Introduction

We study the function spaces with dominating mixed smoothness. First spaces of this
kind were defined by S. M. Nikol’skil in [21] and [22]. He introduced the spaces of Sobolev

type
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where 1 < p < oo, 7, = 0,1,2,... (i = 1,2). The mixed derivative 9" "2 f /0x ] Ox5?
plays the dominant part here and gave the name to this class of spaces. The detailed study
of such spaces was performed by many authors, for example T. I. Amanov, O. V. Besov,
K. K. Golovkin, P. I. Lizorkin, S. M. Nikol’skii, M. K. Potapov and H.-J. Schmeisser. We
refer to [1] for a systematic treatment of this topic. As in the theory of classical Sobolev
spaces, an alternative definition in terms of Fourier transform may be given (see (1.8)
and (1.9)). This definition is based on a decomposition

f= Z (or, @+~ @, f)Y,  convergence in S (R%),
keNg
where {¢g}ren, i a decomposition of unity on R known from the theory of classical
Besov spaces and ¢p = ¢p, ® -+ @ @iy, k= (k1,...,kq), is a tensor product.

We refer mainly to [26] as far as the Fourier-analytic approach to these spaces is
concerned. In Chapter 2 of that book the classical theory of spaces with dominating mixed
smoothness properties is developed. Several types of equivalent quasinorms, embedding
and trace theorems and characterisation of these spaces by differences are proved there.
The authors also study basic properties of crucial operators on these spaces, namely
lifting and maximal operators and Fourier multipliers. We recall some facts from that
book, which will be useful later on. In contrast to [26], we do not restrict the dimension of
the underlying Fuclidean space to d = 2: the results are formulated for general dimension
d > 2. As mentioned in [26], this generalisation is obvious.

The second chapter is devoted to local means, and atomic, subatomic and wavelet
decompositions of spaces with dominating mixed smoothness. We state the result for
both Besov and Triebel-Lizorkin spaces but in some cases we give the proofs only for the
Triebel-Lizorkin scale. The proofs for Besov-type spaces are omitted as they are very
similar to the proofs presented here. First of all, we characterise this class of spaces by
so-called local means. See Theorem 1.25 for details. This fundamental characterisation
serves as a basis for all three decomposition techniques.

(5]
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By an atomic decomposition of a function f one usually means a decomposition of
the type

f(z) = Z Z)\Vmal,m(x), convergence in S’(R%),

where a, ,,, are some simple building blocks, called atoms, and A, ,, are complex num-
bers. A function f then belongs to some function space if, and only if, the sequence
of coefficients {A, m }.m belongs to some sequence space. For the exact formulation see
Theorem 2.4. Let us mention that the atoms are specified only implicitly: a function a
is an atom if, and only if, it has some qualitative properties (see Definition 2.3).

By a subatomic decomposition we mean a decomposition of the type

f(z) = Z Z Z N (Bqu)ym(z), convergence in S'(R?),
B v o m

where (Bqu), () are so-called quarks and A2, = are complex numbers. A quark is a spe-
cial type of atom defined explicitly by (2.36). Hence the basic building blocks, quarks,
are much more specific in this kind of decomposition. The price one has to pay for that is
a more complicated connection between f and {\2 }. It is described in detail in Theo-
rem 2.6. In this sense each of these decompositions has its advantages and disadvantages.
But all of them have something in common: they establish a connection between function
spaces and sequence spaces. As the sequence spaces are simpler to deal with, it turns
out that this connection is very useful in many situations (embeddings, traces, entropy
numbers, ... ). Here we have to mention another important way to switch from function
spaces to sequence spaces—the so-called (p-transform of M. Frazier and B. Jawerth. We
refer to [15] and references given there for details.

The classical theory of atomic decompositions of Besov and Triebel-Lizorkin spaces
was developed mainly in the works M. Frazier and B. Jawerth ([12], [13]) and H. Triebel
([33], [34]). The subatomic decomposition of these spaces is due to H. Triebel ([35],
[37]). We follow their ideas and prove similar decomposition theorems for spaces with
dominating mixed derivatives. This is done in Chapter 2 and is one of the main results
of this work.

The last decomposition technique developed here is the wavelet decomposition. In
that case a class of compactly supported wavelets is used as the building blocks (see
Theorems 2.10 and 2.11 for precise formulation). The main advantage of the wavelet
decomposition is the uniqueness of the series obtained. The price paid for that is the
limited smoothness of the compactly supported wavelets.

In the third chapter we study the entropy numbers of embeddings of sequence spaces
associated with the function spaces with dominating mixed smoothness. The notion
of entropy numbers has its roots in the study of metric entropy done in the 1930’s by
Kolmogorov. Given a bounded linear operator T' between two quasi-Banach spaces A
and B (T € L(A, B)), the quantity ex(T), k € N, denotes, roughly speaking, the smallest
radius € > 0 such that the image of the unit ball of A under the operator 7" may be
covered by 271 balls in B of radius . The sequence {ej(T)}32; tends to zero if, and
only if, the operator T is compact. The decay of this sequence is then understood as
a measure of compactness of T. The crucial property of entropy numbers was observed
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by Carl [6], who proved that the entropy numbers of a compact operator T' € L(A, A)
dominate in some sense its eigenvalues. In general, we use the method of [10] in this part.

We use the decomposition techniques to reduce this question to the sequence space
level. Namely, it turns out that

er(id : Sit  A(2) < STz A(R)) ~ ex(id : sht o a(R) = 502 a(R2)), (1)

Pp1,91 Pp2,92 Pp1,91 P2,92

where the equivalence constants do not depend on k& € N. So, in the third chapter we
study mainly the entropy numbers of embeddings of sequence spaces. We restrict our-
selves to the case 71 = (r1,...,r1) € R and 73 = (r,...,72) € R% Unlike the case
of the classical Besov and Triebel-Lizorkin spaces, it turns out that the estimates of en-
tropy numbers depend on the second, fine, summability parameter ¢g. Unfortunately, the
method used here gives the optimal answer only under some restriction on the parameters
involved. We prove that the embedding appearing in (1) is compact if, and only if,

1 1
a:rl—rg—max<———70) > 0. (2)
Pt P2
But the direct method gives the estimates for (1) only for
1 1 1 1

> — = —+ — - ——F—
min(pi,p2,q1) p1 p2  max(p, o)
We overcome this obstacle in Chapter 4 by the use of a complex interpolation method as
developed by O. Mendez and M. Mitrea in [20]. Our final result may be summarised in
the following way.
Under condition (2),

en(id: So! , A(2) = iz A(02)) > ck™ " (log k)¢ (mmratt/a=l/a)

p1,91

Ifry —r9 —1/¢1 +1/g2 > 0 then
er(id: Sit  A(R2) — Si2 . A(2)) < ck™ " (log k) (4D mratl/ea=1/a),

P1,91 p2,92
If r1 —ro —1/g1 + 1/g2 < 0 then for every € > 0 there is a constant ¢, > 0 such that

er(id: STr A(2) — 872 A(02)) < c.k™ " (log k)©.

P1,a1 P2,42
(See Theorem 4.11 for exact formulation.) Finally, we compare results obtained by this
method with estimates on entropy numbers of embeddings of function spaces with dom-
inating mixed smoothness obtained by Belinsky [4], Dinh Dung [8] and Temlyakov [30].

I would like to thank Prof. Schmeisser and Prof. Sickel for supervising my research
and for many valuable discussions.

1. Function spaces on R?

Our aim in this chapter is to recall the known aspects of the theory of function spaces
with dominating mixed smoothness, S}  B(R?) and Sy  F(R%). First of all, we intro-
duce some basic notation. Then we quote some definitions and theorems stated in [26]
which are crucial in the following. In the last part we develop the so-called local mean
characterisation of the spaces Sy  B(R?) and S},  F(R).
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1.1. Notation. As usual, R? denotes the d-dimensional real Euclidean space, N the
collection of all natural numbers and Ny = NU{0}. The letter Z stands for the set of all
integer numbers and C denotes the plane of complex numbers.

We denote points of the underlying Euclidean space by z,, z, .... Their components
are numbered from 1 to d, hence x = (z1,...,24). If 2,y € R we write x > y if,
and only if, z; > y; for every i = 1,...,d. Similarly, we define the relations x > vy,
x <y, r <y. Finally, by slight abuse of notation, we write z > X for 2 € R?, A\ € R if
x; >\, i=1,...,d. The d-dimensional vector indices will be denoted by k, 1,7, ... and
their components are also numbered, hence k = (ki,...,kqs). When a = (a1,...,aq) €
N¢ is a multi-index, we denote its length by |a| = Zj 1 &j. The derivatives D* =
o1l /ox - - 925 have the usual distributional meaning; moreover z® = z{" -+ - 5.

Let S(R?) be the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on R?. We denote the d-dimensional Fourier transform of a func-
tion o € S(RY) by Fop, F(p) or @. Its inverse is denoted by F 1o, F~1(p) or ¢¥. Both
F and F~! are extended to the dual Schwartz space S’(R?) in the usual way. Sometimes,
we need to distinguish between the d-dimensional and one-dimensional Fourier transform.
In that case we denote the latter by F; or *t and its inverse by .7-"1_1 or V1. We point out
that for functions p(z) = @1(x1) - wa(ra) = (p1 @ --- @ @q)(x) the following formula
connects F with Fi:

(Fe) (&) = (Fip1)(&) -+ (Fipa)(&a) = (Fip1) @ -+ @ (Fipa))(€),  €€R%L (1.1)

Let 0 < p,q < co. Having a sequence of complex-valued functions { fE}EeNg on R?, we
put
1/q

etz = (3 151 2o @17 = (3 (§ 1wy )™ (12)

keNd keNd Rd

and

1l Lot = | (3 15e@1)) | 2o | = (§ (S 1) aa) ", w3)

keNg R4 keNg

appropriately modified when p and/or ¢ = oo
We write a4 = max(a,0) for a real number a € R. Furthermore, let

- <mm(1pq) - 1>+ and o, — <; - 1)+ (1.4)

for every 0 < p < o0 and 0 < g < oc.

All unimportant constants are denoted by c¢. So, the meaning of the letter ¢ may
change from one occurrence to another. By ai =~ bp we mean that there are constants
c1,co > 0 such that ciap < b < coay for every admissible k.

1.2. Definitions and basic properties. In this section we define the function spaces
with dominating mixed smoothness on R? and recall their basic properties as described
n [26]. We quote the results for general d, although they were stated and proved only
for d = 2 in [26]. But, as mentioned there, this generalisation is rather obvious.
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1.2.1. Definitions
DEFINITION 1.1. Let @(R) be the collection of all systems {(;}52, C S(R) such that

{suppgao c{teR: |t| <2}, | (L5)
suppp; C{t e R: 2771 < || <271} ifj=1,2,...,
for every a € N there exists a positive constant ¢, such that
21%D%p;(t)| < ¢ forall j =0,1,2,... and all t € R, (1.6)
and .
Z @;(t) =1 forevery t € R. (1.7)

For k = (k1,...,kq) € N and x = (z1,...,74) € R? define or(2) = @k, (v1) -+ Ok, (Ta)-
Using this kind of notation, we can give a definition of the spaces Sy  B(R?) and S;  F(R?).

DEFINITION 1.2. Let 7 = (r1,...,74) € R%, 0 < ¢ < 00 and ¢ = {¢p, 20 € P(R).
(i) Let 0 < p < co. Then S;_’qB(Rd) is the collection of all f € S’(R?) such that
17195, @Y, = (3 25 e 1L, @19 = 127 (o) 1L (18)
keng
is finite.
(i) Let 0 < p < oo. Then Sj  F(R?) is the collection of all f € S'(R?) such that

1£15p4F(RY) ||¢—H(Z|2’” DO @] = 1257 (e P 1 Lot (1)

is finite.

REMARK 1.3. According to (1.7), we have

Z(PE (Z‘Pkl x1> (Z‘Pkd xd)—l forallx:(xl,...,xd)eRd.

keNg k1=0 kq=0
In this sense, {‘PE}EeNg is also a decomposition of unity, in this case on R?.

REMARK 1.4. The symbol 5] A(R?) stands, as usual, for S7 B(R?) and S] F(RY)
respectively.

1.2.2. Basic inequalities. One of the most important questions in the theory of the spaces
ST A(R?) is the independence of Definition 1.2 on the system ¢ = {‘PE}EeNg' The answer
is given by

THEOREM 1.5. Let {¢;}32, {; 9’00 € P(R). Let 7 = (rl, cooyrg) ER? and 0 < g < o0,
() Let 0 < p < 0. Then ||| ST, BRI, and ||f ST, BRY|, are equivalent quasi-

norms. Furthermore, S, (Rd) zs a quasi-Banach space (Banach space if min(p,q) > 1)
and

SR c ST B(RY) c S'(RY).
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(ii) Let 0 < p < oo. Then ||f ]S} F(RY)|, and || f|S] ,F(RY)|y are equivalent quasi-
v dy ; ; e
norms. Furthermore, Sp’qF(R ) is a quasi-Banach space (Banach space if min(p, q) > 1)
and
S(RY) c ST F(RY) c S'(RY).

For the proof in the case d = 2, see [26, pp. 87, 93]. So, we may write || f | 57 . B(R?)]
and ||f|S] ,F (R?)|| without any index ¢ or ¢ meaning one of these equivalent quasi-
norms.

REMARK 1.6. The reader may have noticed that we have not defined the spaces S; oF (R%)
for p = co. The reason is very similar to the case of classical Triebel-Lizorkin spaces. If
one extends Definition 1.2 to the case p = oo, which is actually possible, then there is no
counterpart of Theorem 1.5. In particular, these spaces do depend on the choice of the
system {¢;} € &(R).

We also recall the following version of the famous Nikol’skii inequality which is due
to B. Stockert [29] and A. P. Uninskil [39].

THEOREM 1.7 (Nikol'skif inequality). Let 0 < p < u < oo and a = (ay,...,a4) € Ng.
Let b = (b1,...,bs) > 0 and Q3 = [~b1,b1] X --+ X [=ba,bg] C RY. Then there ezists a
positive constant ¢, which is independent of b, such that

1D f | Lu @] < cbf P78 g £ 2y (R
for every f € S"(R?) N L,(R?) with supp f C Q;-

1.2.3. Lifting property. As in the case of classical Besov and Triebel-Lizorkin spaces, we
can define a lifting operator.

DEFINITION 1.8. Let p = (p1,...,pq) € R% Then we define the lifting operator I by
Lif = F YA+ €)"2 (1 + ) PFf, [ e SR (1.10)
THEOREM 1.9. Let 0 < g < 0o, p,7 € RY.

(i) Let 0 < p < oo. Then Iz maps S}, ,B(R?) isomorphically onto S, PB(RY) and
| I5f | S sP B(RY)|| is an equivalent quasinorm in ST B(R). o

(i) Let 0 < p < oo. Then Iz maps Sy F(RY) isomorphically onto S} PF(RY) and
| If | Sy P F(RY)|| is an equivalent quasinorm in S,  F(R?).

The proof may again be found in [26, p. 98].

1.2.4. Mazimal operators. Maximal operators (and their boundedness on appropriate
function spaces) play a crucial role in harmonic analysis and function spaces theory. Our
constructions given later are based on the Hardy-Littlewood maximal operator and the
maximal operator of Peetre. Now we give the definition of the former. For the definition
of the latter, see Section 1.3.1.
For every locally integrable function f € L°°(R?) we define the classical Hardy—
Littlewood maximal operator
(1)) =sup o § @y, xR (1.11)

al}
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where the supremum is taken over all cubes ) centred at z with sides parallel to co-
ordinate axes. The symbol |@Q| denotes the Lebesgue mass of the cube Q. The famous
Hardy-Littlewood inequality says that for every p with 1 < p < oo there is a ¢ such that

IMf LRI < ell FI Lp@®RDN, f € Lyp(RY). (1.12)

The following theorem is a vector-valued generalisation of (1.12) and is due to C. Feffer-
man and E. M. Stein [11].

THEOREM 1.10. Let 1 <p < oo and 1 < q < oo. There exists a constant ¢ such that
M f | Lp (€g) | < el f | Lp (L) (1.13)

for all sequences {fE}EeNg of locally Lebesgue-integrable functions on RY.

To reflect the tensor structure of the decomposition of unity ¢ = {¢r} used in Defi-
nition 1.2, we consider the following “directional” maximal operators. We define

x1+s

(M f)(x) = sup o | 1ft e, za) dt (1.14)

s>0 &S
xr1—S8

and in a similar way for other variables. We denote the composition of these operators by

M = Mgo---o M. The following maximal theorem is due to R. J. Bagby [2] (actually,
it is a special case of a more general theorem given there).

THEOREM 1.11. Let 1 <p < oo and 1 < g < co. There exists a constant ¢ such that
||MifE|Lp(€q)H SCHfE|Lp(€q)||> i=1,...,d, (1.15)
for all sequences {fE}EeNg C L,(¢,) of functions on R.

Iteration of this theorem shows that the estimate (1.15) also holds for the operator M.

1.2.5. Fourier multipliers. Let (2 = {QE}EeNg be the sequence of compact subsets of R¢
defined by

Qr={reR: |z1| <arpy,-. -, |zal < @an,} Wwith ap,... a4k, > 0.

THEOREM 1.12. Let 0 < p < 00, 0 < ¢ < 00 and 7 = (ry,...,74) > 1/min(p,q) + 1/2.

Let 2 = {QE}E6N37 1kys- -5 Qdky > 0 be as above. Then there is a positive constant ¢
such that
1oz f3)" [ Lp(Le)]l < c(§ug log(army - aak,) | S52FE R - | f5 | Ly (£g)l
kend

for all systems { fr} € L,({q) with Suppf/% C £2; and all systems {op} C S5 ,F(R?).
REMARK 1.13. The proof may be found in [26, p. 77].

1.2.6. Littlewood—Paley theory. We also state a theorem of Littlewood—Paley type for
spaces with dominating mixed smoothness. But first we define the Sobolev spaces with
dominating mixed smoothness. This is the very direct generalisation of the definition of
Nikol’skil given in the Introduction.
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DEFINITION 1.14. Let 1 <p < 0o and 7 = (r1,...,7r4) € N&. We put

STWRY = {1 € LR« |7 SWRY| = 3 [D°F| L(RY)]| < 00},
0<a<7

Clearly, we have Sg W (R?)= L, (R%). The connection between S;W (R%) and S}, , F(R%)
is then given by

THEOREM 1.15. Let 1 <p < oo and ¥ = (rq,...,7q4) € Nd. Then
SyW(R) = 57, F(RY)
with equivalent norms.

REMARK 1.16. See [26, p. 104] for details.

1.3. Local means. In this section we present the main technical tool, namely, we
characterise the spaces S;qA(Rd) by the so-called local means. In general, we follow the
method presented by Rychkov [25]. Recall that the spaces ST A(R?) were introduced

in Definition 1.2 and, according to Theorem 1.5, this definition does not depend on the

choice of the decomposition of unity {y; 520 C &(R). Hence we may fix some specific
system {¢;}22 for the rest of our work.
We fix ¢ € S(R) with
1 if |2] < 4/3,
0 ={

0 if |z >3/2.
We put @o = ¢, p1(7) = p(z/2) — ¢(x) and
pij(x) =p1(277%1z), zeR, jeN.

One verifies easily that (1.5)—(1.7) hold.

1.3.1. The Peetre maximal operator. Next we discuss the analogue of the Peetre maximal
operator introduced in [23]. The construction of Peetre adapted to the case of function
spaces with dominating mixed smoothness assigns to every system {¢E}EEN3 C S(RY),
to every distribution f € S/(R?) and to every vector @ > 0 the following quantities:

~

(W)Y (v)]
verd [T (14 (26 (y; — 3)[)

As o € S(R?) for every k € N¢ the product wgf is well defined for every f € S’(R%)
and, according to the theorem of Paley—Wiener—Schwartz (see [32] and references given

there for details), (¢ f)" is an analytic function. In particular, (¢ f)Y(y) makes sense
pointwise.

, reRY kEeNg (1.16)

Unfortunately, as we are also interested in non-smooth kernels (for details, see Sec-
tion 2.4), we need to consider also kernels 1z ¢ S(R?). We weaken the definition of the
Schwartz space S(R?) in a natural way and obtain the class of spaces X*(R?) defined



Function spaces with dominating mixed smoothness 13

for every S € N¢ by
X5(RY = {p e SSWRY : [lo| XSRY| < oo},
= 1/2
Il XS®I= (Y ll2” D (@) | LaRY)?) .
0<a,8<S

We set w(z) = [T, (1 + 22)5/2 and observe that ¢ € X5(R) if, and only if, w- D% €
Ly(R?) for every 0 < o < S. This is obviously equivalent to D*(w- ) € Ly(R?) for every
0 < a < S, which may be written as w - ¢ € S5W(R?). Hence

pE Xg(]Rd) if, and only if, w-p € S§W(Rd).
This allows us to characterise the dual of X5 (R%). We get
Y e (XS(RY) if, and only if, w4y € (S§W(RY)) = S35 F(RY).
As a trivial consequence of the embedding (S € N¢)
X5(RY) < SSW(R?) — S5-Y/2B(RY)
we get for every K € N¢ and every S > K + 1,
X5(RY) < CK(RY.
Having now a function ¥ € X 5(R%) and some distribution f € (X5(R%))’, we write
(F+0p) () = | @)y — 2)do = f(F(y - ), yeR
R
So, given a system {wE}EGNg c X5(R4) for some S € N¢, we denote ¥y = ﬂg € X5(RY)
and define in analogy with (1.16) for every f € (X°(R%)),

o (@5 + ) ()]
(@ flalx) veri TI L (1 + 25 (s — 20)|)

Furthermore, for § = oo, we put X5 (R%) = S(R?).

, x€RY EeNd (1.17)

1.3.2. Helpful lemmas. We split the proof of the local-mean characteristics of Besov and
Triebel-Lizorkin spaces in two parts and give now the technical lemmas. This will allow
us a straightforward proof later on. The lemmas originate in [25] and we quote them
only with some minor modifications, mainly forced by the tensor product structure of
function spaces with dominated mixed smoothness.

We start with a lemma describing the use of the so-called moment conditions.

LEMMA 1.17. Let K € Ny and g,h € XE*+2(R). Furthermore, let —1 < M < K be an
integer and

(D%g)(0)=0, O0<a<M.
Then for every N € Ny with 0 < N < K there is a constant Cn such that
sup |(gp * ) (2)|(1 + |2|V) < CNbM T 0 <b <1, (1.18)
z€R

where gy (t) = b~ 1g(t/b).
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Proof. Using the elementary properties of the Fourier transform we get

LHS(1.18) < ¢ max, |1 D“[(gs * R)"]| L1(R)]|.

By the Leibniz formula,
D[RO <c Y PIDPHBO)D* PR, ceR (L19)
0<p<a
As g € OM+1(R), we may use the Taylor formula to get
(DPG)(b¢)| < clbgM P, 0<B< M, (1.20)
for [b¢| < 1. But, as D”g € C(R), (1.20) holds for all b,¢ € R. Hence, for 0 < 8 < M,
we get
b°|(DPG)(b€) (D PR (E)] < ebMT(DPR)(E)] - [ M+, geR. (1.21)
If M <3< K and 0 <b< 1, we have b® < bM*! which, together with DG € C(R),
gives (1.21) for all 0 < f < K.
We put (1.21) into (1.19) and obtain (1.18). =

Furthermore, we shall need the following convolution inequality.

LEMMA 1.18. Let 0 < p,gq < oo and § > 0. Let {QE}EeNg be a sequence of nonnegative
measurable functions on R® and let
Go(z)= > 27" g (z),  zeR’ 7eNg (1.22)

keNg
Then there is some constant C = C(p, q,d) such that

IGE [ q(Lp)|| < Cligg [ £q(Lp)]l, (1.23)

||GE|Lp(gq)H < C”!JE‘LP(EQ)”- (1.24)
Proof. STEP 1. We start with the proof of (1.23). If p > 1, by the triangle inequality
we get ~

IG7 | LyR| < D 277 ) gp | L(RY)], 7 eN.
keNg

When ¢ < 1, we use the embedding ¢, — ¢; to get

1Go | 6L < (303 277 Fge | L, ey o) ",

veENG keNd
Interchanging the order of summation, we get (1.23) with C = Cy = (ZEeZd 2—\E|6q)1/q_
If ¢ > 1, we apply Young’s inequality. We define
Ap = 2_|E‘6, kez?,
{ g | Lp(RY)|| for k € N, (1.25)

"o for k € 27\ N¢.
Then we get

IG5 | Ly R < (A +7)(@), 7€ NG,
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and Young’s convolution inequality gives
A%y [Lgll < Il - [y [£g]l-
This proves (1.23) with C'= Cy = ||A | 44]|.
If p < 1, we use the £, — ¢; embedding to get
S Gl (z)dx < Z 9~ 7—Hlop S gp(z) dx
R4 Fend R4
For ¢q/p <1 this implies
Yo NGHI LR < Y Y 27 PR g L (R
veNG veNE keNg
Now we again interchange the order of summation and take the (1/g)th power. This
proves (1.23) with C = C;.
Finally, if ¢/p > 1, we use again Young’s inequality with A? and +? instead of A and ~.
This gives
1Gw [ Lq(Lp) I < [N [l - 77 [ g/pll,
which proves (1.23) with C' = [|A|¢,]].
STEP 2. Next we turn to (1.24). This is a trivial consequence of the pointwise inequality
IGw(2) | £4]l < Cllga() |44l @ € R, (1.26)

with C independent of z € R?.
To prove (1.26), just use the ¢, < ¢; embedding for ¢ < 1 and Young’s inequality for
q > 1. We do not give the details, which are very similar to the calculation in Step 1. =

As we do not want to exclude the case of arbitrarily smooth functions, we use the
following notation. We write that the vector N = 0o if N; = oo for all i = 1,...,d. The
symbol N € N¢ U {oo} then means that either N = co or N is a vector of nonnegative
integers.

LEMMA 1.19. Let 0 < r < 1, and let {Vw}pena, {Brlpena be sequences taking values in
(0,00). Assume that, for some N° € N,

= 02" ), |7 = . (1.27)
Furthermore, assume that there is N* € Ng U {oco} with N1 > N° such that
< Cx > 27" NB ol peN], Oy <o, (1.28)
keNg

for every 0 < N < N if N is finite or for every N € Nd if N' = co. Then, for the
same set of N, o
V< Cx Y 27N, TEN, (1.29)
keNg
with the same constants Cr.

Proof. Put
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By (1.28),
FPIV < Cy sup Z 2" () NBHHV%JEZU = Cf sup Z 2_l NBHV l+ur
kENG 7end RENG jend
—I-N r 1—r I-Nr
= CN Z 2 ﬁz+l/,yl+ < C I N Z 2 ﬁl+y° (130)
lend lend
When I3, 5 < oo, we finish the proof by
TSI <Cry 27 gL (1.31)

leNg

From (1.27), I}, 5 is finite for all NO < N < N? (or for all N < N if N! = 00). As
the right-hand side of (1.29) decreases when N increases in any coordinate, this proves
(1.29) also for all N # N9 with the constant Cy., where N} = max(NY, N;). Take now
any N » N° and apply (1.29) with Cy. instead of C to get

I}’N = sup 2_k'N’yE+g

keNg

< C~ 2= (k+1) N’I‘/B Yr _Cl/r 27i-ﬁr 3 Yr
Sup \ U« Z I+k+v ~ YNx Z Pz ’
kEN

leng lend

which is finite whenever the right-hand side of (1.29) is finite (otherwise there is nothing
to prove). So, even in this case, we may apply (1.30) and (1.31) and finish the proof of
the lemma. m

1.3.3. Comparison of different Peetre mazimal operators. In this subsection we give an
inequality between different Peetre maximal operators. This inequality (together with
the boundedness of the Peetre maximal operator) forms the basis for our characterisation
of 57 ,A(R?) through local means.

Because of the limited smoothness of our kernel functions (discussed in detail in
Section 2.4), we cannot expect to get such an inequality for all f € S’(R%).
We start with (given) functions 1§, %%, i = 1,...,d, defined on R and set

Vi) = 9127 ), teR, j=2.3,...,
p(@) =[] vk (1), 2eR’ keNg, (1.32)

W =z, keNL
To (given) functions ¢}, ¢, i = 1,...,d, we associate ¢7 and &g in the same way. Fur-
thermore, we suppose that 9, ¢ € Xg(Rd) for some S € N4.
Using this notation we may state the main result of this section.

THEOREM 1.20. Let a,7 € R, R € Nd, 0 < p,q < oo witha > 0 and 7 < R+ 1. If
S > R is large enough and

DY (0)=0, i=1,...,d,1=0,1,...,R;, (1.33)
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and, for everyi=1,...,d and some € > 0,
g (1)) >0 on {teR:|t| <&}, (1.34)
|0t (1) >0 on{teR:e/2 < |t| < 2¢}, (1.35)
then
1257 (82 f)a | g (L) || < cl| 257 (@5 f)a | £o(Ly)]], (1.36)
1257 (@2 )z | Ly (€| < cl|25T (@5 f)a | Ly (L), (1.37)

for all f € (XS (RY))'.

Proof. STEP 1: formal calculations. Tt follows from (1.34) and (1.35) that there exist
functions {/\é-}?‘;o, 1=1,...,d, with

DNt (1) =1, teR, (1.38)
7=0
Xo(t) =X (277Tt), teR, jeN, (1.39)

supp Ay C {t e R:[t| <e}, suppA, C{teR:2 % <[|t| <2}, jeN. (1.40)

Now we define, as usual, \g(z) = A} (21) -+ A{, (zq) for every k € N§. From (1.38) we
obtain

> N@ep(x) =1, =zeR%

keNg

Finally, we set Ay = :\\Ev k € N&. This gives us the following identities:

F= Agxdpxf, Wyxf=> WpxApxdp+f, veEN] (1.41)
keng keNd
‘We have
|(F % A x P * [)(y)] < S |(W5 Ag)(2)| - (P * [)(y — 2)| dz
Rd
< (®3f)a(y) S (@5 Ap) (2)| [T (1 + 2% 2] ™) d=
d =1
- d
= (@:)aW) L = (P:0)a) [ [ L. (1.42)
=1

where
Ly, = V1, % AL ) (20)| (142524 da.
R
We claim that by Lemma 1.17,
g(ki—vi)(Ri+1) if b <,

1.43
PRt D) i > (4
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Namely, we have (for 1 < k; < v;) with the change of variables ki z — 2,
1

Ty = 5 10 ALC/2) I+ [0l 2
R
< esup |(B . * AL(-/2))(z0)|( ) < colki—v)(Rit).

z€eR
when S; are chosen sufficiently large.
Analogously, for 1 < v; < k; with the change of variables 2¥iz; — z;,

L, < 20000 (10 5 A, ) (20)](1+ |24l ) de

R
< C2(”i7ki)(7ai+M+1),

where M may be taken as large as S; allows. Taking M > 2a; + |r;| (which is possible
for S; large enough), we get (1.43). This covers the cases where v;, k; > 1, v; # k;. The
cases k; = v; > 1, k; > v; = 0 and v; > k; = 0 can be treated separately in a similar way.
The needed moment conditions are always satisfied by (1.33) or (1.40), respectively. The

case k; = v; = 0 is covered by the constant C in (1.43).
Next, we point out that

(£)aly) < (@2F)alx) [[(+ 125 (@i — wi)

ai)

1=

) max(1, 2k —vaan),

d
(1

1

d

H L+ 2% (i — i)

We put this into (1.42) and use (1.43) to get

wup |2 g2 P )
e TIL, (L+ 2 i — 32)

—

d
) < (@%f)a(x) H Ik, max(1, Z(ki*’/z‘)az‘)
“ =1

d
c@:a) [

This inequality, together with (1.41) and (1.42), gives for
(5:min{1,Ri+1—Ti;i= 1,...,d} >0

ki) (Bitd) if |y <,
owi—ki)(Iril+1)  if k; > v;.

the estimate
T fla(z) <c Y 2TRTORT(@r ) (x), TeNE, zeRL
keNg

Lemma 1.18 now gives the desired result immediately.

STEP 2: theoretical background. In Step 1 we did not take care about problems caused
by limited smoothness of the functions ¢§-, gbé— not to disturb the elegant calculation done
there. Nevertheless, to complete the proof, we have to fill some gaps. We go through the

proof of Step 1 once more and discuss the theoretical aspects of the calculation.

e Functions X;. By the choice \i(t) = ¢;(3t/2¢)/¢}(t) we ensure (1.38)~(1.40).

functions ¢;, j € Ng, were fixed at the beginning of Section 1.3. By (1.34) and (1.35)

we get A\; € X5 (RY).
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o Identities (1.41). First, we point out that the expression Ay * ®; * f is well defined
for every k € Nd. As the function A= A% has compact support, we have A; x &7 =

(A\gop)" € X5(R?). The same holds for ¥y * Az * Gr.
Next we prove the convergence of both sums in (1.41) for every f € (X*(R?))" and
every 7 € N¢ in (X°(R%))’. By duality arguments, it is enough to prove that
Z wﬁAEQSE:U — wﬁﬂa ve Ng7
keNg
in X5(RY) for every p € X(R?). This follows from (1.38) and (1.40).

Finally, to pass from (1.41) to (1.42), we have to ensure that (1.41) converges also
pointwise. More precisely, we need to prove

(@5 F) )] < D | A+ By % ) (y)] (1.44)
keNg
for all 7 € NZ and almost all y € R?.
Fix 7 € N¢ and let fz(y) = (¥y * A = 7 * f)(y). Then we know from (1.42) that
)| < (@LfaW)hp y € R
By (1.43) (and by Hélder’s inequality for g > 1)
D IR LyRY| < cll2 (D5 f)a | £a(Ly)]-
keNg
So, whenever the right-hand side of (1.36) is finite, we obtain the L,-convergence of
the series 3 5 cya [f5]- Hence, this series converges in the Lebesgue measure as well
and therefore also pointwise almost everywhere. We recommend [19] as far as various
types of convergence of sequences of functions are concerned. So, whenever the right-
hand side of (1.36) is finite, we get (1.44).
When the right-hand side of (1.37) is finite, we use
1257(P7f)a [Hmax(p,) (Lo) || < cll 257 (@5 f)a| Lo (L)l
and apply the same arguments as above. m

REMARK 1.21. The conditions (1.33) are usually called moment conditions while (1.34)
and (1.35) are Tauberian conditions.

1.3.4. Boundedness of the Peetre mazimal operator. In this subsection we describe the
boundedness of the Peetre maximal operator in the framework of weighted L, (¢,) and
l4(Ly) spaces. We use the notation explained at the beginning of Section 1.3.3. In
particular, we still suppose that the functions ¢,k € N&, belong to the space X°(R?),
where the vector S will be specified later on. Our main result now is

THEOREM 1.22. Let @,7 € R?, 0 < p,q < co. Suppose that for everyi=1,...,d,
i) >0 on{teR:|t| <e}, (1.45)
[Wi(t)] >0 on{teR:e/2 < |t| <2} (1.46)
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(i) If @a>1/p and S > 0 is large enough then
1257 (@5 a | a(Lp) || < el|2°T (W % f) [ €4(Ly)| (1.47)

for all f € (XS~ L(R)).
(i) If @ > 1/min(p,q) and S > 0 is large enough then

1257 (B2 )a | Lo (o)l < ell 257 (@ # £) | Ly (L) (1.48)
for all f € (XS—2~1(R4)Y

Proof. In analogy to (1.38)—(1.40) we find functions {A;};?‘;O,i =1,...,d, with (1.39),
(1.40) and

SONtwit) =1, teR. (1.49)
§=0
Instead of (1.41) we now get the identity
kengd
A dilation ¢t — 27"t in (1.49) leads to
Upxf= Y ApoxWp xUpxf, 7eN (1.50)
keNg

where
A(6) = Pe@77)NE) = 2" 45(27¢), k.7 e NG,

Uy, is defined similarly. We recall that V¢ = (2V1¢4,...,2¢,). Hence, for k > 1 and

v € N, we obtain Vo =Y

4 To simplify the notation, we point out that

qu(Q_ﬁx)wp(x) = UE’E(x)¢E+D(‘T)7 E7ﬁ € Ng7
where
d ; .
i i ’(/),Z/l (-'L'z) if kl > O,
or(x) =1 ok o (xi), op L (x:) = , .
ol 131 ko) Thn () {w(z(zwxi) if k; = 0.
Hence we may rewrite (1.50) as
Upsf= Y A #op,xW,+f, 7eNL (1.51)
keNg
By Lemma 1.17,
9—k-N
[T, (1 + [2viz|)
for k,7 € N¢ with any N < S — 2. The last estimate, together with (1.51), gives

|(AE77 * 85,7)(2” < Cﬁ2‘;|

9—k-N

(5« Hy) < Cx2™ > |

Wepp* HEdz (152)
S L 2o ==l
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Fix now any s € (0, 1]. Divide both sides of (1.52) by H?Zl(l + |2¥i (z; — y;)|*“), take the
supremum over y € R? and apply the inequalities

T+ 12" (ys = 2)[*) (1 + 2% (s — ya)|*) 2 (1 + 27 (s — 2) ),

d
(Ui * N2 < [T+ H) ) f H L 2874 (= )| "),

(L+ ]2+ (i — )|

)l—s 2k a;
< .
(420 (2 — zi)|@) = (L [2kitvi (2 — z;)])s

Finally, we get

247l (o f)(2)]°
[0 (1 + |2kt (a — z)|as)s

(75 fla(z) < ey > 2FEND@r fa(a)te |

keNg Rd

and apply Lemma 1.19 with

. 2P * f)(2)]°
v = (T fale), Br= | — -
pa LLima (L4 |27 (i — 23)] %)
N'=S —a—1 and N° giving the order of the distribution f, which is finite for S = oo
and smaller than S if S is finite.

By Lemma 1.19, we obtain, for every N < S —a—1, z € R? and v € Ng,

dz, veNd,

N 271 (o f)(2))°
U ) (2)* < Ce 9—F-Ns k+v dz. 1.53
( I/f) ( ) < N Z S H?:1(1+|2k’+u’($i_zi) aq',)s ( )

We point out that (1.53) holds for s > 1 as well with much simpler proof. In that case,
we take (1.52) with @ + 1 instead of @, divide by H?Zl(l + |2¥i(z; — y;)|*) and apply
Holder’s inequality for series and integrals.

keNg R4

We now choose s > 0 with 1/a; < s < p (or 1/a; < s < min(p, q), respectively) for

every i =1,...,d. Then
1

d 1 a;s <
[Lici (14 [zi])

and by the majorant property of the Hardy-Littlewood maximal operator M (see [28,
Chapter 2]) it follows that

(W fa(z)* < C S 27NN (1w, + f1°) (@), (1.54)

keNd

L1(RY),

We choose N > 0 such that N > —7 and set
gi(x) = 25T M (|0 * f1°) ().
Then from (1.54) we get
Grlx) = 277 (B f)a(2)* < O 22PN Dgp(a).

E>T
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Hence, for 0 < § < min{N;+r; | i =1,...,d}, we may apply Lemma 1.18 with L,,/s(¢y/s)
and £y/s(Ly/s) norm respectively. This results in

1257 (@ )a (@) | Laja(Lpys)|| < ell287* M0 5 1) (@) | €g/s (Lo (1.55)
and
1257 (@2 F)a@) | Lyja(lyys) | < el 28T M (05 5 1) (@) | Lyya(lyys) (1.56)

In the first case, we rewrite the left-hand side of (1.55) and use the classical Hardy—
Littlewood Theorem (see (1.12) for details, we recall that s < p) to obtain

1257 (@2 ale) | £a(Ly)]| < el 287 (@« £)(@) [ £ (Ly)l-

In the second case, we rewrite the left-hand side of (1.56) and use Theorem 1.11 (now
we recall that s < min(p, q)) to get

1257 (@2 F)a(@) | Ly (lg)]| < el|2"7 (@ £)(@) ] L),
which concludes the proof.
1.3.5. Local means characterisation. We summarise Sections 1.3.3 and 1.3.4 and give the
usual formulation of the local means characterisation. We still use the tensor construction

of functions 1) described at the beginning of Section 1.3.3. The spaces X S(R?) and the
Peetre maximal function (u'/E* f)a were defined in Section 1.3.1. We still suppose that

Pi, i € XS (RY), where the vector § will be specified later on.

THEOREM 1.23. (i) Let 0 < p,q < oo, F,a € R% R, S € Z% witht < R+ 1 anda > 1/p.
If S > R is large enough and

DYi(0)=0, i=1,...,d, a=01,...,R; (1.57)

and
[Yo(t)] >0 on{teR:|t| <cel, (1.58)
[Yi(t)] >0 on{teR:e/2<|t| <2} (1.59)

for some € > 0, then
17155 BRI =~ 127 (@ % f) [£g(Lp) Il = 1257 (F Fa | £a(Ly)|

for all f € (XS~ 1(RY)).
(ii) Let 0 < p < 00,0 < q < oo, 7,a € RY, R, S € Z* with7 < R+1 and @ > 1/min(p, q).
If S > R is large enough, and (1.57)—(1.59) are satisfied, then

1F 1S5, FRA|| 2 (1257 (@5 % £) | Ly (€g) | = 11257 (%2 f)a | Lp(6y)|
for all f € (X572 L(R4)Y.

REMARK 1.24. 1. Theorem 1.23 is just a reformulation of Theorems 1.20 and 1.22.

2. In the proof of Theorems 1.20 and 1.22 we followed essentially the approach described
in [25]. We point out that recently very similar results were obtained in [3].

3. We may set S = oo in Theorem 1.23. Then one obtains equivalent quasinorms on
S'(R%). By choosing S large, but finite, we may always ensure that the new quasinorms
are equivalent at least on S A(R?) C (X5~ 1(R))".
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Next we reformulate Theorem 1.23 using the local means in the sense of [33].

THEOREM 1.25. Let 0 < p,q < oo (with p < oo in the F-case), 7 € R, S 52 € N
with S* — S% > 1/p+ 1 in the B-case and S* — S? > 1/min(p, q) + 1 in the F-case. Let
R € N be a vector of d nonnegative integers with R > T. Further let ko, k', ... k% be
complez-valued functions from X5 (R) whose supports lie in the set {t € R: |t| < 1} and

Define
) ) dti
ko) = ko(t).  Kk.(t) = 2"( e kz> (2™), i=1,...,d, neN, teR.
As usual, denote by ky(x) =k (x1) -kl (za), 7 = (v1,...,vq) € N§, the tensor product
of these functions. The corresponding local means are defined by
ko(£)@) = | bs@) f@+y)dy, TENG, xR, (1.61)
R4

appropriately interpreted for any f € (X§1 (RY)Y. Then, if S? is large enough,

127 kir(F) | Lp (0| = 1 £ 1 Sh PR, f € (X5 (RYY, (1.62)
and
127k (£) | 6o (L) | = (1 £ S5 BRI, fe (X5 (RY)). (1.63)

Proof. Put ¢ = F; ko and 4% = Ffl(;l;i k"). Then the Tauberian conditions (1.58)

and (1.59) are satisfied and (1.57) is also true. If we define 9, 7 € N, as in (1.32), we
get

(o) (@) = ¢ | ) W)@ —)dy = ¢ | (Foo) ) fla+u)dy  (164)

Rd R4
d
=c| (H(Flwii)(yi))f(x +y) dy.
Rd =1

Finally, if v; = 0 we get (F1¢§)(yi) = ki (v:), and if v; > 1 we obtain in a similar way

) ) ) dbt . .
(Frpy, ) (i) = (Fr(*(277))) (ys) = 27 (F1op*) (27 ) = 2% ( k) (2%yi) = Ky, (y3)-

dtl
Using this calculation and (1.64) we get
W)Y (@) = | ks(W) f(z +y)dy, PeNG, xR,
R4
and the theorem follows. m

REMARK 1.26. We point out that S = S§? = oo is allowed in Theorem 1.25.

We shall need some other modifications of Theorem 1.23. But first we give some
necessary notation. For 7 € Ng and ™ € Z¢ we denote by Qv the cube with centre at
27Vm = (27V'my,...,27¥4my) and with sides parallel to coordinate axes and of lengths
27¥ L ..,2774, Hence

ng:{l‘eRd : \J;i—Z_”imi| SQ_Vi_l, 1= 1,...,d}, DENg, mEZd. (165)
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If v > 0 then vQz denotes the cube concentric with QQz7 with sides also parallel to
coordinate axes and of lengths v27%1,... ~y27v4,
Defining the Peetre maximal function by (1.17), we get
(W;f%(x) =>c sup |(WV * f)(y)la ve Ng’ T € Rd7
z—y€vQv,0

where the constant ¢ depends on @,y > 0 but neither on x nor on ¥. This very simple
observation together with Theorem 1.23 gives the following

THEOREM 1.27. Let 7 € R? and 0 < p,q < 0o (p < oo in the F-case). Let R € N& with
R>7, 5,82 € N¢ and ky be as in Theorem 1.25. Then, for any v > 0,

_ 1/ — 52
[(Z 27 s pstnrr) | Lo = 17157 F@IIL 7 e (X5 @Yy,
TENG v w0
) (1.66)
and
JE— 1/‘1 — a2
(322771 swp koDl Lp(RDI7) T~ 1717 BED]L - J € (X% &y
TENd T 7.0
(1.67)

Another modification of Theorem 1.23 is rather technical and deals with “directional”
local means, namely with local means of the form (d = 2)

S Ky, () f (1 + y1, m2) dys.
R

To introduce these local means in the general dimension, we define for every A C

a,....d,

kz.a(f) S (H k., (ys ) z1+y1xa(1), ... 2d +yd><A(d))(H dyi). (1.68)
RIAl i€A i€A
This means that we restrict the integration in (1.61) to those variables y; for which i € A.
The others are left unchanged.
Using this notation, we may state our next lemma.

LEMMA 1.28. Let 0 <p<o00,0<qg<o0, AC{l,...,d} andy > 0. Let 7 € R? be such
that v; > 1/min(p,q) for i ¢ A. Let R; € Ny and ki be as in Theorem 1.25 for every
i € A. Further let kp a(f) be defined by (1.68). Then

(X 2 s oatnmr)”| L

—yerQy
7eNg z—yeYQu,0
v;=0,1¢A

®RY| <elrsp, PRI (1.69)

for every f € S F(R). The sum is taken over all v = (v1,...,v4) € N§ with v; = 0
whenever ¢ € A. The L,-quasinorm is then taken with respect to x.

REMARK 1.29. There is again a direct analogue of this lemma for the B-scale and for
nonsmooth kernels. The proof follows the proof of Theorem 1.23.
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2. Decomposition theorems

In this chapter we present three decomposition theorems. We give atomic, subatomic and
wavelet decomposition characterisations of spaces with dominating mixed smoothness.
But first of all we explain some notation used in connection with sequence spaces.

2.1. Sequence spaces. We recall that for 7 € N¢ and m € Z? we denote by Qpw the

cube with centre at 277m = (27"'my,...,2 Y¥my4) and with sides parallel to coordinate

axes and of lengths 27%1, ... 2774 By X(—)— we denote the p-normalised characteristic

function of Qu7, that is, X(p) (z) = 2PV/Pxq. . (x). Furthermore, we write Xpm(z) =
X Q7 (2)-
DEFINITION 2.1. If 0 < p,q < oo, 7 € R? and

A={d\meC:veN mezi} (2.1)

then we define

spab = {A N g bl = (30 2 (3 \Amw)””)” "<} (22

veNg meZd
and "
q
spad = { X Il = [[(32 D 2P emwm()) | LR <o} 23)
veENd meZd

with the usual modification for p and/or g equal to cc.
REMARK 2.2. We point out that with A given by (2.1) and gz () = Y rrcpe domXzm(T),
we obtain

M spgbll = 127795 [ 6g(Lp)ll, M 550 f 1l = 127795 | Ly (£y)l-

Sequence spaces of this kind were denoted by Eg;s in [14] and may be viewed as a discrete
version of Sy F(R%) and ST  B(RY).

2.2. Atomic decomposition

DEFINITION 2.3. Let K € N4, L+1 € Ng, and v > 1. A K-times differentiable complex-
valued function a is called a [K, L]-atom centred at Qpwy if

supp a C YQvm, (2.4)
|D%a(z)] <2°7 for0<a<K (2.5)

and ‘
nga(x)dxi =0 ifi=1,...,d; j=0,...,L; and v; > 1. (2.6)

R
Using this notation we may state the atomic decomposition theorem.

THEOREM 2.4. Let 0 < p,q < 0o (p < oc in the F-case) and ¥ € R?. Fiz K € N¢ and
L +1 e Ng with

Ki 2 (1+[T1])+, Lz ZmaX(—l,[qu—’f’i]), 1= 1,...,d (27)
(L; > max(—1, [0, —1r4]) in the B-case).
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(i) If A€ s, ,a and {avm(2)}vend, meze are [K, L]-atoms centred at Qpm, then the sum
Z Z om0y () (2:8)
veNd mezd

converges in S'(R%), its limit f belongs to the space S;qA(Rd) and

7 d ¥
1155 g AR < cl|A] sy, qall, (2.9)
where the constant c is universal for all admissible A\ and az 7.

(ii) For every f € Sy  A(R?) there is a X\ € s, ,a and [K,L]-atoms centred at Qum

(denoted again by {arm ()} pend, meze) such that the sum (2.8) converges in S'(RY) to f
and

I sp.qall < el 1S5 AR (2.10)
The constant c is again universal for every f € S;qA(Rd).
Proof. We give the proof only for the F-case. The proof for the B-scale is very similar.

STEP 1. First of all we prove the convergence of (2.8) in S’(R?). Let » € S(RY). We use
the Taylor expansion of ¢ with respect to the first variable,

D(al,O,A..,O) 2= V14p Y2,
ely)= > il Uikt o Y2) (y — 9rmy ) (2.11)
ar<L: (631
1 T - Ly r)(L1+41,0,...,0)
+L_1' S (t1_2 ml) D o <p(t1,y2,...,yd)dt1,
27 V1my

and (2.6) to obtain

S avm (y)e(y) dy

R
Y1
= S a”gl('y) S (ty — 2_”1m1)L1D(L1+1’0 """ 0)<p(t1, Y2, ---,yq) dty dy.  (2.12)
1!
27 Y1mq

Using an analogue of (2.11) iteratively for the remaining d — 1 variables we see that the
left-hand side of (2.12) is equal to

arm(y) T v 2 —v; L; nL+1
| 7 Vo b T —27m) D ety ta) dt dy.

R4 2= Y1my 2" Ydmg =1

Using the support property (2.4) of azm we may estimate the absolute value of the inner
d-dimensional integral from above by (y € YQum)

c2 "I qup  [(DFH) ()] < epr2 T ED ()M sup (@)M (D) (),
rE€EYQvm #E€1Crm

where M is at our disposal. Here we write (z) = (1 + |2|?)'/2 for = € RY.
Now suppose that p > 1 and use (2.5) and Holder’s inequality to get, for M large
enough,
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1§ Aomtom(w)e) i

< 27 (L+1)9=7-(1/p) sup (x)M\(DZan)(xﬂ S( Z 25'(1/p)|)\vm\x~,gyﬁ(y))<y>_M dy
zER? Rd TELI

= o 1/p 7
< 2 PN P (S ) e sup ()M |(DFH ) (2).

d
Tezd z€R

Ashe sy, fCsp band T+ L+1> 0, the convergence of (2.8) in S'(R%) now follows.

If p < 1, we get a similar estimate

1§ 3 Aomarm(ule(v) dy|

- _ P
<2 E0 sup (D) @)P S snl?| | o () dy
s€R? mezd R4

< 277 (+L+1-1/p+1)p sup |(DE+1<p)(:v)|p Z 27'(F—l/p)p‘)\?m|p.

T d
z€R mezd

In this case we use the fact that 7+ L+1—1/p+1 > 0 and the embedding s], , f C s} b

STEP 2. Next we prove (2.9). We use the equivalent quasinorms in Sy  F' (R9) given by
(1.62). Choose R > K and define the functions k; for [ € N¢ as in Theorem 1.25. Then
for all [,7 € Nd and all m € Z¢ we have

2 ky(az ) (x) = 27 | K () - K (ya)aw (@ + ) dy. (2.13)
R4

Further calculation depends on the size of the supports of k; and apm. Hence we have to
distinguish between I; > v; and I; < v;. This leads to 2¢ cases. We describe the first one
(I > 7) and the last one (I < 7) in full detail and then we discuss the “mixed” cases.

I. I > 7. We suppose that [ > 0. This only simplifies the notation, the terms with
l; = v; = 0 may be incorporated afterwards. We use the definition of k:lll and perform
partial integration (I;-times in the ith variable) to obtain

d
- - dRi .
7y (., _ ol (T+1) | I i igi Ny
2 kl(aum)(x) =2 RSd palet (dtRi k )(2 yz)avm(x + y) dy

d
I dRi ; - )
-2 H(dtht g >(yi)“Vm(f61 +27 L wa + 27 yg) dy

d K,
e qBi— K i — B _
=2 S H(Wk )(yi)(DKavm)($1+2 By, wa 427y, dy.
Rd =1

Next we use the smoothness of k%, the boundedness of their supports and the properties
(2.4) and (2.5) to estimate the absolute value of this expression:
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2l~7|k7(a;m)(x)| < 022'(7_[{)27]?.

d
) S (H Xsupp k? (yi)>XVng($1 + 2_lly17 sy Tg + 2_ldyd) dy.
Rd i=1

Assuppk! C{teR: |t|<1},i=1,...,d, it follows that

27| ky(arm) (2)] < c2” E-DEgn -1/ @) (), (2.14)

II. [ < 7. The integration in (2.13) may be restricted to {y : |y;| < 27%}. We use the
Taylor expansion of kfl (y;) with respect to the off-points 27"im; — x; up to order L;,

27Nk () = D @)y — 27 ms 4 @)% 4 28V g — 27| M)

0<B;<L;

i

(2.15)
and (2.6) to get

d
Qka(agm)(x) = ol("+1) S azm(T+y) H 21i(Li+1)O(|xi g5 — 27 Vim, | Bt dy.
{y:lys|<27t} =1

Since |azm(x + y)| < XyQw-m (T +y) We obtain

27 |ky(apm) (2)] < 2" THDETEED o (@ 4 y) dy. (2.16)
{y:lyil<27h}
The last integral is always smaller than ¢2~ /" and is zero if {y : z +y € YQum} N {y :
ly;| <271} = (. Hence

| en@tydy<c2 Wy g (). (2.17)
{y:lyil<274}

But the last expression may be estimated from above by the use of maximal operators

M; defined by (1.14),

277 Y i, (@) < ¢ (Mxpm) (2). (2.18)
Let 0 < w < min(1, p, q). Taking the (1/w)th power of (2.18) and inserting it in (2.17)
we obtain
| voen(@+y)dy < c27 P27 (M ) e (). (2.19)
{y:lyil<27ti}

Next we replace xpm by X(_p)_ in (2.19) and insert it in (2.16):

2 |ky(apm) (2)| < 207 CHLHERIZA )97 T /) (M) 1 (),
By (2.7) and (1.4) we may choose the number w such that 3z = (F+1+L+1—1/w) > 0.

III. Mized terms. We estimate for example the term with Iy > v, I; < v;, i = 2,...,d.
First we apply (2.15) for i = 2,...,d and use (2.6) to get rid of the terms with 8 < L.
Then we use K, partial integrations in the first variable. In the expression we get we use
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again the support properties of the functions involved and (2.5) to obtain
217y ()] < 2772001 =K QT (s )+ i) (it ) —vir)

' S X2 Qo (T1 + 271, @0 + Y2, - Ta + ya) dy,

Ap

where A; = {y € R?: [y1] < 1, |y;| <274, i =2,...,d}. Due to the product structure
of the integrated function we may split the last integral into a one-dimensional integral
with respect to dy; and a (d — 1)-dimensional integral with respect to the remaining vari-
ables. The first integral may then be estimated from above by ex . (1—2-vim,|<2-vi}(1)-
Finally, we use the maximal operators M;, i = 2,...,d, to estimate the second inte-
gral. Exactly as in the second step, it turns out that there is some vector @ > 0 such
that

27| ky(ap ) (2)] < o2 Zim lmvileigmT=1/m) (AL B)y 1% (), (2.20)

Observe that also (2.14) may be estimated from above by the right-hand side of (2.20).
Hence the estimate (2.20) is valid for all [,7 € Ng.

Using this estimate, we get for ¢ <1,
. q _ _
78 (5 b o o3 a0 Bl T ),

For ¢ > 1, the same estimate is justified by Hélder’s inequality.

We sum over [, take the (1/q)th power and then apply the L,-quasinorm with respect
to x. Setting gym = 2”'(7’1/p))\gmx(§p)m we arrive at

H (_Z ‘21?1{37 (Z Avmaﬁm) (z) q) 1/q

(Z 27 (F=1/P)a| )\ 10 (M (P al (I))

vm

Ly(®%)|

1/4q
<c

L,(®%)|

1/w

= (g ) Ly

v,m

Using Theorem 1.11 and the definition of w, we see that this expression may be estimated
from above by ¢||A|s] ,f|l. On the other hand, from Theorem 1.23, this already ensures
that f belongs to S}  F(R?) and proves (2.9).

STEP 3. It remains to prove (ii). Assume first that
L=-1, K>7, 7>0, 0<p<oo, 0<g<co. (2.21)

Furthermore, let N € N¢ be a vector of integers with N > 7. According to the construc-
tion in [34, p. 68], we may find functions ko, k', ..., k? such that
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ko, k',..., k% € S(R); (2.22)
supp ko, suppk’ C {t e R: |t| <1}, i=1,...,d; (2.23)
1=Fi(ko)(&) + > F(dVE)(277¢), E(eR, i=1,....d; (2.24)
Di:1
Fi(dNiEDY(€) = (Fiko)(€) — (Fiko)(26), €€R,i=1,....d. (2.26)
We define k;(x) and k;(f)(z) as in Theorem 1.25. We claim that then
f= _Z ki(f)(x) = 131211002 k;(f),  convergence in S'(R%). (2.27)
TeNg I<p

To prove this, fix ¢ € S(R?). Since the Fourier transform is an isomorphic mapping from
S'(R?) onto itself and

(ki (H Fi(k)(—)) F(©).

it is enough to show that

d
&Y (T Faki)(-€)) = o(&) in S(RY). (2.28)

i<p i-1
The last sum may be rewritten using (2.26) as

d

Z(ﬁmkm(—@)) = TI(Fiko) () +Z (A (k) (-27")

ZSP =1 =1 li=

(—277¢).

u::&
=
§

We denote the last expression by 1 —®(27F¢) and fix M € N. Using the fact that
¢ € S(R?) we obtain

_ _ d
pu(p(©d277e) <c sup 277 F(D)(&)(DPP) (27 e) [[ (&)™

0<@,B<M i=1

d
<c sup 27 PﬁDﬁd) 2_P§ H
0<B<M i=1
geRr?

where the constant ¢ does not depend on P (but depends on M). Here pj; are the func-
tionals defining the topology on S(R?), namely pas (@) = suDg<z<as zera D ()] (z)™.

If at least one B; > 0, then this expression tends to zero as P — oo. If 8 = 0,
then we split the supremum into supj¢|>or and supj¢|cop. The first supremum may be
estimated from above by ¢2~F. To estimate the second one, we notice that |®(¢)| < c[¢]
in {¢:|¢] <1}. Hence
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< -1 27 Pl
¢ sup P(2 H < ¢ sup
le|<2P paie} cere  (§)

and p(0(§)®(277¢)) — 0 as P — oo. This proves (2.28) and, consequently, also (2.27).
Next we find a nonnegative function v which satisfies

¥ € S(R), supp is compact and Z Y(z —m) =1 for z € R, (2.29)
mezd
and we define for 7 € Nd and m € Z? the function ¢y 7 (z) = (272 — ™). Then there is
a vy such that
supp Ypm C YQum, €N me 7. (2.30)
We multiply (2.27) by these decompositions of unity and obtain
F=>3 vom@)ks =Y > domorm (2.31)
veNd mezd veNE mezd
where
Nom= > swp [Dke(NW),  arm(@) = A\ hvpm(@)ka () ().

EVQvm
0<a<i V19"

(If some A7 = 0, then we take apm(x) = 0 as well.) It follows that apw are [K, L]-
atoms centred at Qp7z. The properties (2.4) and (2.6) are satisfied trivially (recall that
L = —1), and the property (2.5) is fulfilled up to some constant ¢ independent of T, m
and x. To prove that this decomposition satisfies (2.10), write

H)\|Sz,qu <c Z H ( Z Z QVTq9v-q/p sup |Da[kg(f)(y)]|’1) 1/q ‘ L,

0<a<K veNdmezd T=y€vrm

(2.32)

and use Theorem 1.27 with D% ko and Dk’ in place of kg and k. We lose the Tauberian
conditions (1.60) for these new kernels but according to Theorem 1.20, they are not
necessary in the proof of (2.32).

STEP 4. Now we prove the existence of the optimal decomposition for all 7 € R% and L
restricted by (2.7). To simplify the notation, we restrict ourselves in this step to d = 2. So,
take f € S7 F(R?). In Definition 1.8 we may substitute (1+22)” by (1+27")(1+23")
for p € N2 and (using twice Theorem 1.12) we obtain the counterpart of Theorem 1.9.
Hence f can be decomposed as

§2Mig  §2Mag  §2Mi+2Ms

9
2M; 2M; 2M;, 2M>
Oy 0x5 Oxi ' xj

f=g+ (2.33)

where ]\77: (My, M) € 2N3 is at our disposal and may be chosen arbitrarily large,
g € S;H2MP(R?) and ||g| Sp 1M F(R?)| ~ || f | S}, ,F(R?)]|. The optimal decomposition
of f will be obtained as a sum of decompositions of these four terms.

To decompose the first term, choose M such that

lg | SEC®)|| < cllg | S5 F(R?)]].
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This is possible according to [26, Theorem 2.4.1]. Then we decompose

g(z) = > Pl —mg(x) = Y ANmhm:
mezd mezd
where
MNm=c Y. sup [(D)(y)],
Ogagg\y—nﬂgcz

1
a(lJﬁ = )\(1)—_1/)(90—

m)g(x),

for c1, ¢y sufficiently large and for ¢ satisfying (2.29) and (2.30). Then a} .. are [K, L|-
atoms centred at QQp7. Furthermore, according to Lemma 1.28, we have

- /p
N 5ol = (2 W) "< S0 sw (D% | L@

mezd <K —y€YQoo
<cllg| Sy F®R?)| < cllf| Sy, F(R)|.

We have used Lemma 1.28 with d = 2 and A = (.

As for the last term in the decomposition (2.33), we may assume that M is large
enough to apply Step 3. So we may assume that we have a decomposition (2.31)
for g with, say, Al and ai_(z) instead of \ym and apm(z) and ||AL_ | S;:’fﬂf” <
cllg| S;zQMF(R2)||. As ai_(z) are [K + 2M, —1]-atoms, 2-27M D2(M1.M2) g4 (1) are
[K,2M — 1]-atoms.

In the case of the second term we use the decomposition

9@) =3 3 tom@hrale)@) = 32 3 XpaZa (o),

pEN? meZd TENZ meZd
vo=0 vo=0
where A = {1}, kz a(g)(x) are defined by (1.68),
A =22y sup | D’ (kz,(9)) (W),
yEc2Qum

B<K+(2M1,0)
1
az—(r) = )\g—_ﬂ/ﬁm(m)k?#\(g)(x)'
rvrm

If ¢; and ¢y are large enough, then DZM1:0q2 () are [K, L]-atoms for L; < 2M; — 1.
Finally, we use Lemma 1.28 to estimate [|X\*| s . f]]:

- 1/q
sl <o 3 (3 2™ @ s D2 (bl w)) | L

B<K+(2M1,0) DEN2 "TY€e2Qro
IJ2:0

< cllg| SpP PR < el f 157 FR,

if M is chosen sufficiently large. We have used Lemma 1.28 with D1k, and D2 g instead
of k1 and f. The third term can be estimated in a similar way. The sum of these four
decompositions then gives the decomposition for f.

For general d one has to use the full generality of Lemma 1.28 but the idea of the
proof is still the same. m
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2.3. Subatomic decomposition. In this section we describe the subatomic decompo-
sition for the spaces Sy  A(R%). We follow closely [35] and [37].
First of all, we shall introduce some special building blocks called quarks.

DEFINITION 2.5. Let ¢ € S(R) be a nonnegative function with

suppe C {t € R: |t| < 2%} (2.34)
for some ¢ > 0 and

dt-n)=1, teR (2.35)

neZ

We define ¥(x) = 9(z1) - - - (xq) and ¥P(x) = 2°¥(x) for x = (z1,...,24) and B € Ng.
Further let 7 € R and 0 < p < oo. Then

(Bu)pm(z) =P (2"c —m), weNI mezd (2.36)
is called a (3-quark related to Qum.

Recall that the spaces s? a were defined by (2.2) and (2.3).

P.q
THEOREM 2.6. Let 0 < p,q < oo (with p < 0o in the F-case) and T € R? be such that
T > oy in the B-case and T > opq in the F-case.
(i) Let
A={M:BeN} with MW ={)_cC:veN, mez}
and let o > ¢, where ¢ comes from (2.34). If

sup 29‘6|||)\ﬁ|s g0l < oo
BeNE

S S A Baen(e) (237)

BENE veNd meZd

then the series

converges in S'(R%), its limit f belongs to Sy ,A(R?) and
171554 ARY| < ¢ sup 2¢PHA [ ] al. (2.38)

BeNg

(Bqu)vm has the same meaning as in (2.36).

(ii) Bvery f € Sy JA(R?) can be represented by (2.37) with convergence in S'(R?) and
sup 290N |57 Jall < ¢l f |57 AR (2.39)
BeNg

Proof. We give again only the proof for the F-scale. The proof for the B-scale is very

similar.

STEP 1. First of all, we shall discuss convergence of (2.37). It turns out that this series

converges not only in S’'(R?) but also in some L, (R%),u > 1.

Let 1 < p < oo. Then 7 > 0 and we get

) <e YN N 2PN R (=), (2.40)

BENE veNd meZd
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where Yy is the characteristic function of 2°t1Qp. Using Hélder’s inequality twice,
we get for every € > 0,

|f(z)| < ¢ sup 2(¢+e)lB] sup 2l7le sup |)\£m|>~(vm($)-
BENG TENY mezd

Taking the pth power and replacing the suprema with sums we get
@ <ed D > 2 WFITNG L P om(@). (241)
BeNE veNd meZ?

Set ¢ = max(p, q) and choose € such that 0 < 2¢ < p— ¢ and € < 7. Integration of (2.41)
and Holder’s inequality result in

_ 1/
£ 1Ly (R < ¢ sup 2042051 (37 57 omm/m=anpp )
BeNG

veNd mezd
< 205 (5 ) )
N rm
petts veENG mEL
< c sup 29PN | 5T b]| < e sup 29PN [sT f]. (2.42)
BENE Bend

Therefore, for 1 < p < oo, (2.37) converges in L,(R%). If p = oo, we get the uniform
pointwise convergence of (2.37) by similar arguments.

Let 0 <p <1 Then7 > 1/p—1 and we get again (2.40). Integrating this estimate
and using Holder’s inequality, we get for every ¢ > 0,

IFIT@®D < e 3o 32 D0 2 PIRGa) < e sup 2@ 5% 7 27 PG,
BENE peNd mezd pENG TN mezd
By arguments similar to (2.42) we get
1F 1 L1 (RY)| < e sup 29PN |57 £
BENG
and (2.37) converges in Li(R%).

STEP 2. We now prove that the function f defined as a limit of (2.37) belongs to
S;qF(Rd), and the estimate (2.38). We decompose (2.37) into

f=>_ 1 (2.43)
BENG
with
=303 NaBaym(@). (2.44)

veNd mezd

We show that (Squ)s7 are (up to some normalising constants) [K, —1]-atoms centred at
Qv for every K € N&. The conditions (2.4) and (2.6) are satisfied trivially. To prove
(2.5) we choose 0 < o < K and estimate
d
D*(Bqu)ym(w) = [] 27 D (™) (2" 2 — my)

=1
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where ¢%i(t) = t%4)(t). But for 0 < a; < K; and any ¢ € supp v we get by the Leibniz
rule

D% (P)(1)] < ek, sup sup [DV7 ] [(D24h)(t)] < e,y sup [DTHP.
Y1<K; v2<K; 71 <K;

The last absolute value may be estimated from above by (14 3;)%:2#5:. Hence we obtain
[ D (P (0)] < excyu(1+ i) 297

and
1D (Bqu)ym(z)| < 1 27 (1 + B)I?Qaﬂﬁl < ¢y 20790 F)IB

for every € > 0. The constant ¢, is independent of 3 but may depend on K, ¢ and «.
It follows that the functions c; '27 (948l (Bqu)pam (x) are [K, —1]-atoms and (2.44)
may be understood as an atomic decomposition of f7. By Theorem 2.4 it follows that

17715y FRY| < c2@HPNN |57 7]

and for n = min(1,p, q) we get by the triangle inequality for Sﬁq (R%)-quasinorms
£ 1Sy FRYIT< Y (1718 FRY|"

BENG
<c Z o(e+emlBl| A8 | s;qf||”
BeNg
< ¢ sup 2(@+2emiBl B% |8p M
BENG

If we choose € > 0 so small that ¢ + 2e < p we obtain (2.38). This finishes the proof of
part (i).
STEP 3. By Remark 1.3 we have

= Z 907(5)]?(5)

veNg

with convergence in S’(R?). Let @y be a cube in R? centred at the origin with side

lengths 2721, ..., 27w2%4. Hence supp ¢y C @z and we may interpret gogf as a periodic
distribution. Using its expansion in a Fourier series we get

(rf)©) = D byme '@ £ ey, (2.45)

mezd
with
by = 2771 | e (G ) (€) de = 27 (g )Y (27 ).
Qv

Here we have used again the notation 277m = (27"my,...,2 my,) for 7 € Nd and

m € Z4.
Let now w € S(R?) with suppw C Qo and w(§) = 1if |§]| < 2 for alli = 1,...,d.
Then the functions wx(£) = w(277€) satisfy

suppwy C Qp, wp(§) =1 if & csuppyy
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for all 7 € N¢. We multiply (2.45) with wy, extend it by zero outside Qy, and take the
inverse Fourier transform:

Souf Z bumw ‘T - 2 Z Q‘VImeOJ _), T € Rd.

merd mezd
Using (2.35) and the definition of ¥, we get
(rh) (@) = 3 2y 3 W(272 — DV (272 — ).
meLd lezd

Expanding the entire analytic function w" (27 - —m) with respect to the off-point 2771 we

arrive at
n v 7.7 .5 (DPWY) (1 —mm) o
(pwf)"(z) = Z pl ‘IEWZW(Q x—1) Z 2 'BT@_Q 0)?
mezd lezd BGNd :
B =
_ v 5 (DFw )(l m)
= > om0 WD)
meZ lezd BENG
Hence
RSP PP IE LIRS S pb SEACIIME
veNd BeNd [ezd TENY BENE Tezd
where

DAw m) o (DPWYY(1—-m
AV__QIVIZ%E%_CZ V(2 )(;—s)

It remains to prove (2.39). To this end we define

Ao = (oo f)¥ (277m)

mez? mezd

and prove that

sup 228\ |7l < ellA| 5], fI| < 1| | ST PR (2.46)
BENG
We start with the second inequality in (2.46). Let « € Qzm be fixed. Then
(e f)¥ (277m)| < sup [(ew )" ()] < el f)a(x) (2.47)
=Y 7,0

for every @ € R%. We multiply (2.47) by 2”7, take the gth power and sum over m € Z4
to get

2770 3" Mgl xom(@)|? < ¢ 2775 f)i(z), € RY, v N
mezZd

Taking @ > n/min(p, q), we finally get, with the help of Theorem 1.22,

415,01 = [(E X 2 tomxom()it) | L@

veNd mezd

(32 27(erna@) " | Lo < el 55, F @)

vENd

<c
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To prove the first inequality in (2.46), we mention that

Moo= = ST Apm(DPuY) (0 — ) (2.48)

and recall a result proven in [36], namely that for any given a > 0 there are constants
cq > 0 and C > 0 such that

IDPWY (2)] < c2P1(1 + |z2)7%, zeR?Y, geNd (2.49)
Furthermore, we define
ho(z) =277 " Moy (@), (2.50)
lezd
Hy(x) =277 > A ixgi(@), (2.51)
lez4

and let 0 < k < min(1,p, q). We prove (2.46) by the following chain of inequalities:
22PN | sy £l = 2981 [R2 | Ly (L) = 29PN RN | Loy (€)1

2C18] .
<c2@'6( - ) VS EA") | Lyl
< C/H ‘H7|K | Lp/n(gq/ﬁ)”l/m = HA | S;T_),qf”' (2~52)

The equalities in (2.52) involve only the definitions of the corresponding spaces. The
second inequality follows from Theorem 1.10, the choice of k and the growth of g! for
|B] — oo. Hence only the first inequality in (2.52) needs to be proven.

To prove it, put (2.49) into (2.48) to obtain for every a > 0,

20181 | Av ]
A< fa rml 2.53
el < S 2 T - 259

Let x € Q7. Using the definition of hg from (2.50), (2.53) and the property k£ < 1 we
get

CH2C|IB|H
GO
We split the summation over m € Z? into two sums according to the size of |l —m:

|Au7n‘ o
Z L+ [l —m2)ar —Z 1+ Z | Az ™. (2.55)

mezd m: |l—m|=k

277 3" _ Meml” (2.54)

RO (@)|" = 27T AL | < e =
= (41 —-mp?)

Finally, we estimate the last sum using the iterated maximal operator M:
ST At <2772l | | ()| dy
m: [l—m|=k y:y—z€(k+2)Qp,0
< 277TR (k4 2) M (| Hy|") (). (2.56)
We combine (2.54), (2.55) and (2.56) and arrive at

C|B|x
12 R ) )

B K C
Rl < o
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for every a > (d+1)/2k. This finishes the proof of (2.52) and, consequently, also the
proof of (2.46) and hence also of part (ii) of Theorem 2.6. m

Next we shall deal with subatomic decompositions in the general case. Namely, we
would like to prove an analogue of Theorem 2.6 without the restriction 7 > op,.

REMARK 2.7. We introduce temporarily the following notation. Let A C {1,...,d} and
N = (Ny,...,Ng) € R% Then we define the vector N4 = (N{*,..., N#) by
A { N; ifie A,

PSS

0 ifigA.
Furthermore, we denote by D] the operator
D7:ﬂ i=1,...,n, y €Ny
i (93?’\/’ 3 s 1oy 9

and by DE the operator
Dy =[] pF=D*, Ac{i,...,n}, LEN.
€A

THEOREM 2.8. Let 0 < p,q < 0o (p < oo in the F-case) and ¥ € R Further let
L+1¢eNg and 7 € R? satisfy

L; > max(—1,[op, —14]), 0 > max(op,7), i=1,...,d,
in the B-case and

L; > max(—1,[opq —7i]), 0 > max(opg,7i), i=1,...,d,
in the F'-case.
(i) For every AcC{l,...,d} let

{/\Aﬁ BeNd} with MP =P ecC:veN!, mezd}

and let o > ¢, where ¢ is as in (2.34). If

sup  sup 29‘ﬂ|||)\‘4ﬁ|s g0l < oo
Ac{1,...,d} BeNg

then the series
S Y Y (T2 )ik wd)@s - m) (257)
AcC{1,...,d} BeNd DeNd meZ?  igA
converges in S'(RY), its limit f belongs to S}, ,A(RY) and

£S5 ARY| <c sup sup 22PAAF |57 all. (2.58)
Ac{1,...,d} geNg
(ii) Bvery f € Sy JA(R?) can be represented by (2.57) with convergence in S'(R?) and
supsup 2471\ |7 af < £ | ST, AR (2:59)
AC{1,...,d} BeNd '
REMARK 2.9. Because of the notational difficulties we shall give the proof only for d = 2.
Furthermore, we deal only with the F-scale. The proof for the B-scale is again similar
and technically simpler.
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Proof of Theorem 2.8 for d =2. STEP 1. First we discuss the convergence of (2.57). As
the first sum is finite, we may discuss the convergence of the triple sum over 8,7 and m
separately for each A C {1,2}. Let us do this for example for A = {1}. Then we may
rewrite the terms in (2.57) as

2”2(T2_‘72)[D(L1+170)!p3](27x —m) = 2”2(T2—02)2_V1(L1+1)[D(Ll""l’o)(ﬂw)gm] (z) (2.60)

where (Bqu)zm(x) are B-quarks according to Definition 2.5. As L1+1 > 0 and o9 —r3 > 0,
we may use the same arguments as in the proof of Theorem 2.6 and obtain the same kind
of convergence. In particular, the convergence of (2.57) in S’(R9) is ensured.

STEP 2. Let f be given by (2.57). Then we may view this decomposition as
f= > (2.61)
Ac{1,2}
We shall prove that, for every admissible set A,

£ S;qF(]Rd)” < c;u£d 908 IAA2 | 5§7qf||. (2.62)
€ (0]

If A = 0 then the decomposition of f? into the triple sum according to (2.57) can
be understood as a subatomic decomposition of f? in the space quF (R?) and from
Theorem 2.6 it follows that

f'esg FRY C ) F(RY)
and

_ d D (F—T)\0.8 | T B BT
1P 157 (R < ¢ sup 22827 T=DNEE 57 £ = ¢ sup 2671AP | ] .
BeNG BeNG

If A= {1} then we use (2.60) to find that f{'} = D110 g where

g€ ST RRY,  lg| Syt PR < c sup 227N |7 g,
BeENd

Hence
LA S PR < (| FH ] Sio) F(RY)|| = (| DEH0 g 5102 F(RY)|

<|lg| Sz(v,réJrLlH’M)F(Rd)” < cﬁsg@ 29|ﬁ|||/\{1}ﬁ | SZ,quI- (2.63)
0

Using a similar technique we prove (2.62) also for A = {2} and A = {1,2}. Now (2.61)
together with (2.62) shows that (2.58) holds.

STEP 3. We prove part (ii) of the theorem. By similar arguments to Step 4 of the proof
of Theorem 2.4 we prove in analogy with (2.33) that for every M € N¢ such that

F+M+1>3, M>L, M+1e4N?
there is a function g € S;j;MHF(]Rd) with
8M1+1g alwg—i-lg 6M1+1+M2+1g
8$i\41+1 axé\/12+1 a${\/h+1xé\42+1 :

f=g+ (2.64)

Furthermore -
lg| Sy M PRY(| = |1 £ ]S F R (2.65)
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Define
g1=9, go=DW"I0g gy pOMLalg g, — pUL-LnAL=lz)g,
Then we can rewrite (2.64) and (2.65) as
f B N 8L1+192 N aL2+193 8L1+1+L2+1g4 (2 66)
T AT T et T T g it Lt :

with

g1 € STEMHLE(RT) € ST F(RY),

go € S;,(;T,;+L1+1’T2+M2+1)F(Rd) - S}()t"ql-i-Ll-&-17<72)F(]Rd)7 267)

g3 € SI(;T(}+A[1+1’T2+L2+1)F(R(1) - S;()?ql’r2+L2+1)F(Rd)7
g4 € S;;L“F(]Rd).
Furthermore, the norm of g; in the corresponding space may be estimated from above
by [If | Sy F(RY for all i = 1,...,4. We may use Theorem 2.6 for each function g; to

get four optimal decompositions and an analogue of (2.39). Putting these estimates into
(2.67) and using (2.60) we get (2.59). =

2.4. Wavelet decomposition. In this subsection we describe the wavelet decompo-
sition for S’;qA(Rd). In general, we follow the ideas in [38]. First of all, we recall the
following crucial theorem from wavelet theory.

THEOREM 2.10. For any s € N there are real-valued compactly supported functions

Yo, € C*(R) (2.68)
with
St“d;l(t)dt:O, a=0,1,...,s, (2.69)
R
such that
{2972¢jm(t) : j € No, m € Z} (2.70)
with e ) fi=0 7
o ot — ™ vy =0U,me4,
Vim(t) = { V2 T (271t —m) ifjeN, meZ, (2.71)

is an orthonormal basis in La(R).

We have already observed in the previous sections the importance of tensor product
constructions in the theory of function spaces with dominating mixed derivative. Fol-
lowing this idea, we consider a tensor product version of Theorem 2.10. Let 1y and 1
be the functions from Theorem 2.10 satisfying (2.68) and (2.69). Let 9., be defined by
(2.71). Then we define their tensor product counterparts by

wﬁm(x) = 1/1k1m1 (xl) e ’l/}kdmd (xd), (272)

where
= (x1,...,0q) ERY k= (ki,...,kq) ENI W= (my,...,mq) €Z%  (2.73)

The tensor version of Theorem 2.10 then reads:
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THEOREM 2.11. For any s € N there are real-valued compactly supported functions
o, 1 € C*(R) satisfying (2.69) such that

{2M/20_(2) : &k e N¢, m € 2}, (2.74)
with W defined by (2.72) and (2.71), is an orthonormal basis in La(R?).

Now we have all the necessary definitions at hand and we may state our wavelet
decomposition theorem. As usual Sj  A(R?) stands for S}  B(R?) or S} F(R?), and
8p40 for s, bor sy f, respectively.

THEOREM 2.12. Let
F=(r,...,rq) ERY  0<p<oo, 0<g<oo

with p < 0o in the F-case. Then there is a natural number s(T, p, q) such that the following
statements hold.

(i) Let A € s}, ,a. Then we have:
1. The sum
> NP (2.75)
keNg, mezd
converges in S'(R?) to some distribution f.
2. fes) ARY) and
1F 1S54 ARD < A sp gall, (2.76)

where the constant ¢ does not depend on A.

3. The sum (2.75) converges unconditionally in Sy ¢ A(R?) for any e > 0.
4. If max(p, q) < 0o then (2.75) converges unconditionally in S}, ,A(R?).
(ii) Let f € S;qA(Rd), Then we may define the sequence A by

Mo = 2H(f 0 ), K eNI, mez, (2.77)
and we have
1. A€ s a and
X s, qall < el £ 155, ARDI, (2.78)
where the constant ¢ does not depend on f.
2. The sum (2.75) converges in S'(R%) to f.
3. Ifye s;qa and ZEeNg,meZd Ve converges in S'(RY) to f then v = A,
Before we come to the proof of Theorem 2.12 we clarify the technical problems caused
by the limited smoothness of the functions ¥y.

2.4.1. Duality. As the functions ¥ are of bounded smoothness, they do not belong
to S(R?). According to (2.68), (2.71) and (2.72), we only have ¥ € C(&-3)(R%).
Hence it is impossible to view the expression (f,¥s..) in the distributional sense for
every f € S'(R%).

To give a meaning to the symbol (f,¥;_), one has to study the dual spaces of
ST A(RY) first. As far as the Fourier-analytic version of classical Besov and Triebel-
Lizorkin spaces is concerned, the corresponding theory was presented in [32, Chap-
ter 2.11]. Tt is not difficult to see that one may adapt these results to the spaces with
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dominating mixed smoothness. We do not intend to give an exhaustive theory. The only
fact we need is

[S;pB(Rd)]/ _ S*F*FUpB(Rd)’ Fe Rd, 0< p < 00,

Moy
where ) )
—+—-=1 forl<p<oo, p'=oc0 forp<l.
p P
The functions D%y, 0 < o < (s, ..., s), are bounded functions with compact support.

Using Holder’s inequality, we see that
HD‘“WEm|L§,;(Rd)||<c>o7 0<a<(s...,s), 0<p<oo.
Using the Littlewood—Paley theory, we get
U € SEL,F(RY),  1<p< oo,
for s=(s,...,s). And, by the Sobolev embedding,
S5 F(RY) < [STEBRY) =S, 7" B(R?)

My
for s large enough and every e > 0. So, for f € S} A(R?) < S} ¢B(R?) we may
interpret Wz as a bounded linear functional on a space f belongs to. And (f, %) is
then the value of this functional at f.

We may also reverse these arguments. The functions ¥ belong to
SE,F(RY),  1<p<oo,
and S;_;QF(Rd) — S;%EB(Rd). Hence, for s large, we get f € [Sg;B(Rd)]’. In this case
we may interpret f as a bounded linear functional on a space ¥y belongs to. (f, ;)
is then the value of this functional at ¥r_.

Proof of Theorem 2.12(i). Let X € s} f. If
s> max{(1+ [ri])4,[opg — 1] :i=1,...,d}

and 5= (s,...,s) € R? then ¥ are [5,5]-atoms centred at Q... So, for s large, all the
assumptions of Theorem 2.4 are satisfied and, according to this theorem, (2.75) converges
in §’(R?). We denote its limit by f. The same theorem tells us that f € S}  F(R?) and
implies even the estimate (2.76). Hence points 1 and 2 are proven. Very similar arguments
apply also to the B-case.

For \ € s; 4@ and natural number p we define
No={\ ik eNg,m ez}
by
o {)‘km it £ > g,
b 0 otherwise.
If max(p, q) < oo then
nggo A |5, qall = 0. (2.79)

This is clear in the b-case and one has to use Lebesgue’s dominated convergence theorem
in the f-case. Using (2.76), already proven, we finish the proof of 4.
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In the proof of the third point, we replace (2.79) by
lim ||\ ]s] “al = 0. (2.80)

=
To see that (2.80) holds, one uses the same reasoning as in (2.79), and Holder’s inequality.
This finishes the proof of (i). m

Proof of Theorem 2.12(7). The meaning of the expression (f,¥;_) was already discussed
in Section 2.4.1. For the rest of the proof we consider only the F-case. The proof for
B-spaces is very similar.

Before we prove the first statement of the second part we do some calculation. We
may rewrite the norm in s;q f as

M s oIl = 11257 g5 | Lyp(€9)l, (2.81)
where

g5 (z) = Z N Xz (%) (2.82)

mezd
If € Q3 and A is defined by (2.77) we use (2.82) to get
96(®) = N = 28\ ) F@) dy = 27\ ok, (1) - Gy (00 F () .
Rd Rd
We assume that k& > 1, insert the definition (2.71) and substitute z; = y; — 2 ki,
g5(x) = olkl S 1/)1(2]“21) ceey (2k”’zd)f(27k1m1 +21,...,2 Famy + zd) dz
R4
= Kg(H) (2~ m).

Here KCr(f) (27%m) denotes the local means

Ke(H) = | Kz f(y+2)dz,  yeR?, (2.83)

Rd
for the kernel B
K:E(Z) == Q‘k"L/Jl (2k1 21) T ’L/Jl (2kd2d).

We point out that all integrals have to be interpreted in the distributional sense. If one
(or more) k; = 0, only notational changes are necessary. Hence, for every = € Qr_,

lgp(x)] < sup  [KE(f)(w)]-

y—T€EQE o
Applying Theorem 1.27 we see that
IX] sy Il = 1125795 | Ly (€g) || < el £ 1S FRD].
This finishes the proof of 1.
To prove the second statement, we define a new function g by

9= Z NV (2.84)

keNd, mezd
where A are given by (2.77). The convergence of this sum is guaranteed by A € s;q f
(which we have just proved) and by part (i). It shows even that g € S;qF (R%). We need
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to prove that g = f or, equivalently, that
(9:0) = (f.p) for every ¢ € S(RY).

First we consider the expressions (g,%.,). As X\ € s f, (2.84) converges in any
Sy F (R4), where ¢ > 0 may be chosen arbitrarily. If the number s is chosen suffi-
ciently large then, according to Section 2.4.1, ¥, € [S;_QEF(RCI)]’. Hence

(gawg’m/) = lim ( Z Mo Vi E’m’)

p—oo \ _
|k|<p, mez?
. k
B ,uhﬁngo B Z 2‘ ‘(fv WEm)(g/Em7 E’m')'
|k|<p, meZd

Using orthogonality of system (2.74) we arrive at
(9, %) = (f, W), K eN, m ez’

One may extend this argument to any finite linear combination of ¥y._,. For a general
function ¢ € S(R?) we consider its Fourier series decomposition with respect to system
(2.74):

o= 2w Y (2.85)
km

As S(RY) is a subset of all Fourier-analytic Besov and Triebel-Lizorkin spaces, we see
that (for s large enough) (2.85) converges also in the space [S;EEF(Rd)]’. Hence we get
(g:9) = lim > 2W(pw ) (g, vp)

p—ro0 _
|k|<p, meZd

- ;Lh—{r;o Z 2‘k| (907 WEm) (f’ WEWL) = (f7 90)-
|k|<p, meZd
Hence the sum (2.75) converges to f.
The final step, namely the proof of the third statement, follows now very easily.
Suppose that the assumptions are satisfied. We define the coefficients A\ by (2.77) and
g by (2.84). Then we get f = g according to point 2. And by the same duality arguments

as there we obtain

Vi = 2M2(f0 ) = M2 (g0 Y= N\, kENE mezl

3. Entropy numbers—direct results

3.1. Notation and definitions. We have seen in the previous section the close con-
nection between the function spaces S;qA(Rd) and the corresponding sequence spaces
5,40 given by several decomposition techniques. We use these results to study the en-
tropy numbers of embeddings of function spaces with dominating mixed smoothness on
domains.

First, we define function spaces on domains by restrictions of function spaces defined
on R%,
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DEFINITION 3.1. Let £2 be an arbitrary bounded domain in R?. Then S7  A(f2) is the
restriction of S A(R?) to £2:

Sy AR2) ={f € D'(©2) : 3g € S}, ,AR?) with |2 = [}, (3.1)
1f 1Sy ,A(2)]| = inf[lg| Sy , AR, (3.2)

where the infimum is taken over all g € S} qA(Rd) such that its restriction to {2, denoted
by g|{2, coincides in D'({2) with f.

Next, we define the sequence spaces corresponding to S;qA(Q). The change with
respect to s;qa is rather simple. In Definition 2.2 the sum over m € Z? represents a
discrete analogue of L,(R%)-norm and the sum over 7 € N¢ the sum over all coverings of
plane with dyadic cubes. So, to adapt Definition 2.2 to fit function spaces on domains,
we have to restrict the sum to those m which are in some relation with 2.

For that reason we define, for every bounded domain 2 C R?,

A2 =(m ez’ QumnN R #0}, veN
The sequence spaces associated with a bounded domain (2 are then defined by
DEFINITION 3.2. If 0 < p < 00, 0 < ¢ < 00, 7 € R? and
A={meC:7eNi, me AZ}
then we define
s = L s I spttel] = (3 2o (3 |/\W|Z’>Q/p)1/q <o} (33)
veNg meAY
and
2= 2= (X 2 P dememolt) | L@ <) (34)
veNd me AL
Furthermore, we define the corresponding building blocks.
DEFINITION 3.3. Let 0 < p < 00, 0 < g < o0, 7 € R? and let p € Ny be fixed. If
A={\meC:7eN,, 7| =p me AY}

then we define

(50 = {0 0l = (X Z 01 5 pomp)) <0} (35)

[vl=n mEAL
and
- - —_— 1/q
(P = { M GEEN = (X X 27 demamOl) | Ly®Y)|| < oo}
[T|l=pmeA$

(3.6)
REMARK 3.4. 1. We point out that for the number of elements of AY we have trivially

#(AD)~ 2", veNg, (3.7)
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where the equivalence constants depend only on 2. The dimension of (s qg ) will be
denoted by
= Y HAD). peN, (55)
[Zl=p

T’Q 7,$2

2. As usual, we write s a for sr 2p or spq | respectively. The same holds for (s}, a),,-

Next we define the notion of entropy numbers and recall their basic properties. We
refer to [10] and references given there for details.

DEFINITION 3.5. Let A, B be quasi-Banach spaces and let T be a bounded linear operator
T € L(A, B). Let Uy and Up denote the unit balls in A and B, respectively. Then for
every k € N we define the kth dyadic entropy number by

ek(T)::inf{5>O T(Us) C U (b +€UB}

for some by, ...,bok-1 € B.

DEFINITION 3.6. Given any p € (0, 1] and a quasi-Banach space B, we say that B is a
p-Banach space if

le+y|B|P < lz| B|" + lly| B]" for all z,y € B. (3.9)
It can be shown that if || - | B||1 is a quasinorm on B, then there is p € (0,1] and a
quasinorm || - | B||z with (3.9) on B which is equivalent to || - | B||;. We refer again to

[10] and references given there for details.
THEOREM 3.7. Let A, B,C be quasi-Banach spaces, S,T € L(A,B), R € L(B,C). Then

IT]| = e (T) = ea(T) = --- = 0.
° €k+171(R0 S) < ek(R)el(S), k,l € N.
e If B is a p-Banach space, then e}, (S +T) < e} (S) + ¢/ (T).
REMARK 3.8. We refer to the first property of entropy numbers from Theorem 3.7 as
monotonicity, the second is called submultiplicativity, and the last one is subadditivity.

Although we shall not need it, we quote the fundamental result of Carl (see [6], [7]
and [10] for details). It illustrates the importance of estimates of entropy numbers in the
study of spectral properties of compact operators.

THEOREM 3.9. Let A be a quasi-Banach space and let T € L(A, A) = L(A) be a compact
operator on A. Denote its non-zero eigenvalues (counted with multiplicity) by

M (D) = Pe(T)] = Po(T)] > -+ > 0.

Then
Ae(T)| < V2ex(T).

In what follows we restrict ourselves to 7 = (rq,...,7q) € R with ry = -+ = 4.

3.2. Basic lemmas. Now we collect some basic properties of the building blocks defined
by (3.5) and (3.6). We start with the following
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LEMMA 3.10. 1. Let 0 < p1,p2 < 00 and N € N. Then

. p1 S b2,
|lid : KIIX || { N1/ (3.10)
D1 2 p2.
2. Let 0 <p<ooand7 = (r,...,r) € RE Then
(s0820),, = (s 8 ), = 2H =12l )y e Ny, (3.11)
sy = s 0 f. (3.12)
The number D,, is given by (3.8).
3. Let 0 <py <p; <00,0<q<o00and7=(r,...,7) € R Then
lid = (s qa)ﬂ — (s;’f{la)uﬂ ~1, peNy. (3.13)
4. Let 0 < ga < q1 <00,0<p<o0 and7 = (r,...,7) € R Then
fid s (520, — (52 a), | ~ @D B/, e N, (3.14)

The equivalence constants in (3.13) and (3.14) do not depend on p € Ny.

Proof. The proof of 1 and 2 involves only (3.5) and (3.6). For the proof of 3 in the case
a = b we write

a/p2\1/q
”)\ ‘ sz qb” _ (Z 21/ (G 1/172)‘1( Z |/\Um|102) )

[7|=p meAS?

- 2H(T_1/p2)( Z ( Z |)\vm|l>2)q/p2)1/q

[T|l=p meAL
< 02u<r71/p2>2u<1/p271/p1>( 3 ( 3 |Am|pl)q“’l)”q
[T|=p meALZ

= cl|A | 53,5501,

p1,9

where we have used (3.10).
In the case a = f, by Holder’s inequality and boundedness of {2 we get

. 1/a
M2 =] X 2 ememolt) | Lo @)

vENE me AL
T q /a d
< (X 3 P omwmolt) | In®9)|
veENd meAZ
- CH)\ | Spl qf”
The proof of 4 involves only 1 and
#weNg:pl=p}~p'', peN

Next, we recall a fundamental result which is essentially due to Schiitt [27] and Kithn
[17].
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LeEMmMA 3.11. (i) If 0 < p1 < ps < o0 and k and N are natural numbers, then

1 if 1<k<log2N,
en(id: 0 — Ny~ (k7 log(1+ N/k)V/P=1/r2 if log2N < k <2N,  (3.15)
2—k/2N N1/p2=1/m1 if 2N <k,

where the equivalence constants do not depend on k and N.
(ii) If 0 < pa < p1 < 0 and k and N are natural numbers, then

ex(id : £ — €0} o 27H/2N N1 /P2 1/ (3.16)
where the implied constants again do not depend on k and N.

REMARK 3.12. We refer to [27], [17], [10] and references given there for the proofs of this
fundamental result.

LEMMA 3.13. Let
F1=(r1,...,m1) €RY  To=(rg,....,m2) €ERY  0<p1,po,q1,q2 < .
Let k > 2D,,. Then

er(id : (521:?1“)# N (SE:ZGT)H) ~ 27R/2Du ) (d=1) (/a2 =1/ @) gulra=r1) (3.17)

with equivalence constants independent of k and p.
REMARK 3.14. The symbols a and af stand for b or f, not necessarily for the same letter.

Hence the formula (3.17) represents actually four different equivalences and, consequently,
eight inequalities are to be proven.

Proof. Set

Y1 =min(p1,q1), Y2 =min(p2, g2) (3.18)
6y =max(p1,q1), J2 = max(p2,q2). (3.19)
STEP 1. We use the following diagram to estimate ey (id) from above:
id

(sprpa)y —— (spzaal)u

idll Tid_g (3.20)

_ id To, 2
(sThfa), —— (552500,

Using the submultiplicativity of entropy numbers (see Theorem 3.7) we get
er(id) < ||id1] - |lids]| - ex(id2). (3.21)
To estimate ||idy || and ||ids|| we use (3.13), resp. (3.14) to get
[lidy || < cpl= DA/ m=1/an), lids|| < cpld=1(/a2=1/82) (3.22)
To estimate e (id2) we use Lemma 3.11 and (3.11),

71,82 ~ 9u(ri—1/m) pD
(S’Yl»’Yl a)“ ~2 e’Y#’
and its counterpart for (s?jg al),. This gives

er(ida) < 20/ mAra=1/82)g=k/2Dy pl/62 =1/ (3.23)
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Putting (3.22) and (3.23) into (3.21) and using D, ~ u?~12# we get the desired result
and finish Step 1.

STEP 2. We now prove the estimates from below. Let 71, 72,01,d2 be still defined by

(3.18) and (3.19), respectively. We use the diagram

— 'd —
(spiga)ly —— (sp20ah)u

ile lidg (3.24)

.0 d _
(Sgi,éla)u —— (3%’7%“1[)#

As idy = id; oid oid3 we may use again the submultiplicativity of entropy numbers. The
estimate for the entropy numbers of ids is given by Lemma 3.11:

e (idy) > o (=ritra+1/81=1/72)9—k/2D,, D}l/wfl/&l

and for ||id; || and ||ids|| we use estimates similar to those in Step 1:
llid|| < cpld= DA/ a=1/01) lids]| < cpld=A/2=1/a2) (3.25)
From this the result follows immediately. =

Lemma 3.13 is a generalisation of Lemma 3.11 as far as the third line of (3.15) and
(3.16) are concerned. So, for k > 2D,,, the estimate (3.17) provides four equivalences
with constants independent of k£ and p. In the case k < 2D,, the situation is not so simple
any more; we give two different estimates from above.

LEMMA 3.15. Let
1= (r1,...,71) €ERY  Fy=(ra,...,72) €RY, 0 < p1,p2,q1,q2 < 00
with p1 < pa. Let k < 2D,,. Then
ex(id : (8211?1@)# — (SZangaT)u) < ep(@=D /7 =1/01+1/a2=1/52) gu(=r1+1 /7472 =1/52)
e log(ut T2 Jk + 1))/ /02 (3.26)

where 1,72, 01,92 are given by (3.18) and (3.19). The constant ¢ is independent of k
and .

The proof of Lemma 3.15 copies exactly the first step of the proof of Lemma 3.13.
The second estimate from above follows closely the idea of Kiithn, Leopold, Sickel and
Skrzypczak in [18].
LEMMA 3.16. Let
Fi=(r,...,r1) €RY, Ty =(ry,...,m2) €RY, 0 <p1,p2,q1,q2 < 00
with
1 1 1 1

p1<p, ———>———.
D1 D2 q1 q2

Let (d—1)p?tlogpn <k <2D, = 2> p1=u #AL. Then
er(id : (S?l’ﬂb)u — (3?2’Qb)u) < 021‘(—7’1+T2+1/p1—1/P2)M1/p1—1/P2+1/q2—1/q1

P1,91 p2,92
NP og (i ok k4 1)) VPP (3.27)



50 J. Vybiral

Proof. Set X; = (sg:ﬁig b)u, i = 1,2. We shall construct an e-net of Xs-balls covering

the unit ball Bx, of X;. For that purpose we fix some ordering of the set {7 € N¢ :
7| = pu} = {7, ..., 75D} where

smwz#@emwu:wz(
First we consider the subset of Bx,,

B={Xe€Bx, : A | Xall Z [[Ag2 [ Xal| = -+ = [Agsa | X[}

d—1
pt ) u € No. (3.28)

and construct an e-net N in X5 for B. Then, if IT is any permutation of the index set
{1,...,5(u,d)} and

Bir ={X € Bx, : [Agno | Xal| 2 [[Agney [ Xal| = -+ 2 [[Agncse.a | Xa[}

we get, by permutation of coordinates, e-nets Ny for By, all having the same cardinality
as N, say 2F.

Clearly, Bx, = |J; B, where the union is over all permutations I7 of {1,...,S(u,d)}.
Hence |J; N7 is an e-net in X, for By, of cardinality

S, d)12" < pld=D0" T gk = old=D" log ek,

It remains to construct an e-net for By in Xp. For A € B we have || \ys | X1 < =Y.
If k1,...,ks(u,a) are arbitrary natural numbers, we set

gj 1= Cj_l/ql2”(_Tl+1/p1+T2_1/p2)[k;l log (2" /k; + 1)]1/171—1/:02

and, according to Lemma 3.11, we find an £;-net N in 2“(’“2*1/1”2)6;?2]' for j=1/0 By,
where Y = 2“(“_1/”1)@?{ and A; = #(Agj) Thus Ny X -+ X Ng(u,q) is an e-net in X
for B of cardinality 21+ +Fsw.a)  where

S(p,d)

€= ( Z 6?2>1/q2.

j=1
Finally, we choose k;,j =1,...,5(u,d). Fixm € Nand set k; = 2™j~% where 0 < a < 1
is chosen such that «(1/p1 — 1/p2) > 1/g1 — 1/q2 Then
S(p,d)
k= > k=~ 2mpldhEet (3.29)
j=1
and

S(Fﬂd) 1/¢I2
5@) ~g 9p(=r1+1/p1t+ra—1/p2)9m(1/p2—1/p1)
J

(

Substituting for 2™ from (3.29) we get

Jj=1

. S(’md)oz(l/p1—1/P2)—1/¢11+1/42 [lOg(Z“_mMO‘ + 1)]1/1,1_1/]32.

Sled) 1/q2
( Z Eq_z) r ot(=r141/prtr2—1/p2) | 1/p2—1/p1
J
=1 -l DA/Pi=patt 2=/ a) [og (3= 10 [f 4- 1)1 /P /P2

which finishes the proof. m
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3.3. Main result. In this subsection we present our main results concerning sequence
spaces. Our aim is to estimate the entropy numbers of

i . oT1,02 72,82 o F
id:sylga— s al. (3.30)

First we split the identity (3.30) into a sum of identities between building blocks,

id =Y "id,, id,:spfa— s2al, (3.31)
pn=0
where
(id, A) { Aom i P = p, (3.32)
14, Tvm — .
! " 0 otherwise,
for all 7 € Nd,m € AY. Next we observe that
er(id,) = ek(idz), keN, ueNy, (3.33)
where
idj, (s;izga)# — (SZizan*)m w € Ny, (3.34)

are the natural identities between our building blocks.
First, we characterise when the embedding (3.30) is compact.

THEOREM 3.17. Let
F1=(r1,...,m1) €ERY  To=(ra,....m2) ERY  0<pi,po,q1.q2 <00.  (3.35)
Then the embedding (3.30) is compact if and only if
1 1
amn-n-(2-2) >0 (3.36)
pr P2/
Proof. PART 1. In the first part we prove that (3.36) is sufficient for compactness of
(3.30). First we restrict to the case
00 <p <py<ooanda=al =0

It is an easy exercise to show that

T2y T2yl (5! | (572 7.0
lidu [ 5p30,0 = 53200l = N, | (s33:0,0)0 = (572:0,0)ul

< 2_“(”_T2+1/p2_1/p1)5(u, d)(1/<12—1/f11)+ ,

where S(u,d) was defined in (3.28). So, if (3.36) is satisfied, then we may approximate

the operator id by finite rank operators P; = ZL:O id,,.
e 0 <p <pp <oo.

In this case we choose € > 0 such that

(5 5)
rn —Tr9o—| —— — > 2e
pr P2

and use the trivial embeddings

71,82 71—&,02 To+te,2 72,02 T
SP1A,¢I1a - Spl,!h b— 8?2%12 b— SP2A,¢I2G‘ :

All these embeddings are continuous, the middle one is even compact.
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e 0 <py <p <oo.
Now we use the embeddings

71,82 71,02 72,02
P ® 7 Spai @ 7 Spylgn @

5
We have already proven that the second embedding is compact. As the first embedding

is continuous, this finishes the proof of part 1.

PART 2. If (3.36) is not satisfied, we construct a sequence {e, };2 o from the unit ball of
spi82a such that [le, — e, |s722al|| > ¢ > 0 for p# p'.
Let us start with the case p1 < po. For u € Ny fixed, we choose one 7,, € Ng with

7| = pu and one 7, € A7 . Then we set

<wbﬁ={

When p; > ps we fix again one 7, € N¢ with [7,| = p and define (e,)pm = 27" for
V=V, and m € A% and (e, )pm = 0 otherwise. m

—p(r1—1 7 — 77 —
2~ n(ri=1/p1) forv=v,, m=m,,

0 otherwise.

It is our main task to estimate the decay of ex(id) for id given by (3.30) when this
sequence tends to zero, i.e. when (3.36) is satisfied. First we get estimates from below.
THEOREM 3.18. Let Ty, T2, p1,P2,q1, g2 be given by (3.35) and (3.36). Then

er(id : S;i:?la — sgi’,g(ﬂ) > ck™ " (log k)4 Dt/ e=ta)s >0 (3.37)

where the constant ¢ does not depend on k.

Proof. STEP 1. For every u € N we consider the following diagram:

_ id’ _
71,0 By (gT2:92 of
(Sphm a)/‘ (szyqza’ )/‘
id1J/ Tid2 (338)
1,0 d gm0t
81’17‘11a SPZ,QZG/

The meaning of id and id), was explained by (3.30)~(3.34). id; extends a given finite
sequence by zeros while ids is the identity restricted to the pth building block. Hence

idi({(Mom}: 7| = p, m € AY)
= ({vwm}: vwm = dom for |[F| = p and 457 = 0 otherwise)
and
ido({dpm} : 7N, M e AZ) = ({DNom} : 7] = ).

For
k=2D, (3.39)

we get, by Lemma 3.13,
cptt/a2=1a)gn(r=r) < e (id),) < Jlidy || - [lida]| - ex(id) = ex(id).
If k is given by (3.39) we get p ~ logk and 2# ~ k/log?~' k. Hence
er(id) > ck™ " (log k)(d_l)(”_rﬁl/qu/ql).

By monotonicity, we extend this result to all k£ > 2.
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STEP 2. We repeat the same arguments with different building blocks. The diagram
(3.38) is replaced by

o
2#(7“1*1/]91)6?1“ N 2#(7‘2*1/172)532#

712 g _dd L et

P1ia1 P2.d2

where A, = #(AZ) for some ¥ with [7| = p. Instead of Lemma 3.13 we use Lemma 3.11
to get, for k =24,

c2tr2mm) < ey (id),) < lidy || - [lidz || - ex(id) = ex(id).

Finally, we substitute 2 =~ k, get ex(id) > ck™~™ and use monotonicity arguments to
extend the result toall kK > 2. m

THEOREM 3.19. Let T1,T2,p1,P2,q1,q2 be given by (3.35) and (3.36). If

1 11 1
e (3.41)

> Vi(p1, q1, 2, = —_——
“ 1Py 1-p2, 02) min(py,q1) p1 p2  max(pz,qe)

for p1 < p2, and

1 1

> Vi(p2, q1, D2, = — — 3.42
@ > Vi(pz, a1, P2, 42) min(p2,q1) max(pz, g2) (8.42)

for p1 > po, then

er(id : s;i’,ﬁa — ng:ZaT) < ek (log k)4 Dt /e =ta) - g > o (3.43)

where the constant ¢ does not depend on k.

Proof. STEP 1. We first restrict ourselves to the case p; < pa. We split id as indicated
in (3.31),

J L %o
id=>"id, + Y id,+ Y id,
pn=0 pn=J+1 p=L+1

where the numbers J < L will be specified later on. Furthermore, we shall later define
natural numbers k,, u =0,...,L, and k = Z;I;:O k,. This will yield the fundamental
estimate

J L 00
ep(id) <Y ef (id)+ D ef (dy)+ Y [idy]® o =min(l,ps, ). (3.44)
=0 p=J+1 p=L+1

We recall that by (3.33) one may substitute e, (id,) by e, (id),).

STEP 2. Fix now J € N. We show how to choose the numbers L and k&, (in dependence
on J) and we estimate the three sums in (3.44).
We start with the last one. First we remark that

[lid, || < c2 ke (A=A e2=1/a)+ e N,

and
oo

Z ||idM |2 < ¢ Z Q—Quaua(d—l)(l/%—l/mH < co—ealro(d=1)(1/q2—1/q1)+
n=L+1 p=L+1
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Finally, we choose L > J large such that the last expression may be estimated from above
by

Z ||idu e < e Jeld—1(1/a2=1/q1)geJ (ra—r1)
pu=L+1

STEP 3. We estimate the first sum in (3.44). We define
k, =2D, 2V~ >92D,  u=0,...,J

where ¢ is an arbitrary fixed number with 0 < e < 1. Then we get
J
D kg2 (3.45)
pn=0

By Lemma 3.13,

ek, (idu) ~ 2—2(‘]7‘”5M(d—l)(l/q'z—1/111)2#(T2—7’1)7

J (3.46)

Z e}&;ﬂ (id,) ~ Jed=1)(1/a2=1/q1) 9eJ (r2—r1)
pn=0
STEP 4. We estimate the second sum in (3.44). We set
k, =2D,2V"M*<2D,  J+1<pu<L,

where ¢ is chosen such that
1 1
x>1, r—ro>xl———|. 3.47
' ? (71 52) ( )

~1 and 02 were defined by (3.18) and (3.19), respectively. Then we get

L
> kgt (3.48)
p=J+1
By Lemma 3.15 we get
ek (id; ) < Cu(dfl)(1/%’1/'“)2”(’"2’”)2(']"‘)”(1/52*1/71)[log(c2*(J*“)” + 1)]1/7171/52
“w " — .

By (3.47) we get
L

Z elg“(idu) ~ Jold=1)(1/g2=1/q1) 90T (r2—71) (3.49)
p=J+1
Finally, we put (3.45), (3.48) together with (3.46) and (3.49) into (3.44) to obtain

oy gim12s (id) < €pJ @D (1/02=1/ D)9 (r2=r1)

Substituting k& = ¢;J47'27 and using monotonicity arguments, we finish the proof of the
theorem for p; < po.

STEP 5. In the case p; > ps we use the chain of embeddings

TS g ey T2 g ey gT2 2 o f

Spl »q1 Dp2,91 Pp2,92

The first embedding is then continuous (as p; > p and {2 is bounded), the second is
covered by the previous steps. Altogether, this finishes the proof. m
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REMARK 3.20. 1. One notices immediately a gap between (3.36) and (3.41). To eliminate
this gap we use a complex interpolation method in the next chapter.
2. Lemma 3.16 allows us to reduce the gap a bit in the special case where a = af = b.
If we use Lemma 3.16 instead of Lemma 3.15 in Step 4 of the previous proof, we get the
same result, namely (3.43), for

1 1 1 1 1

1
p1<p2, T1—T2+——— >0, —_— > — = —.
P2 p1 P1 D2 q1 q2

4. Complex interpolation

In Theorem 3.18 we obtained an estimate from below for entropy numbers of the embed-
ding
id: szzﬁa — sZi:iaT. (4.1)

The corresponding estimate from above was obtained in Theorem 3.19 for

Ol—’l"l’l"g(ii> >%fi+i—;. (4.2)

p1 p2/) . min(pi,p2,q1) p1 p2 max(pz,q2)

So for any p1,p2, q1, g2 we have one natural bound for r; — ro which ensures compactness
of (4.1) (see Theorem 3.17) and a second one, in general larger and given by (4.2), where
the estimates from above and from below for the entropy numbers of (4.1) coincide. The
main purpose of this chapter is to eliminate this gap by using a complex interpolation
method. We follow closely [20].

4.1. Abstract background. In this subsection we briefly describe the complex inter-
polation method of [20]. We quote only the minimum needed for our purposes.

We say that two quasi-Banach spaces Xo, X form an interpolation couple (Xo, X1)
if there is a Hausdorff topological vector space X such that Xy and X; are continuously
embedded in X. Given an interpolation couple (X, X;), we define the space Xy N X; by

XoNX;={z e X:|a|XoNX1| < oo},
where
[l [ Xo N Xy || = max{]|z | Xol|, [« | X[}
Similarly, we define the space Xy + X; by
Xo+Xi={xeX:|z|Xo+ X1] < o0},
where
llz | Xo + X1|| = inf{|lzo | Xo|| + llz1 | X1|| : 2 =20 + 21, zj € X, j =0, 1}

It is easy to verify that Xo N X; and X, + X; are quasi-Banach spaces (see for example
[5] for details).

If X is a quasi-Banach space and {2 C C is an open subset then f : {2 — X is called
analytic if for each zg € 2 there exists r > 0 such that there is a power series expansion
f(z) =300 g xn(z — 20)", zn € X, converging uniformly for |z — zg| < 7.
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Given an interpolation couple (X, X1) of quasi-Banach spaces, we consider the class
F of all functions f with values in Xy + X7, which are bounded and continuous on the
strip
S={2e€C:0<Rez <1},

and analytic in the open strip
So={2z€C:0<Rez<1},

and moreover, the functions t — f(j + it) (j = 0,1) are bounded continuous functions
into X;. We endow F with the quasinorm

11 FII = max{sup || f(it) | Xol|, sup [ f(1 +it) [ X1 ][}- (4.3)
teR teR

Finally, we set
[Xo,X1]o :={x € Xo+ X1 : 2= f(0) for some f € F}, 0<0<1.
This space is equipped with the quasinorm
2| [Xo, Xaloll :=inf{|[f | FI| : f € F, f(0) ==z}, =€ [Xo,Xi]p.

For the classical complex interpolation theory of Peetre, we refer again to [5] and refer-
ences given there. However, it is well known that the extension of this complex interpo-
lation method to quasi-Banach spaces is not possible due to the possible failure of the
Maximum Modulus Principle in the quasi-Banach context. However, there is a significant
class of quasi-Banach spaces, called A-conver, in which the Maximum Modulus Principle
is valid (see [20] and references given there for details).

DEFINITION 4.1. A quasi-Banach space (X, | - | X||) is called A-convez if there is a
constant C such that for every polynomial P : C — X we have

I1PO)[ X < Cmax|[P(2) | X1

The next theorem shows that in A-convex quasi-Banach spaces the Maximum Mod-
ulus Principle holds.

THEOREM 4.2. For a quasi-Banach space (X, || -|X]||) the following conditions are equiv-
alent:

(i) X is A-convez,
(ii) there exists C' such that

max{|[|f(z) | X[ : z € So} < Cmax{[|f(z) [ X]|: z € 5\ So}
for any function f : S — X analytic on Sy and continuous and bounded on S.

In the special case when Xy and X; are quasi-Banach lattices, it was observed by
Calderén that the interpolation space [Xo, X1]p coincides with the so-called Calderdn
product of Xy and X7, usually denoted by Xé_gX 9. We quote again necessary definitions
and theorems from [20].

First, let (X, S, 1) be a o-finite measure space and let 91 be the class of all complex-
valued, p-measurable functions on X. Then a quasi-Banach space X C 91 is called a
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quasi-Banach lattice of functions if for every f € X and g € M with |g(z)| < |f(z)| for

p-a.e. x € X one has g € X with ||g | X|| < |If | X]-
Furthermore, a quasi-Banach lattice of functions (X, |- | X||) is called lattice r-convex

IS usm) %] < (s x1r)”
j=1 j=1

for any finite family {f;}1<;j<m of functions from X.

if

The following theorem gives a very simple condition for a lattice of functions to be
A-convex.

THEOREM 4.3. Let X be a complex quasi-Banach lattice of functions. Then the following
assertions are equivalent:

(i) X is A-convex,
(ii) X is lattice r-convex for some r > 0.

Finally, if (X;, ||- | X,|), = 0,1, are quasi-Banach lattices of functions and 0 < 6 < 1
then the Calderdon product Xé_‘gXle is the function space defined by the quasinorm

171X~ X7 1 -= it {|l fo | Xoll"*ILA [ Xall” = 1L < Vol PLA1 1 5 € X5, j = 0,1}
The connection between complex interpolation and Calderén products is given by

THEOREM 4.4. Let (X,S,p) be a complete separable metric space, let p be a o-finite
Borel measure on X, and let Xo, X1 be a pair of quasi-Banach lattices of functions on
(X, ). If both Xo and X1 are A-convex and separable, then Xo + X1 is A-convex and
(X0, X1]o = X¢79Xx0, 0< 6 < 1.

As pointed out in [20] in the case of quasi-Banach sequence lattices, only one of the
spaces in 4.4 must be separable.

4.2. Interpolation of s;? a. Now we apply Theorem 4.4 to interpolate the sequence
spaces sg;(?a. First, we have to prove that these spaces are A-convex. According to
Theorem 4.3 it is enough to prove that they are lattice s-convex for some s > 0. Trivially,
s = min(1, p, q) works fine in both b- and f-cases.

Hence, it is enough to compute the Calderén products

(sio2a)! =(sT2a)?,  0< O <L

The answer is given by
THEOREM 4.5. Let
T1,To €RY, 0<p1,po,qiqp < o0, 0<6<1. (4.4)

If 7,p and q are given by

1 1-6 0 1 1-60 6
_ + 2 1= +—, T=(1—-0)T + 0, (4.5)
p P1 P2 q Q1 a2

then

(sprga) ™ (spzga)’ = spda.
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Proof. STEP 1. First, let A € s}%a and M € sZﬁiZa, j=1,2, with
Moml < Mol ™0 INgl°, veN, me AL (4.6)
We have to show that
70 71,02 |11-0 2,02 10
A spgall < A [spbaall =0 - N sp2eall’.

But this is a simple exercise on Holder’s inequality in both b- and f-cases.

STEP 2. Now we prove the reverse inequality for a = b. Given A € s;:f b, we will find
N € sy, j = 1,2, with (4.6) such that

INSE2] = A 200 - |32 72 2B (47)
First we deal with the case p;,q; < oo, j = 1,2. We choose
)\]pm = C%|Aﬁm|p/pj7 .7 = 1527 Ve Ng7 m e A¥7 (48)
where
oL = 2PN/ ag VT \YGTPIP G2 p e N, (4.9)
and
1/p _ d
A= (Y oml?) . TN, (410)
meAS

(If Az = 0 for some ¥ € N¢ we set c; = 0.) By this choice we see that

- Trg[Ll 4 ] pr (1-0) D70 I TP+ ] 16,0
P%ﬁll 0. I)‘%ﬁ|0 — o7 Tql +q2]2 U7 (1-0) VT‘QQAU a1 'az p1 | P2 |)\;m|17[ o1 T gl

This proves (4.6).
To prove (4.7) we use (4.8)—(4.10) to get

||/\j|sz-§:gbu = {Z 9QTT;45 (c;)%( Z Ao P%pj>qj/pj]1/qj = {Z 27?‘1/1%} l/qj.

veNg meAZ veNg

From this (4.7) follows immediately.
If max(p1,q1,p2,q2) = oo only notational changes are necessary.

STEP 3. For the f-case, one may modify slightly the proof for the sequence spaces f, ,
given in [13, Theorem 8.2]. -

We start again with given A\ € sngf and we need to find M € sgﬁjgf, j=1,2, with
(4.6) such that

1) 71,02 || 1=0(\2 | T2.2 £|0 7.0
A" Lspygs 1PN Fsporg, FIIP < ellA sy fI- (4.11)
First we deal with the case ¢; < oo, j = 1,2. For every k € Z, let
_ 1/q
A, = {x eR?: ( Z 2”‘7'q|)\vm|qXFm($)) > 2’“}
veENE, meAg
and
Cr ={(T,m) : |Qum N Ax| > |Qvm|/2 and |Qpm N Ax11] < |Qoml/2}-
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We note that if (7,m) € J,cz Cr, then Apm = 0. We define the sequences M, j=1,2,
by

AL = okvor | N\ (/N2 = k09T N a/az

where
fy:g_i’ 5_£_i,
b1 q1 b2 q2
= 2-0) v—ga-g]2 -2
q1 q2 q2 q1

if (7,m) € Cr, and M = A2 = 0if (7,m) & Uyey, Cr- We point out that
(1-0)y+d0=(1-0)u+6v=0.
An easy calculation shows that

|)\%m|1—0 . ‘)\%m|0 _ 2k[(1—9)’y+96]+f'[(1—9)6-‘,—95]|/\7m|q(%+%) _ |)\U_|

-
In the following we assume that v > 0, since the other case follows by interchanging

,§2 ,§2 i _
;}ql f with s;§q2f and 0 with 1 — 6.

We prove that
IV [ syl FIl < ellh s FIIP/P, =12, (4.12)
From this, (4.11) clearly follows. To prove (4.12) for j = 1 we write

_ 1/q1
NI =|(X T Al xen)

k=—o0 (v,m)eCy

S U-T /¢
(X5 e )

k=—o0 (7,m)eC})

p1

)

p1

where in the second line we use the definition of the set C}, and the boundedness of the
maximal operator M as described by Theorem 1.11.
We set Dy, = Uf_

=—0C

C; and continue

_ > _ 1/q1
Nl <e] 3o xanan@( X TN Rl xwm(@) | Ly,
k=—o00 (v,m)eDy,
< Qk’Y 27'71%25'5111 Ao |9y — Yo
~cC Z XAk\Ak+1 Z ‘ Vm| XVm(x) p1
k=—oc0 (U,m)eDk
kv v-Tq q Va
<c Z XA\ Ag s (2)2 ( Yoo 2| va(x)) P
k=—o00 vENd me AL
_ p/ap1
<c ( > 2V'Tq\)\vm|qxvﬁ($)) P

vENE,me AL
= c| |2 FIIP/7.

The second estimate in (4.12) is similar. m
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After these preparations we are ready to present the main result of this section. Recall
that the spaces S}  A(£2) were defined by (3.1) and (3.2).

THEOREM 4.6. Let 7;,p;,q; for j =1,2 be given by (4.4). Let 0 < 8 < 1 and define 7, p
and q by (4.5). Also suppose that min(qy, gz) < 0.
(i) Then

1,02 (T2,Rp) T2
(51201 0s 59202 blo = 5740 (4.13)
(ii) Furthermore, if p; < 0o, j = 1,2, then

L 720 R f (4.14)

[smm ) Spa,q2 Jo = Spgq

Proof. This follows immediately from Theorems 4.4 and 4.5. m

4.3. Interpolation properties of entropy numbers. Now we shall discuss the con-
nection between the complex interpolation method developed above with entropy num-
bers. We use Theorem 1.3.2 from [10]. We recall that for ¢ > 0, an interpolation couple
(Bo, B1) and b € By + By, Peetre’s K-functional is given by
K(t,b, Bo,Bl) = 1nf{Hb0 | Bo” + t”bl | BIH :b=by+ bl, by € By, b € Bl}
THEOREM 4.7. (i) Let A be a quasi-Banach space and let (By, B1) be an interpolation
couple of p-Banach spaces. Let 0 < 8 < 1 and let By be a quasi-Banach space such that
ByN By C By C By + By and
6] Bo|| < ||b| Bol|*™ - |b| B1||®  for all b € By N By.
Let T € L(A, By N By). Then for all ko, k1 € N,
ehoti—1(T : A — By) <2YPe,~%(T : A — By)ej (T : A— By).
(ii) Let (Ao, A1) be an interpolation couple of quasi-Banach spaces and let B be a p-
Banach space. Let 0 < 6 <1 and let A be a quasi-Banach space such that A C Ag + Ay

and
t7'K(t,a, Ao, A1) < |la| A|| for alla € A and all t > 0.

Let T : Ag+ A1 — B be linear and such that its restrictions to Ag and A1 are continuous.
Then its restriction to A is also continuous and for all kg, k1 € N,

erorki—1(T : A — B) < 2'/P¢,~%(T': Ay — B)ej, (T : Ay — B).

So, we only have to verify that the complex interpolation satisfies the assumptions of
this theorem.

THEOREM 4.8. Let By, By be an interpolation couple of A-convexr quasi-Banach spaces
and let 0 < 6 < 1. Then

(i) 161 [Bo, Balell < lo| Boll*=* - Ib| B[’ for all b € By N Bi.
(ii) Let the functionals in B, separate the points of B;, i = 0,1. Then
t_eK(t, b, BQ, Bl) < ||b| [Bo, 31]9” fO?” all b e [B(), Bl}g and all t > 0.

Proof. STEP 1. Fix b € By N By, set M; = ||b|By|l, 7 = 0,1, and define g(z) =
ME M ?b. Then ||g|F| =1 and
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1Mg " My %6 | [Bo, Biloll < 1l9(6) | [Bo, Buloll < 1.
This proves (i).

STEP 2. We follow [31, 1.10.3]. There one may find a proof dealing with the classical
complex interpolation method and Banach spaces. Nevertheless, the proof works also
for the generalised method, as described above, and quasi-Banach sequence spaces. In
particular, the Hahn—Banach theorem needed there still holds for all sequence spaces
which come into play. m

4.4. Filling the gaps. Now we use the complex interpolation and its relation to entropy
numbers to close the gap mentioned at the beginning of Section 4. Namely, we are
interested in those combinations of “input” parameters which satisfy

1 11 1
Vl(PlthPQ,QQ) =— - -
min(p1,p2,q1) p1 p2 max(ps, gz)
11
=T (_ - _) >0 (4.15)
pr P2/

Our main result on the sequence space level is
THEOREM 4.9. Let7; = (rj,...,7;) € RY 0<pj,q; < oo, j=1,2, with
1 1
T — T — (— — —) > 0. (4.16)
P1 D2 +

Furthermore, let p; < oo in the f-case.
(i) Ifri—ro—1/q1 +1/q2 > 0 then

er(id : sz:ga — 3;2’,?2@) ~ k2 (log k)@ Dm—ra=ta+l/a2) - > 9

(ii) If r1 —ro — 1/q1 + 1/g2 < 0 and € > 0 then there are constants ¢ and C. such that

_ . 1.0 o 02 _
k™™ ep(id sl fa — 520 a) < Ck™ T (logk)e, k> 2.

REMARK 4.10. Unlike Theorems 3.18 and 3.19, this theorem deals only with embeddings
which stay either in the b-scale or in the f-scale. We also see that this theorem closes
the gap mentioned above up to a (logk)® term. Furthermore, the estimate from below
is covered by Theorem 3.18. In the proof we will therefore concentrate on the estimates
from above.

Proof. We shall distinguish several cases. First of all, we suppose that p; < ps.

L p1 < q1,92 < po. In this case the condition (4.15) is empty and the result is covered
by Theorem 3.19.

II. g1 < p1 < ps < qo. We start with the subcase

ITa. r1 —7r9 — 1/q1 + 1/g2 > 0. In this case we have

1 1 1 1 1 1
mn—rn———+ft—>—-—4+ — = — = V1(p17Q17P27Q2)
D1 D2 q1 b1 D2 q2

and the result is again provided by Theorem 3.19.
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Ib. 7y —r9 —1/q1 + 1/g2 < 0. This subcase introduces the log®-gap. We fix ¢ > 0 and
use the embedding

71,0 Fl,.!? F279 FQ,Q
Sprgr @ Sy A 82 Ay s a. (4.17)

The indices ¢, ¢’ are supposed to satisfy

0<q1 <qg<p1<pr<q¢ <gp <00,

1 1 1 1 1 1 (4.18)
p1 P2 q q q 9
The existence of such indices follows from (4.16) and condition IIb. Hence we may apply
step ITa to the middle embedding in (4.17). All the other embeddings are bounded, which

gives finally
er(id) < ck™ " (logk)°.

III. ¢1 < p1,q2 < p2. We make the same splitting as in case II:
IMMa. 71 —7r2 —1/g1 +1/q2 > 0. If

we use the interpolation scheme

71,02 To,02
Spiar @ 77 Spoiga @ (4.19)

N\

SFI’Q

Plylha

with the corresponding equations for r,p and g¢:
rg = (1= 0)r+0r, (4.20)

1 1-06 0
—_— =4 — (4.21)
D2 p b1

LS ETN) 4
q2 q q1

We choose 6 such that ) )

<Em i go
@ pr
By this choice we ensure that the equations (4.21) and (4.22) have solutions p, g € (0, c0]

and that p < ¢g. Finally, it is easy to verify that

Py

Q2 p2

1 1
7“1—7’——+—>V1(pl7(I1ap7Q) (423)
D1 p
and
1 1
r—r——+=>0. (4.24)
q1 q

(One makes use of the trivial calculation

(1_9)<1_l):l_i (4.25)
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which follows directly from (4.22) and its analogues for p’s and r’s.) This allows us to use
Theorem 3.19 for the upper embedding in (4.19). Moreover, we may use the first part of
Theorem 4.7. Tts assumption is easy to verify (and was done in detail in the first step of
the proof of Theorem 4.5). This leads to

er(id) < (k""" (log k)”_r_l/‘hﬂ/q)l_e = ck™ " (log k)”_”_l/‘hﬂ/q"‘.
If
po_a
b2 q2
we use a different interpolation scheme:

7.0

81’7‘1

a

pN

71,02 7o,(2
Spl »q1 a— 8:02 ,Q2a (4'26)

/

FQ,Qa’

Sp2.a2

with the corresponding equations for r,p and ¢:

1= (1—0)r+0ry, (4.27)
1 1-—

1_1-6.9 (4.28)
b1 p P2

1_1-0 90 (4.29)

‘We choose 0 < 6 < 1 such that

<l g P2y
= qa N

This choice ensures that there are p,q € (0, 00] satisfying (4.28) and (4.29) and p < q.
Finally, it is easy to verify that

1 1
r—ry—— 4+ — >Vi(p,q,p2, 2) (4.30)
P D2
and
1 1
r—reg——+—>0. (4.31)
q Q2

and we may apply Theorem 3.19 to the upper embedding in (4.26). To apply the second
part of Theorem 4.7, we use Theorems 4.8 and 4.6 (recall that ¢o < 0o in case III). This
leads to

en(id) < e(k™ " (log k)" 2Tt/ a1 az)1=0 = cra=ri(Jog k) et/ atL/e,
IIIb. 71 —re — 1/q1 + 1/g2 < 0. We use the chain of embeddings (4.17) with (4.18) and
an<q<p, ¢ =q.
Applying now step Illa to the middle embedding we get the same result as in case IIb.
IV. p1 < q1, p2 < g2. We start again with the case of a positive power of the logarithm.
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IVa. 1 —ry —1/q1 +1/g2 > 0. If

P @
P2 QG2
we use again the scheme (4.19) with (4.20)—(4.22) and choose 0 < § < 1 such that
1 _ 1
0< 2 cp oy
m T n b2

This choice ensures that equations (4.21) and (4.22) supply some p, ¢ € (0, co] with p > q.
Again, one can easily verify (4.23) and (4.24). Finally, we apply again Theorem 3.19 to
the upper embedding in (4.19) and the first part of Theorem 4.7, which leads to the same
result as above.

If
o _n
a2 P2
we use the interpolation scheme (4.26) with (4.27)—(4.29). Now we choose 6 such that
11 1,1
max<o,1 @y q—2> <1-90 <min<r1 IEBTIA ,1).
b a0 p: a

As each expression appearing in the argument on the left-hand side is smaller than both
quantities on the right-hand side, this is always possible.

By this choice we ensure that (4.22) has a solution ¢ € (0, c0] and that p < g. Finally,
it is easy to verify that (4.30) and (4.31) hold.

So, we may apply Theorem 3.19 to the upper embedding in (4.26). Together with
Theorems 4.6 and 4.8 this leads again to

en(id) < c(k™ " (log k) 2Tt/ et az)1=0 = cra=ri(Jog k)r et/ atL/e,

This finishes the discussion of case IVa as long as min(q, g2) < oo, which is equivalent
to min(qy, ¢g2) < 0. If g1 = g2 = oo then we have to modify the argument. In this case
b T2 a, 5728 alg with the
corresponding Calderén product sg”foa. But, according to [16, IV.1.11], one embedding

there is in general no hope to identify the interpolation space [s

still holds, namely

7,0

"o a, 5722 alg — 5 00

[SPhOO 7 TPp2,00
So we may use the following interpolation scheme:

7.0

Sp,oo

/

a—[s

pV

S

a

71,82
P1,00

To,2
ajlg — sz a

F,Qa 571,9 e
,

§ p,00™" T p1,00

71,9
P1,0

where p and r are given by (4.21) and (4.20). Then the choice of 0 < § < 1 with

a

max(l—pl(rl —7“2),0) <0< % <1
2

ensures that we may proceed as in Step IIla and get the same result.
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IVb. ry —ro —1/g1 +1/q2 < 0. Then ¢; < g3. We use the chain of embeddings (4.17)
with (4.18) and
an=q p2<qd<q.
Applying now step IVa to the middle embedding we get the same result as in case IIb.
In the case p; > ps we use the chain of embeddings

71,02 71,82 To,82
Sp17q1a = Spmtha = szafh

a.
The first embedding is then continuous (as p; > p2 and {2 is bounded), the second is

covered by the previous steps. Altogether, this finishes the proof. m

4.5. Entropy numbers—conclusion. In the second chapter we have developed a
strong tool connecting the function spaces S’;qA(Rd) with sequence spaces s;qa. In the
third and fourth chapters we have studied the entropy numbers of embeddings of these
sequence spaces. Finally, we combine these two concepts and obtain estimates for entropy
numbers of embeddings of function spaces.

We recall that the function spaces on domains were defined by (3.1) and (3.2). Our
main result reads

THEOREM 4.11. Let 2 be a bounded domain in R* with d > 2. Let 0 < p1, q1, P2, g2 < 00
with py,py < 0o in the F-case. Let 7y = (r4,...,7;) € R4 i=1,2.

(i) The embedding

id: St A(R2) — Sy AT(R2) (4.32)
is compact if and only if
1 1
Ty — "9 — (— — —) > 0. (433)
pr P2/

(i) In that case

ex(id: S71 o A(R2) = 802 . AT(2)) > k™ (log k) -V mratl/e=t/a)s - g > 9,

(4.34)

with ¢ independent of k.

(iii) IfA=At=BorA=A"=F and r —ro—1/q1 +1/q2 > 0 then

ex(id: SI! o A(2) = 872 . AT(R2)) < k™" (log k)= Dnratt/a:=/a) - > 9,

(4.35)

with ¢ independent of k.

(V) IfA=A"=B orA=A"=F andr, —ry —1/q1 +1/g2 <0 then for every e > 0

there is a constant c. > 0 such that

ep(id: ST1  A(R2) — STz AT(02)) < c.k™ " (log k), k> 2. (4.36)

P1,q1 P2,92
(v) For general A, AT and

1 1 .

rL—1T2— (— - —> > Vi(min(p1, p2), q1, P2, q2)
P1 P2 +

we get finally

er(id: ST A(R2) — STz AN(02)) < ek (log k) (4D (mmre /a2 =a) g > 9

P1,91 D2,92
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Proof. STEP 1. First we give some notation. If f € STt A(£2) then according to Defi-

_ P1,91
nition 3.1 there is a function g € S;;’qlA(Rd) such that
lg | 51 4 AR < 211 £1 57 4, A(R)]

with g|f2 = f. We denote this function g = ext f. Hence ext is a (nonlinear) bounded
operator
ext: ST A(R2) — STt A(R?).

P1,q1 P1,91

On the other hand, the natural restriction of g € S7! . A(R?) to D'(£2) is a bounded

linear operator

tro: ST, ARY) — ST A(9).

P1,91 P1,91
STEP 2. To prove the first statement we introduce two diagrams which will also be of
use later on. In the first one, we start with f € S;iqlA(Q) and extend it to g = ext f €

SZquA(Rd). Then we apply the wavelet decomposition to g as described in 2.12. This

allows us to represent g in the form

veENd, mezd
In this way, we obtain a sequence A = {Apm : 7 € N§, m € Z9} € 57! | a. According to
Theorem 2.12, the mapping which assigns to a given function g its wavelet coefficients A
(and which will be denoted by W) is bounded,

W S;iqlA(Rd) = 8yt 4,0
As the distribution g need not have a bounded support, we restrict the sum in (4.37) to
those m € Z% such that supp ¥y N 2 # (. Furthermore, we may always find a domain
2" such that

{mezt: suppPomn2+£0}Cc AY, veNL
This natural restriction will be formally realised by the the operator

id:s™ g s
T UP1,q1 P1,91

7o,82’
P2,92
as a wavelet sum with coefficients Ay,

S(A) = Z Aom¥om.

TeNE, me AL’

a.

Finally, given a sequence A € s a', we denote by S()) the distribution which arises

Using all this information we obtain the commutative diagram

T _ext T1 d w 1 id’ 71,82
Spl,lhA(‘Q) — SPMHA(R ) - Spr,n & = Spi,q, @

id1J idgl (4.38)

S ANQ) T2 g ATRY) 5 gt

P2,92 P2,92 P2,92
All the operators involved are bounded, under hypothesis (4.33) the embedding ids is even
compact. This proves that the condition (4.33) is sufficient for compactness of (4.32).
To prove that this condition is also necessary, we follow the reasoning in the proof of
Theorem 3.17. Suppose, that (4.33) is not satisfied. We shall construct a sequence {f,}
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bounded in S]! . A(£2) such that any two different members of it have mutual distance

measured in S72 AT(£2) greater than some constant ¢ > 0.
If p1 < pa, then for every > p there are 7, and m,, with |7,| = pand CQyp, m, C £2.

We set
f =27 H(Tlil/pl)wu“ My 1 :U'/'

If pr > p2, we choose for every pu > p” some 7, with |7,| = p and such that
#{m e Z*: CQp, m C 2} ~ 2*. Then we set

fﬂ — 97HM Z WD,LW, o> NH'
m:CQu, mC 92
STEP 3. Till now we have used (4.38) only to prove the compactness of (4.32). But one
may use it also for the estimates of entropy numbers of (4.32). This gives

er(idy) < cex(ide), k€N,

where the constant ¢ covers all the bounded operators ext, W,id’, S and trg. This allows
us to carry over the estimate from above obtained on the sequence space level to the
function space level.

STEP 4. Now we prove the estimate from below, namely (4.34). To this end we consider
the sets

BY ={meZ': CQumcC N}, veNL
They form a certain counterpart to Ag. There are, however, some important differences.

We cannot hope for a straightforward equivalence of (3.7). Instead, there are constants
1o, c1 and co such that for every p > g the cardinality of the set

{72 17] = 1, 12 < #(B2) < e2")

is equivalent to u4=1. This means that (3.7) does not hold for all v € N¢ but only for
almost all 7 with |7| large enough.

Following the proof of Theorem 3.18 we have to choose two kinds of building blocks.
In the first case, we use the sequence spaces given by the quasinorm

”)\ ‘( 7 .Qb H _ (Z 29-(771/P)Q< Z |>\ym|p>q/17)l/q
[Tl=n mEBS
and

L,(RY|.

M= [(X 3 2 em xom ()

[V|=pmeBE

To estimate the entropy numbers of

ex(id: (sp10), = (s320aa"))

for u > o large enough one may use the same arguments (and get the same results) as
in Lemma 3.13.
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Hence for p1 > o we use the diagram (with k = pd=12#)
1 S 7
(spim@)y — Splg A1)

idll idgl (4.39)

(sl - 572,A47(92)

DP2,q2 H P2,q2
to get
ex(id: S;*  A(2) = SI2  AT(2)) > ck™ " (log k)= Din—ratt/a=1/a) - > 9,
On the other hand, the diagram (and the choice k = 2#)
T — 1 Bu S T1
ou(ri=1/pggr 2 S L A(R)
idll idgl (4.40)
To— By w T
gulra=t/p2)ge « = Gr2  AT(12)
gives

ex(id: ST1 A(R2) — ST2 AN(R)) > k™, k> 2.

P11 Pp2,q2
Here B, = #(B%) for some ¥ with [7| = p is chosen such that B, ~ u?=12#, 1 > puo.

STEP 5. The proof of (v) involves the same arguments as given in the previous steps and
in Theorem 3.19. =

REMARK 4.12. Theorem 4.11 describes in detail the entropy numbers of
id: ST A(R) — STz, AT(Q)

P1,q91 P2,92
if A = AT, In this case it gives (up to the (logk)s-gap) the final answer. Let us look a
bit more closely on the situation where A = B and Af = F. The estimate from below is
covered by (4.34). If ¢; < p; we may use the embeddings

ST B(2) = S F(2)— S F(0) (4.41)

P1,q1 P1,q1 P2,q2
to carry over the results obtained for F' — F also to B — F. If go < p2, we replace
(4.41) by

ST B(£2) = ST B(£2) < Sz F(£). (4.42)

PL.Q1 P2,q2 P2,q2
But if p1 < ¢1 and p2 < g2 (and, for simplicity, p1 < p3), no trivial embedding would
help. In that case we get (4.35) only for

(1 1) 1 1
rH—-r—-f——,7_1">———.
pP1 P2 b2 q2

In the case of A = F and AT = B the situation is similar. We may get (4.35) whenever
(4.41) is compact and p; < g1 or p2 < g2. If ¢1 < p1,q2 < p2 and p; < po, we get the

same result only for
( 1 1 ) 1 1
rn—-r-\—1]1>-—-——
P P2 g p1

4.6. Comparison with known results. As the function spaces with dominating mixed
smoothness have been studied systematically by many authors, there are also many im-
portant results on the estimates of the decay of entropy numbers available in the liter-
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ature. Here, we compare our results supplied by decomposition techniques with those
obtained by Belinsky [4], Temlyakov [30] and Dinh Dung [8].

Unfortunately, the classes of functions studied by them differ slightly from the scales
Sp B(£2) and S; F(£2). Let us sketch briefly their setting. They consider 1-periodic
functions of d real variables. Hence, their domain (2 is fixed, 2 = [0,1)%. Belinsky
considers four main scales of spaces with dominating mixed smoothness, WpT , H; on the
one hand and Ly, BY, | on the other hand.

For 1 < p < oo, the space L, of periodic functions is a direct counterpart of SSQF(Q).
Similarly, BY, ; is S2, ; B({2) in our terminology. The spaces W defined by Belinsky by
means of Weyl derivatives represent for 1 < p < oo the Sobolev spaces of dominating
mixed smoothness SEQF (£2) and, finally, the spaces HZ are sometimes called Nikol’skit
spaces and have their counterpart in S . B({2). To simplify the comparison of our results
with Belinsky’s, we denote the spaces W, Hy, L, and BY, ; by §;2F, g;_’OOB, §3’2F and
520,1 B. We now quote four results of Belinsky and compare them with their analogues
obtained by our method. We set the smoothness involved to be (as in our case) T =
(r,...,7) € R% although the results in [4] are presented in a bit greater generality.

THEOREM 4.13. (i) Letr > 1/p—1/q and 1 < p < q¢ < co. Then

_ - 1 d—1 k I
er(id: ST, F — 50, F) ~ (L) . (4.43)
’ ’ k
(ii) Letr > 1/p—1/q and 1 < p < g < co. Then
— - 1 d—1 k s
er(id: 87 B — 50,F) ~ (OgT) log = D/2 k. (4.44)
(iii) Let r > 1/2. Then
— . l d—1 k r
er(id : S5 ,F — 8% | B) ~ <°gk> log( @ 1/2 ;. (4.45)
(iv) Let r > 1/2. Then
— . 1 d—1 k r
er(id : S5 B — 55, ,B) = (OgT> log? ! k. (4.46)

REMARK 4.14. We point out that according to Theorem 3.17, all the bounds for r in
Theorem 4.13 are optimal. Due to Theorem 4.11, we achieved the same results as in (i),
(iii) and (iv). The embedding appearing in (4.44) corresponds to

id: S (B(2) — 89 ,F(£2)

in our setting. In this case, for

11 1 1
r— - - - >V1paooaq72 = - Y
(p q) ( ) q max(q,2)

by Theorem 4.11 we get
er(id) < ck™"(log k) D0+Y/2) - > 9,

So, for ¢ > 2, our result is optimal for all possible 7, but for ¢ < 2 we get the optimal
result only for r > 1/p—1/2>1/p—1/q.
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In [30], Temlyakov obtained other important results on entropy numbers of embed-
dings of spaces with dominating mixed smoothness. Using our notation, they may be
summarised as follows.

THEOREM 4.15. (i) Let r > 1. Then

en(id : ST B — 8% 4B) < ck™"(log k)4~ D 1/2), (4.47)
(ii) Let r > 0. Then
ex(id: ST, B — Ly) > ck™"(log k)@= r+1/2), (4.48)
(iii) Let r > 1 and 1 < p,q < co. Then
en(id: 7 ,F — SO, F) < ck™"(log k). (4.49)
(iv) Let r >0 and 1 < g < co. Then
en(id: ST oF — L) > ck™"(log k)@= (4.50)

REMARK 4.16. We discuss these results briefly. We point out that the bound for r is
always optimal apart from case (iii). Namely, the embedding in (4.49) is compact if and
only if » > (1/q — 1/p)+. The inequalities (4.47) and (4.49) are completely covered by
Theorem 4.11.

But (4.48) and (4.50) are of a different nature. Namely, they deal with the space
L1(£2), which does not fit into our scales Sy  A(£2). All the known decomposition tech-
niques fail to give some decomposition of this space and, therefore, no reduction to the
sequence space level is possible. The same holds for embeddings to other spaces of this
kind, especially Lo, (£2).

Finally, we discuss the results obtained by Dinh Dung in [8].
THEOREM 4.17. Let 1 < p1,p2 < 00, 0 < q < o0 and r > 0. Then we have

(i) for either r > 1/py and q > p1, orr > (1/p1 — 1/p2)+ and ¢ > min(ps, 2),

ex(id: ST B — SO ,F) ~ k™" (log k)@~ Dr+1/2=1/a) (4.51)
(ii) forr > (1/p1 — 1/p2)+,
en(id: S) o F — 89 ,F) ~ k™" (logk)!= 1. (4.52)

The embedding (4.52) is (for p; < ps) covered by (4.43) and for general p; and ps
by (4.34) and (4.35). We therefore concentrate on (4.51). In [9], Dinh Dung comments
that the conditions on r and ¢ in Theorem 4.17 ensure the positivity of the power of the
logarithm in (4.51). In view of our general estimate (4.34), this should really be so. But
unfortunately, the conditions given in Theorem 4.17 do not ensure that r+1/2—1/¢q > 0.
To see that, set p1 =ps < ¢<2and 0 <r < 1/qg—1/2. A closer inspection of the proof
of Theorem 2 in [8] shows that in the case r > (1/p1 — 1/p2)+ and ¢ > min(ps,2) Dinh
Dung proves actually a slightly weaker result, namely

ex(id: Sy B — 89 ,F) < ck " (logk)\d-Drl/min22)=1/0) = f > 9, (4.53)

P1,q
In this result, the power of the logarithm is always positive and, therefore, no contradic-
tion with (4.34) occurs. We point out that our result covers and improves (4.53) as far
as the set of parameters is concerned.
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We start with p; < ps. By Remark 4.12, we get (4.51) for all r > 1/p; — 1/ps with
r>1/qg—1/21if ¢ < p; or 2 < py. Moreover, for r < 1/g — 1/2 we get (4.34) and an
analogue of (4.36). Finally, if » > 1/p; — 1/2 we get (4.51) even if ¢ > p; and 2 > ps.
A similar discussion may be done for p; > pa.

Next we present some special cases of Theorem 4.11 which have not been discussed
separately yet, but which may be of some independent interest.

THEOREM 4.18. Let 7 = (r,...,r) € R
(i) The embedding
id : ST, B(2) — 5%, .. B(£2)
is compact if and only if r > 1 and in that case
ex(id) ~ k7" (log k)@ D=0 k> 9
(ii) The embedding
id : ST, B(£2) — S%, . B(£2)
is compact if and only if r > 0. If r > 1 then
er(id) = k™" (log k)@-D=D 1 | > 9
and for 0 <r <1 and every € > 0 there are constants ¢ and c. such that
ck™" <ep(id) < ek "(logk)s, k>2.
(ili) Let 0 < p < g < co. The embedding
id : 57 ,F(2) — 57  B(£2)
is compact if and only if r > 1/p — 1/q. If in this case r > 1/2 then
er(id) ~ k" (log k)@~ D0=32) | > 2,
and for 1/p —1/q < r < 1/2 and every € > 0 there are constants ¢ and ¢ such that
ck™" <ep(id) < ek "(logk)®, k> 2.

Proof. The assertion follows from Theorem 4.11 and Remark 4.12. m
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