ 0 such that [(S, ̺), ℓnp ] has property (CZ) for all n.

Proof. Since the implications (a)⇒(b) and (b)⇒(c) are obvious, the point is to prove

that (c) implies (a). This proof is in a sense a remake of Theorem 6.19; but we present

it anyway for the sake of completeness. Let F : (S, ̺) → Y be a zero-additive mapping,
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where Y is an Lp-space for some 1 ≤ p ≤ ∞. By [74] there is λ > 0, a net {Yα} of

finite-dimensional subspaces of Y such that Y =
⋃
α Yα and, for each α, an isomorphism

Tα : Yα → ℓp(dimYα) with ‖Tα‖ · ‖T
−1
α ‖ ≤ λ and a projection Pα : Y → Yα such that

‖Pα‖ ≤ λ. For each α, consider the mapping TαPαF : (S, ̺) → ℓp(dimYα). Clearly,

Z(TαPαF ) ≤ ‖Tα ◦ Pα‖Z(F ) = λ2Z(F ) and the hypothesis yields an additive Aα :

S → ℓp(dimYα) such that Z(TαPαF,Aα) ≤ Cλ2Z(F ), which implies that the distance

between PαF and Bα = T
−1
α ◦Aα is at most Cλ

3Z(F ). The remainder of the proof goes

as before, by defining

A(x) = π(weak*-lim
U
Bα(x))

and checking that it has all the desired properties.

Of course, “zero-additive” can be replaced by “quasi-additive”, “Ger-additive” and

“pseudo additive” with no changes in the proof. On the other hand, the sequence 0 →

c0 → ℓ∞ → ℓ∞/c0 → 0 together with Sobczyk’s theorem shows that the hypothesis “Y

complemented in its second dual” appearing in Theorems 6.19 and 6.21 is not superfluous.

VII. Homology sequences, and applications

This chapter introduces elements from homological algebra to derive new results about

the asymptotic stability of nearly additive mappings. To keep our promise of not using the

categorical language, we shall state the homology sequences in terms of nearly additive

maps (although all results in the chapter can be read as results about singular extensions

of quasi-normed abelian groups, according to Proposition 5.13). This new topic was ex-

plored in [15], where the knowledgeable reader, interested in the appropriate translation

of the results here presented to the standard algebraic setting, can find rather complete

information.

In this chapter all groups are assumed to be commutative. In what follows, Ξ denotes

one of the five classes of nearly additive mappings. When the quasi-normed groups in-

volved are quasi-normed spaces, Ξ can also denote one of the five classes of nearly linear

mappings. In that case T (the corresponding space of “trivial” maps) stands for the space

of asymptotically linear maps. Given two Ξ-additive maps F and G, we say that F is

a version of G (or vice versa) if F ≡ G modulo T . With a slight abuse of notation, we

shall denote the group of equivalence clases of Ξ-additive or linear maps from Z to Y by

Ξ(Z, Y )/T (Z, Y ), although this is an abbreviation for

Ξ(Z, Y )

T (Z, Y ) ∩ Ξ(Z, Y )
.

Theorem 7.1. Let 0 → Y
j
→ X

q
→ Z → 0 be an exact sequence of quasi-normed groups

defined by a Ξ-additive map F0. Let E be a quasi-normed group. There exists an exact

sequence of groups

0→ HomB(Z,E)
q∗

−→ HomB(X,E)
j∗

−→ HomB(Y,E)

F∗
0−→ Ξ(Z,E)/T (Z,E)

q∗

−→ Ξ(X,E)/T (X,E)
j∗

−→ Ξ(Y,E)/T (Y,E).
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Proof. To clarify the nature of the sequence, let us recall that q∗, j∗ and F ∗0 mean composi-

tion with q, j and F0 respectively. Precisely: q
∗(T ) = T ◦q; j∗(T ) = T ◦j; F ∗0 (T ) = [T ◦F0];

q∗([F ]) = [F ◦ q]; j∗([F ]) = [F ◦ j]. That the sequence is exact at HomB(X,E) is easily

checked. The exactness at Ξ(X,E)/T (X,E), Ξ(Z,E)/T (Z,E) and HomB(Y,E) is the

contents of the following three lemmata.

Lemma 7.2. Let 0 → Y → X → Z → 0 be an exact sequence of quasi-normed groups

defined by a Ξ-additive map F0. Let E be a quasi-normed group and let F : X → E be a

Ξ-additive map. If F |Y ≡ 0 then there exists a Ξ-additive map G : Z → E so that F is

a version of G ◦ q.

Proof. Let F0 = B0 − L0 be a Ξ-additive map defining the starting sequence. Let F =

B1−L1 so that B1|Y = B and L1|Y = L are E-valued. Consider E-valued extensions B2
and L2 of B and L respectively. The map (B1 −B2)− (L1 − L2) is E-valued. We define

G = (B1 −B2) ◦B0 − (L1 − L2) ◦ L0.

The map G : Z → E is well defined. We show that G ◦ q is a version of F :

(B1 −B2)B0q − (L1 − L2)L0q − (B1 − L1)

= (B1B0q − L1L0q)− (B2B0q − L2L0q)− (B1 − L1)

= B1(B0q − IdX)− L1(L0q − IdX)− (B2B0q − L2L0q)

= B2(B0q − IdX)− L2(L0q − IdX)− (B2B0q − L2L0q)

= L2 −B2.

Lemma 7.3. Let 0 → Y → X → Z → 0 be an exact sequence of quasi-normed groups

defined by a Ξ-additive map F0. Let E be a quasi-normed group and let F : Z → E be

a Ξ-additive map such that F ◦ q is trivial. Then there exists a bounded additive map

T : Y → E so that T ◦ F0 ≡ F .

Proof. If Fq = B − L then B|Y = L|Y is a bounded additive map we shall call T . Now,

TF0q + Fq = TF0q − (L−B) = L(B0q − L0q)− (L−B)

= L(B0q − IdX)− LL0q +B = B(B0q − IdX)− LL0q +B

= BB0q − LL0q.

Lemma 7.4. Let 0 → Y → X → Z → 0 be an exact sequence of quasi-normed groups

defined by a Ξ-additive map F0. Let E be a quasi-normed group and let T : Y → E be a

bounded additive map such that TF0 ≡ 0. There exists a bounded additive map τ : X → E

such that τj ≡ T .

Proof. It is easy to verify that F0q ≡ 0 and that if we write F0q = b + l then b|Y =

−l|Y = IdY . On the other hand, TF0 = B+L; hence, Bq+Lq = TF0q = Tb+T l, which

means that τ = Tb−Bq = Lq− T l is a bounded additive map X → E. That τ |Y ≡ T is

a consequence of τj = (Tb−Bq)j = Tbj = T .

The “dual” results also hold:

Theorem 7.5. Let 0 → Y → X → Z → 0 be an exact sequence of quasi-normed groups

defined by a Ξ-additive map F0. Let E be a quasi-normed group. There exists an exact
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sequence of groups

0→ HomB(E, Y )
j∗
−→ HomB(E,X)

q∗
−→ HomB(E,Z)

(F0)∗
−−→ Ξ(E, Y )/T (E, Y )

j∗
−→ Ξ(E,X)/T (E,X)

q∗
−→ Ξ(E,Z)/T (E,Z).

Proof. The sequence is given by: q∗(S) = qS; j∗(S) = jS; (F0)∗(T ) = [F0T ]; q∗([F ]) =

[qF ]; j∗([F ]) = [jF ]. That the sequence is exact at HomB(E,X) is obvious. The exactness

at Ξ(E,X)/T (E,X) is precisely the content of the first lemma below, the exactness at

Ξ(E, Y )/T (E, Y ) is proved in the second lemma, while the exactness at HomB(E,Z) is

proved in the third lemma.

Lemma 7.6. Let 0 → Y → X → Z → 0 be an exact sequence of quasi-normed groups

defined by a Ξ-additive map. Let F : E → X be a Ξ-additive map. If qF ≡ 0 then there

exists an Y-valued version of F.

Proof. Let F0 = B0 − L0 be a Ξ-additive map defining the starting sequence. Since

qF = B − L consider

G = F − (B0B − L0L).

Since B0B − L0L : E → X, G is a version of F . Moreover, G is Y -valued since

q(B0B − L0L) = q(B0B −B0L+B0L− L0L) = qB0qF − qF0L = qF.

Lemma 7.7. Let 0 → Y → X → Z → 0 be an exact sequence of quasi-normed groups

defined by a Ξ-additive map. Let E be a quasi-normed group. If F : E → Y is a Ξ-

additive map such that iF ≡ 0 then there exists a bounded additive map T : E → Z so

that F0T ≡ F .

Proof. Since iF = B − L, we see that qB = qL = A is bounded and additive simultane-

ously. Now,

F0qB + F = F0qB − (L−B) = (B0q − L0q)B +B − L

= B0qB + (IdX −L0q)B − L = B0qB + (IdX −L0q)L− L = B0qB − L0qL.

Lemma 7.8. Let 0 → Y → X → Z → 0 be an exact sequence of quasi-normed groups

defined by a Ξ-additive map F0. Let A be a quasi-normed group. Let T : A → Z be a

bounded additive map. If F0T ≡ 0 then there exists a bounded additive lifting τ : A→ X

for T.

Proof. It is again easy to verify that jF0 ≡ 0 and that if we write jF0 = b + l then

qb = −ql = IdZ . On the other hand, F0T = B + L; hence, jB + jL = jF0T = bT + lT ,

which means that τ = bT − jB = jL − lT is a bounded additive map A → X. That

qτ = T is a consequence of qτ = q(bT − jB) = qbT = T .

1. “Three-space” problems. Now it is time to use the techniques of the previous

section to obtain concrete results. Recall that a property P is said to be a 3-space property

(for a given class of extensions) if every extension (in the given class) of two groups with

P has P . (We shall maintain the name 3-space although applied to groups.) Also, given

two properties P and Q of Banach spaces we say that a X is a P -by-Q space if it is a

twisted sum of a space having P and a space having Q. This name has been taken from
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group theory [46]. It has been transplanted to Banach space theory in [21]. It is clear

that P is a 3-space property (for Banach spaces) if and only if P -by-P implies P .

Observe that “abelian” is not a 3-space property on groups: the symmetric group

S3 of permutations of three elements contains a normal cyclic subgroup of order 3 (that

generated by the cycle (123)) so that the quotient space is (necessarily) the cyclic group of

order 2. Moreover, the operation -by- is associative on quasi-Banach spaces (i.e. (P -by-Q)-

by-R and P -by-(Q-by-R) are the same property); however, -by- is not associative on

groups: if Pn is the property of “being cyclic of order n” then the alternating group A4
is (P2-by-P2)-by-P3, but not P2-by-(P2-by-P3).

We use the following notation: given a class Ξ of nearly additive (or nearly linear)

maps and two classes A, B of quasi-normed groups (or quasi-Banach spaces), we write

Ξ(A,B) ≡ 0

if every Ξ-additive (linear) map acting between a space in A and a space in B is trivial.

Our first application of homology sequences is:

Lemma 7.9. Let 0 → Y → X → Z → 0 be an exact sequence defined by a Ξ-additive

(linear) map. If Ξ(Y,E) ≡ 0 and Ξ(Z,E) ≡ 0, then Ξ(X,E) ≡ 0.

And, of course, the dual version:

Lemma 7.10. Let 0 → Y → X → Z → 0 be an exact sequence defined by a Ξ-additive

(linear) map. If Ξ(A, Y ) ≡ 0 and Ξ(A,Z) ≡ 0, then Ξ(A,X) ≡ 0.

One therefore has

Theorem 7.11. The properties Ξ(A, ·) ≡ 0 and Ξ(·,B) ≡ 0 are 3-space properties for

singular extensions induced by Ξ-additive (or linear) maps.

Concrete situations to which this general result can be applied are described now.

2. K-spaces. Recall that a quasi-normed space Z is called aK-space if every quasi-linear

map F : Z → R is asymptotically linear. One has:

Corollary 7.12. To be a K-space is a 3-space property for quasi-Banach spaces.

Proof. This is Theorem 7.11 for B = R and with Ξ the class of quasi-linear maps.

3. L1-spaces. Let CB denote the class of Banach spaces complemented in their biduals.

The fact that every exact sequence 0 → Y → X → Z → 0 of Banach spaces with Y in

CB and Z an L1-space splits was first proved by Lindenstrauss [73]. This result actually

characterizes the L1-spaces. We prove that:

Proposition 7.13. A Banach space X is an L1-space if and only if Z(X, CB) ≡ 0.

Proof. The “only if” has already been proved in Chapter VI; we prove the “if” part.

We show that X∗ is injective. Let G : Z → X∗ be a zero-linear map. By hypothesis,

G∗|X : X → Z∗ is trivial, and so is (G∗|X)
∗ : Z∗∗ → X∗, as well as (G∗|X)

∗|Z : Z → X∗.

It is now a simple matter to verify that (G∗|X)
∗|Z and G are equivalent.
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However, it is not true that Z(L1, V ) ≡ 0 implies that V is complemented in the

bidual. We present an example.

Proposition 7.14. Let Z be a space in CB with the Radon–Nikodym property. If V is

such that V ∗∗/V = Z, then Z(L1, V ) ≡ 0.

Proof. Let q : ℓ1(Γ ) → V ∗∗ be a quotient map. It is easy to see that ℓ1(Γ )/q
−1(V ) =

V ∗∗/V . The Radon–Nikodym property of V ∗∗/V yields that q−1(V ) is an ultrasum-

mand [65]. Moreover, the exact sequence

0→ q−1(V )→ ℓ1(Γ )⊕ V → V ∗∗ → 0

with inclusion x 7→ (x, qx) and quotient map (a, b) 7→ qa− b shows that Z(L1, ℓ1(I)⊕V )

≡ 0, and consequently Z(L1, V ) ≡ 0.

Observe that V is not necessarily in CB. For instance, if JT denotes the James-Tree

space and B denotes the standard predual of JT then there is a non-trivial exact sequence

0→ B → JT∗ → ℓ2(Γ )→ 0 (see [20]); thus, B is not in CB while Z(L1, B) ≡ 0.

A different type of examples are provided in the next section.

4. Johnson–Lindenstrauss spaces. Basic information about the class of weakly com-

pactly generated Banach spaces (in short, WCG) can be found in the monograph [20]. By

a Johnson–Lindenstrauss space we mean a non-WCG twisted sum of two WCG spaces. In

[58] specific examples were constructed of non-trivial exact sequences 0→ c0 → JL∞ →

c0(Γ ) → 0 and 0 → c0 → JLp → ℓp(Γ ) → 0 for 1 < p < ∞. A version of Sobczyk’s

theorem (asserting that c0 is complemented in WCG spaces) implies that JLp are not

WCG spaces for 1 ≤ p ≤ ∞.

Lemma 7.15. The Johnson–Lindenstrauss spaces JLp, 1 < p <∞, are not CB spaces.

Proof. Observe the diagram

0 0

↓ ↓

0 → c0 → JLp → ℓp(Γ )→ 0

↓ ↓ ‖

0 → ℓ∞ → JL∗∗p → ℓp(Γ )→ 0

↓ ↓

ℓ∞/c0 = JL
∗∗
p / JLp

↓ ↓

0 0

in which the second row is the bitranspose of the first one. Were JLp complemented

in JL∗∗p then ℓ∞/c0 would be a subspace of ℓ∞ ⊕ ℓp(Γ ), which is not the case.

Denote by As the class of separable spaces in A. Let us recall again that a Banach

space X is an L1-space if and only if Z(X, CB) ≡ 0. In spite of not being in CB,

Z(Ls1, JLp) ≡ 0
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since Z(c0(I),L
s
1) ≡ 0 is given by Sobczyk’s theorem, while Z(ℓp(Γ ),L1) ≡ 0 is a conse-

quence of ℓp(Γ ) being a CB space.

And, in full generality,

Corollary 7.16. Z(Ls1, c0(I)-by-CB) ≡ 0.

If S denotes the class of separable spaces, Sobczyk’s theorem asserts that

Z(S, c0(I)) ≡ 0,

while Zippin’s theorem [106] asserts that if Y is a separable Banach space such that

Z(S, Y ) ≡ 0 then Y is isomorphic to c0. The injective spaces show that the separability

assumption is essential. The Johnson–Lindenstrauss space JL∞ yields a non-injective

space such that Z(S, JL∞) ≡ 0 although it is not isomorphic to c0(I) .

5. Kalton–Pełczyński spaces. From the results in [65], we say that a Banach space X

is a Kalton–Pełczyński space if Z(X, ℓ2) ≡ 0. Of course, L1-spaces are Kalton–Pełczyński

spaces; but there are more: for instance, an uncomplemented copy of ℓ1, say Y , inside a

bigger L1-space X produces a KP-space X/Y which is not an L1-space.

Theorem 7.17. To be a Kalton–Pełczyński space is a 3-space property for Banach spaces.

We can present two proofs for this result. One follows from the definition of Kalton–

Pełczyński spaces and Theorem 7.11. There is, however, a more general approach.

Lemma 7.18. Let P be a property stable by products. Then the property K(P ) defined as

“being a quotient of some ℓ1(I) by a subspace having P” is a 3-space property.

Proof. Let 0→ Y → X → Z → 0 be an exact sequence in which both Y and Z have the

property K(P ). Observe the diagram

0 0

↑ ↑

0→ Y → X → Z → 0

↑ ↑

ℓ1(I) ℓ1(J)

↑ ↑

KY KZ

↑ ↑

0 0

in which both KY and KZ have property P . It is not difficult to see the existence of an

exact sequence 0 → KX → ℓ1(Γ ) → X → 0 that can be inserted in the middle column

making all rows exact and the full diagram commutative. From this, one easily derives

that KX = KY ⊕KZ , and X has property K(P ).

Lemma 7.19 ([65]). A Banach space X is a Kalton–Pełczyński space if and only if it is a

K(P )-space for P = “satisfying Grothendieck’s theorem” (every operator into a Hilbert

space is 1-summing).
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Because of this lemma and since it is clear that satisfying Grothendieck’s theorem is

stable by products, it follows that being a Kalton–Pełczyński space is a 3-space property.

We cannot help mentioning that satisfying the equation L(X, ℓ2) = Π1(X, ℓ2) is not only

stable by products but also a 3-space property (see [20]).

6. The road beyond. What has been displayed so far is not all there is, and what

there is does not cover what one would like to know. For instance, what happens with

non-singular extensions of topological groups? A simple example such as 0→ 2Z→ Z→

Z2 → 0 is not covered by this theory. In this chapter we have presented a glimpse of

homological elements, but many other basic questions remain untouched. For instance,

the elements of homological algebra rely on the definition of equivalent exact sequences.

The translation to quasi-Banach space theory is easy thanks to two very special features:

all extensions are singular (since, as vector spaces, all extensions are trivial) and the

open mapping theorem holds (which translates an exact sequence into a topologically

exact sequence). But in topological groups no open mapping theorem exists. Hence, even

if the first difficulty (what occurs with non-singular extensions) can be surmounted, there

appears a second one equally formidable. At this point it might be interesting to look

at paper [19]: there, a very nice result of Dierolf and Schwanengel [29] is revisited to

show that the 3-lemma (hence, the notion of equivalent sequences) still works well for

topologically exact sequences of topological groups (even whithout the open mapping

theorem). This allows one to transport the basic elements of homological algebra (pull-

back and push-out constructions) to abelian topological groups. What lies beyond abelian

groups, we do not know.
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