
0. Introduction

In the dissertation we study the theory of improper intersections in complex analytic

geometry. Roughly speaking, this theory investigates intersections of analytic sets or,

equivalently, solutions for systems of analytic equations. It is very young in comparison

with the theory of intersections of algebraic sets, which deals with systems of polynomial

equations. In fact, Draper’s paper [13] may be regarded as the first systematic exposition

of the analytic theory of proper intersections, whereas the algebraic theory of proper

intersections can be traced back near the beginnings of algebraic geometry, and one may

link its origin with Isaac Newton’s paper Geometria analytica of 1680.

Although clear and precise statements did not appear until relatively recently, it is

already in the work of Isaac Newton and his contemporaries that two approaches, re-

maining vital until the present, can be found: the dynamic one, where the multiplicity

of a solution is the number of solutions near the given solution when the equations

are varied; and the static one, where the multiplicity is obtained without varying the

given equations. The definition of the multiplicity i(X · Y ;W ) of intersection of two
varieties X and Y along an irreducible component of the intersection X ∩ Y was some-
what problematic. A famous controversy arose about the definition given by the Ital-

ian algebraic geometers in the 19th century. They arrived at the following dynamic

concept: move the varieties X and Y so that the intersection is proper and transver-

sal, and then i(X · Y ;W ) is the number of components into which W splits. This dy-
namic approach was defended in modern algebraic geometry by Severi [50], who linked

in [51] both the dynamic and static approaches to the theory of intersections of algebraic

sets.

Yet the foregoing definition of intersection multiplicity had not been generally ac-

cepted. It was van der Waerden [60] who first developed the rigorous algebraic notion

of specialization to make intuitive geometric ideas precise and valid over general ground

fields. This enabled him to arrive at a precise algebraic definition of multiplicity for global

projective sets (indicating at the same time that the classical Italian definition was essen-

tially correct), and to discover the general version of Bezout’s theorem which says that

for projective varieties X and Y that meet properly,

degX · deg Y =
∑

i(X · Y ;W ) degW,
where W runs through the irreducible components. Bezout’s theorem is a landmark both

in the classical algebraic geometry and in the recent theory of improper intersections. Let

us mention that originally Bezout only considered proper intersections of n projective

hypersurfaces in Pn that meet in a finite number of points (cf. [7]).
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Using the diagonal procedure, one can develop the general notion of intersection

multiplicity. This procedure was applied for the first time in modern algebraic geometry

by Weil [63], but had already appeared in Pieri [41]. The diagonal construction can

be described as follows. In the affine case, consider two copies of C
n: C

n
x and C

n
y with

coordinates x = (x1, . . . , xn) and y = (y1, . . . , yn), respectively. If X and Y are two

varieties in Cn, the product X × Y ⊂ Cnx × Cny is defined by the polynomials of X

in the variables x and those of Y in the variables y. The diagonal ∆ is defined by

x1 − y1, . . . , xn − yn, and we have the canonical isomorphism
X ∩ Y ∼= (X × Y ) ∩∆.

The irreducible components W of the left intersection are in a one-to-one correspon-

dence with the irreducible components W∆ := {(x, x) : x ∈ W} of the right one. It is
easy to check that the left intersection is proper iff so is the right one. The diagonal

procedure ensures that the multiplicities of both intersections coincide, which makes the

situation easier to handle both from the geometric and algebraic points of view, because

the inclusion ∆ ⊂ Cnx × Cny is a regular imbedding.

The projective counterpart of the diagonal construction is the join construction,

originally due to Gaeta [18]. Consider two copies of P
n with homogeneous coordinates

x = (x0 : · · · : xn) and y = (y0 : · · · : yn), respectively. In the join space P2n+1 with homo-

geneous coordinates (x0 : · · · : xn : y0 : · · · : yn) lies the join J = J(X,Y ) of varieties X
and Y , defined by the homogeneous polynomials of X in the variables x and those of Y

in the variables y; the “diagonal” L is the linear subspace defined by x0−y0, . . . , xn−yn.
Again we have the canonical isomorphism X ∩ Y ∼= J ∩ L, the left intersection is proper
iff so is the right one, and the multiplicities of both intersections coincide. It can be easily

checked that

deg J(X,Y ) = degX · deg Y,
whence

deg(X · Y ) = deg J · L = deg J = degX · deg Y,
and thus we have obtained the classical Bezout theorem.

A new definition of intersection multiplicity in terms of completions of local rings was

given by Chevalley [9]; therefore his theory included both the analytic and formal cases.

Eventually, Samuel [45]—using the characteristic polynomial of an open ideal in a local

ring, called the Hilbert–Samuel polynomial—introduced the first definition of multiplicity

valid for a general local ring, which was later developed by Nagata [33].

We have given a brief outline of the classical theory of proper intersections. A rapid

development of research in the field of improper intersections has been noted recently.

Two approaches have arisen within global algebraic geometry: the one developed by

Fulton–MacPherson [17] and the other by Stückrad–Vogel [54]. The crucial tool applied

in the former is deformation to the normal cone together with the theory of Segre classes,

initiated by Segre [49]. The latter is based on a certain intersection algorithm and—

as discovered by van Gastel [20]—it leads to a unified theory of intersections with a

collection of divisors which incorporates the relevant part of the general theory of Fulton–

MacPherson.
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Fulton and MacPherson attach to the intersection of a variety V mapping to a scheme

Y with a regularly embedded subscheme X →֒ Y of codimension r, a rational equivalence

class of the expected dimension, which is supported on the fibre product W = X ×Y V .
Where V →֒ Y is an embedding, one recovers the usual intersection classes as equivalence

classes on the ambient space Y . We now sketch their construction.

Applying the deformation to the normal bundle, one obtains a closed embedding of the

normal cone CWV as a subcone in the normal bundle N = NXY of rank r. Consequently,

the general problem of determining the intersection product X · V has been reduced to
that of a subcone in a vector bundle intersecting the zero section. The central idea is to

move the zero section in order to make the intersection proper. This can be done in a

canonical way if one passes to rational equivalence. Then the Gysin homomorphism for

the intersections with the zero section

s : AkN → Ak−rX

(here AkX denotes the Chow group of k-cycles on X modulo rational equivalence) is the

inverse of the flat pull-back homomorphism

π∗ : Ak−rX → AkN,

where π : N → X is the projection of the vector bundle N over X. Consequently, the

intersection product X ·V can be expressed by the Segre class of the normal cone CWV .
Now we outline the intersection algorithm of Stückrad–Vogel in the set-up of van

Gastel. Let V be a purely dimensional scheme (separated and of finite type over a ground

field k), f : V → Y a morphism to a scheme, L a line bundle on Y , and let D =
(D1, . . . , Dr) be a collection of effective Cartier divisors defined by sections s1, . . . , sr
of L. Let uij be indeterminates adjoined to the ground field k and let the new ground
field be called K. We shall deal with “generic” divisors D′j determined by the sections∑r
i=1 uijsi, j = 1, . . . , r. Denote by W the fibre product V ×Y (D1 ∩ . . . ∩Dr).

The initial step of the intersection algorithm: Decompose [V ] = ̺0 + α0, where ̺0 is

the part of the fundamental cycle [V ] supported by W , and α0 is the rest.

The induction step: Consider the intersection of αk−1 with the pull-back of the divisor

D′k, and decompose it as

αk−1 · f∗D′k = ̺k + αk,
where ̺k is the part of the intersection supported by WK and αk is the rest.

Observe that all the intersections occurring in the algorithm are proper, and that

after r steps everything will be supported by WK , whence αr = 0. The Vogel cycle of the

intersection of V with D over Y is by definition ∑k ̺k.

Improper intersections within complex analytic geometry have recently been studied

by P. Tworzewski [57]. His theory is based on a local analytic counterpart of the inter-

section algorithm of Stückrad–Vogel. Some other local counterparts of the intersection

algorithm are also investigated from the algebraic point of view by Achilles–Manaresi

[2, 3].

The main purpose of the dissertation is to investigate the analytic intersection algo-

rithm from the perspective of the method of deformation to the normal cone. Since in

our approach we cannot deal with equivalence classes, the central idea lies in the notion
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of a filter-regular sequence of elements in a given ring, which is related to the notion of

a “generic” collection of divisors (determined by those elements). Under a certain condi-

tion of filter-regularity, we are able to apply deformation to the normal cone twice, and

thereby deform the initial analytic set V to an algebraic bicone B so that the extended

degree of the result of the intersection algorithm (for improper intersections) coincides

with the degree sequence of that bicone (cf. [38, 40]). Moreover, the conditions imposed on

such “generic” collections of smooth analytic divisors are very strong and of linear char-

acter: the first derivatives of the equations of each successive divisor should avoid a finite

union of proper linear subspaces (depending on the previous divisors of the collection;

cf. Chapt. III, Sect. 2). In this way we reduce the general problem of analytic improper

intersections to that of an algebraic bicone intersecting linear hyperplanes. The linear

character of this construction is strengthened by the linear sense of the term “generic”,

described above. Let us still stress that the Stückrad–Vogel algorithm for an algebraic

variety intersecting a collection of global divisors is performed in fact for certain “generic”

divisors which are defined as linear combinations of the initial ones with coefficients being

indeterminates adjoined to the initial ground field. Therefore, the term “generic” has two

different meanings for the two intersection algorithms under consideration. Our approach

makes the analogy between these two meanings even deeper.

We thus arrive at a linearization procedure wherefrom many consequences concern-

ing extended intersection index and intersection multiplicity for improper intersections

in complex analytic geometry are derived. First of all the generalized index for improper

intersections can be expressed as the bidegree sequence of a certain algebraic bicone, and

the intersection multiplicity at a point P as the Samuel multiplicity at P of the normal

cone. Consequently, the intersection multiplicity does not depend on the ambient space.

The bidegree sequence of an algebraic bicone can be expressed by the leading coefficients

of the Hilbert polynomial of its associated bigraded ring (cf. [61, 62, 3]), by analogy to the

way the degree of a cone can be expressed by the leading coefficient of the Hilbert poly-

nomial of its associated graded ring. These formulae are more effective (both in the sense

of pure mathematics and the more so of computer algebra) than the original definition of

intersection multiplicity, and imply the coincidence of the intersection indices for analytic

improper intersections introduced by Tworzewski [57] and those defined for an ideal I in

the local algebraic case by Achilles–Manaresi [3] (generalized Samuel multiplicities).

Making use of some properties of normal cones, we prove a generalization (first shown

in [38, 40]) of the reduction theorem to the case of analytic improper intersections of

analytic sets with submanifolds. The reduction theorem ensures the canonical character

of the diagonal procedure for improper intersections, and provides the main step in our

proof of a version of Bezout’s theorem for improper intersections of algebraic cones (see

Sect. 3 in Chapt. III).

Another consequence is that the intersection multiplicity function (which assigns to

each point P the multiplicity at P of improper intersection of given two analytic sets V1
and V2 on a complex manifold M) is upper semicontinuous in the analytic Zariski topol-

ogy. Since there is a one-to-one correspondence between the analytically constructible

functions from M to Z and the analytic cycles on M (cf. [57] and Sect. 2 and 3 of
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Chapt. III), one can define V1 • V2 as a unique analytic cycle that corresponds to the
intersection multiplicity function. Following Tworzewski, we call V1 • V2 the (improper)
intersection product of the sets V1 and V2. It coincides with the classical product in

the case of proper intersections. Yet the intersection product for improper intersections

does not fulfil an axiomatics like the one for proper intersections (presented in Sect. 2

of Chapt. I). Therefore one cannot expect the uniqueness of intersection products in the

case of improper intersections. Although Bezout’s theorem fails to be true in the case of

improper intersections in a projective space, we state a version of Bezout’s theorem valid

for algebraic cones (see Sect. 3 of Chapt. III).

Our linearization procedure for the analytic intersection algorithm allows us to com-

pare the generalized intersection index with the so-called Segre numbers, introduced by

Gaffney–Gassler [19] by means of the sequences of polar varieties and Segre cycles, defined

inductively. We now sketch their construction. Consider the germ at zero of a reduced

closed analytic subspace (V, 0) ⊂ (Cn, 0) of pure dimension d, an ideal I ⊂ OV,0 which
defines a nowhere dense subspace V (I) of (V, 0), and the blow-up BlIV of V along I:

π : BlIV → V

with exceptional divisor D. We say that a hyperplane H of BlIV is general with respect to

a reduced subspace Z of BlIX of pure dimension k if Z∩H is reduced of dimension k−1
and none of its components is contained in D. Using Kleiman’s transversality lemma, one

can show that there exists a Zariski open subset of hyperplanes of BlIV which are general

with respect to Z. For a d-tuple g = (g1, . . . , gd) of linear combinations of generators of

I, assume that each hyperplane Hk on BlIV corresponding to gk is general with respect

to H1∩ . . .∩Hk−1; then we also say that g is general. The polar varieties and Segre cycles

of I on V are defined inductively as follows:

P g0 (I, V ) := V, P gk (I, V ) := π(H1 ∩ . . . ∩Hk),

Λgk(I, V ) := π∗(H1 · · ·Hk−1 ·D);
observe that all the above intersections are proper by construction. The polar varieties

are reduced, and the index k gives the codimension of P gk (I, V ) and Λ
g
k(I, V ) unless they

are empty.

Gaffney–Gassler define the polar multiplicities and Segre numbers of (I, V ) as the mul-

tiplicities at zero of the generic polar varieties and generic Segre cycles, respectively. Since

the push-forward π∗(D) of the exceptional divisor D consists of the one-codimensional

subvarieties W of the ideal I counted with multiplicities (eIV )W of X along V (I) at W

(cf. [16], Chapt. IV, Sect. 3), the polar varieties and Segre cycles for a generic d-tuple

g = (g1, . . . , gd) can be redefined as follows (cf. [19], Sect. 2):

P gk (I, V ) = closure of V (gk|P gk−1(I,V )) \ V (I),
Λgk(I, V ) = [V (gk|P gk−1(I,V ))]− [P

g
k (I, V )],

Λgd(I, V ) = [V (gd|P gd−1(I,V ))].
Hence, for a generic d-tuple of linear combinations of generators of the ideal I ⊂ OV,0,
the construction of Segre cycles coincides with the analytic intersection algorithm. Segre

numbers can always be expressed as the generalized index of an analytic improper in-
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tersection (see the corollary to Prop. 5 from Sect. 2, Chapt. III, and also [4]); the cycles

determined by the polar varieties correspond to the cycles αk, and the Segre cycles cor-

respond to the cycles ̺k of the analytic intersection algorithm. Segre numbers, together

with polar multiplicities, are of great importance for equisingularity theory (cf. [19]): the

Segre numbers of the Jacobian ideal are just the Lê numbers of D. Massey [29] and de-

scribe equisingularity conditions; they make it possible to generalize Teissier’s principle of

specialization of integral dependence; their alternating sum is the Euler characteristic of

the Milnor fibre; the Whitney conditions are controlled by certain Segre numbers, and the

constancy of the polar multiplicities and Segre numbers of the Jacobian ideal is closely

related to Whitney stratifications. We expect that the theory of analytic improper inter-

sections may give a contribution to the geometry of singularities. Our feeling is that such

a perspective on improper intersections shows the right direction for further research.

E. Cygan [11] discovered that the improper intersection multiplicity is a regular sepa-

ration exponent for complex analytic sets, and thus it estimates the Łojasiewicz exponent.

This observation can be applied in estimating the Łojasiewicz exponent at infinity for

polynomial mappings. In particular, it enabled Cygan–Krasiński–Tworzewski [12] to im-

prove Kollár’s results concerning the Łojasiewicz exponent.

The dissertation is composed of three chapters. Chapter I is of preparatory nature.

There we sketch the classical theory of proper intersections in complex analytic geometry.

In Section 2 we give a new axiomatics for this theory. It is based on the continuity of

proper intersections under deformation to the normal bundle, which is a special case of the

continuity of proper intersections with respect to the convergence of analytic cycles (see

e.g. Chirka [10]). The concept of convergence for analytic cycles also plays a significant

role in the further parts of the dissertation where we investigate the analytic intersection

algorithm from the perspective of deformation to the normal cone. In Section 3, using a

method of Stein compact neighbourhoods, we express the index of an analytic complete

intersection in terms of the Samuel multiplicities of ideals in the local rings of proper

components (the reduction theorem for proper intersections). For a thorough introduction

to algebraic and analytic geometry we refer the reader to [1, 14, 22–26, 28, 32, 52].

The last two chapters deal with improper analytic intersections. The local algorithm

for analytic improper intersections is introduced in Section 2 of Chapter II. Here both

the geometric and algebraic approaches are considered. Section 1 discusses the notion of

filter-regularity which later will throw light on the concept of a “generic” collection of

divisors; each successive element of the collection should avoid a finite number of prime

ideals (depending on the previous elements of the collection). The concept of a “generic”

collection is one of the central ideas in geometry. It is essential for the constructions both

of the generalized intersection index and Segre numbers. The main purpose of the chapter

is to investigate the method of deformation to the normal cone applied to the intersection

algorithm. As both geometric and algebraic techniques have been applied, we encounter

general (possibly non-reduced) analytic spaces to be deformed. Section 3 recalls briefly a

construction of deformation to the normal cone by blowing-up the product of the ambient

space and the parametric line C. Similarly to the classical case of proper intersections, this

method turns out to be one of the most powerful tools of the theory of analytic improper
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intersections. In Section 4 we prove the main theorem to the effect that, under certain

conditions of filter-regularity, the total result of the intersection algorithm is preserved

by deformation to the normal cone.

In Chapter III we elaborate a method of deforming an analytic space to an algebraic

bicone, which is a refinement of deformation to the normal cone (applied twice). The

main theorem in Section 1 asserts that, under certain conditions of filter-regularity, the

multiplicities of the total result of the intersection algorithm are preserved by deformation

to that algebraic bicone. The next sections provide many applications which are important

for the theory of improper intersections in complex analytic geometry, as for instance

the reduction theorem for analytic improper intersections. The intersection product of

analytic cycles is constructed in Section 3. It should be emphasized that the product for

improper intersections does not fulfil an axiomatics like the one for the theory of proper

intersections presented in Chapter I. One can therefore expect several distinct products

for the case of improper intersections. Also, Bezout’s theorem fails to be true in the

case of improper intersections in a projective space. Nevertheless, we state a version of

Bezout’s theorem valid for algebraic cones. Finally, many examples concerning generalized

intersection indices and intersection cycles are given.

I. Classical theory of proper intersections

1. The multiplicity of light mappings and analytic sets. Consider two connected

complex manifolds M and N , an analytic subset V of pure dimension d in M , and a

holomorphic mapping f : V → N . We recall that if dimV = dimN and if f is a proper

mapping with finite fibres, then f is an analytic (ramified) cover (cf. [28], Chapt. V,

Sect. 7), i.e. there is an analytic subset W nowhere dense in N such that V \ f−1(W ) is
a complex manifold (possibly non-connected) and the restriction

f : V \ f−1(W )→ N \W
is a local biholomorphism, hence a p-sheeted topological cover. We say that p is the

multiplicity of the analytic cover f . According to Remmert’s open mapping theorem, the

analytic cover f is an open mapping.

We say that a holomorphic mapping f : V → N is light at a point P ∈ V if P is
an isolated point of its fibre f−1(f(P )). Then there are neighbourhoods U and U ′ of

P and P ′ := f(P ) such that f−1(P ′) ∩ U = {P} and the restriction f |U : U → U ′ is

a proper mapping with finite fibres. We call the multiplicity mP f of the analytic cover

f |U (which obviously does not depend on the choice of the neighbourhoods U and U ′)
the multiplicity of the mapping f at the point P . It is convenient to define mP f := ∞
whenever f is not light at P .

We now express the multiplicity mP f in terms of the local rings of P and P
′. As the

problem is local, we may assume that P ′ = 0 ∈ Cd; let u1, . . . , ud be the coordinates

in Cd. Let A := OCd,0 and B := OV,P be the local rings of P ′ and P in Cd and V ,

respectively; let m = (u1, . . . , ud) and n be their maximal ideals, and put S := A \ {0}.
Clearly, A is a regular local ring, which may be identified with a subring of B. According
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to the Nullstellensatz, the ideal mB is n-primary because P is an isolated point of the

fibre f−1(0). By the preparation theorem, B is a finite A-module. Further, A and B are

reduced rings and every element a ∈ A, a 6= 0, is a non-zero divisor in B. Hence S−1B
is the total quotient ring of B; it is obviously a finite-dimensional vector space over the

quotient field S−1A of A. The dimension [B : A] of S−1B over S−1A is the maximum

number of elements from B which are linearly independent over A. Under this notation,

we have the desired formula:

mP f = [B : A];

it can be immediately derived from the classical Rückert description lemma (see e.g. [28],

Chapt. III, Sect. 3 and Chapt. IV, Sect. 1).

In order to express mP f by means of multiplicities of ideals, we need the following

fundamental (cf. [46] or [65], Chapt. VIII, Sect. 10):

Samuel’s Formula. Consider a local ring A with maximal ideal m and an over-ring B

which is a finite A-module; then B is , of course, a semilocal ring with a finite number

of maximal ideals ni. Suppose that no a ∈ A, a 6= 0, is a zero divisor in B and that
height ni = dimA. Then, for any m-primary ideal q in A, we have

[B : A] · e(q) =
∑

i

[B/ni : A/m] · e(qAni)

(here e(q) denotes the multiplicity of the ideal q).

Remark. If every a ∈ A, a 6= 0, is a non-zero divisor in B, then the ring B is equidi-
mensional. If, moreover, the ring A is analytically irreducible (i.e. its completion Â in the

maximal-adic topology is a domain), then every a ∈ Â, a 6= 0, is a non-zero divisor in B̂,
and thus B̂ is equidimensional as well. Consequently, height ni = dimA for all i, because

we have the canonical isomorphism

B̂ ∼=
⊕

i

B̂ni .

In our geometric context, Samuel’s formula yields the

Algebraic Formula for the Multiplicity of a Holomorphic Mapping.

mP f = e(mB) = e
( d∑

j=1

ujB
)
.

If the ring B is Cohen–Macaulay (which is true whenever the local ring B is regular

or, equivalently, whenever the set V is a complex manifold near the point P ), we obtain

the following formula for the multiplicity of a light holomorphic mapping f at P :

mP f = e(mB) = length B/mB = dimC B/mB.

Now we proceed to recall the notion of multiplicity of an analytic set at a point. Let

V be an analytic set of pure dimension d in a domain D ⊂ Cr and P ∈ V . Denote by
G(k, r) the Grassmann manifold of all k-dimensional vector subspaces in Cr. For any

L ∈ G(r − d, r), let πL be the projection parallel to L. We define the multiplicity mPV

of the set V at P by putting

mPV := min{mP (πL|V ) : L ∈ G(r − d, r)};



Improper intersections 13

mPV is a finite number as there exist vector subspaces L ∈ G(r − d, r) such that P
is an isolated point of V ∩ (P + L). Furthermore, the minimum is attained for generic
L ∈ G(r − d, r), which is formulated precisely in the statement below (see e.g. [10],
Chapt. 2, Sect. 11):

Let V be an analytic set of pure dimension d in the vicinity of 0 ∈ Cr and L ∈
G(r − d, r). Then the equality

m0(πL|V ) = m0V
holds iff L ∩ C(V, 0) = {0} (here C(V, 0) denotes the tangent cone to V at 0). The L
with the above property form a subset U of G(r− d, r) whose complement is an algebraic
subset in G(r − d, r) of codimension ≥ 1, and thus U is an open dense connected subset
of G(r − d, r).
We say that an L ∈ G(r−d, r) meets the set V transversally at 0 if L∩C(V, 0) = {0}.

More generally, we say that analytic sets V1, . . . , Vk of pure dimensions d1, . . . , dk in the

vicinity of a point P ∈ C
r meet transversally at P if their tangent cones C(Vi, P ) intersect

properly, i.e. if

dim
⋂

i

C(Vi, P ) =
∑

i

di − (k − 1)r.

Remark. Although the above geometric definition of mPV is extrinsic, it does not de-

pend on the ambient space. This will be evident once we express mPV as the multiplicity

e(mP ) of the maximal ideal mP in the local ring of V at P .

We now recall some algebraic facts concerning the theory of reductions of ideals in

local rings (cf. [35]). Consider a local ring A with maximal ideal m and with infinite

residue class field k. If a and b are ideals in A, then b is called a reduction of a if b ⊂ a

and bas = as+1 for a positive integer s. Clearly, if b is a reduction of a, then a and b have

the same minimal prime ideals. Moreover,

e(aAp) = e(bAp)

for every common minimal prime ideal p of a and b. Therefore the definition suggests

that if b is a reduction of a, then b is a simplified version of a, and that the smaller b,

the more marked the simplification. In fact, every reduction b of a contains at least one

minimal reduction c of a. It turns out that a reduction of an ideal a is minimal iff it can

be generated by l(a) elements, where l(a) is the dimension of the graded local ring

G(a) :=
∞⊕

n=0

an/man

(op. cit., Sect. 4). If the ideal a is m-primary, then

l(a) = dim G(a) = dim A.

The statement below (op. cit.) is a precise formulation of the assertion that any generic

l(a) elements of the ideal a generate a minimal reduction.

Consider a local ring A with maximal ideal m and residue class field k, and an ideal

a = (u1, . . . , ur) (ui ∈ A); let l := l(a). Then one can find a finite number of polynomials
Pk(Tij) ∈ A[T ] in lr indeterminates Tij (i = 1, . . . , l, j = 1, . . . , r) with the following
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property : for any elements aij ∈ A (i = 1, . . . , l, j = 1, . . . , r), the l linear combinations
vi =
∑r

j=1 aijuj generate a minimal reduction of a iff at least one Pk(aij) is a unit in A

(i.e. Pk(aij) 6≡ 0 (modm)).

As minimal reductions always exist , some of the polynomials Pk(Tij) do not vanish

identically modulo m. If the infinite residue class field k can be embedded into A, then,

of course, one can find scalars aij ∈ k such that Pk(aij) 6≡ 0 (modm).

Now we can readily return to the geometric context:

• V is an analytic set of pure dimension d at P = 0 ∈ C
r,

• B = OV,P is the local ring of V at P ,
• mP is the maximal ideal of B.

Let u1, . . . , ur be the coordinates in C
r. Since the minimum number of generators for

minimal reductions of the ideal mP is its height d, one can find a finite number of poly-

nomials Pk(Tij) ∈ C[T ] in dr indeterminates Tij (i = 1, . . . , d, j = 1, . . . , r) with the

following property:

For any elements aij ∈ C (i = 1, . . . , d, j = 1, . . . , r), the d linear combinations

vi =
∑r
j=1 aijuj generate a minimal reduction of mP iff at least one Pk(aij) is different

from zero. In particular , for such generic linear combinations v1, . . . , vd, we have the

equality

e(mP ) = e
( d∑

i=1

viB
)
.

On the other hand, the algebraic multiplicity e(
∑d
i=1 viB) is the multiplicity at P of

the linear projection

π|V : V ∋ (u1, . . . , ur) 7→
( r∑

j=1

a1juj , . . . ,
r∑

j=1

adjuj

)
∈ C

d.

Hence mPV = e(mP ) because also mPV coincides with the multiplicity at P of a generic

projection (Proposition 1). Summing up, we have obtained the following intrinsic alge-

braic definition of the multiplicity of an analytic set at a point P :

Let V be an analytic set of pure dimension at a point P . Then the multiplicity mPV

of V at P coincides with the multiplicity e(mP ) of the maximal ideal mP in the local ring

of V at P :

mPV = e(mP ).

We conclude the section with the following well known

Whitney’s Theorem (cf. [64, 10]). Let V be a purely dimensional analytic set , and put

V (k) := {P ∈ V : mPV ≥ k} (k = 1, 2, . . .).

Then V (k) are analytic subsets in V , V (1) = V and V (2) = V sing is the singular locus

of V .
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2. Axioms for proper intersections of analytic cycles. Let M be a complex man-

ifold of dimension m. We recall that analytic cycles on M are formal locally finite sums

Z =
∑

ciVi,

where Vi are irreducible analytic subsets in M and ci are integers; local finiteness means

that each point P in M has a neighbourhood U that meets only a finite number of Vi
with ci 6= 0. The support |Z| of the cycle Z is the analytic set

|Z| :=
⋃
{Vi : ci 6= 0};

we call the sets Vi components of the cycle Z. We say that Z is a cycle of pure dimension

d if every analytic set Vi is of dimension d. Analytic cycles of pure dimension d will

also be called d-cycles. A cycle Z is positive if all its coefficients ci are positive integers.

Throughout the paper we are, in fact, interested only in positive analytic cycles.

One can extend, by additivity, the notion of multiplicity at a point P to analytic

cycles. Similarly, one can define the multiplicity mP f |Z of a holomorphic mapping in the
vicinity of a point P in the support |Z| of the cycle Z.
We say that analytic cycles Z1, . . . , Zk of pure dimensions d1, . . . , dk (respectively) in

the vicinity of a point P ∈M intersect properly at P if their supports |Zj | meet properly
at P , i.e.

dim
⋂

j

|Zj | =
∑

j

dj − (k − 1)m

(and thus the dimension of the intersection is the smallest possible). If the cycles Z1,. . . ,Zk
meet properly at every point P of

⋂
j |Zj |, we say that they intersect properly on M . Then,

according to the classical theory of proper intersections, we can define the intersection

product

Z1 · . . . · Zk
which is a (

∑
j dj−(k−1)m)-cycle onM . As we shall see later, the proper intersections of

analytic cycles in open subsets of affine spaces are uniquely determined by the following

four axioms:

Basic Axiom. Let Z1, . . . , Zk be purely dimensional analytic cycles in an open subset

of C
m that intersect properly. Then the operation

(Z1, . . . , Zk) Z1 · . . . · Zk
is local (i.e. the intersection product in open subsets U does in fact depend only on the

behaviour of the cycles in U), multi-additive, commutative and associative in the vicinity

of the analytic set |Z1| ∩ . . . ∩ |Zk|.
Normalization Axiom. If Z is a d-cycle in an open subset U of Cm, then

(U × {0}) · (Z × C
n) = Z × {0}.

Invariance Axiom. Intersection products are invariant under affine isomorphisms , i.e.

if Z1, . . . , Zk are purely dimensional analytic cycles in an open subset of Cm that intersect

properly and if F : Cm → Cm is an affine isomorphism, then

F (Z1) · . . . · F (Zk) = F (Z1 · . . . · Zk).
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Continuity Axiom. Consider an open subset U of Cs and an open neighbourhood Ω of

U × {0} ×C in U ×Cr ×C. Let V be an analytic subset in Ω such that every fibre Vλ of
V over λ ∈ C (in the set-theoretic sense) is of pure dimension d and properly intersects

the set U ×{0}×{λ} in Ω∩ (U ×C
r×{λ}); hence V is of pure dimension d+1. Clearly ,

if [Vλ] is the d-cycle on Ω ∩ (U ×Cr×{λ}) determined by the Cartier divisor Vλ coming
from the divisor (t − λ) on C, then the support of [Vλ] is the analytic set Vλ. Suppose
that , upon identification of the sets U × {0} × {λ} with U , all set-theoretic intersections

Vλ ∩ (U × {0} × {λ})

coincide. Then all intersection products U · [Vλ], which are analytic (d− r)-cycles on U ,
are equal.

We begin with the observation that, according to the locality and multi-additivity

axioms, if Z1, . . . , Zk are purely dimensional analytic cycles meeting properly, then

Z1 · . . . · Zk =
∑

i

ciWi,

where Wi are the irreducible branches of
⋂
i |Zi| and ci are integers. We say that

ci =: i(Z1 · . . . · Zk;Wi)

is the intersection index of Z1 · . . . · Zk along Wi. In other words, intersection products

are uniquely determined by intersection indices.

The above four axioms ensure the uniqueness of proper intersections as follows. The

basic axiom allows us to consider intersections of only two cycles which consist of purely

dimensional analytic subsets of a domain in an affine space. All four axioms enable the

diagonal procedure, and thus they reduce the problem to that of a cycle intersecting an

affine subspace. Finally, the continuity axiom leads to the intersections described in the

normalization axiom. We shall now elaborate this more precisely.

We first demonstrate the uniqueness of proper intersections with affine subspaces.

This will be done by means of deformation to the normal cone presented in Section 3

of Chapter III. The concept of deformation to the normal cone, which is of geometric

nature, appeared first, however, in an algebraic set-up of Gerstenhaber [21] (the algebra

for such deformations was created by Rees [43, 44]); in fact, already Samuel [45] based

his algebraic intersection theory on the construction of associated graded rings (which

corresponds to that of normal cones) and on a variant of the Hilbert polynomial, called

the Hilbert–Samuel polynomial.

Let V be an analytic subset of pure dimension d in a domain D in Cm, and let S be

an affine subspace in Cm which meets V properly. Due to the invariance axiom, we may

obviously arrange coordinates in Cm as follows:

C
m = C

s
u × C

r
v (s+ r = m), S = {(u, v) ∈ C

m : v = 0}.

Consider the (ideal-sheaf-theoretic) intersection V ∩ S which is of pure dimension d− r,
and the deformation spaces of Cm and V with respect to S and V ∩S, respectively. They
are reduced analytic spaces, and thus we can describe them geometrically as follows:
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• the first one may be identified simply with Cm;

• the second one may be identified with the closure V of the following family of
analytic sets parametrized by λ ∈ P1:⋃

λ

Vλ := {(u, v; 1 : λ) ∈ C
m : (u, v/λ) ∈ V }.

The normal cone V∞ (in the set-theoretic sense) is an analytic set of pure dimension d,

and thus it coincides with

{(u, v) ∈ C
m : (u, 0) ∈ V, v is arbitrary}.

The cycle [V∞] determined by the Cartier divisor of the point ∞ ∈ P1, which is the

normal cone [CV ∩SV ], is thus of the form
∑

i

mi(Wi × C
r),

whereWi are the irreducible branches of V ∩S and mi are positive integers, which are the

coefficients of the cycle [V∞] along its branchesWi×C
r; clearly, themi are independent of

intersection theory. Therefore the continuity, multi-additivity and normalization axioms

yield

V · S = V∞ · S =
(∑

i

miWi × C
r
)
· S =

∑

i

miWi,

whence the uniqueness follows.

Remark. The coefficients mi must coincide, of course, with the intersection indices

i(V · S;Wi) once such a unique theory of proper intersections is constructed.

In particular, we obtain the following

Claim. Let P be a regular point of V . If an affine subspace L of dimension n − d
intersects V transversally at P , then

i(V · L;P ) = 1.
(Also, the converse is true: if an affine subspace meets V properly at an isolated point P

with multiplicity 1, then P is a regular point of V , and the intersection is transversal—see

e.g. [36, 47]).

Since the diagonal ∆ ⊂ D ×D is an affine subspace, the proof of uniqueness will be
complete if we establish the

Diagonal Procedure. For any subset V in D, let

V ∆ := {(P, P ) : P ∈ V }
be the subset corresponding to V in the diagonal ∆ = {(P, P ) ∈ D × D : P ∈ D}. If
V1, V2 are two purely dimensional analytic subsets which intersect properly in D and if

W is an irreducible branch of V1 ∩ V2, then
i(V1 · V2;W ) = i((V1 × V2) ·∆;W∆).

Indeed,W∆ is an irreducible branch of the proper intersection ∆∩(V1×D)∩(D×V2),
and thus the associativity axiom is applicable. We get
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i(V ∆1 · (D × V2);W∆) · i(∆ · (V1 ×D);V ∆1 )
= i(∆ · (V1 × V2);W∆) · i((V1 ×D) · (D × V2);V1 × V2).

But

i(∆ · (V1 ×D);V ∆1 ) = 1 and i(V ∆1 · (D × V2);W∆) = i(V1 · V2;W ),
which follows directly from the invariance, associativity and normalization axioms, the

easy details being left to the reader. It is therefore sufficient to show that

i((V1 ×D) · (D × V2);V1 × V2) = 1.
The proof is straightforward: we apply the associativity and normalization axioms as

well as the foregoing claim. First observe that if V1 and an affine subspace L1 of D meet

transversally at an isolated point P1 of the regular locus of V1, then

i((L1 ×D) · (V1 ×D); {P1} ×D) = 1.
Indeed, if this intersection index is k, then, for any point P2 ∈ D, we have
(P1, P2) = (L1 ×D) · (V1 × P2) = (L1 ×D) · ((V1 ×D) · (D × P2))

= ((L1 ×D) · (V1 ×D)) · (D × P2) = k · (P1 ×D) · (D × P2) = k · (P1, P2),
whence k = 1, as desired. Similarly,

i((D × V2) · (D × L2);D × P2) = 1
whenever V2 and an affine subspace L2 of D meet transversally at an isolated point P2
of the regular locus of V2. Supposing

i((V1 ×D) · (D × V2);V1 × V2) = k,
we therefore obtain

(L1 ×D) · (V1 ×D) · (D × V2) · (D × L2) = (P1 ×D) · (D × P2) = (P1, P2).
On the other hand,

(L1 ×D) · (V1 ×D) · (D × V2) · (D × L2) = (L1 ×D) · k · (V1 × V2) · (D × L2)
= k · (L1 × L2) · (V1 × V2) = k · (P1, P2),

whence k = 1, and thus the diagonal procedure is established.

Remark. The uniqueness of proper intersections implies their invariance under biholo-

morphisms. The invariance can also be deduced directly from the reduction theorem for

proper intersections presented in Section 3.

The above proof of uniqueness suggests how to construct the proper intersections of

analytic cycles on a complex manifold. We sketch this in a few lines:

• one must apply the diagonal procedure;
• the index of proper isolated intersection with an affine subspace L is equal to the
multiplicity of an affine mapping which determines L;

• the intersection index i(Z1 · . . . ·Zk;W ) coincides with i(Z1 · . . . ·Zk ·L;P ) whenever
L is an affine subspace which meets W transversally at an isolated regular point P .

For a detailed construction of proper intersections, we refer the reader to e.g. Chirka [10],

Chapt. II, Sect. 12. His construction is based on the notion of convergence of analytic
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cycles; we shall make frequent use of it later on. Roughly speaking, a sequence of analytic

cycles converges if so do both their supports and their proper isolated intersections with

affine spaces; for the notion of convergence of analytic sets and its properties, see also [58].

Proper intersection turns out to be a continuous operation with respect to convergence of

analytic cycles (cf. [10], Chapt. II, Sect. 12). It is worth pointing out that our continuity

axiom is a special case of the above-mentioned continuity of proper intersections.

Remark. We shall see in the next section that if M and N are complex manifolds of

dimensions m and n, respectively, and if f : M → N is a holomorphic mapping whose

fibres all have dimension m−n, then the fibres f−1(Q) regarded as analytic cycles on M
(Q ∈ N) form a continuous family, i.e. the (m− n)-cycles f−1(Qj) converge to f−1(Q0)
on M whenever the points Qj tend to Q0 in N .

Proper intersections of analytic sets with complete intersections can be calculated by

means of the reduction theorem presented in Section 3. Below we state only the special

case of isolated intersections (loc. cit.):

Proposition 1. Let V be an analytic set of pure dimension d in the vicinity of a point

P in C
m. If an affine subspace L of C

m meets V properly at the isolated point P , then

i(V · L;P ) = mP (πL|V ),
where πL is the projection parallel to L, and πL|V is its restriction to V . More generally ,
consider a holomorphic mapping near P ,

f = (f1, . . . , fd) : C
m → C

d,

whose restriction f |V : V → Cd is light at P . Let Di = (fi) (i = 1, . . . , d) be the divisors

of the functions fi. Then P is an isolated point of the intersection

V ·D1 · . . . ·Dd,

and we have the formula

i(V ·D1 · . . . ·Dd;P ) = mP f |V = e
( d∑

i=1

fiOV,P
)
.

Finally, we recall two important theorems from the theory of analytic proper inter-

sections (loc. cit.):

Proposition 2. Let Z1, . . . , Zk be analytic cycles of pure dimensions in a domain D ⊂
C
m. Suppose Z1, . . . , Zk intersect properly at a point P in D, and denote by G the set

of those affine subspaces of dimension m− dimP
⋂
i |Zi| which meet

⋂
i |Zi| transversally

at P . Then the intersection index

i(Z1 · . . . · Zk · L;P )
does not depend on the affine subspace L in G.

Proposition 3. Let Z1, . . . , Zk be analytic cycles of pure dimensions in a domain D ⊂
Cm. If Z1, . . . , Zk intersect properly in D, then for any P ∈

⋂
i |Zi| we have

mP (Z1 · . . . · Zk) ≥ mPZ1 · . . . ·mPZk;
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moreover , equality holds iff the cycles Z1, . . . , Zk intersect transversally at P (i.e. the

tangent cones to the supports |Zi| at P meet properly).
Remark. An immediate corollary to Proposition 3 is the classical Bezout theorem on

the intersection of projective cycles to the effect that if Z1, . . . , Zk are positive algebraic

cycles in the projective space Pm which meet properly, then

deg(Z1 · . . . · Zk) = degZ1 · . . . · degZk.

3. Reduction theorem for proper intersections. We begin by presenting the method

of compact Stein neighbourhoods. Let

K = ∆m(b) := {z ∈ C
m : |zi| ≤ bi for i = 1, . . . ,m}

be a compact polydisk in C
m, b ∈ R

m, b > 0, and let R := O(K) be the ring of global
sections of the structure sheaf O over K. According to Frisch’s theorem [15], R is a
noetherian ring. Hence and by Cartan’s Theorem B, every maximal ideal of R is of the

form

m(P ) := {f(z) ∈ R : f(P ) = 0},
where P = (a1, . . . , am) is a point in K; the ideal m(P ) is generated by the functions

zi − ai (i = 1, . . . ,m). Moreover, again by Cartan’s Theorem B,
{f(z) ∈ R : (f)P ∈ mk

P } = m(P )k

(here (f)P denotes the germ of f at P , and mP is the maximal ideal of the stalk OP ).
The local ring embeddings

C[z1, . . . , zm](z1−a1,...,zm−am) →֒ Rm(P ) →֒ OP
are therefore homeomorphic embeddings in the maximal-adic topologies. Consequently,

since the ring

C[z1, . . . , zm](z1−a1,...,zm−am)

is dense in OP , all the three local rings have a common completion (namely, ÔP which
is isomorphic to the formal power series ring over C in m indeterminates). In particular,

Rm(P ) is a regular local ring of dimension m.

We still need the following criterion of Matsumura (cf. [30] or [31], Appendix 40).

Jacobian Criterion for a Regular Ring to be Excellent. Let k be a field of

characteristic zero, and R be a regular ring containing k such that , for any maximal

ideal m of R, the residue field R/m is algebraic over k and heightm = m. If there exist

x1, . . . , xm ∈ R and derivations D1, . . . , Dm ∈ Derk(R) for which Dixj = δij , then R is

an excellent ring.

Using this criterion, we immediately deduce that our ring R of global sections over K

is excellent; consequently, the canonical homomorphism

Rm(P ) → ÔP
is regular for any maximal ideal m(P ) of R. Hence the sequence of local ring homomor-

phisms

Rm(P ) → OP → ÔP
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implies that the first homomorphism is regular because so is their superposition, and the

second one is faithfully flat (cf. [31], Chapt. XIII, Sect. 33).

Summing up, the ring R of global sections is an excellent regular ring and, for any

point P ∈ K, the canonical ring homomorphism R→ OP is regular. In view of the basic
properties of regular homomorphisms and excellent rings, we can therefore deduce the

following

Proposition 1. Consider an analytic subspace V in the vicinity of a compact polydisk

K in Cm. Let I be the coherent ideal sheaf of V , R be the ring of sections over K of
the structure sheaf of Cm, I ⊂ R be the ideal of sections of I over K and let A := R/I.
Denote by OV = O/I the structure sheaf of V . For any P ∈ K, we have the canonical
ring homomorphism R→ OP such that the image of I generates the stalk IP . Then the
ring A is excellent , and the homomorphism ιP : A→ OV,P thus arising is regular.
Remark. Clearly, there is a one-to-one correspondence between the irreducible varieties

W of V in the vicinity of the compact polydisk K and the minimal prime ideals p in the

ring A.

We now apply these important properties of the ring of global sections of the struc-

ture sheaf, together with the theorem of transition, to analytic intersection theory. The

theorem of transition, stated below, originated in Chevalley [9]; it was next generalized

by Samuel [45], and eventually by Nagata [34].

Theorem of Transition. Let A and B be two local rings with maximal ideals m and

n, respectively. Suppose B is a flat A-module such that lengthB(B/mB) =: k <∞. Then
lengthB(B/qB) = k · lengthA(A/q) and e(qB) = k · e(q)

for each m-primary ideal q in A.

Proposition 2. Take the notation of Proposition 1. Let q be an ideal in the ring A and

let p be a minimal prime ideal of q; clearly , p determines an analytic subvariety W of V

in the vicinity of the compact polydisk K. Then, for any point P in W , the ideal in the

local ring OV,P generated by p is radical , i.e. it is a finite intersection of prime ideals:

pOV,P =
⋂

i

pP,i;

the prime ideals pP,i correspond to the irreducible branches of the germ WP of W at P .

Furthermore, for all i, we have the equality of the multiplicities

e(qAp) = e(q(OV,P )pP,i).
Indeed, the ideal pOV,P is radical because the canonical homomorphism ιP : A →

OV,P is regular by Proposition 1. Consequently, if p is a minimal prime ideal of q, each
pP,i is a minimal prime ideal of qOV,P . Thus the equality of the multiplicities follows
directly from the theorem of transition and the fact that k = 1.

Remark. It is easy to check that dimA/p = dimOV,P /pP,i.
Corollary. The multiplicities e(q(OV,P )pP,i) depend neither on P ∈ W nor on the

choice of the irreducible branch of the germ WP .
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Now we can readily apply the above method of compact Stein neighbourhoods to

analytic intersection theory. We prove the important

Reduction Theorem. Consider an analytic set V of pure dimension d in an open

domain U in Cm, and holomorphic functions fi : U → C (i = 1, . . . , r) such that a

subvariety W in U is a proper component of the intersection of V and the divisors

Di = (fi). Let P be any point of W , p the prime ideal in the local ring R := OV,P of any
irreducible branch of the germ WP , and let

b =

r∑

i=1

fiR;

clearly , p is a prime ideal of b. Then the multiplicity of the ideal q in the localization of

R with respect to p depends neither on P nor on the choice of the irreducible branch of

the germ WP , and we have the algebraic formula for the intersection index :

i(V ·D1 · . . . ·Dr;W ) = e(bRp).

Proof. Notice that the case of an isolated intersection has been considered in Section 2,

Proposition 1. The independence from the choice of P and of an irreducible branch of

WP follows immediately from Proposition 2. So pick P that is a regular point of the

set-theoretic intersection V ∩ |D1| ∩ . . . ∩ |Dr|; in particular, P is a regular point of the
branch W . Obviously, we may assume that P = 0. The general case of the theorem can

now be established by means of the two associativity formulae: the one valid within the

theory of local rings and the associativity axiom of intersection theory. We recall the

former (cf. [46], or [34], Chapt. III, Sect. 24).

Associativity Formula for Multiplicities in Local Rings. Consider a local ring

R with maximal ideal m, and an m-primary ideal a generated by a system of parameters

a1, . . . , ar ∈ m. For a fixed integer k = 0, 1, . . . , r, let b be the ideal generated by a1, . . . , ak,

and let pi be the minimal prime ideals of b for which length pi = k and dimR/pi = r−k.
Then

e(a) =
∑

i

e((a+ pi)/pi) · e(bRpi).

Remark. If a local ring R is analytically equidimensional (i.e. its completion R̂ in the

maximal-adic topology is equidimensional), then every minimal prime ideal of b satisfies

the above two conditions concerning length and dimension.

Corollary. If a local ring R is analytically equidimensional and if p is a unique min-

imal prime ideal of b, then

e(a) = e((a+ p)/p) · e(bRp).

In particular , if p is the only isolated primary component of the ideal b, then

e(a) = e((a+ p)/p).

In our geometric context, the germs f1, . . . , fr form a sequence of parameters of

the localization Rp. Pick linear hyperplanes Hj in Cm (j = r + 1, . . . , d) that meet

W transversally at P . If fj are linear equations for Hj (j = r+1, . . . , d), then the germs



Improper intersections 23

f1, . . . , fr, fr+1, . . . , fd form a system of parameters of the local ring R, and fr+1, . . . , fd
generate the maximal ideal of the regular local ring OW,P = R/p. By the associativity

formula for multiplicities in local rings, we get

e(a) = e((a+ p)/p) · e(bRp) = e(bRp).

On the other hand, it follows from Proposition 1 in Section 2 and the associativity axiom

that

e(a) = i(V ·D1 · . . . ·Dr ·Hr+1 · . . . ·Hd;P )

= i(V ·D1 · . . .Dr;W ) · i(W ·Hr+1 · . . . ·Hd;P )

= i(V ·D1 · . . .Dr;W ),

whereby the reduction theorem is proved.

Remark. The reduction theorem makes it possible to express the proper intersections

of analytic sets with a collection of effective divisors by means of multiplicities in local

rings.

We conclude the section with the following

Proposition 3. Let f : M → N be a holomorphic mapping between complex manifolds

M and N of dimensions m and n, respectively. Suppose that all fibres of f have common

dimension m − n, m ≥ n (which implies , by Remmert’s theorem, that f is an open

mapping). Consider the fibres f−1(Q) (Q ∈ N) of f in the ideal-sheaf-theoretic sense;
the induced cycles [f−1(Q)] are the fibres of f regarded as analytic cycles on M . Then

the fibres [f−1(Q)] (Q ∈ N) form a continuous family , i.e. the (m− n)-cycles [f−1(Qj)]
converge to [f−1(Q0)] on M whenever the points Qj tend to Q0 in N .

Remarks. (1) No stronger assumption (as e.g. properness) needs to be imposed on the

function f above. Therefore we may, of course, encounter the phenomenon that the fibres

[f−1(Qj)] converge to the zero cycle (and their supports converge to the empty set).

(2) The cycles [f−1(Q)] coincide with those considered in [59], where also a useful

concept of an s-parametrization is given (cf. [37]).

The theorem being local with respect to N , we may assume that N = Cn. Set

graph(f) := {(P,Q) ∈M × C
n : Q = f(P )},

and let p : graph(f)→M be the canonical projection, which is a biholomorphism. Since

proper intersection product is a continuous operation, it is sufficient to show that

(∗) [f−1(Q)] = p∗(graph(f) · (M × {Q})).
So fix a point Q = (w1, . . . , wn); any irreducible branch W of f

−1(Q) corresponds to the

irreducible branch

graph(f |W ) := {(P,Q) ∈W × C
n : Q = f(P )}

of graph(f) · (M × {Q}). For P in the regular locus of f−1(Q), let p be the prime ideal

in the local ring OM,P of the germ WP . According to the reduction theorem and using

the biholomorphism p, we deduce that the coefficient of the branch W on the right-hand
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side of (∗) is

e
( n∑

i=1

(fi − wi)(OM,P )p

)
,

which is equal to

length (OM,P )p/

n∑

i=1

(fi − wi)(OM,P )p

because the ring (OM,P )p is regular, and a fortiori Cohen–Macaulay. Hence this coefficient

coincides with that of W on the left-hand side of (∗), as asserted.

II. Local algorithm for analytic improper intersections

1. Filter-regular and superficial elements. Throughout this section A always de-

notes a noetherian ring and I is an ideal in A. For a submodule N of a noetherian

A-module M , set

N :M 〈I〉 :=
⋃

n∈N

(N :M In) = {m ∈M : m · In ⊂ N for some n ∈ N}

= N :M IN for N ≫ 0.
The operation N :M 〈I〉 has the following property:
Let

a = q1 ∩ . . . ∩ qr ∩ qr+1 ∩ . . . ∩ qr+s

be an irredundant primary decomposition of an ideal a in the ring A such that pi :=√
qi 6⊃ I for i = 1, . . . , r, and pj :=

√
qj ⊃ I for j = r + 1, . . . , r + s. Then

a :A 〈I〉 =
r⋂

i=1

qi.

An easy verification is left to the reader.

Proposition 1. For a ∈ I, the following conditions are equivalent :
(1) 0 :A (0 :A a) ⊃ In for some positive integer n;
(2) (0 :A a)p = 0 for all prime ideals p in A such that I 6⊂ p;

(3) a/1 ∈ Ap is a non-zero divisor for all prime ideals p in A such that I 6⊂ p.

The only non-trivial equivalence is (1)⇔(2). So suppose
0 :A (0 :A a) ⊃ In

and let p be a prime ideal of A such that I 6⊂ p. Pick s ∈ In \ p. Then s · (0 :A a) = 0,

whence (0 :A a)p = 0, as desired.

Conversely, suppose condition (2) holds and let

0 :A (0 :A a) =
⋂

i

qi

be an irredundant primary decomposition. If

In 6⊂ 0 :A (0 :A a)
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for all positive integers n, then In 6⊂ qi for some i and all n, and thus I 6⊂ p :=
√

qi. Since

(0 :A a)p = 0, there is an s ∈ A \ p such that s · (0 :A a) = 0. Then
s ∈ 0 :A (0 :A a) ⊂ qi ⊂ p,

which is a contradiction, and the proof is complete.

An element a ∈ I satisfying one of the above equivalent conditions will be called

a filter-regular element with respect to the ideal I. The notion of filter-regularity was

introduced by Schenzel–Ngo Viet Trung–Nguyn Tu Cuong [48] in connection with the

theory of generalized Cohen–Macaulay modules, and Stückrad–Vogel [55] applied it to

certain generalizations of Buchsbaum modules. The proposition below lists a few other

conditions equivalent to filter-regularity; its proof is straightforward.

Proposition 2. Let

0 = q1 ∩ . . . ∩ qr ∩ qr+1 ∩ . . . ∩ qr+s

be an irredundant primary decomposition such that pi :=
√

qi 6⊃ I for i = 1, . . . , r, and

pj :=
√

qj ⊃ I for j = r + 1, . . . , r + s. Take a ∈ I and a positive integer N such that

IN ⊂
r+s⋂

j=r+1

qj .

Then the following conditions are equivalent :

(1) a is filter-regular with respect to I;

(2) a 6∈ p for all associated primes p of A which do not contain I;

(3) 0 :A a ⊂ 0 :A 〈I〉;
(4) (0 :A a) ∩ IN = 0;
(5) 0 :A 〈a〉 ⊂ 0 :A 〈I〉;
(6) (0 :A 〈a〉) ∩ IN = 0.
We now discuss the notion of filter-regularity in the case of the associated graded ring

G = GI(A) =
∞⊕

n=0

GnI (A) =
∞⊕

n=0

In/In+1.

Denote by

G+ = G+I (A) =
∞⊕

n=1

GnI (A)

the ideal of all elements of G of positive degree. Consider a ∈ I and its initial form a∗ in

G. Let s be the degree of a∗; we call the integer s the order of a with respect to I. Then

a∗ is filter-regular with respect to G+ iff

(0 :G a∗) ∩ (G+)N = 0
for some positive integer N or, equivalently,

(In :A a) ∩ IN = In−s

for all n ≥ N + s. The latter means exactly that a is superficial with respect to I (the

notion of a superficial element was introduced by Samuel [45]; see also [65], Chapt. VIII

or [2, 33, 34]).
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Proposition 3. Assume that the ideal I is contained in the Jacobson radical of the ring

A. If an element a ∈ I is superficial with respect to I, then it is filter-regular with respect
to I.

Indeed, let a∗ be the initial form of a in G and s be the degree of a∗. By hypothesis

and Proposition 2, there is a positive integer N such that

(0 :G a∗) ∩ (G+)N = 0
or, equivalently,

(In+s :A a) ∩ IN = In for all n ≥ N.
Take x ∈ IN and suppose that ax = 0. Then, by the Krull intersection theorem,

x ∈
∞⋂

n=N

(In+s :A a) ∩ IN =
∞⋂

n=N

In = 0.

Hence again by Proposition 2, a is filter-regular with respect to I, as desired.

Observe now that for every ideal I in a noetherian ring A and for any a ∈ A, there is
a positive integer k such that

In+k :A a ⊂ In + (0 :A a)
for all positive integers n. This is a direct consequence of the Artin–Rees lemma, according

to which there is a positive integer k such that

In+k ∩ aA = In(Ik ∩ aA)
for all positive integers n. Therefore, if x ∈ In+k :A a, then ax ∈ In+k∩aA = In(Ik∩aA)
⊂ aIn. Consequently, ax = ay with y ∈ In, and thus x = y + (x− y) ∈ In + (0 :A a), as
asserted.

In particular, if a is a non-zero divisor in A, then, for all positive integers n, we have

In+k :A a ⊂ In.
Hence we immediately obtain the following

Proposition 4. Consider a superficial element a ∈ I of order s with respect to an ideal
I in a noetherian ring A. Let a∗ be the initial form of a in the associated graded ring

G = GI(A). If a is a non-zero divisor in A, then

Is+n :A a = I
n for n≫ 0.

For an ideal J in A, we denote by

GI(J,A) :=
∞⊕

n=0

(J ∩ In + In+1)/In+1

the homogeneous ideal in the graded ring G = GI(A) generated by the initial forms of

all elements of J .

The equality Is+n :A a = In always implies aA ∩ Is+n = aIn. The converse implica-
tion holds whenever a is a non-zero divisor in A. We can therefore state a corollary to

Proposition 4.
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Corollary 1. Under the notation of Proposition 4, if a is a non-zero divisor in A, then

the ideal GI(aA,A) coincides with a
∗G in sufficiently large degrees. Consequently ,

GI(aA,A) :G 〈G+〉 = a∗G :G 〈G+〉.

Moreover , the above assertion still holds if we drop the assumption that a is a non-zero

divisor (cf. [2], Lemma 2.5).

From now on we shall always assume that the ideal I is contained in the Jacobson

radical of the ring A. We say that a sequence a1, . . . , ar ∈ I is filter-regular with respect
to I if for each k = 1, . . . , r the class of ak in the ring A/(a1, . . . , ak−1) is a filter-regular

element. In other words, it is required that each element ak avoid all the associated

primes p of the ideal (a1, . . . , ak−1) ⊂ A which do not contain I; equivalently, for all

k = 1, . . . , r and every prime ideal p of A such that a1, . . . , ak ∈ p and I 6⊂ p, the

elements a1/1, . . . , ak/1 ∈ Ap form an Ap-regular sequence.

We say that a sequence a1, . . . , ar ∈ I is superficial with respect to I if the sequence
of initial forms a∗1, . . . , a

∗
r ∈ G = GI(A) is filter-regular with respect to G+.

Recall now that in the general theory of graded rings, a :G 〈G+〉 is the saturation of a
homogeneous ideal a; the saturation of a is, by definition, the largest homogeneous ideal

b in G which coincides with a in large degrees (see e.g. [65], Chapt. VII, Sect. 2).

We say that a homogeneous ideal a is saturated if it is equal to its saturation. The

following three conditions are equivalent (loc. cit.):

(1) two homogeneous ideals a and b have the same saturation;

(2) a :G 〈G+〉 = b :G 〈G+〉;
(3) for any relevant prime ideal p in G (i.e. p does not contain G+), the localizations

of a and b with respect to p coincide.

Let us observe that Corollary 1 extends, by an easy induction on r, to filter-regular

sequences.

Corollary 2. If a1, . . . , ar ∈ I is a superficial sequence with respect to I, then

GI((a1, . . . , ar), A) :G 〈G+〉 = (a∗1, . . . , a∗r) :G 〈G+〉;

or , equivalently , the homogeneous ideals GI((a1, . . . , ar), A) and (a
∗
1, . . . , a

∗
r) coincide in

large degrees. In other words , these homogeneous ideals have the same saturation in

G = GI(A).

Further, Proposition 3 extends to the case of superficial sequences.

Proposition 5. Assume that the ideal I is contained in the Jacobson radical of the ring

A. If a sequence a1, . . . , ar ∈ I is superficial with respect to I, then it is filter-regular with
respect to I.

The proof is straightforward.

Finally, we recall a lemma of Samuel (cf. [46] or [65], Chapt. VIII, Theorem 22) applied

later in Section 4.
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Samuel’s Lemma. Consider a one-dimensional local ring A with maximal ideal m and

an m-primary ideal q in A. If a ∈ q is a superficial element of order one with respect to

q, then e(q) = e(aA).

Proof. Consider first the case where a is a non-zero divisor in A. It follows from Propo-

sition 4 that

qn :A a = qn−1 for n≫ 0.
We have the following evident equalities:

length(A/qn)− length((A/aA)/(q/aA)n)
= length(A/qn)− length(A/(qn + aA)
= length((qn + aA)/qn) = length(aA/(qn ∩ aA))
= length(aA/(aA · (qn :A a))) = length(A/(qn : Aa))
= length(A/qn−1),

whence we get, for sufficiently large n, the equalities

e(q) = length(A/qn)− length(A/qn−1) = length((A/aA)/(q/aA)n).
Since the ring A/aA has dimension 0, we have

length((A/aA)/(q/aA)n) = length(A/aA)

for n large. But this is also the length of an−1A/anA because the rings A/aA and

an−1A/anA are isomorphic (as a is a non-zero divisor). Hence e(q) = e(aA), as asserted.

In the general case, let a be the annihilator of a; it has, of course, a finite length l.

Consequently, qna = 0 for n large since
∞⋂

n=0

(qn ∩ a) = 0.

So consider the quotient ring A := A/a. For any m-primary ideal o in A, set o := (o+a)/a.

Then

length(A/on) = length(A/(a+ on)) = length(A/on)− length((a+ on)/on)

= length(A/on)− length(a/(a ∩ on)) = length(A/on)− l
for n large enough. Hence e(o) = e(o). In particular, e(q) = e(q) and e(aA) = e(aA),

where a is the a-residue of a. Since a is superficial of order one with respect to q and is a

non-zero divisor in A, we have already shown that e(q) = e(aA). Therefore, e(q) = e(aA),

and the proof of the lemma is complete.

2. Geometric and algebraic approaches to the intersection algorithm. In Chap-

ter I we referred to convergence of analytic cycles on a complex manifold. We now give

the precise definition and some further properties of this notion needed in the theory of

analytic improper intersections. The topology of local uniform convergence for the family

of closed subsets of a complex manifoldM (cf. Tworzewski–Winiarski [58]) is determined

by the basis which consists of the sets of the form

{F ⊂M : F is closed, F ∩K = ∅, F ∩ U 6= ∅ for U ∈ S},
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where K ranges over all compact subsets and S ranges over all finite families of open

subsets in M . The claim below describes local uniform convergence; its proof is straight-

forward.

Claim. A sequence of closed subsets Fn converges to a closed set F0 iff for every point

P ∈ F0 and every neighbourhood U of P , we have Fn ∩ U 6= ∅ for n large enough, and
for every compact subset K disjoint from F0, we have Fn ∩K = ∅ for n large enough.

By the degree of a 0-cycle
∑r
i=1 kiQi we mean the sum

∑r
i=1 ki of its coefficients. The

following proposition (cf. [57]) characterizes the convergence of positive analytic cycles.

Proposition 1. Consider a sequence Zn (n = 0, 1, 2, . . .) of positive p-cycles on a com-

plex manifold M of dimension m. If the supports |Zn| converge to the support |Z0|, then
the following conditions are equivalent :

(1) the sequence Zn converges to the cycle Z0, i.e. for each regular point P of |Z0|
and any relatively compact submanifold N of dimension m−p meeting |Z0| transversally
at P such that |Z0| ∩N = {P}, we have

deg(Zn ·N) = deg(Z0 ·N) for n≫ 0;

(2) for each point P of |Z0| and any relatively compact submanifold N of dimension
m− p such that |Z0| ∩N = |Z0| ∩N = {P}, we have

deg(Zn ·N) = deg(Z0 ·N) for n≫ 0;

(3) for each point P from a given dense subset of regular points of |Z0| there is a
relatively compact submanifold N of dimension m − p meeting |Z0| transversally at P
such that

|Z0| ∩N = {P}, and deg(Zn ·N) = deg(Z0 ·N) for n≫ 0.

Remark. One must control the intersection of the cycle Z0 with the whole compact

closure N of N , because otherwise the intersections Zn ·N could yield some additional
points which converge to the border of the submanifold N . Thus, the assumption |Z0| ∩
N = {P} would be insufficient.

We saw in Chapter I that proper intersection product is a continuous operation on

analytic cycles on a complex manifold. This fact will play a significant role in the proofs

of the theorems on deformations to the algebraic cone and to an algebraic bicone (cf.

Sect. 4 and Chapt. III, Sect. 1).

Suppose now that S is a closed s-dimensional submanifold of a complex manifold M

of dimension m. For a given analytic cycle Z =
∑

i kiZi, where the Zi form a locally

finite family of irreducible analytic subsets in M , the part of Z supported by S is the

cycle

ZS :=
∑

Zi⊂S

kiZi.

In what follows, we shall need the following
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Tworzewski’s Lemma (op. cit.). Let Zn (n = 0, 1, 2, . . .) be a sequence of positive

p-cycles on M which converges to the cycle Z0. If

mPZ
S
0 ≤ mPZ

S
n

for a point P of a submanifold S, then there is an open neighbourhood U of P such that

• ZSn ∩ U converges to ZS0 ∩ U and
• (Zn − ZSn ) ∩ U converges to (Z0 − ZS0 ) ∩ U

as sequences of analytic cycles in U .

We wish to recall a local algorithm for improper intersections in complex analytic

geometry, considered by P. Tworzewski (op. cit.). This algorithm is a local analytic

counterpart of the Stückrad–Vogel intersection algorithm from global algebraic geometry

(cf. [54]). Some other local algebraic counterparts have been investigated by Achilles–

Manaresi [2, 3]; their algorithm is carried out for any collection of elements of a local ring

A that forms a filter-regular sequence with respect to a given ideal I of A.

For an open subset U of the complex manifold M such that U ∩ S 6= ∅, denote by
H(U) the set of all H = (H1, . . . , Hr), where r := m − s is the codimension of S in M ,
satisfying the two conditions:

(1) Hk (k = 1, . . . , r) is a smooth hypersurface in U containing S ∩ U ;
(2)
⋂r
k=1 TPHk = TPS for each point P in S ∩ U (here TPN is the tangent space to

the manifold N at the point P ).

For a given analytic subset V in M of pure dimension d, let H(U, V ) be the set of all
H ∈ H(U) such that

((U \ S) ∩ V ) ∩H1 ∩ . . . ∩Hk

is an analytic subset in U \S of pure dimension d− k (or the empty set) for k = 1, . . . , r.
For every H = (H1, . . . , Hr) ∈ H(U, V ), we define two families of analytic cycles on

U by the recursive formula

α−1 = [V ∩ U ], H0 := U,

̺k = (αk−1 ·Hk)
S , αk = αk−1 ·Hk − ̺k.

Observe that it follows directly from the definition of H(U, V ) that the above intersection
products are proper. Consequently, αk is a (d − k)-cycle on U and ̺k is a (d − k)-cycle
on S ∩U ; ̺k will be called the result of the kth step of the intersection algorithm for the
collection H. The total result of the intersection algorithm is the cycle

̺ = ̺(V · H) :=
r∑

k=0

̺k

on the submanifold S.

For an analytic cycle Z =
∑m

i=0 Zi on M , where Zi are i-cycles (i = 0, . . . ,m), the

extended multiplicity ext.multPZ of Z at a point P is the sequence

ext.multPZ := (mPZm, . . . ,mPZ0) ∈ N
m+1.
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For any point P in S, Tworzewski [57] defined the multi-index

g̃(P ) = g̃(V, S)(P ) := min{ext.multP ̺(V · H) : H ∈ H(U, V ), P ∈ U} ∈ N
s+1,

where both neighbourhoods and admissible collections H(U, V ) vary, and the minimum is
with respect to the lexicographic ordering. The (s+1)-tuple g̃(V, S)(P ) will be called the

generalized (or extended) intersection index of V with the submanifold S at the point P .

We call the sum g(P ) of the components of g̃(P ) the intersection index (or multiplicity)

of V with the submanifold S at P . Tworzewski proved that the function

S ∋ P 7→ g̃(V, S)(P ) ∈ N
s+1

is upper semicontinuous in the analytic Zariski topology, while the function

S ∋ P 7→ g(V, S)(P ) ∈ N

is analytically constructible (op. cit.).

In Chapter III we shall reduce the analytic intersection algorithm to the case of an

algebraic bicone intersecting linear hyperplanes (see also [38, 40]). Next we shall prove

that the generalized intersection index is realized by a collection of smooth divisors pro-

vided that their equations (testing elements in the ring A) satisfy certain conditions of

filter-regularity. These conditions imposed on such a “generic” collection of smooth ana-

lytic divisors are very strong and of linear character: the first derivatives of the equations

of each successive divisor should avoid a finite union of proper linear subspaces (depending

on the previous divisors of the collection).

The generalized index for improper intersections will be expressed as the bidegree

sequence of a certain algebraic bicone, and intersection multiplicity at a point P as the

Samuel multiplicity at P of the normal cone. This will make it possible to derive many

consequences important for the theory of improper intersections in complex analytic ge-

ometry (see also [38, 40]). In particular, it will turn out that the generalized intersection

index for analytic improper intersections by Tworzewski [57] coincides with the indices

defined for the local algebraic case by Achilles–Manaresi [3] (generalized Samuel multi-

plicities) as well as with the Segre numbers by Gaffney–Gassler [19].

Now, we wish to present an algebraic version of the local intersection algorithm for

analytic improper intersections (see also [38, 40]). We shall understand the algebraic

objects such as local rings, graded rings, ideals, non-zero divisors, etc., also in their

local geometric meaning, i.e. as germs of analytic sets, cones, analytic subsets, divisors,

etc. determined by them. This abuse of language is very convenient and is not misleading

because the complementary algebro-geometric techniques point to an appropriate context.

In particular, if A is the local ring of a given analytic set at a fixed point P , any ideal a

in A determines an analytic cycle [a] near P :

[a] :=
∑
length(Ap/qAp) · [p],

where the sum is taken over all isolated primary ideals q of a and p =
√

q; here [p] denotes

the (local) analytic cycle determined by the ideal p (with coefficient 1). We thus take into

account only non-embedded components of a with geometric multiplicities. By mult[a]
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we mean the multiplicity of the cycle [a] at P :

mult[a] =
∑
length(Ap/qAp) · e(A/p).

In Tworzewski’s algorithm, two conditions are imposed on the collections (Hk): one

extrinsic with respect to the set V about their tangent spaces, and one intrinsic to the

effect that for each k the set

(V \ S) ∩H1 ∩ . . . ∩Hk

is of pure dimension d − k near P . The reduction theorem for proper intersections (see
Sect. 3 of Chapt. I) will enable us to describe the intersection algorithm algebraically in

terms of the local ring A of the set V at P , and the ideal I ⊂ A of the submanifold S.

Instead of considering collections (Hk), however, one can deal with their equations ak
regarded as elements of A; the equations ak involved in the intersection algorithm will

be called testing elements. The intrinsic condition means that each element ak avoids all

the minimal primes of the ideal (a1, . . . , ak−1) which do not contain I. In our algebraic

approach, one can disregard the extrinsic condition imposed on collections of hypersur-

faces and strengthen the intrinsic one; namely, it is required that each element ak avoid

all the associated primes of the ideal (a1, . . . , ak−1) which do not contain I (i.e. testing

elements ai are supposed to be filter-regular with respect to the ideal I). In other words,

for all k = 1, . . . , r and for every prime ideal p of A such that a1, . . . , ak ∈ p and I 6⊂ p,

the elements a1/1, . . . , ak/1 ∈ Ap form an Ap-regular sequence.

For a collection of testing elements a1, . . . , ar, we put

a−1 := (0), a0 := 0,

and inductively

ak−1(a) + akA = ak(a) ∩ rk(a),

where ak(a) (resp. rk(a)) is the intersection of those associated primary ideals of an

irredundant primary decomposition of the ideal ak−1(a)+akA whose prime ideals do not

contain (resp. do contain) the ideal I. Clearly, the isolated primary ideals of rk(a), and

thus the cycles [rk(a)], do not depend on the above-mentioned primary decompositions.

The independence from the family of ideals ai(a), however, is an immediate consequence

of the algebraic formula from Section 1:

ak(a) = (ak−1(a) + akA) :A 〈I〉.
The ideals rk(a) are the ideal-theoretic results of the local intersection algorithm; they

are counterparts of the results ̺k of the intersection algorithm for analytic cycles. What

connects both geometric and algebraic approaches to the intersection algorithm is thus

the theory of analytic cycles: ̺k(a) = [rk(a)]. We shall elaborate this more precisely in

Section 4. A remarkable advantage of using the theory of positive analytic cycles is that

we get at our disposal a dynamic concept of convergence for which proper intersection is

a continuous operation (see Chapter I).

Remarks. (1) It follows directly from the construction that for any prime ideal p in A

with I 6⊂ p, rk(a)Ap = Ap, and thus by easy induction on k that

(a1, . . . , ak)Ap = ak(a)Ap.
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Furthermore, if a1, . . . , ar is a filter-regular sequence, then ak is not a zero divisor in

A/ak−1(a). Otherwise ak would belong to an associated prime p of ak−1(a), and therefore

ak/1 would be a zero divisor in Ap/ak−1(a)Ap. Since I 6⊂ p by construction,

Ap/ak−1(a)Ap = Ap/(a1, . . . , ak−1)Ap

and a1/1, . . . , ak/1 would not form an Ap-regular sequence, contradicting filter-regularity.

(2) Through dealing with subvarieties together with coefficients, cycle calculus is a

geometric tool by means of which—on a par with the ideal-theoretic approach—one

can describe intersections of algebraic or analytic sets. Although the intuitive geometric

notion of a cycle (called a virtual variety) had been introduced in algebraic geometry

by Severi, who had also initiated the theory of rational and algebraic equivalence of

cycles, it was Weil [63] who first gave a systematic exposition of the subject in a precise

algebraic language. In the theory of proper intersections, the reduction theorem together

with the additivity and associativity formulae (see Chapter I) make it possible to work

interchangeably with effective divisors and their intersection cycles, or with their ideals,

provided that those effective divisors form a regular sequence (locally, in the vicinity of

an irreducible proper component of the intersection). In the next section, we apply this

fact to calculate the result of the intersection algorithm.

3. Deformation to the normal cone in analytic geometry. We begin with recalling

the notions of analytic and projective cones. Consider an analytic space X and a coherent

ideal sheaf I on X × C
r+1
t with r ≥ 0. For any λ ∈ C, λ 6= 0, the mapping

φλ : C
r+1
t ∋ t 7→ λt ∈ C

r+1
t

determines a biholomorphism

φλ : X × C
r+1
t → X × C

r+1
t .

We say that the ideal sheaf I is homogeneous with respect to the affine space C
r+1
t (or

with respect to the variables t) if it satisfies the following homogeneity condition:

φ∗λI = I for all λ 6= 0.
The following proposition is due to Cartan [8]:

A coherent ideal sheaf I on X × C
r+1
t is homogeneous with respect to the variables

t iff each point P ∈ X has a neighbourhood U such that I is generated in U × C
r+1
t

by a finite number of global holomorphic functions in U × C
r+1
t which are homogeneous

polynomials (forms) with respect to the coordinates t.

The analytic subspace C of X ×C
r+1
t determined by the homogeneous ideal sheaf I,

together with the canonical projection p : C → X, will be called an analytic cone over

X. The space X will be called the vertex space of the cone C.

For every point P ∈ X, the ideal
IP := I(P,0) ∩ OX,P [t]

(where OX,P is the stalk at P of the structure sheaf OX) is a homogeneous ideal in the
polynomial ring OX,P [t] which generates the stalk I(P,0) at (P, 0) of the homogeneous
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ideal sheaf I. We call the quotient ring OX,P [t]/IP the graded ring of the analytic cone
C at P .

The stalks

KP := I(P,0) ∩OX,P = IP ∩ OX,P
form a coherent ideal sheaf K on X; let W be the analytic subspace of X determined by
K. Then there is a factorization

C →W →֒ X

of the canonical projection p, and W is embeddable into C:

W ∼=W × {0} →֒ C;

we call W →֒ C the zero-section embedding of the cone C.

Let X be an analytic space. Every homogeneous coherent ideal sheaf I on X ×C
r+1
t

induces, by projectivization, a coherent ideal sheaf on X × Pr. In this manner we obtain

a correspondence between the analytic cones C in X ×C
r+1
t , and the analytic subspaces

of X × Pr, called projective cones on X; the projective cone that corresponds to a cone

C will be denoted by P(C).

Conversely, let G := Cr+1 \ {0} (r ≥ 0) and
̺ : X ×G→ X × Pr

be the canonical mapping. Then, for any coherent ideal sheaf J on X × Pr, ̺
∗J is a

coherent ideal sheaf on X ×G which satisfies the homogeneity condition. A relative, i.e.
parameter-dependent, version of Chow’s theorem (cf. [14]) says that every coherent ideal

sheaf I on X × G which satisfies the homogeneity condition extends to a homogeneous
ideal sheaf on X × C

r+1
t .

Let X be an analytic space, and I be a coherent ideal sheaf on X × C
r+1
t which

is homogeneous with respect to the variables t. Consider a homogeneous primary de-

composition of I (cf. [53]). Then the saturation I is the intersection of those primary
homogeneous ideal sheaves whose associated subvarieties are not contained in X × {0}.
The saturation I can also be expressed in terms of gap sheaves:

I = I[X × {0}],
where I[X ×{0}] denotes the gap sheaf of I with respect to the analytic subset X ×{0}
in X × C

r+1.

Let C be the analytic cone on X determined by I. Geometrically speaking, the sat-
uration I corresponds to the closure (cf. [14]) of the analytic space C ∩ (X × G) in
X × C

r+1
t .

We call a homogeneous ideal sheaf I on X × C
r+1
t saturated if I = I. Clearly, two

homogeneous ideal sheaves I1 and I2 induce the same ideal sheaf on X×Pr iff they have

the same saturation. We say that an analytic cone C on X is relevant if it is determined

by a saturated homogeneous ideal sheaf.

The saturation I can also be described by means of the graded rings of the cone X
at the points of X. For any point P ∈ X, the ideal

IP := I(P,0) ∩ OX,P [t]
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is a homogeneous ideal in the polynomial ring OX,P [t]; its saturation is the homogeneous
ideal

IP := {g(z, t) ∈ OX,P [t] : tαg(z, t) ∈ IP for |α| ≫ 0}.
It is easy to check that the family of homogeneous ideals IP determines the saturation I
of the homogeneous ideal sheaf I.
For any coherent ideal sheaf J on X × Pr, the pull-back

I := ̺∗J
is a coherent ideal sheaf onX×G which satisfies the homogeneity condition and extends—
by Chow’s theorem with parameter—to a unique saturated homogeneous ideal sheaf Ĩ
on X × C

r+1
t . Clearly, Ĩ coincides with the saturation of every homogeneous extension

of I.
Every homogeneous extension of I determines, by projectivization, the initial ideal

sheaf J . Summing up, in geometric language, there is a one-to-one correspondence be-
tween the relevant analytic cones on X and the projective cones on X such that an

analytic cone C corresponds to its projectivization P(C). Conversely, the analytic cone

which corresponds to the projective cone P(C) is the unique relevant extension of the

analytic space

̺−1(P(C)) ⊂ X ×G.
Notice that ̺−1(P(C)) = C \(X×{0}) (here the symbol ̺−1 stands for the inverse image
space operation) as the holomorphic mapping ̺ is flat.

We now recall the notion of a blowing-up of an analytic space. Consider an analytic

subspace X of an analytic space Y given by a coherent ideal sheaf K in the structure
sheaf O of Y . For any P ∈ Y , take a finite number of germs f(z) = (f0(z), . . . , fr(z))
that generate the stalk KP . Let

IP ⊂ OP [t] (where t = (t0, . . . , tr))
be the ideal generated by those forms F (z, t) ∈ OP [t] for which F (z, f(z)) = 0, and
GP be the graded quotient ring OP [t]/IP . This definition of GP does not depend (up to
isomorphism) on the choice of the generators of KP because of the canonical isomorphism
of graded rings

GP ∼=
∞⊕

n=0

KnP .

We may assume that the germs fi(z) (i = 0, 1, . . . , r) are represented locally in a

neighbourhood U by holomorphic functions which generate every stalk KP with P ∈ U .
The family of homogeneous ideals IP ⊂ OP [t] with P ∈ U generates an ideal sheaf I
on the product U ×C

r+1
t , which turns out to be coherent and homogeneous. Indeed, we

may assume that U is a semianalytic compact Stein subset of Y . According to Frisch’s

theorem [15], the ring O(U) of sections of the structure sheaf O over U is noetherian.
Therefore the homogeneous ideal generated by those forms F (z, t) ∈ O(U)[t] for which
F (z, f(z)) = 0 is generated by a finite number of forms Fi(z, t). Hence by Cartan’s

Theorem A, the forms Fi(z, t) generate the ideal sheaf I, which is the desired result.
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We have thus constructed an analytic cone

C(X ∩ U,U) ⊂ U × C
r+1
t ,

and a projective cone

BlX∩UU ⊂ U × Pr.

Since the graded rings GP are independent of the choice of the generators of the ideal

sheaf K near P , one can easily deduce that such local constructions can be glued together
to form analytic spaces C(X,Y ) and BlXY ; the former is an analytic cone and the latter

is a projective cone. We have the canonical holomorphic mappings

p : C(X,Y )→ Y and π : BlXY → Y ;

locally, they are the restrictions of the projections

p : U × C
r+1
t → U and π : U × Pr → U,

respectively. The pair (BlXY, π : BlXY → Y ) will be called the blow-up of the analytic

space Y along X (or with center X). The inverse image π−1(X) is a Cartier divisor on

BlXY , called the exceptional divisor of the blow-up BlXY .

Remarks. (1) The blow-up π : BlXY → Y is an isomorphism away from X. Under the

notation of the above local construction, if P 6∈ X whence obviously
fk(P ) 6= 0 for some k = 0, 1, . . . , r,

then in a neighbourhood U of P we have the inclusion

BlX∩UU ⊂ U × Uk,
and BlX∩UU is isomorphic to the graph of the holomorphic mapping

(f0(z)/fk(z), . . . , fk−1(z)/fk(z), 1, fk+1(z)/fk(z), . . . , fr(z)/fk(z)).

(2) If the analytic subspace X is nowhere dense in Y , then the restriction of the

blow-up π : BlXY → Y to each irreducible component is a holomorphic mapping onto

an irreducible component of Y which is a biholomorphism over the complement of X.

Thus the blow-up BlXY is a purely dimensional analytic space whenever so is Y .

(3) The blow-up BlXY of an analytic space Y along a Cartier divisor X may be

canonically identified with Y , because the graded rings of the blow-up at the points P of

Y are isomorphic to the polynomial rings OP [t] in one variable t.
Blowing-ups can be characterized by the following universal property.

Let X be an analytic subspace of an analytic space Y . For every holomorphic map-

ping φ : Z → Y of analytic spaces such that φ−1(X) is a Cartier divisor on Z, there

exists a unique holomorphic mapping ψ : Z → BlXY which makes the following diagram

commutative:

Z BlXY

Y

ψ
//

φ

?????
��

π

||xxxxxxx
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We now proceed to define normal cones. Consider a subspace X of an analytic space

Y , and the analytic cone p : C(X,Y ) → Y defined before; let CXY := p−1(X). The

normal cone to X in the analytic space Y is the analytic cone

p : CXY → X.

Clearly, the graded ring of CXY at P ∈ X is
∞⊕

n=0

KnP /Kn+1P ,

where K is the ideal sheaf of the analytic subspace X in Y . The normal cone CXY
induces the exceptional divisor of the blow-up BlXY (which is a projective cone on X).

This definition will be clarified from the viewpoint of deformation theory (cf. [16]).

Let Ỹ and Y be the blow-ups of Y and Y × P1 along X and X × {∞}, respectively;
let

π : Y → Y × P1 and ̺ : Y → P1

be the canonical projections. It is easy to check that Ỹ can be canonically embedded as

a closed analytic subspace of Y , and that the blow-up of X×P1 along the Cartier divisor

X × {∞}, which may be identified with X × P1, is canonically embeddable into Y . Let
C := CXY be the normal cone to X in Y . It is clear that the normal cone

CX×{∞}(Y × P1)

is canonically isomorphic to C ⊕ 1. The analytic cone C may be identified with the
complement to P(C) in P(C ⊕ 1).
The blow-up Y is isomorphic away from λ = ∞ to the graph of the holomorphic

mapping

Y × P1 ∋ (z; 1/λ : 1) 7→ (λf1(z), . . . , λfr(z)) ∈ C
r,

and hence

̺−1(C) = ̺−1(P1 \ {∞}) ∼= Y × C.

In particular, the fibre Yλ of Y over λ 6=∞ is the graph of the holomorphic mapping
Y ∋ z 7→ (λf1(z), . . . , λfr(z)).

Summing up, we have constructed an analytic space Y together with a closed embedding
ι of X × P1 into Y , and a holomorphic mapping ̺ : Y → P1 such that the diagram

X × P1 Y

P1

ι //

pr

GGGGGGG
##

̺
��~~~~~~

is commutative and:

• over C = P1\{∞}, ̺−1(C) ∼= Y ×C and the embedding ι is, under this identification,

the trivial embedding X × C →֒ Y × C;

• the fibre Y∞ of the projection ̺ over ∞ is the sum of two effective Cartier divisors:
Y∞ = P(C ⊕ 1) + Ỹ ;
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the embedding ι∞ of X = X × {∞} into Y∞ is the zero-section embedding of X
into C followed by the canonical open embedding of C into its projective completion

P(C ⊕ 1).
Therefore, putting Y◦ := Y \ Ỹ , one has a family of embeddings of X:

X × P1 Y◦

P1

ι //

pr

GGGGGGG
##

̺◦
~~}}}}}}

which deforms the given embedding of X into Y to the zero-section embedding of X

into C := CXY (the analytic cone C := CXY is identified with the complement to P(C)

in P(C ⊕ 1)). We call such an analytic family of embeddings deformation to the normal
cone; the analytic space

Y◦ = Y◦X(Y )
will be called the deformation space of Y with respect to X.

Remarks. (1) In Proposition 1, the divisors P(C ⊕ 1) and Ỹ intersect in the projective
cone P(C), which is embedded as the hyperplane at infinity in P(C ⊕ 1) and as the
exceptional divisor in Ỹ .

(2) The foregoing construction demonstrates that the normal cone CXY is of pure

dimension d whenever so is the analytic space Y .

Deformation to the normal cone is additive in the following sense:

Let Y be an analytic space and Yi its irreducible components with geometric multiplic-

ities mi. If X is a closed analytic subspace of Y , and Xi := X ∩Yi (ideal-sheaf-theoretic
intersection), then the deformation spaces Y◦i of Yi with respect to Xi are subvarieties

in the deformation space Y◦ which are the irreducible components of Y◦ with geomet-
ric multiplicities mi. Moreover , the exceptional divisor in Y◦ restricts to the exceptional
divisor in Y◦i .
Finally, one can extend by additivity the notion of a normal cone, and construct

normal cones in an analytic cycle; such a normal cone is, of course, an analytic cycle as

well. The constructions of cycles and normal cones commute provided that the analytic

space Y is of pure dimension:

With the above notation, suppose the analytic space Y is purely dimensional. Then

the analytic cycle [CXY ] induced by the normal cone CXY coincides with the analytic

cycle ∑

i

mi · [CXiYi].

This follows directly from the additivity of deformation to the normal cone and from

the well known fact concerning Cartier and Weil divisors on purely dimensional analytic

spaces:

Suppose D is an effective Cartier divisor on an analytic space Y of pure dimension

n. Let Yi be the irreducible components of Y with geometric multiplicities mi, and Di
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be the restrictions of D to Yi. Then we have the following equality of Weil divisors, i.e.

analytic (n− 1)-cycles on Y , determined by those Cartier divisors:
[D] =

∑

i

mi · [Di].

4. Deformation and the analytic intersection algorithm. We begin by elaborating

precisely the local intersection algorithm presented in Section 2. It is formulated in the

language of analytic cycles (see also [38, 39]). As before, for a cycle α near a point P on

a complex manifold M and a closed submanifold S, αS denotes the part of the cycle α

supported by S; the cycle αS consists of the cycles c · [p] (where p is a prime ideal in the

local ring of M at P , and c is an integer) occurring in α such that p contains the ideal

of the submanifold S. Given an algebraic subset V of pure dimension d in M , A denotes

the local ring of V at a point P ∈ V and I ⊂ A is the ideal of the submanifold S. In our
algebraic context, we shall assume that the testing elements a1, . . . , ar ∈ I (r = m− s is
the codimension of S in M) are filter-regular with respect ideal I; then, of course,

√√√√
r∑

k=1

akA =
√
I and ar(a) = A.

We define two families of cycles by the recursive formula

α−1 = [0] = [V ], a0 = 0,

̺k(a) = (αk−1(a) · [ak])S , αk(a) = αk−1(a) · [ak]− ̺k(a).
Notice that all the above intersections of cycles are proper by filter-regularity; conse-

quently, αk(a) and ̺k(a) are (d − k)-cycles, where d = dimA is the dimension of the
analytic set V . We call ̺k(a) the result of the kth step of the intersection algorithm. In

view of the remarks from the end of Section 2,

αk−1(a) = [ak−1(a)]

and ̺k(a) is the part supported by S of the intersection of the cycle [ak−1(a)] and the

divisor [ak], because a1, . . . , ak−1 is a regular sequence in the vicinity of any prime of the

ideal (a1, . . . , ak−1) that does not contain the ideal I. Furthermore, since ak is not a zero

divisor in A/ak−1(a), ̺k(a) is the part of the cycle [ak−1(a) + akA] supported by S, and

thus

̺k(a) = [rk(a)].

Clearly,

̺k(a) = [rk(a)] =
∑
length(Ap/(ak−1(a) + akA)Ap) · [p]

where the sum is taken over all minimal primes of ak−1(a)+akA that contain I (obviously,

the height of such prime ideals p is k). We may thus conclude that under the assumption

of filter-regularity it is possible to work interchangeably with ideals and with the analytic

cycles determined by them.

By the multiplicity of the cycle ̺k we mean the number

mult ̺k(a) =
∑
length(Ap/(ak−1(a) + akA)Ap) · e(A/p).
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The total result of the intersection algorithm is the cycle

̺(a) :=
∑

k

̺k(a);

by its multiplicity mult ̺(a) we mean the sum
∑
kmult ̺k(a).

We now proceed to establish the main objective of Chapter II, namely the theorem

on deformation to the normal cone to the effect that the total result of the local intersec-

tion algorithm is invariant under deformation to the normal cone whenever the testing

elements form a superficial sequence.

We first list the algebro-geometric notation concerning the intersection algorithm:

• S is a closed submanifold of dimension s of a complex manifold M of dimension m;
• the algorithm is carried out in the vicinity of a fixed point P in S, whence we may
assume that M is the germ of Cm at P = 0:

M = C
m = C

s
u × C

r
v,

where r + s = m, u = (u1, . . . , us) and v = (v1, . . . , vr) are the coordinates in Cs

and in C
r, respectively, and

S = {(u, v) : v = 0} ⊂ C
s
u × C

r
v;

• V is the germ of an analytic set of pure dimension d at the point P = 0 ∈ Cm;

• A is the local ring of V at P and I ⊂ A is the ideal of the ideal-theoretic intersection
V ∩ S;
• we may, of course, identify the normal cone CSM to S in M with M = Cm, and

then the normal cone C := CV ∩SV to V ∩ S in V is an analytic subcone in C
m;

• the graded ring of C is G = GI(A) :=
⊕∞

n=0 I
n/In+1;

• the zero-section (vertex space) of C (which is just the ideal-theoretic intersection
V ∩ S) corresponds to the ideal G+ of elements of positive degree in G.
We investigated the general notion of normal cones in analytic spaces (regarded both

as analytic spaces and as analytic cycles) in Section 3. We recall, however, this construc-

tion in the case of the normal cone C = CV ∩SV in the analytic set V , wherefrom the

algorithm starts. Notice that in the subsequent steps of the algorithm we encounter ana-

lytic spaces which may not be reduced ones and which are to be deformed. The geometric

description of the deformation space is particularly simple in the case of analytic sets. In

order to deform the analytic set V to the normal cone C := CV ∩SV , one can define the

following analytic family of analytic sets:
⋃

t

Vt = {(u, v; 1 : t) ∈ C
m × P1 : (u, v/t) ∈ V }

parametrized by t ∈ C \ {0}; the deformation space V for V is the closure of the above
family in Cm×P1. From the geometric viewpoint, the normal cone to V ∩{v = 0} = V ∩S
in V may be identified with the fibre V∞ over ∞ ∈ P1. It should be emphasized that the

spaces Vt ∩ S do not vary and coincide with the zero-section (vertex space) V ∩ S of the
normal cone. Moreover, all the fibres Vt for t ∈ C, t 6= 0, are isomorphic to V .
Next consider an analytic subset W of V near P ; let a ⊂ A be its ideal. We can

construct the deformation space W for W in the same manner as for V . Then W ⊂ V
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and the normal cone W∞ to W ∩ S in W is a subcone of V∞ determined by the leading
ideal

GI(a, A) =

∞⊕

n=0

(a ∩ In + In+1)/In+1 ⊂ G

of the ideal a. The quotient ring

G/GI(a, A) =

∞⊕

n=0

In/(a ∩ In + In+1)

coincides, of course, with the associated graded ring GI(A/a) of the quotient ring A/a.

Remark. With the above notation, if the analytic germ W is of pure dimension k, so is

the normal cone W∞ to W ∩ S in W (see Sect. 3).
The notion of normal cone can be defined in the same manner for an analytic subspace

W of V near P (it means that the ideal a ⊂ A of W may not be radical). One may

consider the above normal cones also as analytic cycles [W∞] on the cone V∞ (from the
ideal-theoretic point of view they are determined by the ideals GI(a, A) of the graded

ring G). Therefore one can extend, by additivity, the above definitions and construct the

normal cone in an analytic cycle.

The constructions of cycles and normal cones commute (see Sect. 3) provided that

the analytic subspace W is of pure dimension (i.e. all minimal primes of its ideal a are

of the same height). A remarkable advantage of using the theory of positive analytic

cycles is that we get at our disposal a dynamic concept of convergence for which proper

intersection is a continuous operation (see Chapt. I).

The convergence of cycles is a notion of local character. With the previous notation,

the family of cycles [Wt] converges to the cycle [W∞] determined by the normal cone.
In what follows, we shall say that [W∞] or [GI(a, A)] are the limit cycles for [W ] or [a],
respectively.

We can now pass to the main theorem of this chapter (see also [38, 39]), which is a

geometric counterpart of Theorem 3.3 from [3].

Theorem on Deformation to the Normal Cone. Under the notation of the in-

tersection algorithm, consider a superficial sequence of elements a1, . . . , ar ∈ I \ I2 of
order one with respect to the ideal I. Then the results ̺(a) and ̺(a∗) of the intersection

algorithm for a1, . . . , ar ∈ I and for their initial forms a∗1, . . . , a∗r ∈ G+, coincide.
Proof. First observe that the initial forms a∗1, . . . , a

∗
r in the associated graded ring G =

GI(A) are also filter-regular with respect to the ideal G
+ (Sect. 1, Prop. 5), and thus one

can perform the intersection algorithm for both sequences. We show by induction on k

that the results ̺k(a) and ̺k(a
∗) coincide, and that αk(a

∗) is the limit cycle for αk(a).

For k = 0 this follows from the fact that no component of the limit cycle for α0(a) lies

on S = {v = 0} ⊂M = Cm; its proof is straightforward. Now, assuming the assertion to

hold for k−1, we prove it for k. By continuity of proper intersections of positive analytic
cycles, the cycle

αk−1(a
∗) · [a∗k] = αk(a∗) + ̺k(a∗)
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is the limit cycle for

αk−1(a) · [ak] = αk(a) + ̺k(a).
Therefore every minimal prime ideal p of rk(a) in A corresponds to a minimal prime ideal

p∗ of rk(a
∗) in G via the equality

p/I = p∗/G+ = p∗ ∩G0.
Moreover, we have the converse correspondence. For if p∗ is a minimal prime ideal of

rk(a
∗) and p is the ideal in A described by the above equality, then p is a minimal prime

ideal of rk(a). Indeed, by induction hypothesis, the limit cycle [G(ak−1(a), A)] equals

αk−1(a
∗) = [ak−1(a

∗)], whence p∗ contains the homogeneous ideal G(ak−1(a), A), and

thus

(ak−1(a) + I)/I ⊂ p∗ ∩G0 = p/I.

Consequently, ak−1(a) + I ⊂ p, and a fortiori ak−1(a) + akA ⊂ p. Since dimA/p =

dimG/p∗ = dimA− k, the cycle [p] occurs in ̺k(a), as asserted.
Further, the ideals ak−1(a

∗) and GI(ak−1(a), A) have the same minimal primes, be-

cause [G(ak−1(a), A)] = [ak−1(a
∗)] by induction hypothesis. Hence

a∗k 6∈ GI(ak−1(a), A) or a∗k 6∈ (ak−1(a) + I2)/I2,
and thus the class of ak in A/ak−1(a) is an element of order one with respect to the image

of I. Therefore the initial form of the class of ak in A/ak−1(a) is determined by a
∗
k.

For any minimal prime p of the ideal rk(a), we have the following canonical isomor-

phisms:

Gp∗
∼= G⊗A Ap

∼= GIAp
(Ap) and G(ak−1(a), A)Gp∗

∼= GIAp
(ak−1(a)Ap, Ap).

Since p∗ contains a minimal prime of GI(ak−1(a), A), one can deduce, by repeating

mutatis mutandis the above reasoning for the above localizations, that the class of ak in

Ap/ak−1(a)Ap is also an element of order one with respect to the image of I. In particular,

the initial form of the class of ak in Ap/ak−1(a)Ap is again determined by a
∗
k.

Now it can be easily checked by induction on i that

(a∗1, . . . , a
∗
i ) :G 〈G+〉 = GI(ai(a), A) :G 〈G+〉 = GI((a1, . . . , ai), A) :G 〈G+〉

or, equivalently, that all the homogeneous ideals

GI((a1, . . . , ai), A), (a
∗
1, . . . , a

∗
i ), and GI(ai(a), A)

coincide in large degrees (compare Cor. 2 to Prop. 4 of Sect. 1), and hence they have

the saturation ai(a
∗) in common. Both the homogeneous ideals GI(ai(a), A) and ai(a

∗)

therefore have the same associated primes that do not contain G+. The class of ak in

A/ak−1(a) is thus a superficial element with respect to the image of I. In view of the fore-

going canonical isomorphisms, one can again deduce that the class of ak in Ap/ak−1(a)Ap

is a superficial element with respect to the image of I.

We use the above fact to conclude that the coefficients of the cycles ̺k(a) and ̺k(a
∗)

at p and p∗, respectively, are equal. We must show that

e(akAp/ak−1(a)Ap) = e(a
∗
kGp∗/ak−1(a

∗)Gp∗).
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It follows from Samuel’s lemma (cf. Sect. 2) that the coefficients to be compared are

e(I ·Ap/ak−1(a)Ap) and e(G+ ·Gp∗/ak−1(a
∗)Gp∗).

But [G(ak−1(a), A)] = [ak−1(a
∗)] by induction hypothesis, and hence

e(G+ ·Gp∗/ak−1(a
∗)Gp∗) = e(G

+ ·Gp∗/G(ak−1(a), A)Gp∗)

= e(G+ ·GIAp
(Ap)/GIAp

(ak−1(a)Ap, Ap)

= e(I ·Ap/ak−1(a)Ap)

(the first equality can be derived from the equality of the cycles by means of the additivity

formula), which is the desired conclusion.

We have thus proved that ̺k(a
∗) = ̺k(a), which also implies that [GI(ak(a), A)]

S = 0,

because the limit cycle [GI(ak(a), A)] for [ak(a)] cannot contribute to the cycle ̺k(a
∗).

Therefore [ak(a
∗)] is the limit cycle for [ak(a)]:

[ak(a
∗)] = [GI(ak(a), A)],

which completes the proof of the theorem.

We present in Chapter III some refinements and applications of the foregoing method

of deformation to the normal cone, which are important for the theory of improper

intersections in complex analytic geometry.

III. Generalized index and intersection cycles

1. Deformation to an algebraic bicone. In this section we present a method of

deforming an analytic space to an algebraic bicone (see also [38, 40]). The basic idea is

deformation to the normal cone (see Sects. 3 and 4 of Chapt. II) and the continuity of

intersections for limit cycles. Such a deformation to the normal cone applied twice makes

it possible to reduce the problem of analytic improper intersections to that of an algebraic

bicone intersecting linear hyperplanes.

We adopt the notation introduced in Section 4 of Chapter II, where we deformed the

analytic set V to the normal cone C := CV ∩SV :

• S := {(u, v) ∈ C
s
u×C

r
v : v = 0} is in the vicinity of the point P = 0 an s-dimensional

affine subspace in M := Cm = Csu × Crv (m = s+ r);

• V is the germ of an analytic set of pure dimension d at P = 0 ∈ C
m;

• A is the local ring of V at P , m ⊂ A is the maximal ideal of A, and I ⊂ A is the

ideal of the ideal-theoretic intersection V ∩ S;
• the graded ring of the cone C is G = GI(A) :=

⊕∞
n=0 I

n/In+1;

• the zero-section (vertex space) of C (which is just the ideal-theoretic intersection
V ∩ S) corresponds to the ideal G+ of elements of positive degree in G.

We shall now deform the cone C to the normal cone B to the fibre of C over the point

P of the vertex space. In geometric terms of the ambient manifold M = Cm, we may

describe the procedure as before in Section 4 of Chapter II, but with the coordinates u
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and v interchanged. In other words, the deformation space is now the closure in Cm×P1

of the following family of analytic sets parametrized by t ∈ C \ {0}:
⋃

t

Ct = {(u, v; 1 : t) ∈ C
m × P1 : (u/t, v) ∈ C}.

The graded ring B of B is the associated graded module of the A-module G with

respect to the maximal ideal m of A. Clearly, B has the structure of a bigraded ring

B =
⊕∞

i,j=0Bij where

Bij = G
i
m(G

j
I(A)) = (m

iIj + Ij+1)/(mi+1Ij + Ij+1).

The bigraded ring B is also the associated graded ring of G with respect to the homoge-

neous maximal ideal

M = mG0 ⊕G+

corresponding to the point P . Indeed,

Mn = mnG0 ⊕mn−1G1 ⊕ . . .⊕mGn−1 ⊕G≥n

whence

Mn/Mn+1 ∼= (mn/mn+1)G0 ⊕ (mn−1/mn)G1 ⊕ . . .⊕ (Gn/mGn) ∼=
⊕

i+j=n

Bij .

Accordingly, the cone B is an algebraic cone in Cm, namely the tangent cone to C at the

point P . The above observations can also be easily deduced by analysing the deformation

space. We can thus conclude that the tangent cone to C at P , which is obviously an

algebraic cone in Cm, has the structure of a bicone and coincides with B.

We still need a proposition which is similar to Proposition 3 from Section 1 of Chap-

ter II.

Proposition. With the above notation, take an element a ∈ I and suppose that its

canonical image a in B01 = I/mI is a filter-regular element with respect to B01. Then a

is a superficial element of order one with respect to the ideal I.

We have to show that a∗ is filter-regular with respect to G+, where a∗ denotes the

initial form of a in the associated graded ring G (see Sect. 1 of Chapt. II). In other words,

we are to show that

(0 : a∗) ∩G≥n = 0 whenever (0 : a) ∩
⊕

i≥0, j≥n

Bij = 0.

So pick x ∈ G≥n such that a∗x = 0. Then, by our assumption, the image of x in
⊕

j≥n

B0j = A/m⊗G≥n

must be 0. Hence x ∈ mG≥n, and thus we may consider the image of x in
⊕

j≥n

B1j = m/m2 ⊗G≥n.
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Again by our assumption, this image is zero, whence x ∈ m2G≥n. Proceeding by induction

we conclude that

x ∈
∞⋂

i=0

miG≥n = 0

(by the Krull intersection theorem), which completes the proof.

One immediately obtains the following

Corollary. If a1, . . . , ar ∈ I are elements whose canonical images in B01 = I/mI

are a filter-regular sequence with respect to B01, then they are a superficial sequence of

elements of order one with respect to the ideal I.

We are now in a position to prove the main result of the section (see also [38, 40]),

which is a geometric counterpart of Theorem 4.1 from [3].

Theorem on Deformation to an Algebraic Bicone. Under the notation of the in-

tersection algorithm, assume that the canonical images a1, . . . , ar ∈ B01 of a1, . . . , ar ∈ I
in B01 = I/mI form a filter-regular sequence with respect to B01. By the above corollary ,

a1, . . . , ar is a superficial sequence of elements of order one with respect to I. Then the

multiplicities of the results of the intersection algorithm for the sequences a, a∗ and a

coincide:

mult ̺k(a) = mult ̺k(a
∗) = mult ̺k(a) for k = 0, 1, . . . , r.

Proof. First notice that the assumption ak 6= 0 in B01 = I/mI or, equivalently, ak ∈
I \ mI, means in terms of the ambient manifold M = Cm that the representatives of

the elements ak on M have non-trivial linear parts in the variables v. In the analytic

intersection algorithm, the intersections with [ak] are therefore the hyperplane sections

determined by those linear parts.

We prove by induction on k that ̺k(a), αk(a) are the limit cycles for ̺k(a
∗), αk(a

∗),

respectively, and that

mult ̺k(a) = mult ̺k(a
∗), multαk(a) = multαk(a

∗).

According to the theorem on deformation to the normal cone, this will complete the

proof. We shall need an elementary

Lemma. Let C be an irreducible analytic germ at P = 0 ∈ Cm = Csu × Crv which is a

cone with respect to the variables v. If C is not contained in S := {(u, v) ∈ Cm : v = 0},
then no irreducible component Z of the tangent cone to C at P is contained in S.

Indeed, each (u0, v0) ∈ Z is the limit of a sequence (tnun, tnvn) where (un, vn) ∈ C
and tn tends to ∞. For generic (u0, v0), we have vn 6= 0 for n ≫ 0 because C is not
contained in S. Since C is a cone with respect to the variables v, we may, of course,

assume that ‖un‖ = ‖vn‖. Consequently, taking a subsequence if necessary, we see that
some line {(u0, λv) : λ ∈ C} with v 6= 0 lies on Z, as asserted.

We can now return to our inductive assertion. The case k = 0 follows directly from

the above lemma, because B coincides with the tangent cone to C at P . Now, assuming
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the assertion to hold for k− 1, we prove it for k. By continuity of proper intersections of
positive analytic cycles,

αk−1(a) · [ak] = αk(a) + ̺k(a)
is the limit cycle for

αk−1(a
∗) · [a∗k] = αk(a∗) + ̺k(a∗).

Hence by the lemma, one can easily deduce that both αk(a) and ̺k(a) are the limit cycles

for αk(a
∗) and ̺k(a

∗), respectively.

As the multiplicity at a fixed point cannot decrease for limit cycles, we get

multαk(a) ≥ multαk(a∗) and mult ̺k(a) ≥ mult ̺k(a∗).
On the other hand, we have

multαk−1(a
∗) · [a∗k] ≥ multαk−1(a∗) and multαk−1(a) · [ak] = multαk−1(a)

because αk−1(a) is a cone with vertex at P and [ak] is a hyperplane section (apply

Bezout’s theorem). Combining the above inequalities, we conclude that

multαk(a) = multαk(a
∗) and mult ̺k(a) = mult ̺k(a

∗),

which completes the proof.

As an immediate consequence we obtain

Corollary. With the assumptions of the preceding theorem, the multiplicities of the

total results of the intersection algorithm for the sequences a and a coincide:

mult ̺(a) = mult ̺(a).

The next section gives many further consequences of the theorem, which are important

for the theory of improper intersections in complex analytic geometry.

2. Applications to the theory of improper intersections. Using the analytic inter-

section algorithm, P. Tworzewski defined pointwise some indices that form the so-called

generalized intersection index and intersection multiplicity (which is the sum of those in-

dices) of an analytic subset with a submanifold. The classical diagonal procedure makes

it possible to extend the notion of intersection multiplicity to arbitrary analytic subsets

of a complex manifold. He next proved that this pointwise defined intersection multi-

plicity is a constructible function in the analytic Zariski topology, whereon is based his

construction of an intersection cycle of two analytic cycles that meet improperly. The

above constructions turned out to be intrinsic (i.e. independent of the ambient manifold;

cf. Rams [42]) and bi-additive.

On the other hand, Achilles and Manaresi [3] investigated a local counterpart of the

Stückrad–Vogel algorithm for any collection of elements of a local ring A that forms a

filter-regular sequence with respect to a given ideal I of A. They combined the method

of deformation to the normal cone, valid whenever this collection forms a superficial se-

quence with respect to I (the notion of superficiality being introduced by Samuel [45],

Chapt. II; see also [65], Chapt. VIII) with a variant of the Hilbert polynomial for a

bigraded ring (elaborated by van der Waerden [61]), and introduced a multiplicity se-

quence of that bigraded ring, which corresponds to the bidegree sequence defined by
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van der Waerden [62] for biprojective sets. They also posed the problem whether, in the

analytic case, the intersection indices coincide with their multiplicity sequence (called

generalized Samuel multiplicities). Here we provide an affirmative answer (first given in

[38, 40]). Furthermore, in the corollary to the linear testing theorem (Proposition 5), we

relate the generalized intersection index to the so-called Segre numbers, introduced in-

ductively by Gaffney–Gassler [19] by means of the sequences of polar varieties and Segre

cycles (cf. [4]).

First we express the generalized index for improper intersections as the bidegree se-

quence of a certain algebraic bicone, and the intersection multiplicity at a point P as the

Samuel multiplicity at P of the normal cone. We prove that the generalized intersection

index is realized by a collection of smooth divisors provided that their equations (testing

elements in the ring A) satisfy certain conditions of filter-regularity, which turn out to be

of linear character: the first derivatives of the equations of each successive divisor should

avoid a finite union of proper linear subspaces (depending on the previous divisors of the

collection).

Let us recall that the bidegree sequence of an algebraic bicone can be expressed by the

leading coefficients of the Hilbert polynomial of its associated bigraded ring (cf. [61, 62,

3]), by analogy to the way the degree of a cone can be expressed by the leading coefficient

of the Hilbert polynomial of its associated graded ring. These formulae are more effective

(both in the sense of pure mathematics and the more so of computer algebra) than the

original definition of intersection multiplicity by Tworzewski [57].

In what follows, we shall derive many consequences for the theory of improper inter-

sections in complex analytic geometry (see also [38, 40]), such as for instance:

• the coincidence between the intersection indices for analytic improper intersections
by Tworzewski [57], those defined for an ideal I in the local algebraic case by

Achilles–Manaresi [3] (generalized Samuel multiplicities) and the Segre numbers for

an ideal I by Gaffney–Gassler [19];

• the intrinsic and additive character of the generalized intersection index (Proposi-
tion 3);

• the upper semicontinuity (not merely constructibility) in the analytic Zariski topol-
ogy of the multiplicity function (Proposition 4);

• the linear testing theorem (Proposition 5);
• a generalization of the classical reduction theorem to the case of analytic improper
intersections which ensures the canonical character of the diagonal procedure (stated

and proved in the next section);

• a version of Bezout’s theorem for improper intersections of algebraic cones (stated
and proved in the next section).

We now return to the notion of the bidegree sequence of an algebraic bicone. The

bicone B has several bidegrees gk,d−k defined as follows (see e.g. [38, 40]):

gk,d−k is the number of intersection points (counted with multiplicities) of B (or of

the algebraic cycle [B] induced by B) with k generic hyperplanes in the variables v and

d− k generic hyperplanes in the variables u.
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The bicone B in Csu ×Crv determines a biprojective cycle [B
′] on Ps−1 × Pr−1, which

has several bidegrees g′k,d−k−2, defined similarly to gk,d−k (cf. [61, 62]). They can be

expressed as the leading coefficients of the Hilbert polynomial of the associated bigraded

ring (cf. [61, 3]). Consider the Chow ring

Z[σ, τ ]/(σs, τ r) of Ps−1 × Pr−1

(here σ and τ are the classes modulo rational equivalence of hyperplanes in projective

spaces Ps−1 and Pr−1, respectively). The bidegrees g
′
k,d−k−2 coincide with the coefficients

of the class of the biprojective cycle [B′] in the Chow ring:

[B′] =
∑

k

g′k,d−k−2 · σs−k−1τ r−d+k+1.

Remark. The purely algebraic theory of bidegrees of bihomogeneous ideals was initiated

by Lasker [27], and then developed by van der Waerden [61]. They elaborated a variant

of the Hilbert polynomial for a bigraded ring. Next Samuel [45] based his algebraic inter-

section theory on the construction of associated graded rings (which corresponds to that

of normal cones) and on a variant of the Hilbert polynomial, called the Hilbert–Samuel

polynomial. The importance of the Hilbert polynomials for geometry lies in the fact that

they make it possible to establish a relation between the degree of an algebraic vari-

ety, both in projective and biprojective spaces, and the degree of the intersection of this

variety with divisors (a generalization of Bezout’s theorem).

Clearly, we have gk,d−k = g
′
k−1,d−k−1. Since the results of the intersection algorithm

̺k(a) ⊂ S = {(u, v) : v = 0} ⊂ C
m = C

s
u × C

r
v

are the cycles of cones with respect to the variables u, cut out of the bicone B by the linear

equations in the variables v that determine the elements ai, the multiplicities mult ̺k(a)

are independent of filter-regular sequences a1, . . . , ar and we have

mult ̺k(a) = gk,d−k for k = 0, . . . , r, k ≤ d,
and

̺k(a) = 0 for k > d.

Notice that the definition of the bicones α0(a) and ̺0(a) does not involve the sequence

ai at all. It follows from the classical Bezout theorem that

multαk(a) = mult(αk(a) · [ak+1]) = multαk+1(a) + mult ̺k+1(a)
for all k = −1, 0, 1, . . . , r − 1. Since αr(a) = 0, we get

degB = multα−1(a) =
r∑

k=0

mult ̺k(a) =
r∑

k=0

gk,d−k

(obviously, in the above sum of bidegrees only the terms gk,d−k with d− k ≥ 0 are to be
retained). Summing up, we obtain

Proposition 1. If the canonical images a1, . . . , ar ∈ B01 of a1, . . . , ar ∈ I in B01 =

I/mI are a filter-regular sequence with respect to B01, then the multiplicities mult ̺k(a)

(k = 0, 1, . . . , r) do not depend on the elements ai, and coincide with the bidegree se-

quence of the bicone B. Furthermore, the multiplicity mult ̺(a) of the total result of the



Improper intersections 49

intersection algorithm equals the multiplicity at P of both the algebraic bicone B and the

normal cone C.

The double deformation we presented in Section 1 may be regarded as a kind of

linearization procedure. Indeed, under a certain algebraic condition of filter-regularity, it

allows us to reduce the analytic intersection algorithm for a collection H = (H1, . . . , Hr)

of smooth divisors near P , to the case of an algebraic bicone B intersecting a collection of

linear hyperplanes, namely, the tangent hyperplanes TPHk (k = 1, . . . , r). Now we wish

to emphasize that those algebraic conditions on H are also of linear character; they are
in fact linear conditions on the tangent spaces TPHk or, equivalently, linear conditions

on the first derivatives of the equations for the smooth divisors Hk. We now indicate this

more precisely.

We take the previous notation:

M = C
m = C

s
u × C

r
v, S = {(u, v) : v = 0} ⊂ C

s
u × C

r
v

and V is the germ of an analytic set of pure dimension d at P = 0 ∈ Cm. The assumption

of filter-regularity from the theorem on deformation to an algebraic bicone means in terms

of the ambient manifold M = Cm that the local equations fk(u, v) of Hk near P = 0 are

of the form

fk(u, v) =

r∑

i=1

ckivi +

r∑

i=1

vigki(u, v),

where gki(u, v) are analytic functions at zero of order ≥ 1, and for each k not all co-
efficients cki (i = 1, . . . , r) vanish. Then the equations f

∗
k (u, v) of Hk after the first

deformation are

f∗k (u, v) =
r∑

i=1

ckivi +
r∑

i=1

vigki(u, 0).

Similarly, the equations fk(u, v) of Hk after the first deformation are

fk(u, v) =

r∑

i=1

ckivi.

Therefore, our conditions of filter-regularity mean that, for each k, the equation fk(u, v) =∑r
i=1 ckivi should avoid a finite number of prime ideals in the ring of convergent power

series in u, v which do not contain the ideal (v1, . . . , vr); the prime ideals to be avoided

depend, however, on the divisors H1, . . . , Hk−1 chosen before. But the traces of those

prime ideals on the C-vector space of linear forms in v form a finite union of proper linear

subspaces. We thus arrive at a finite number of linear conditions on the first derivatives

cki = ∂fk/∂vi(P ); namely, at a successive kth step of the intersection algorithm, the

partial derivatives ck,i (i = 1, . . . , r) should avoid a finite union of proper linear subspaces

in Crc with c = (c1, . . . , cr).

The next proposition expresses the generalized index and multiplicity for an improper

analytic intersection in algebraic terms of the degrees of the algebraic cones arising in

the deformation process from Section 1.
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Proposition 2. The generalized index for the intersection of the analytic set V with

the submanifold S at the point P coincides with the bidegree sequence of the bicone B,

and the intersection multiplicity coincides with the multiplicity at P of both the algebraic

bicone B and the normal cone C.

To prove Proposition 2, we have to show that the bidegree sequence of B is equal to the

minimum (with respect to the lexicographical ordering) of the extended multiplicities of

the total results of the intersection algorithm for admissible collections of smooth divisors.

So consider an admissible collection H1, . . . , Hr which realizes this minimum multiplic-

ity. Since the conditions imposed on divisors in Proposition 1 are of linear character (as

described above), one can find r sequences of hypersurfaces H
(n)
k (n ∈ N, k = 1, . . . , r)

obtained by arbitrarily small rotations of the Hk around P = 0 ∈ M = C
m, such that

their equations a
(n)
1 , . . . , a

(n)
r ∈ I satisfy the assumptions of Proposition 1 for all n ∈ N.

Accordingly, Hk is the limit cycle of H
(n)
k as n tends to∞. Denote by αk and ̺k (k =

0, 1, . . . , r) the analytic cycles resulting from the intersection algorithm for the divisors

H1, . . . , Hr; then ̺ =
∑r

k=0 ̺k is the total result of the algorithm. From Tworzewski’s

lemma it follows by induction on k that αk and ̺k are the limit cycles of αk(a
(n)) and

̺k(a
(n)), respectively, and thus the multiplicities mult ̺k(a) form the bidegree sequence

of B.

Indeed, the case k = 0 is obvious. Assuming the assertion to hold for k−1, we prove it
for k. By continuity of proper intersections of positive analytic cycles, αk−1 ·Hk = αk+̺k
is the limit cycle of

αk−1(a
(n)) · [a(n)k ] = αk(a(n)) + ̺k(a(n)).

But

mult ̺k = mult(αk−1 ·Hk)
S ≤ mult ̺k(a(n)) = mult(αk−1(a(n)) · [a(n)k ])S

by the minimum multiplicity condition. Hence and from Tworzewski’s lemma (see [57]

and Sect. 2 of Chapt. II), our induction assertion follows immediately. The proof of

Proposition 2 is complete.

Remark. The foregoing proposition implies that the intersection indices for analytic

improper intersections defined by Tworzewski [57] coincide with those defined by Achilles–

Manaresi [3] (cf. the corollary to Proposition 5); this solves a problem posed in the latter

paper.

Since the construction of the normal cone CV ∩SV is intrinsic and additive with respect

to V (see Sect. 3 of Chapt. II), one can immediately deduce from Proposition 2 the

intrinsic and additive character of improper intersections, stated below.

Proposition 3. The generalized index and multiplicity for an improper intersection of

an analytic set V with a submanifold S are intrinsic (do not depend on the ambient

space) and additive with respect to V .

Since the multiplicity function that assigns to a point P the multiplicity at P of a

positive analytic cycle is upper semicontinuous in the analytic Zariski topology (cf. [64,

10]), we also obtain the following
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Proposition 4. The multiplicity function that assigns to a point P the intersection mul-

tiplicity at P of an analytic subset V with a submanifold S is upper semicontinuous in

the analytic Zariski topology (and not merely analytically constructible; cf. [57]).

Now we can readily show that, for an improper intersection of a purely dimensional

analytic subset V with a linear subspace S, we are able to compute the generalized

intersection index through testing the intersection merely by linear hyperplanes; this

solves a problem posed by P. Tworzewski (cf. [56]).

Proposition 5 (Linear Testing Theorem). Let M be an affine space, S a vector sub-

space of M , and V a purely dimensional analytic subset on M . Then the generalized

index for the intersection of V with S at P = 0 is realized by the intersection algorithm

for generic collections of linear hyperplanes in M .

Indeed, we have seen after the statement of Proposition 1 that our double deformation

is a kind of linearization procedure, and that the conditions of filter-regularity imposed

on testing elements are in fact linear conditions on their first derivatives. Therefore, it

is possible to pick a generic collection of linear forms in the ambient vector space M

whose images ai in the local ring A of V at P = 0 satisfy the assumptions of the theorem

on deformation to an algebraic bicone. This collection of linear forms determines the

collection of linear hyperplanes we are looking for.

Corollary. The Segre numbers and the generalized Samuel multiplicities of an ideal I

in the local ring A = OV,0 of an analytic germ (V, 0) ⊂ (Cn, 0) can always be expressed
as the generalized index of an improper intersection.

For if f = (f1, . . . , fr) are generators of I, then the analytic set

W := graph f = {(u, f(u)) : u ∈ V } ⊂ C
n+r = C

n
u × C

r
v

is isomorphic to V , and the ideal in OW,0 that corresponds to I is generated by v =
(v1, . . . , vr). We may thus assume that V = W , and that I is generated by v1, . . . , vr.

Since the polar varieties and Segre cycles for a generic d-tuple g = (g1, . . . , gd) of linear

combinations of v1, . . . , vr can be determined by the formulae (cf. [19], Sect. 2)

P gk (I, V ) = closure of V (gk|P gk−1(I,V )) \ V (I),
Λgk(I, V ) = [V (gk|P gk−1(I,V ))]− [P

g
k (I, V )],

Λgd(I, V ) = [V (gd|P gd−1(I,V ))],
it follows immediately that, for a generic d-tuple g of linear combinations of v1, . . . , vr,

the cycles determined by the polar varieties equal the cycles αk, and the Segre cycles

equal the cycles ̺k, resulting from the analytic intersection algorithm for the collection

of testing elements g. Therefore, in view of the linear testing theorem (Proposition 5), the

Segre numbers of the ideal I (which are the multiplicities at zero of such generic Segre

cycles) coincide with the generalized index of intersection of our set V with the linear

subspace S = {(u, v) ∈ Cnu × Crv : v = 0}, which completes the proof.
Further conclusions concerning the generalized intersection index and intersection cy-

cles (such as the reduction theorem for improper analytic intersections or Bezout’s the-

orem for improper intersections of algebraic cones) will be presented in the next section.
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3. Intersection cycles and Bezout’s theorem. Using the diagonal procedure, one

can define the generalized intersection index and intersection multiplicity of arbitrary

analytic sets in a complex manifold. This procedure was applied for the first time in

modern algebraic geometry by Weil [63], but had already appeared in Pieri [41]. The

canonical character of the diagonal procedure is ensured by the reduction theorem. The

reduction theorem for improper intersections in complex analytic geometry was first

stated and proved in [38, 40]; it is a local analytic counterpart of the reduction theorem

from global projective algebraic geometry proved by Achilles–Vogel [6]. The proof is based

on the algebraic formula which expresses intersection multiplicity in terms of normal cones

(Prop. 2 of Sect. 2) as well as on some properties of the normal cones involved.

Reduction Theorem for Improper Intersections. The generalized indices and

multiplicities for the intersections of an analytic set V with a submanifold S at the point

P , and of the analytic set V × S with the diagonal ∆M := {(z, z) : z ∈M} ⊂M ×M at
the point (P, P ), coincide.

Proof. We may, of course, assume that M = Cm = Csu × Crv, and that

S = {(u, v) ∈ C
m = C

s
u × C

r
v : v = 0}

is a linear subspace of M . Then the reduction theorem for improper intersections is a

direct consequence of the fact that the normal cone C ′ to the subset (V ×S)∩∆M in V ×S
is isomorphic to the product of the normal cone C to V ∩S in V by S. The assertion about
the normal cones can be immediately derived from the analogous statement concerning

deformation spaces. The deformation space V of C is the closure of the analytic family
of analytic sets parametrized by t ∈ C \ {0}:

{(u, v, tv; 1 : t) ∈ C
s
u × C

r
v × C

r
z × P1 : (u, v) ∈ V }

(see Sect. 3 of Chapt. II); similarly, the deformation space V ′ of the normal cone to
(V × S) ∩∆M in V × S is the closure of the analytic family of analytic sets
{(u, v, u′, 0, t(u− u′), tv; 1 : t) ∈ C

s
u × C

r
v × C

s
u′ × C

r
v′ × C

s
w × C

r
z × P1 :

(u, v) ∈ V, u′ is an arbitrary element of Cs}.
Then the projection

V ′ → V × C
s
w, (u, v, u

′, 0, w, z; 1 : t) 7→ (u, v, w, z; 1 : t),
is a biholomorphism; the inverse mapping is given by the formula

V × C
s
w → V ′, (u, v, w, z; 1 : t) 7→ (u, v, u− w/t, 0, w, z; 1 : t).

Thus the deformation space V ′ is isomorphic to V × Cs, whence the normal cone C ′ is

isomorphic to C × C
s, which completes the proof.

The above reduction theorem for improper intersections concerns only the intersection

of analytic sets with a submanifold. Yet, the classical reduction theorem for proper inter-

sections (where one considers complete intersections; cf. [47], Chapt. II, Sect. 5.7) fails

in the case of improper intersections (cf. [5], Example 6.6). We now recall this example

which demonstrates that the extension of the Samuel reduction theorem to improper
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intersections may fail for an arbitrary non-smooth complete intersection. We begin with

an evident observation about intersecting affine subspaces.

Example 1. Let V1 and V2 be any two affine subspaces of an affine spaceM = C
m. Then

the intersection multiplicity at any point P of the intersection of V1 with V2 (possibly

improper) is one.

Example 2. Let M = C3, V1 = {0} ⊂ M , V2 be the union of two lines {z1 = z2 = 0}
and {z1 = z3 = 0} in M , and let P = 0 ∈ M . Then the intersection multiplicity of V1
and V2 at P is 2, while the multiplicity of the ideal I of V2 in the local ring A of V1 at P

is obviously 1.

The next example indicates that the minimum of the degrees of the total results of

the intersection algorithm for all admissible collections of divisors may be less than the

degree of the generalized intersection index.

Example 3. Let

M = C
3 = Cu × C

2
v, S = {(u, v) ∈ Cu × C

2
v : v1 = v2 = 0}

and

V = {(u, v) ∈ Cu × C
2
v : v

2
2 − v1u2 = 0}.

Then it is easy to check that the generalized index of intersection of V with the line S

is (0, 1, 2), and its degree is 3. On the other hand, the intersection of V with the divisor

H1 = (v1) is the 1-cycle 2 · S, and thus the total result of the intersection algorithm is
the cycle 2 · S of degree 2 < 3.

Consider now two analytic subsets V1 and V2 in a complex manifold M . According

to the diagonal procedure—similarly to the classical case of proper intersections—the

intersection multiplicity

d(P ) = d(V1, V2;P )

of V1 and V2 at a point P will be defined as the intersection multiplicity at (P, P ) of

V1 × V2 and the diagonal ∆M := {(z, z) : z ∈M} ⊂M ×M. The canonical character of

this procedure in the case of improper intersections is ensured, as previously mentioned,

by our reduction theorem. As an immediate consequence of Proposition 4 from Section 2,

we obtain

Proposition 1. The multiplicity function

M ∋ P 7→ d(V1, V2;P ) ∈ N

is upper semicontinuous in the analytic Zariski topology.

Before we define the intersection cycle of arbitrary analytic subsets in a complex

manifold M , we recall the following

Proposition 2 (cf. [57], Sect. 2). Let N be a complex manifold. Then the multiplicity

function Z  {P 7→ mP Z} is a one-to-one correspondence between the analytic cycles
Z on N and the analytically constructible functions f : N → N.
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The intersection product of two analytic sets V1 and V2 is a unique analytic cycle

V1 • V2 such that
mP (V1 • V2) = d(V1, V2;P )

for all P in M . The definition extends by additivity to the case of analytic cycles. We

can now reformulate Proposition 3 from Section 2 as follows.

Proposition 3. The generalized index and multiplicity for an improper intersection of

two analytic sets V1 and V2 are intrinsic (do not depend on the ambient space) and

bi-additive with respect to V1 and V2. Consequently , improper intersection product is a

bi-additive operation on analytic cycles.

Proposition 4. The intersection product V1•V2 coincides with the classical intersection
product V1 · V2 whenever the analytic sets V1 and V2 meet properly in the manifold M .
For the proof, we may assume that V1 = V is an analytic set of pure dimension and

V2 = S is a submanifold in M , because both the intersection products are constructed

by means of the diagonal procedure. Further, since the problem is of local character, we

may assume, as before, that S = {(u, v) ∈ Cm = Cs×Cr : v = 0} is an affine subspace of
M = Cm. But we saw in Section 2 of Chapter I that then the normal cone [C] = [CV ∩SV ],

regarded as an analytic cycle, is of the form

[C] =
∑

i

i(V · S;Wi)[Wi × C
r],

whereWi are the irreducible branches of V ∩S, and the integer i(V ·S;Wi) is the classical

intersection index along Wi. Hence Proposition 3 follows immediately.

The following example indicates that the associativity formula fails for improper in-

tersections.

Example 4. Set M = C2, P := (0, 0) ∈ M , V1 := {P}, V2 := {(u, v) ∈ M : v = 0},
and let V3 := {(u, v) ∈ M : v2 − u3 = 0} be the Neil parabola. Then V1 • V2 = {P} and
V2 • V3 = V2 · V3 = 3{P}. Hence
(V1 • V2) • V3 = {P} • V3 = 2{P}, while V1 • (V2 • V3) = V1 • 3{P} = 3{P}.
The next example will show that the general Bezout theorem does not hold true in

the case of improper intersections. Nevertheless, we have the following version of Bezout’s

theorem for improper intersections of algebraic cones.

Proposition 5 (Bezout’s theorem for algebraic cones). Let Z1 and Z2 be two cycles of

algebraic cones in the affine space Cn+1; clearly , the improper intersection product Z1•Z2
is also a cycle of algebraic cones. Then

degZ1 • Z2 = degZ1 · degZ2
(by the degree degC of an algebraic cone C we mean its multiplicity at zero).

Due to bi-additivity, we may assume that Z1 = V1 and Z2 = V2 are irreducible bicones.

It is easy to verify that

deg(V1 × V2) = deg V1 · deg V2
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(cf. Sect. 2). Therefore it follows from the reduction theorem for improper intersections

that we may restrict ourselves to the case of an algebraic cone V = V1 intersecting a

linear subspace S = V2. Then by construction deg(V •S) = m0(V •S). When we perform
the intersection algorithm for an admissible collection of hyperplanes Hk containing S,

we obtain via the classical Bezout theorem

multαk−1 = mult(αk−1 ·Hk) = multαk +mult ̺k.

Hence

m0(V • S) :=
∑

k

mult ̺k = multα−1 = m0V = deg V,

and the proof is complete.

Example 5. It is evident that the degree of improper intersection of two projective sets

may be less than the product of their degrees, as in the case of an empty intersection.

However, we can get the opposite inequality as well. An example is the self-intersection of

a surface in P3 with sufficiently many isolated singularities (in comparison with the degree

of the surface). We now wish to examine a cubic surface V in P3 whose singular locus

consists of only four nodes (i.e. non-degenerate isolated singular points of multiplicity 2).

In homogeneous coordinates (z0 : z1 : z2 : z3), V is given by the equation

z0z1z2 + z1z2z3 + z2z3z0 + z3z0z1 = 0;

the nodes of V are

P0 = (1 : 0 : 0 : 0), P1 = (0 : 1 : 0 : 0), P2 = (0 : 0 : 1 : 0), P3 = (0 : 0 : 0 : 1).

Recall that, according to the Morse theorem, in the vicinity of a node P the surface

V is analytically equivalent to the tangent cone CPV . Consequently, the multiplicity

d(V, V ;P ) of self-intersection of V at P coincides with that of CPV at P . Hence and by

the foregoing Bezout theorem, d(V, V ;P ) = 4. For our cubic surface, we get

V • V = V +
3∑

i=0

3 · {Pi}.

We have deg V • V = 3 + 4 · 3 = 15 > (deg V )2 = 9.
When we pass to the cone C that determines our cubic surface V , we obtain

C • C = C +
3∑

i=0

3 · Li + k · {0},

where Li are the lines in C4 corresponding to the points Pi ∈ P3 (i = 0, 1, 2, 3) and k ∈ Z

is an integer. It follows from Bezout’s theorem for algebraic cones (Proposition 5) that

9 = deg(C • C) = 3 + 12 + k,
whence k = −6. This shows that the intersection product of two analytic sets need not
be a positive cycle.

Finally, using deformation to an algebraic bicone we discuss an intersection product

(communicated by P. Tworzewski) which is not a positive cycle.
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Example 6. Consider the affine space M = C6, the linear subspace

S = {(u, v) ∈ C
6 = C

4
u × C

2
v : v1 = v2 = 0}

and the algebraic subset

V = {(u, v) ∈ C
6 = C

4
u × C

2
v : v1u1u2 − v2u3u4 = 0}.

Since V is a bicone with respect to the variables u and v, V coincides with the bicone

B constructed in the theorem on deformation to an algebraic bicone for P = 0 ∈ S

(see Sect. 1). The intersection multiplicity d(V, S;P ) is thus equal to the multiplicity

of the bicone V at P , whence d(V, S;P ) = 3. More generally, in order to calculate the

intersection multiplicity at a point

Q = (a1, a2, a3, a4, 0, 0) ∈ S,
we make the translation of variables by the vector ~Q = (a1, a2, a3, a4, 0, 0). The equation

of V in the new variables is

v1(u1 − a1)(u2 − a2)− v2(u3 − a3)(u4 − a4) = 0.
Therefore an easy analysis of the bicone B constructed for the point Q ∈ S yields

d(V, S;Q) = 1 iff (a1a2 6= 0 or a3a4 6= 0)
and

d(V, S;Q) = 2 iff (a1a2 = 0 and a3a4 = 0 and Q 6= P ).
Hence it follows immediately that

V • S = S +
2∑

i=1

4∑

j=3

Hij −
4∑

k=1

Lk + 2 · {P},

where

Hij = {u ∈ S : ui = uj = 0} (i = 1, 2; j = 3, 4)
and

Lk = {u ∈ S : ul = 0 for l = 1, 2, 3, 4; l 6= k} (k = 1, 2, 3, 4).
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Math. Wiss. 166, Springer, 1971.

[25] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-
Hall, 1965.

[26] R. Hartshorne, Algebraic Geometry, Springer, 1977.

[27] E. Lasker, Zur Theorie der Moduln und Ideale, Math. Ann. 60 (1905), 20–116.

[28] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
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