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Abstract

Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace.
For an extension Y of X the subspace Y \X of Y is called the remainder of Y . Two extensions of
X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise.
For two (equivalence classes of) extensions Y and Y ′ of X let Y ≤ Y ′ if there is a continuous
mapping of Y ′ into Y which fixes X pointwise. Let P be a topological property. An extension Y
of X is called a P-extension of X if it has P. If P is compactness then P-extensions are called
compactifications.

The aim of this article is to introduce and study classes of extensions (which we call
compactification-like P-extensions, where P is a topological property subject to some mild re-
quirements) which resemble the classes of compactifications of locally compact spaces. We for-
mally define compactification-like P-extensions and derive some of their basic properties, and in
the case when the remainders are countable, we characterize spaces having such extensions. We
then consider the classes of compactification-like P-extensions as partially ordered sets. This con-
sideration leads to some interesting results which characterize compactification-like P-extensions
of a space among all its Tychonoff P-extensions with compact remainder. Furthermore, we study
the relations between the order-structure of classes of compactification-like P-extensions of a Ty-
chonoff space X and the topology of a certain subspace of its outgrowth βX \X. We conclude
with some applications, including an answer to an old question of S. Mrówka and J. H. Tsai:
For what pairs of topological properties P and Q is it true that every locally-P space with Q
has a one-point extension with both P and Q? An open question is raised.
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1. Introduction

Let X be a space. A space Y is called an extension of X if Y contains X as a dense
subspace. If Y is an extension of X then the subspace Y \X of Y is called the remainder
of Y . Two extensions of X are said to be equivalent if there exists a homeomorphism
between them which fixes X pointwise. This defines an equivalence relation on the class
of all extensions of X. The equivalence classes will be identified with individuals when
this causes no confusion. For two (equivalence classes of) extensions Y and Y ′ of X we let
Y ≤ Y ′ if there exists a continuous mapping of Y ′ into Y which fixes X pointwise. The
relation ≤ defines a partial order on the set of all (equivalence classes of) extensions of X
(see Section 4.1 of [29] for more details). Let P be a topological property. An extension
Y of X is called a P-extension of X if it has P. If P is compactness then P-extensions
are called compactifications. The aim of this article is to introduce and study classes
of extensions (which we call compactification-like P-extensions where P is a topological
property) which look like the classes of compactifications of locally compact spaces. These
are, for a Tychonoff space X:

• The class of minimal P-extensions of X, consisting of those Tychonoff P-extensions
Y of X with compact remainder such that Y is minimal (with respect to the sub-
space relation ⊆) among all Tychonoff P-extensions of X with compact remainder. (In
other words, one cannot construct any other Tychonoff P-extension of X with compact
remainder by deleting points from the space Y .)
• The class of optimal P-extensions of X, consisting of those Tychonoff P-extensions
Y of X with compact remainder such that the topology of Y is maximal (with re-
spect to the inclusion relation ⊆) among all topologies on Y which turn Y into a
Tychonoff P-extension of X with compact remainder and Y is minimal (with respect
to the subspace relation ⊆) among all Tychonoff P-extensions of X with compact re-
mainder. (In other words, one cannot construct any other Tychonoff P-extension of X
with compact remainder either by adding sets to the topology of Y or deleting points
from Y .)

Here the topological property P is subject to some mild restrictions and will include
most of the important covering properties (such as compactness, the Lindelöf property,
countable compactness, paracompactness and metacompactness) as special cases.

This article is organized as follows:
In Chapter 2 we give the formal definitions of compactification-like P-extensions and

we derive some of their basic properties.
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In Chapter 3 we consider the case when the extensions have countable remainders
and characterize those Tychonoff spaces which have a compactification-like P-extension
with countable remainder.

In Chapter 4 we consider the classes of compactification-like P-extensions of a Ty-
chonoff space X as partially ordered sets. Besides the standard partial order ≤ we consider
two other partial orders ≤inj and ≤surj. These considerations lead to some interesting re-
sults which characterize compactification-like P-extensions of X among all Tychonoff
P-extensions of X with compact remainder. Furthermore, we study the relationships be-
tween the order-structure of classes of compactification-like P-extensions of X (partially
ordered with ≤) and the topology of a certain subspaces of its outgrowth βX \ X. We
conclude this chapter with a result which characterizes the largest (with respect to ≤)
compactification-like P-extension of X. This largest element, which we explicitly intro-
duce as a subspace of the Stone–Čech compactification βX of X, turns out to be even
the largest among all Tychonoff P-extensions of X with compact remainder.

In Chapter 5 we give some applications of our study. These applications include the
relations between compactification-like P-extensions and tight P-extensions with com-
pact remainder (a tight P-extension of a space X is a Tychonoff P-extension of X which
does not contain properly any other P-extension of X as a subspace) and an answer to an
old question of S. Mrówka and J. H. Tsai in [28]: For what pairs of topological properties
P and Q is it true that every (Tychonoff) locally-P (non-P) space with Q has a one-point
(Tychonoff) extension with both P and Q?

We conclude with an open question which naturally arises in connection with our
study.

We now review some of the terminology, notation and well known results which will
be used in the sequel. Our definitions mainly come from the standard text [5] (thus in
particular, compact spaces are Hausdorff, perfect mappings are continuous with Hausdorff
domains, etc.). Other useful sources are [8], [29] and [40].

The letters R, I and N denote the real line, the closed unit interval and the set of all
positive integers, respectively. By ω and Ω we denote the first infinite ordinal and the
first uncountable ordinal, respectively, and by ℵ0 and ℵ1 we denote their cardinalities.
The cardinality of a set A is denoted by card(A). For a subset A of a space X we let
clX A, intX A and bdX A denote the closure, the interior and the boundary of A in X,
respectively. A subset of a space is said to be clopen if it is simultaneously closed and
open. A zero-set of a space X is a set of the form Z(f) = f−1(0) for some continuous
f : X → I. Any set of the form X \ Z, where Z is a zero-set of a space X, is called a
cozero-set of X. We denote the set of all zero-sets of X by Z (X) and the set of all cozero-
sets of X by Coz(X). For a Tychonoff space X the Stone–Čech compactification of X is
the largest (with respect to the partial order ≤) compactification of X and is denoted
by βX. The Stone–Čech compactification of a Tychonoff X is characterized among the
compactifications of X by either of the following properties:

• Every continuous mapping from X to a compact space is continuously extendible over
βX.
• Every continuous mapping from X to I is continuously extendible over βX.
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• For every Z, S ∈ Z (X) such that Z ∩ S = ∅ we have

clβX Z ∩ clβX S = ∅.
• For every Z, S ∈ Z (X) we have

clβX(Z ∩ S) = clβX Z ∩ clβX S.

A continuous mapping f : X → Y is called perfect if X is a Hausdorff space, f is
closed (not necessarily surjective) and continuous and any fiber f−1(y), where y ∈ Y , is
a compact subset of X. A topological property P is said to be invariant under perfect
mappings (inverse invariant under perfect mappings, respectively) if for any perfect sur-
jective mapping f : X → Y the space Y (X, respectively) has P provided that X (Y ,
respectively) has P. A topological property P is called perfect if it is both invariant and
inverse invariant under perfect mappings. A topological property P is said to be heredi-
tary with respect to closed subsets (hereditary with respect to open subsets, respectively)
if any closed (open, respectively) subset of a space with P also has P. A topological
property P is called finitely additive if whenever X = X1 ⊕ · · · ⊕Xn and each Xi has P
then X also has P. Let P be a topological property. A space X is called locally-P if each
x ∈ X has an open neighborhood U in X whose closure clX U has P. Note that if X is
a regular (Hausdorff) space and P is closed hereditary, then X is locally-P if and only
if each point x of X has a local base consisting of open neighborhoods U of x such that
clX U has P.

2. Compactification-like P-extensions

In this chapter we give definitions and derive some basic results which will be used
throughout.

Definition 2.1. Let X be a space, let P be a topological property and let Y be a
Tychonoff P-extension of X with compact remainder.

The extension Y of X is called minimal if Y is minimal (with respect to the subspace
relation ⊆) among all Tychonoff P-extensions of X with compact remainder, that is, Y
does not contain properly any other Tychonoff P-extension of X with compact remainder.
In other words, one cannot obtain any other Tychonoff P-extension of X with compact
remainder by deleting points from the space Y .

The extension Y of X is called optimal if the topology of Y is maximal (with respect
to the inclusion relation ⊆) among all topologies on Y which turn Y into a Tychonoff P-
extension of X with compact remainder, and Y is minimal (with respect to the subspace
relation ⊆) among all Tychonoff P-extensions of X with compact remainder. In other
words, one cannot obtain any other Tychonoff P-extension of X with compact remainder
either by adding sets to the topology of Y or deleting points from Y .

We refer to either minimal P-extensions or optimal P-extensions as compactification-
like P-extensions.

Notation 2.2. Let X be a space and let P be a topological property. Denote by E (X) the
set of all Tychonoff extensions of X with compact remainder and denote by either E P(X)
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or EP(X) the set of all elements of E (X) which have P. Also, let MP(X) and OP(X)
denote the set of all minimal P-extensions of X and the set of all optimal P-extensions
of X, respectively, and if Q is a topological property, let

EQP (X) = EQ(X)∩EP(X), MQ
P (X) = EQ(X)∩MP(X), OQP (X) = EQ(X)∩OP(X).

Note that by the definitions
OQP (X) ⊆MQ

P (X).

Remark. Topological properties P considered in this article are assumed to be non-
empty, that is, it is assumed that there exists at least one space with P. This in particular
implies that for a clopen hereditary topological property P the empty set has P, or, if a
space is non-P then it is non-empty as well.

The following subspace of βX will play a crucial role in our study.

Definition 2.3. For a Tychonoff space X and a topological property P define

λPX =
⋃{

intβX clβX Z : Z ∈ Z (X) has P
}
.

Note that any topological property which is hereditary with respect to clopen subsets
and inverse invariant under perfect mappings is hereditary with respect to closed subsets
of Hausdorff spaces (see Theorem 3.7.29 of [5]). This simple fact will be used in a number
of places throughout.

Lemma 2.4. Let X be a Tychonoff space and let P be a clopen hereditary finitely additive
perfect topological property. Then for any subset A of X if clβX A ⊆ λPX then clX A
has P.

Proof. By the compactness of clβX A and the definition of λPX we have

clβX A ⊆
n⋃
i=1

intβX clβX Zi ⊆ clβX Z

where each Z1, . . . , Zn ∈ Z (X) has P and Z = Z1 ∪ · · · ∪Zn. Since P is finitely additive
and invariant under perfect mappings and Z is the finite union of its closed subspaces Zi,
each having P, it follows that Z has P (see Theorem 3.7.22 of [5]). Now since clX A ⊆ Z
the set clX A has P, as it is closed in Z.

Lemma 2.5. Let P be a topological property which is clopen hereditary and inverse in-
variant under perfect mappings and let f : X → Y be a perfect mapping. Then if Y is
locally-P and Hausdorff then X is locally-P.

Proof. First note that f [X] is locally-P. To show this let y ∈ f [X]. Since Y is locally-P
there exists an open neighborhood V of y in Y such that clY V has P. Now V ∩ f [X] is
an open neighborhood of y in f [X], the image f [X] is closed in Y (as f is perfect and
thus closed) and

clf [X]

(
V ∩ f [X]

)
= clY

(
V ∩ f [X]

)
∩ f [X] ⊆ clY V.

Therefore clf [X](V ∩ f [X]) has P, as it is closed in clY V . Since f : X → f [X] is perfect
and surjective we may assume in the statement of the lemma that f is moreover surjective.
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Let x ∈ X. There exists an open neighborhood W of f(x) in Y such that clY W has P.
Since

f |f−1[clY W ] : f−1[clY W ]→ clY W

is perfect and surjective and P is inverse invariant under perfect mappings, f−1[clY W ]
has P. Now f−1[W ] is an open neighborhood of x in X, and since clX f−1[W ] ⊆
f−1[clY W ] and the latter has P, its closed subset clX f−1[W ] also has P.

A topological property P is said to satisfy Mrówka’s condition (W) if it satisfies the
following: If X is a Tychonoff space in which there exists a point p with an open base
B for X at p such that X \ B has P for any B ∈ B, then X has P (see [25]). If P is a
topological property which is closed hereditary and productive then Mrówka’s condition
(W) is equivalent to the following condition: If a Tychonoff space X is the union of a
compact space and a space with P then X has P (see [17]). In [25] S. Mrówka showed
that if P is a topological property which is closed hereditary, finitely additive with respect
to closed subsets (that is, whenever a space is the union of a finite number of its closed
subsets each having P, then it has P) and invariant under continuous mappings then any
Tychonoff locally-P space can be embedded as an open subspace in a Tychonoff space
with P if and only if Mrówka’s condition (W) holds.

In this article we will be dealing with certain classes of topological properties. For
convenience, we make the following definition.

Definition 2.6. Let P be a topological property. Then P is said to be a compactness-
like topological property if P is a clopen hereditary finitely additive perfect topological
property which satisfies Mrówka’s condition (W). If Q also is a topological property, then
we say that P and Q is a pair of compactness-like topological properties (here the order
of P and Q is important) if P is a compactness-like topological property and Q is a
clopen hereditary topological property which is inverse invariant under perfect mappings
and satisfies Mrówka’s condition (W). (Examples of pairs of compactness-like topological
properties are given in Example 2.16.)

Lemma 2.7. Let P be a topological property which is inverse invariant under perfect
mappings and satisfies Mrówka’s condition (W). If X is a Tychonoff space in which there
exists a compact subset A with an open base B for X at A such that X \ B has P for
any B ∈ B, then X has P.

Proof. If A = ∅ then the conclusion holds trivially, as in this case ∅ ∈ B. Suppose
that A is non-empty. Let T be the space obtained from X by contracting the set A
to a point p and let q : X → T denote the corresponding quotient mapping. Note
that since A is compact, T is Tychonoff. Now {q[B] : B ∈ B} is an open base for T
at p such that T \ q[B] = X \ B has P for any B ∈ B. Since P satisfies Mrówka’s
condition (W), the space T , and thus its inverse image X under the perfect surjective
mapping q, has P.

Note that if A is a dense subset of a space X and U is an open subset of X then
clX U = clX(U ∩ A) and thus U ⊆ intX clX(U ∩ A). In particular, if X is a Tychonoff
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space, f : βX → I is continuous and r ∈ (0, 1) then

f−1
[
[0, r)

]
⊆ intβX clβX

(
f−1

[
[0, r)

]
∩X

)
.

We use such simple observations frequently in the future.
A Hausdorff space is called zero-dimensional if the set of all its clopen subsets con-

stitutes an open base for it. A Tychonoff space is called strongly zero-dimensional if its
Stone–Čech compactification is zero-dimensional. For a regular space X let (EX, kX)
denote the absolute of X (see Theorem 6.6(e) of [29] or Problem 6.3.20 of [5]). The space
EX is (extremely disconnected and) zero-dimensional (thus strongly zero-dimensional;
see Theorem 6.4 of [29]) and kX : EX → X is a perfect (irreducible) surjective mapping.

The following lemma is quite fundamental in our study. We state and prove it in its
general form for future reference.

Lemma 2.8. Let P and Q be a pair of compactness-like topological properties. Let X and
Y be Tychonoff spaces such that Y has Q, let f : X → Y be a perfect surjective mapping,
let T ∈ E (Y ), let αT be a compactification of T and let φ : βX → αT be the continuous
extension of f . The following are equivalent:

(1) T ∈ EQP (Y ).
(2) X is locally-P and βX \ λPX ⊆ φ−1[T \ Y ].

Proof. (1) implies (2). Since P is hereditary with respect to closed subsets of Hausdorff
spaces, the space Y , having a P-extension with compact remainder, is locally-P and
therefore so is X by Lemma 2.5. Next, we show that βX \λPX ⊆ φ−1[T \Y ]. Suppose to
the contrary that there exists an x ∈ βX \λPX such that x /∈ φ−1[T \Y ]. Let g : βX → I
be continuous with g(x) = 0 and g[φ−1[T \Y ]] ⊆ {1} and let Z = g−1[[0, 1/2]]. We verify
that Z ∩X ∈ Z (X) has P. Since Z ∩ φ−1[T \ Y ] = ∅ we have

φ[Z] ⊆ φ
[
βX \ φ−1[T \ Y ]

]
= φ

[
φ−1

[
αT \ (T \ Y )

]]
⊆ αT \ (T \ Y )

and thus S = φ[Z]∩T ⊆ Y . Therefore S has P, as it is closed in T , because Z is compact.
Since f |f−1[S] : f−1[S] → S is perfect and surjective and P is inverse invariant under
perfect mappings, f−1[S] has P. Thus

Z ∩X ⊆ f−1
[
f [Z ∩X]

]
⊆ f−1

[
φ[Z ∩X] ∩ Y

]
⊆ f−1

[
φ[Z] ∩ T

]
= f−1[S],

which implies that Z ∩X has P, as it is closed in f−1[S]. Now

x ∈ g−1
[
[0, 1/2)

]
⊆ intβX clβX

(
g−1

[
[0, 1/2]

]
∩X

)
= intβX clβX(Z ∩X) ⊆ λPX,

which is a contradiction, as x /∈ λPX.
(2) implies (1). Suppose moreover that X is strongly zero-dimensional. Let

B =
{
T \ f

[
clX f−1

[
T \ φ[U ]

]]
: U is clopen in βX and φ−1[T \ Y ] ⊆ U

}
.

We verify that B is an open base for T at T \ Y such that T \B has both P and Q for
any B ∈ B. By Lemma 2.7 this will imply that T has P and Q. Let U be a clopen subset
of βX such that φ−1[T \ Y ] ⊆ U . Consider

B = T \ f
[
clX f−1

[
T \ φ[U ]

]]
∈ B.
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Since φ is surjective (as its image contains Y = f [X] = φ[X] and Y is dense in T ) we
have T \ Y = φ[φ−1[T \ Y ]] ⊆ φ[U ] and thus T \ φ[U ] ⊆ Y . Since

f−1
[
T \ φ[U ]

]
⊆ φ−1

[
T \ φ[U ]

]
⊆ φ−1

[
αT \ φ[U ]

]
= βX \ φ−1

[
φ[U ]

]
⊆ βX \ U

we have clX f−1[T \ φ[U ]] ⊆ βX \ U , which yields

T \B = f
[
clX f−1

[
T \ φ[U ]

]]
= φ

[
clX f−1

[
T \ φ[U ]

]]
⊆ φ[βX \ U ] ⊆ φ

[
βX \ φ−1[T \ Y ]

]
= φ

[
φ−1

[
αT \ (T \ Y )

]]
⊆ αT \ (T \ Y ).

Therefore since U is clopen in βX the set φ[βX \ U ] is compact and thus clαT (T \B) ⊆
φ[βX \ U ]. By the above this implies that

clT (T \B) ∩ (T \ Y ) = clαT (T \B) ∩ (T \ Y ) = ∅

and therefore since f is closed,

clT (T \B) = clY (T \B) = T \B.

This shows that each B ∈ B is open in T . Obviously, each B ∈ B contains T \ Y . Next,
we show that each open neighborhood W of T \Y in αT contains an element of B. Since
X is strongly zero-dimensional, βX is zero-dimensional. Now since φ−1[W ] is an open
neighborhood of the compact set φ−1[T \ Y ] in βX there exists a clopen subset U of βX
such that φ−1[T \ Y ] ⊆ U ⊆ φ−1[W ] (see Theorem 6.2.4 of [5]). Note that

B = T \ f
[
clX f−1

[
T \ φ[U ]

]]
⊆ T \ f

[
f−1

[
T \ φ[U ]

]]
= T \

(
T \ φ[U ]

)
⊆ φ[U ] ⊆ φ

[
φ−1[W ]

]
⊆W

and that B ∈ B. This shows that B is an open base for T at T \ Y . Now let B ∈ B.
Then T \B = f [clX f−1[T \φ[U ]]] for some clopen subset U of βX containing φ−1[T \Y ].
Since f is closed, T \ B is closed in Y , and since by our assumption Y has Q and Q
is hereditary with respect to closed subsets of Hausdorff spaces, T \ B has Q. Also, as
argued above f−1[T \ φ[U ]] ⊆ βX \ U , which implies that

clβX f−1
[
T \ φ[U ]

]
⊆ βX \ U ⊆ βX \ φ−1[T \ Y ] ⊆ λPX.

By Lemma 2.4 the set C = clX f−1[T \ φ[U ]] has P. Now f |C : C → f [C] is perfect
(as C is closed in X) and surjective, and P is invariant under perfect mappings, thus
T \B = f [C] has P. This shows that (1) holds in this case.

We now turn to the general case in which X is an arbitrary Tychonoff space. Let
(EX, k) denote the absolute of X. By our assumption X is locally-P, and since k :
EX → X is perfect, by Lemma 2.5 the space EX is locally-P. Let K : βEX → βX

be the continuous extension of k. Then φK : βEX → αT continuously extends fk and
therefore by the above, to show that T ∈ EQP (Y ) we only need to verify that

βEX \ λPEX ⊆ (φK)−1[T \ Y ].

But by our assumption βX \ λPX ⊆ φ−1[T \ Y ]. Thus as we will see it suffices to show
that K−1[λPX] ⊆ λPEX. Let t ∈ K−1[λPX]. Let U be an open neighborhood of K(t)
in βX such that clβX U ⊆ λPX. Let h : βX → I be continuous with h(K(t)) = 0 and
h[βX \ U ] ⊆ {1}. Let

Z = h−1
[
[0, 1/2]

]
∩X ∈ Z (X).
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Then since
clβX Z ⊆ clβX(U ∩X) = clβX U ⊆ λPX,

by Lemma 2.4 the set Z has P and therefore its inverse image k−1[Z] ∈ Z (EX) under
the perfect surjective mapping k|k−1[Z] : k−1[Z]→ Z has P. By the definition of λPEX
we have intβEX clβEX k−1[Z] ⊆ λPEX. By Theorem 3.7.16 of [5] (or Theorem 1.8(i) of
[29]) and since K|EX = k is perfect, K[βEX \ EX] ⊆ βX \X. But K is surjective, as
its image contains X = k[EX] = K[EX], and thus K[βEX \ EX] = βX \X. We have

k−1[Z] = k−1
[
h−1

[
[0, 1/2]

]
∩X

]
= K−1

[
h−1

[
[0, 1/2]

]
∩X

]
= K−1

[
h−1

[
[0, 1/2]

]]
∩K−1[X] = K−1

[
h−1

[
[0, 1/2]

]]
∩ EX

and therefore

t ∈ K−1
[
h−1

[
[0, 1/2)

]]
⊆ clβEX K−1

[
h−1

[
[0, 1/2)

]]
= clβEX

(
K−1

[
h−1

[
[0, 1/2)

]]
∩ EX

)
⊆ clβEX

(
K−1

[
h−1

[
[0, 1/2]

]]
∩ EX

)
= clβEX k−1[Z],

which yields t ∈ intβEX clβEX k−1[Z] and thus t ∈ λPEX. This shows that K−1[λPX] ⊆
λPEX. Now

βEX \ λPEX ⊆ βEX \K−1[λPX]

= K−1[βX \ λPX] ⊆ K−1
[
φ−1[T \ Y ]

]
= (φK)−1[T \ Y ],

which shows (1).

The list of topological properties P and Q satisfying the assumption of Lemma 2.8 is
quite long and includes most of the important covering properties (see Example 2.16).

Remark. Lemma 2.8 (and thus its consequences) remains valid if one omits Q from its
statement. This is because one can replaceQ by regularity (note that by Theorem 3.7.23 of
[5] regularity is inverse invariant under perfect mappings and satisfies Mrówka’s condition
(W) vacuously) and observes that for this specific choice of Q the phrases “Tychonoff
space with Q” and “P and Q is a pair of compactness-like topological properties” can
be replaced by “Tychonoff space” and “P is a compactness-like topological property”,
respectively.

Remark. Lemma 2.8 is stronger than what we normally need, as we generally apply it
in the special case when Y = X, f = idX and αT = βT . Lemma 2.8 is quite fundamental
in our study and it is interesting to know whether the requirement “P satisfies Mrówka’s
condition (W)” (implicit in the definition of the compactness-like topological property P)
can be omitted from its statement. In Example 2.16 we give an example of a Tychonoff
space X, a topological property P which does not satisfy Mrówka’s condition (W) and
a Tychonoff extension of X with compact remainder, for which the conclusion of (the
special case of) Lemma 2.8 does not hold.

We will make frequent use of the following well known result sometimes without
explicitly referring to it. The proof is included here for the sake of completeness.

Lemma 2.9. Let X be a Tychonoff space and let Y be a Tychonoff extension of X with
the compact remainder Y \ X = {pi : i ∈ I} where pi’s are bijectively indexed. Let
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φ : βX → βY be the continuous extension of idX . Let T be the space obtained from βX

by contracting any fiber φ−1(pi) where i ∈ I to a point ai. Then T = βY (identifying
each ai with pi) and φ = q where q : βX → T is the quotient mapping.

Proof. We first show that T is a compactification of Y . To show that T is Hausdorff let
s, t ∈ T be distinct elements. Consider the following cases:

Case 1. Suppose that s, t ∈ T \ {ai : i ∈ I}. Then s, t ∈ βX \φ−1[Y \X] and thus there
exist disjoint open neighborhoods U and V of s and t in βX, respectively, each
disjoint from φ−1[Y \X]. The sets q[U ] and q[V ] are disjoint open neighborhoods
of s and t in T , respectively.

Case 2. Suppose that s = ai for some i ∈ I and t ∈ T \{ai : i ∈ I}. Then φ−1[Y \X] is a
compact subset of βX not containing t and thus there exist disjoint open subsets U
and V of βX such that φ−1[Y \X] ⊆ U and t ∈ V . Now q[U ] and q[V ] are disjoint
open neighborhoods of s and t in T , respectively. The case when s ∈ T \{ai : i ∈ I}
and t = aj for some j ∈ I is analogous.

Case 3. Suppose that s = ai and t = aj for some i, j ∈ I. Let Ui and Uj be disjoint
open neighborhoods of pi and pj in βY , respectively. Then since q−1[q[φ−1[Uk]]] =
φ−1[Uk] where k = i, j are open subsets of βX and φ−1(pk) ⊆ φ−1[Uk] the sets
q[φ−1[Uk]] where k = i, j are disjoint open neighborhoods of s and t in T , respec-
tively.

This shows that T is Hausdorff and therefore it is compact, as it is a continuous image
of βX. Note that Y is a subspace of T . To show this, first note that since βY is also a com-
pactification of X, as X is dense in Y and thus in βY , and φ|X = idX , by Theorem 3.5.7 of
[5] we have φ[βX \X] = βY \X. Now if W is open in βY , since q−1[q[φ−1[W ]]] = φ−1[W ]
is open in βX the set q[φ−1[W ]] is open in T , and therefore W ∩ Y = q[φ−1[W ]] ∩ Y is
open in Y as a subspace of T . For the converse, note that if W is an open subset of T then

W ∩ Y =
(
βY \ φ

[
βX \ q−1[W ]

])
∩ Y

and therefore (since φ[βX \ q−1[W ]] is compact and thus closed in βY ) the set W ∩ Y is
open in Y in its original topology. Clearly, Y is dense in T and therefore T is a compact-
ification of Y . To show that T = βY it suffices to verify that any continuous f : Y → I
can be continuously extended over T . Indeed, consider the continuous mapping

g = fq : S = X ∪ φ−1[Y \X]→ I.
Note that since X ⊆ S ⊆ βX we have βS = βX (see Corollary 3.6.9 of [5]). Let
gβ : βX → I be the continuous extension of g. Define F : T → I such that F (x) = gβ(x)
for any x ∈ βX \ φ−1[Y \X] and F (pi) = f(pi) for any i ∈ I. Then F |Y = f and since
Fq = gβ is continuous, F is continuous. This shows that T = βY . Note that this also
implies that φ = q, as φ, q : βX → βY are continuous and φ|X = idX = q|X.

The following simple observation will be of frequent use in the future, sometimes with
no explicit reference.

Lemma 2.10. Let X be a Tychonoff space and let P be a clopen hereditary topological
property which is inverse invariant under perfect mappings. Then X ⊆ λPX if and only
if X is locally-P.
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Proof. Suppose that X is locally-P. Let x ∈ X and let U be an open neighborhood of x in
X whose closure clX U has P. Let f : X → I be continuous with f(x) = 0 and f [X \U ] ⊆
{1} and let fβ : βX → I be the continuous extension of f . Let Z = f−1[[0, 1/2]] ∈ Z (X).
Then Z ⊆ U and thus Z has P, as it is closed in clX U . Now

x ∈ f−1
β

[
[0, 1/2)

]
⊆ intβX clβX f−1

[
[0, 1/2]

]
= intβX clβX Z ⊆ λPX

and therefore X ⊆ λPX. For the converse suppose that X ⊆ λPX. Let x ∈ X. Then
x ∈ λPX and therefore x ∈ intβX clβX S for some S ∈ Z (X) which has P. Let V =
(intβX clβX S) ∩ X. Then V is an open neighborhood of x in X. Since V ⊆ S the set
clX V has P, as it is closed in S. Thus X is locally-P.

Our next theorem gives characterizations of the elements of MQ
P (X). Compare with

its dual result on OQP (X) (Theorem 2.15).

Theorem 2.11. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q and let Y ∈ EQP (X). The following are equivalent:

(1) Y ∈MQ
P (X).

(2) For any p ∈ Y \ X the set φ−1(p) \ λPX is non-empty where φ : βX → βY is the
continuous extension of idX .

(3) For any open subset V of Y such that clX(V ∩X) has P we have V ∩ (Y \X) = ∅.
(4) For any T ∈ EQP (X) and any continuous f : T → Y such that f |X = idX , the

mapping f is surjective.
(5) For any T ∈ EQP (X) such that Y ≤ T there exists a continuous surjective f : T → Y

such that f |X = idX .

Proof. Let φ : βX → βY be the continuous extension of idX .
(1) implies (2). Consider the subspace

T = X ∪
{
p ∈ Y \X : φ−1(p) \ λPX 6= ∅

}
of Y . We show that T \ X = φ[βX \ λPX]. First note that by Lemma 2.8 we have
βX \ λPX ⊆ φ−1[Y \X] and that X is locally-P. Now if t ∈ βX \ λPX then φ(t) = p ∈
Y \X and thus φ−1(p) \ λPX is non-empty, as it contains t. Therefore φ(t) = p ∈ T \X.
This shows that φ[βX\λPX] ⊆ T \X. To show the reverse inclusion note that if p ∈ T \X
then there exists some t ∈ φ−1(p) \λPX ⊆ βX \λPX and thus p = φ(t) ∈ φ[βX \λPX].
This shows that T ∈ E (X). Now since

φ−1[T \X] = φ−1
[
φ[βX \ λPX]

]
⊇ βX \ λPX

by Lemma 2.8 it follows that T ∈ EP(X). By the minimality of Y we have T = Y and in
particular T \X = Y \X.

(2) implies (1). Let T ∈ EP(X) be such that T ⊆ Y . By (the remark following)
Lemma 2.8 we have βX \ λPX ⊆ φ−1[T \X]. Now if there exists some p ∈ Y \ T then

φ−1(p) \ λPX ⊆ φ−1(p) ∩ φ−1[T \X] = ∅,

which contradicts (2). Thus T = Y . This shows the minimality of Y .
(2) implies (3). To show (3) let V be an open subset of Y such that V ∩ (Y \X) is

non-empty. We need to show that clX(V ∩X) is non-P. Let V = W ∩ Y where W is an
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open subset of βY . Let p ∈ V ∩ (Y \ X). Let g : βY → I be continuous with g(p) = 0
and g[βY \W ] ⊆ {1} and let

Z = (gφ)−1
[
[0, 1/2]

]
∩X ∈ Z (X).

Note that

Z = (gφ)−1
[
[0, 1/2]

]
∩X = φ−1

[
g−1

[
[0, 1/2]

]]
∩X = g−1

[
[0, 1/2]

]
∩X ⊆W ∩X = V ∩X.

Thus if clX(V ∩X) has P then its closed subset Z also has P. Now

φ−1(p) ⊆ φ−1
[
g−1

[
[0, 1/2)

]]
= (gφ)−1

[
[0, 1/2)

]
⊆ intβX clβX

(
(gφ)−1

[
[0, 1/2]

]
∩X

)
= intβX clβX Z ⊆ λPX,

contradicting (2). Therefore clX(V ∩X) is non-P.
(3) implies (2). Suppose to the contrary that φ−1(p) \ λPX = ∅ for some p ∈ Y \X.

Then p /∈ φ[βX \ λPX]. Let W be an open neighborhood of p in βY such that clβY W ∩
φ[βX \ λPX] = ∅. We have

φ−1[clβY W ]\λPX ⊆ φ−1[clβY W ]∩φ−1
[
φ[βX\λPX]

]
= φ−1

[
clβY W∩φ[βX\λPX]

]
= ∅

and thus

clβX(W ∩X) = clβX
(
φ−1[W ] ∩X

)
= clβX φ−1[W ] ⊆ φ−1[clβY W ] ⊆ λPX.

Lemma 2.4 implies that clX(W ∩X) has P. Now V = W ∩ Y is an open neighborhood
of p in Y such that clX(V ∩X) = clX(W ∩X) has P, contradicting (3).

(2) implies (4). Let T ∈ EQP (X) and let f : T → Y be continuous with f |X =
idX . Let fβ : βT → βY and ψ : βX → βT be the continuous extensions of f and
idX , respectively. Then since fβψ|X = φ|X we have fβψ = φ. Lemma 2.8 implies that
βX \ λPX ⊆ ψ−1[T \ X]. Also, for any p ∈ Y \ X, since φ−1(p) \ λPX is non-empty,
p ∈ φ[φ−1(p) \ λPX]. Thus

Y \X ⊆
⋃{

φ
[
φ−1(p) \ λPX

]
: p ∈ Y \X

}
⊆ φ[βX \ λPX]

= fβ
[
ψ[βX \ λPX]

]
⊆ fβ

[
ψ
[
ψ−1[T \X]

]]
⊆ fβ [T \X] = f [T \X] ⊆ f [T ].

Since f |X = idX this shows that Y ⊆ f [T ], that is, f is surjective. That (4) implies (5)
is trivial.

(5) implies (2). Consider the subspace T = X ∪ φ[βX \ λPX] of βY . By Lemma 2.8
we have βX \ λPX ⊆ φ−1[Y \X] and X is locally-P. Thus

T = X ∪ φ[βX \ λPX] ⊆ X ∪ φ
[
φ−1[Y \X]

]
⊆ X ∪ (Y \X) = Y.

By Lemma 2.10 we have X ⊆ λPX. Now T \X = φ[βX \ λPX] is compact, and since

φ−1[T \X] = φ−1
[
φ[βX \ λPX]

]
⊇ βX \ λPX,

by Lemma 2.8 it follows that T ∈ EQP (X). It is clear that Y ≤ T , as T ⊆ Y . By (5) there
exists a continuous surjective f : T → Y such that f |X = idX . But f |X = idT |X, which
yields f = idT and therefore Y = f [T ] = T . Now it is clear that for any

p ∈ Y \X = T \X = φ[βX \ λPX]

the set φ−1(p) \ λPX is non-empty.
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Remark. Theorem 2.11 fails if one omits the requirement “P satisfies Mrówka’s con-
dition (W)” (implicit in the definition of the compactness-like topological property P)
from its statement (see Example 2.16).

In the next theorem we give characterizations of the elements of OQP (X). We need to
prove a few lemmas first.

Notation 2.12. Let X be a Tychonoff space and let Y be a Tychonoff extension of X.
Let φ : βX → βY be the (unique) continuous mapping which extends idX . Denote

FX(Y ) =
{
φ−1(p) : p ∈ Y \X

}
.

We may write F (Y ) instead of FX(Y ) when no confusion arises.

In [20] the author associated to each compactification αX of a Tychonoff space X a
set (called the β-family of αX)

Fα =
{
f−1
α (p) : p ∈ αX \X

}
where fα : βX → αX is the continuous extension of idX . It is then shown that for any
compactifications α1X and α2X of a Tychonoff space X we have α1X ≤ α2X if and
only if each set in Fα2 is a subset of a set in Fα1 . This provides the motivation for the
statement of the next lemma.

Lemma 2.13. Let X be a Tychonoff space and let Y1, Y2 ∈ E (X). The following are
equivalent:

(1) Y1 ≤ Y2.
(2) Any element of F (Y2) is contained in an element of F (Y1).

Proof. Let φi : βX → βYi for i = 1, 2 be the continuous extension of idX .
(1) implies (2). By definition there exists a continuous f : Y2 → Y1 such that f |X =

idX . Let fβ : βY2 → βY1 be the continuous extension of f . The continuous mappings
fβφ2, φ1 : βX → βY1 coincide with idX on X and thus are identical. Also, since X is
dense in βYi, as it is dense in Yi for i = 1, 2 the space βYi is a compactification of X.
Therefore since fβ |X = idX , by Theorem 3.5.7 of [5] we have fβ [βY2 \X] = βY1 \X. Now
let F2 ∈ F (Y2). Then F2 = φ−1

2 (p) for some p ∈ Y2 \X. By the above fβ(p) ∈ βY1 \X
and thus f(p) ∈ Y1 \X, as fβ(p) = f(p). Let F1 = φ−1

1 (f(p)) ∈ F (Y1). Then

F2 = φ−1
2 (p) ⊆ φ−1

2

[
f−1
β

(
fβ(p)

)]
= (fβφ2)−1

(
fβ(p)

)
= φ−1

1

(
fβ(p)

)
= φ−1

1

(
f(p)

)
= F1.

(2) implies (1). We define f : Y2 → Y1 as follows. If t ∈ Y2\X then φ−1
2 (t) ∈ F (Y2) and

thus by our assumption φ−1
2 (t) ⊆ φ−1

1 (s) for some (unique, as φ2 is surjective) s ∈ Y1 \X.
Define f(t) = s in this case. If t ∈ X define f(t) = t. We show that f is continuous;
this will show that Y1 ≤ Y2. By Lemma 2.9 the space βY2 is the quotient space of βX
obtained by contracting each φ−1

2 (p) where p ∈ Y2 \X to a point and φ2 is the quotient
mapping. Thus in particular Y2 is the quotient space of X∪φ−1

2 [Y2 \X] with the quotient
mapping

φ2|
(
X ∪ φ−1

2 [Y2 \X]
)

: X ∪ φ−1
2 [Y2 \X]→ Y2.

Therefore to show that f is continuous it suffices to show that fφ2|(X ∪ φ−1
2 [Y2 \X]) is

continuous. We show this by verifying that fφ2(t) = φ1(t) for any t ∈ X ∪ φ−1
2 [Y2 \X].
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This obviously holds if t ∈ X. If t ∈ φ−1
2 [Y2 \ X] then φ2(t) ∈ Y2 \ X. Let s ∈ Y1 \ X

be such that φ−1
2 (φ2(t)) ⊆ φ−1

1 (s). Then fφ2(t) = s. But since t ∈ φ−1
2 (φ2(t)) we have

t ∈ φ−1
1 (s) and thus φ1(t) = s. Therefore fφ2(t) = φ1(t) also in this case.

Lemma 2.14. Let X be a Tychonoff space and let P be a clopen hereditary topological
property which is inverse invariant under perfect mappings. Suppose that Z ⊆ C where
Z ∈ Z (X), C ∈ Coz(X) and clX C has P. Then clβX Z ⊆ λPX.

Proof. The zero-sets Z and X \ C of X, being disjoint, are completely separated in X.
Let f : X → I be continuous with f [Z] ⊆ {0} and f [X \C] ⊆ {1} and let fβ : βX → I be
the continuous extension of f . Let S = f−1[[0, 1/2]] ∈ Z (X). Then S ⊆ C and therefore
S has P, as it is closed in clX C. We have

clβX Z ⊆ Z(fβ) ⊆ f−1
β

[
[0, 1/2)

]
⊆ intβX clβX f−1

[
[0, 1/2]

]
= intβX clβX S ⊆ λPX.

In the following theorem we characterize the elements of OQP (X).

Theorem 2.15. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q and let Y ∈ EQP (X). The following are equivalent:

(1) Y ∈ OQP (X).
(2) φ−1[Y \X] = βX \ λPX where φ : βX → βY is the continuous extension of idX .
(3) For any Z ∈ Z (X) such that Z ⊆ C for some C ∈ Coz(X) such that clX C has P

we have clY Z ∩ (Y \X) = ∅.
(4) For any T ∈ EQP (X) and any continuous injective f : T → Y such that f |X = idX ,

the mapping f is a homeomorphism.
(5) For any T ∈ EQP (X) if Y ≤ T then T ∈MQ

P (X).

Proof. Let φ : βX → βY be the continuous extension of idX .
(1) implies (2). By Theorem 2.11 the set φ−1(p)\λPX is non-empty for any p ∈ Y \X.

Let S be the space obtained from βX by contracting each φ−1(p)\λPX where p ∈ Y \X
to a point sp with the quotient mapping q : βX → S. Note that S is a continuous image
of βX. Therefore to prove that S is compact it suffices to show that it is Hausdorff.
Suppose that s, z ∈ S are distinct. Consider the following cases:

Case 1. Suppose that s, z ∈ λPX. Since s and z can be separated in λPX by disjoint
open subsets and λPX is open in βX they can also be separated in S.

Case 2. Suppose that s ∈ λPX and z ∈ q[βX \ λPX]. Let U and V be disjoint open
neighborhoods of s and βX \ λPX in βX, respectively. Then q[U ] and q[V ] are
disjoint open subsets of S separating s and z.

Case 3. Suppose that s, z ∈ q[βX \ λPX]. Let

s = q
[
φ−1(p) \ λPX

]
and z = q

[
φ−1(y) \ λPX

]
for some p, y ∈ Y \ X. Let U and V be disjoint open neighborhoods of p and y

in βY , respectively. Then q[φ−1[U ]] and q[φ−1[V ]] are disjoint open subsets of S
separating s and z.

Define f : S → βY by f(x) = p if x ∈ q[φ−1(p)] for some p ∈ Y \ X, and f(x) = x

otherwise. Note that this makes sense by the construction of βY and the representation
of φ given in Lemma 2.9. By the definition of f we have fq = φ and therefore f is
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continuous. Consider the subspace T = X ∪ q[βX \λPX] of S. Note that by Lemma 2.10
we have X ⊆ λPX. Thus T contains X as a dense subspace. It is also clear that X, and
therefore T , is dense in S. Since βX \ λPX ⊆ q−1[T \X] and X is locally-P, as EP(X)
is non-empty, by Lemma 2.8 we have T ∈ EQP (X). Now f |T : T → Y is a continuous
bijective mapping such that f |X = idX . Thus by the maximality of the topology of Y we
have T = Y (identifying each sp with p where p ∈ Y \X). Now S is a compactification
of Y and therefore there exists a continuous g : βY → S such that g|Y = idY . Since
fg|Y = idY it follows that fg = idβY . On the other hand gf |Y = idY , which yields
gf = idS and thus g = f−1. Now as noted before fq = φ, and therefore for any p ∈ Y \X
we have

φ−1(p) = (fq)−1(p) = q−1
[
f−1(p)

]
= q−1

(
g(p)

)
= q−1(p) = φ−1(p) \ λPX.

Thus φ−1(p) ⊆ βX \λPX for any p ∈ Y \X and therefore φ−1[Y \X] ⊆ βX \λPX. But
by Lemma 2.8 we have βX \ λPX ⊆ φ−1[Y \X], which shows equality.

(2) implies (4). Let T ∈ EQP (X) and let f : T → Y be a continuous injective mapping
which fixes X pointwise. Let fβ : βT → βY and ψ : βX → βT be the continuous
extensions of f and idX , respectively. Since fβψ|X = idX = φ|X we have fβψ = φ. Also
f [T \X] ⊆ Y \X. To show this, suppose to the contrary that f(t) ∈ X for some t ∈ T \X.
Let U and V be disjoint open neighborhoods of f(t) and t in T , respectively. Since Y \X
is compact, X is open in Y and thus U ∩X, being open in X, is an open neighborhood
of f(t) in Y . Let W be an open neighborhood of t in T such that f [W ] ⊆ U ∩X. Since
W ∩V is open in T and non-empty, as t ∈W ∩V and X is dense in T , the set W ∩V ∩X
is non-empty. But if x ∈ W ∩ V ∩ X then x = f(x) ∈ U , which is a contradiction, as
U ∩ V = ∅.

Claim 1. If t ∈ T \X and y = f(t) then ψ−1(t) ⊆ φ−1(y).

Proof of the claim. We have y = f(t) = fβ(t) and thus t ∈ f−1
β (y). Therefore

ψ−1(t) ⊆ ψ−1
[
f−1
β (y)

]
= (fβψ)−1(y) = φ−1(y).

Claim 2. If t ∈ T \X and y = f(t) then ψ−1(t) = φ−1(y).

Proof of the claim. By Claim 1, ψ−1(t) ⊆ φ−1(y). Let z ∈ φ−1(y). By Lemma 2.8 we
have βX \ λPX ⊆ ψ−1[T \X]. Thus since

φ−1(y) ⊆ φ−1[Y \X] = βX \ λPX

we have z ∈ ψ−1[T \ X]. Let ψ(z) = t′ ∈ T \ X and let y′ = f(t′) ∈ Y \ X. By the
first claim ψ−1(t′) ⊆ φ−1(y′) and therefore z ∈ φ−1(y′). Thus φ−1(y) ∩ φ−1(y′) is non-
empty and f(t) = y = y′ = f(t′). But f is injective and therefore t = t′, which yields
z ∈ ψ−1(t′) = ψ−1(t). This shows that φ−1(y) ⊆ ψ−1(t), which together with the above
proves the claim.

Claim 3. {ψ−1(t) : t ∈ T \X} = {φ−1(y) : y ∈ Y \X}.

Proof of the claim. By Claim 2 it suffices to show that for any y ∈ Y \ X we have
φ−1(y) = ψ−1(t) for some t ∈ T \X. Let y ∈ Y \X and z ∈ βX be such that φ(z) = y.
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By Lemma 2.8 we have βX \ λPX ⊆ ψ−1[T \X] and thus, since

φ−1(y) ⊆ φ−1[Y \X] = βX \ λPX

it follows that z ∈ ψ−1[T \ X]. Let t = ψ(z) ∈ T \ X. Then z ∈ φ−1(y) ∩ ψ−1(t). If
y′ = f(t) then by Claim 2, ψ−1(t) = φ−1(y′). Thus φ−1(y) ∩ φ−1(y′) is non-empty and
therefore y = y′. Thus φ−1(y) = φ−1(y′) = ψ−1(t), which proves the claim.

By Lemma 2.9 the spaces βY and βT are respectively obtained from βX by contract-
ing the sets φ−1(y) where y ∈ Y \X and ψ−1(t) where t ∈ T \X to points, and φ and ψ
are the corresponding quotient mappings. Thus by Claim 3, φ = ψ and therefore

Y = X ∪ φ
[⋃{

φ−1(y) : y ∈ Y \X
}]

= X ∪ ψ
[⋃{

ψ−1(t) : t ∈ T \X
}]

= T.

This shows Y and T are equivalent extensions of X. Let g : Y → T be a homeomorphism
such that g|X = idX . Then the continuous mapping fg : Y → Y coincides with idY on
the dense subset X of Y . This (since Y is Hausdorff) implies that fg = idY and thus
f = g−1 is a homeomorphism.

(4) implies (1). Let Y ′ be the set Y equipped with a topology which is finer than
the topology of Y and turns it into an element of EP(X) = EQP (X). Since f : Y ′ → Y

defined by f(y′) = y′ for any y′ ∈ Y ′ is continuous and injective, by our assumption it is
a homeomorphism. This shows that the topology of Y is maximal among the topologies
which turn Y into an element of EP(X). Next, suppose that T ∈ EP(X) is such that
T ⊆ Y . Since the inclusion mapping f : T → Y defined by f(t) = t for any t ∈ T is
continuous and injective, by our assumption it is a homeomorphism. But this implies
that T = Y , which proves the minimality of Y among the elements of EP(X).

(2) implies (3). Let Z ∈ Z (X) be such that Z ⊆ C for some C ∈ Coz(X) such that
clX C has P. By Lemma 2.14 we have clβX Z ⊆ λPX. Let U be an open neighborhood
of βX \ λPX in βX which misses clβX Z. Now (by the construction of βY and the
representation of φ given in Lemma 2.9) the set φ[U ] is an open neighborhood of p ∈ Y \X
in βY which misses Z. Therefore

clY Z ∩ (Y \X) = clβY Z ∩ (Y \X) = ∅.

(3) implies (2). By Lemma 2.8 we have βX \λPX ⊆ φ−1[Y \X]. To show the reverse
inclusion suppose to the contrary that t ∈ λPX for some t ∈ φ−1[Y \X]. Note that λPX
is open in βX. Let U be an open neighborhood of t in βX such that clβX U ⊆ λPX. Let
f : βX → I be continuous with f(t) = 0 and f [βX \ U ] ⊆ {1}. Define

Z = f−1
[
[0, 1/3]

]
∩X and C = f−1

[
[0, 1/2)

]
∩X.

Then Z ∈ Z (X), C ∈ Coz(X) and Z ⊆ C. Also, since clβX(U ∩X) = clβX U ⊆ λPX,
by Lemma 2.4 the set clX(U ∩X) has P. Therefore, since

C = f−1
[
[0, 1/2)

]
∩X ⊆ U ∩X,

the set clX C has P, as it is closed in clX(U ∩X). By our assumption this implies that
clY Z ∩ (Y \ X) = ∅. But φ(t) ∈ Y \ X and thus φ(t) /∈ clβY Z. Let V be an open
neighborhood of φ(t) in βY such that V ∩ Z = ∅. Now since

φ−1[V ] ∩ φ−1[Z] = φ−1[V ∩ Z] = ∅
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it follows that

φ−1[V ] ∩ clβX Z ⊆ φ−1[V ] ∩ clβX φ−1[Z] = ∅.

Thus t /∈ clβX Z, which is a contradiction, as

t ∈ f−1
[
[0, 1/3)

]
⊆ clβX

(
f−1

[
[0, 1/3]

]
∩X

)
= clβX Z.

(2) implies (5). Let T ∈ EQP (X) be such that Y ≤ T . Let f : T → Y continuously
extend idX . Arguing as in (2)⇒(4) we have f [T \X] ⊆ Y \X. Let fβ : βT → βY and
ψ : βX → βT be the continuous extensions of f and idX , respectively. Then φ = fβψ, as
they coincide with idX on X. To show that T ∈MQ

P (X), by Theorem 2.11, it suffices to
verify that ψ−1(p) \ λPX is non-empty for any p ∈ T \X. Let p ∈ T \X. Then

ψ−1(p) ⊆ ψ−1
[
f−1
β

(
fβ(p)

)]
= (fβψ)−1

(
fβ(p)

)
= φ−1

(
fβ(p)

)
= φ−1

(
f(p)

)
⊆ φ−1[Y \X].

Now since φ−1[Y \ X] = βX \ λPX and ψ is surjective, ψ−1(p) \ λPX = ψ−1(p) is
non-empty.

(5) implies (2). Note that (5) in particular implies that Y ∈MP(X). Thus by Theo-
rem 2.11 the set φ−1(p) \ λPX is non-empty for any p ∈ Y \X. Since by Lemma 2.8 we
have βX \ λPX ⊆ φ−1[Y \X] and X is locally-P, to show (2) it suffices to verify that
φ−1[Y \X] ⊆ βX \ λPX. Suppose to the contrary that φ−1(p′) ∩ λPX is non-empty for
some p′ ∈ Y \X. Let t′ ∈ φ−1(p′)∩λPX. Let Z be the quotient space of βX obtained by
contracting each (non-empty) subset φ−1(p) \ λPX where p ∈ Y \X to a point zp with
the quotient mapping q : βX → Z. Then as in (1)⇒(2) one can verify that Z is compact.
Consider the subspace

T = q
[
X ∪ (βX \ λPX) ∪ {t′}

]
of Z. Then T is a Tychonoff extension of X with the compact remainder

T \X = q
[
(βX \ λPX) ∪ {t′}

]
.

Note that T is dense in Z and therefore Z is a compactification of T . Let f : βT → Z and
ψ : βX → βT be the continuous extensions of idT and idX , respectively. Since fψ : βX →
Z agrees with q on X we have fψ = q. By Lemma 2.8 and since βX \λPX ⊆ q−1[T \X]
(and X is locally-P) it follows that T ∈ EQP (X). We verify that Y ≤ T ; our assumption
will then imply that T ∈MQ

P (X), from which we will derive a contradiction. By Lemma
2.13 to show that Y ≤ T it suffices to verify that each ψ−1(t) where t ∈ T \X is contained
in φ−1(p) for some p ∈ Y \ X. Let t ∈ T \ X. Note that by Theorem 3.5.7 of [5] (and
since f |T = idT and Z is a compactification of T ) we have f [βT \ T ] = Z \ T and thus
f−1(t) = {t}. Therefore

ψ−1(t) = ψ−1
[
f−1(t)

]
= (fψ)−1(t) = q−1(t)

and thus by the definition of Z it follows that ψ−1(t) ⊆ φ−1(p) for some p ∈ Y \X. This
shows that Y ≤ T . Consider the subspace T ′ = T \ {t′} of T . Then T ′ is a Tychonoff
extension of X with the compact remainder T ′ \X = q[βX \ λPX]. By Lemma 2.8 and
since βX \λPX ⊆ q−1[T ′ \X] (and X is locally-P) it follows that T ′ ∈ EQP (X). But this
contradicts the minimality of T , as T ′ is properly contained in T .
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Remark. Theorem 2.15 fails if one omits the requirement “P satisfies Mrówka’s con-
dition (W)” (implicit in the definition of the compactness-like topological property P)
from its statement (see Example 2.16 below).

In the following we provide examples of pairs P and Q of compactness-like topological
properties. The topological properties P and Q assumed in the statement of Lemma 2.8
(and thus in the statements of all its corollaries which constitute the main results of this
article) are required to be a pair of compactness-like topological properties.

Example 2.16. Let α, θ, κ and µ be infinite cardinals and let X be a Hausdorff space.
For a collection A of subsets of X and an x ∈ X let

O(x,A ) = card
(
{A ∈ A : x ∈ A}

)
.

For more details on the following definitions see [1], [33] and [38]. The space X is called (2)
µ-Lindelöf ((3) [θ, κ]-compact, respectively) if every open cover of X (of cardinality ≤ κ,
respectively) has a subcover of cardinality ≤ µ (< θ, respectively). The space X is called
(4) paracompact, (5) metacompact, (7) subparacompact, (11) para-Lindelöf, (12) meta-
Lindelöf, (14) screenable, (15) σ-metacompact, (9) σ-para-Lindelöf if every open cover ofX
has a (4)′ locally finite open, (5)′ point-finite open, (7)′ σ-locally finite closed, (11)′ locally
countable open, (12)′ point-countable open, (14)′ σ-disjoint open, (15)′ σ-point-finite
open, (9)′ σ-locally countable open refinement. The space X is called (16) weakly θ-
refinable, (8) θ-refinable (or submetacompact), (17) weakly δθ-refinable, (13) δθ-refinable
(or submeta-Lindelöf ) if every open cover of X has an open refinement V =

⋃
{Vn :

n ∈ N} such that for any x ∈ X there exists some n ∈ N with (16)′ 0 < O(x,Vn) < ℵ0,
(8)′ 0 < O(x,Vn) < ℵ0 and each Vn covers X, (17)′ 0 < O(x,Vn) ≤ ℵ0, (13)′ 0 <

O(x,Vn) ≤ ℵ0 and each Vn covers X. The space X is called (10) α-bounded if any subset
of X of cardinality ≤ α has compact closure in X. Moreover, let (1) be compactness and
(6) be countable paracompactness.

Let P = regularity + (i) where i = 1, . . . , 10 and Q = regularity + (i) where i =
1, . . . , 17. Then P and Q is a pair of compactness-like topological properties. That Q
is hereditary with respect to clopen subsets follows from Theorem 7.1 of [1]. Also, by
(a modification of) Theorem 3.7.24 and Exercise 5.2.G of [5] and Theorem 5.9 of [1] it
follows thatQ is inverse invariant under perfect mappings. (For the case of α-boundedness
note that for a perfect surjective f : X → Y , when Y is α-bounded, if A ⊆ X has
cardinality ≤ α then card(f [A]) ≤ α and thus clY f [A] is compact. But since

A ⊆ f−1
[
f [A]

]
⊆ f−1

[
clY f [A]

]
and the latter is compact (as f is perfect), its closed subset clX A is also compact, that
is, X is α-bounded.) Next, we verify that Q satisfies Mrówka’s condition (W). We prove
this for the cases when Q is paracompactness and subparacompactness. The remaining
cases can be proved analogously.

Let Q be paracompactness (subparacompactness, respectively). Let X be a Tychonoff
space, let p ∈ X and let B be an open base for X at p such that X \ B is paracompact
(subparacompact, respectively) for any B ∈ B. Let U be an open cover of X. Let
p ∈ B ⊆ clX B ⊆ U where U ∈ U and B ∈ B. Then V = {V \ B : V ∈ U } is an open
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cover of X \ B. Thus there exists a locally finite open (in X \ B) refinement W of V (a
σ-locally finite closed (in X \B) refinement W of V , respectively). Now if

A = {X \ clX B : W ∈ W } ∪ {U}

(A = W ∪{clX B}, respectively) then A is a locally finite open refinement of U (A is a
σ-locally finite closed refinement of U , respectively). Thus X is paracompact (subpara-
compact, respectively).

Note that α-boundedness satisfies Mrówka’s condition (W) by Theorem 3.1 of [16].
That P is finitely additive and invariant under perfect mappings follow from Theorems
5.1, 5.5, 7.3 and 7.4 of [1] and Exercises 5.2.B and 5.2.G of [5]. Theorem 3.1 of [16]
provides a few more examples of topological properties satisfying (W). Among them we
mention realcompactness and Dieudonné completeness which are hereditary with respect
to clopen subsets and inverse invariant under perfect mappings (with Tychonoff domains);
see Theorems 3.11.4 and 3.11.14 and Problem 8.5.13 of [5]. That Dieudonné completeness
is inverse invariant under perfect mappings is well known; it can also be proved by
using the fact that a Tychonoff space X is Dieudonné complete if and only if for any
p ∈ βX \ X there exists a paracompact subset T of βX such that X ⊆ T ⊆ βX \ {p}
(see Problem 8.5.13 of [5]) and that paracompactness is inverse invariant under perfect
mappings.

In addition to the above topological properties the list of topological properties sat-
isfying (W) includes: screenability, N -compactness [27], almost realcompactness [7] and
zero-dimensionality (see [16] and [17] for details).

In the following we give an example of a topological property P which does not
satisfy (W). At the same time we show that the requirement “P satisfies Mrówka’s
condition (W)” (implicit in the definition of the compactness-like topological property P)
cannot be omitted from the statements of Lemma 2.8 and Theorems 2.11 and 2.15 upon
them the rest of this article rely.

Example 2.17. Let X be a locally compact paracompact non-σ-compact space. Then
X can be represented as

X =
⊕
i∈I

Xi (2.1)

for some index set I, where each Xi is σ-compact and non-compact (see Theorem
5.1.27 and Exercise 3.8.C of [5]). Assume the representation given in (2.1). Let P be
σ-compactness. Obviously, P is clopen hereditary, finitely additive and perfect. We show
that P does not satisfy Mrówka’s condition (W). Note that with the above notation

λPX =
⋃{

clβX
( ⋃
i∈J

Xi

)
: J ⊆ I is countable

}
.

Also, note that since X is non-σ-compact, βX \λPX is non-empty. Contract the compact
subset βX \ λPX of βX to a point p to obtain a space T and denote by q : βX → T the
quotient mapping. Note that T is compact (as it is a Hausdorff continuous image of βX)
and contains X as a dense subspace. Consider the subspace Y = X ∪ {p} of T . We show
that for any open neighborhood V of p in Y the set Y \ V is σ-compact while Y itself is
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not σ-compact. Let V be an open neighborhood of p in Y . Let V ′ be an open subset of
T such that V ′ ∩ Y = V . Then since p ∈ V ′ we have

βX \ λPX = q−1(p) ⊆ q−1[V ′]

and thus βX \ q−1[V ′] ⊆ λPX. Therefore by compactness

βX \ q−1[V ′] ⊆ clβX
( ⋃
i∈J1

Xi

)
∪ · · · ∪ clβX

( ⋃
i∈Jm

Xi

)
= clβX

(⋃
i∈J

Xi

)
where m ∈ N, each J1, . . . , Jm ⊆ I is countable and J = J1 ∪ · · · ∪ Jm. Now

Y \ V =
(
βX \ q−1[V ′]

)
∩X ⊆

⋃
i∈J

Xi

being closed in the latter (σ-compact) set is σ-compact. To show that Y is not σ-compact
suppose the contrary and let Y =

⋃∞
n=1Kn where Kn is compact for any n ∈ N. Let

p ∈ Kj where j ∈ N. Then

βX \ λPX = q−1(p) ⊆ q−1[Kj ]

and thus Kn = q−1[Kn] ⊆ λPX for any j 6= n ∈ N. Arguing as above for any j 6= n ∈ N
we have

Kn ⊆ clβX
( ⋃
i∈Hn

Xi

)
where Hn ⊆ I is countable, but (since Kn ⊆ X) this implies that Kn ⊆

⋃
i∈Hn Xi. Let

H =
⋃∞
j 6=n=1Hn. Then

∞⋃
j 6=n=1

Kn ⊆
⋃
i∈H

Xi. (2.2)

Choose some u ∈ I \ H. (This is possible, as H is countable and I is uncountable,
because by our assumption X is non-σ-compact and Xi’s are σ-compact.) Since by our
assumption Xu is non-compact, clβX Xu \Xu is non-empty. Let t ∈ clβX Xu \Xu ⊆ λPX.
Then t ∈ T \ Y . We show that t ∈ clT Kj , contradicting the compactness of Kj . Let W
be an open neighborhood of t = q(t) in T . Then q−1[W ] is an open neighborhood of t in
βX and therefore Xu ∩ q−1[W ] is non-empty. Let x ∈ Xu ∩ q−1[W ]. Note that

X ∪ (βX \ λPX) = q−1[Y ] = q−1
[ ∞⋃
n=1

Kn

]
= q−1

[ ∞⋃
j 6=n=1

Kn

]
∪ q−1[Kj ] =

∞⋃
j 6=n=1

Kn ∪ q−1[Kj ].

By (2.2) and since Xu ∩
⋃
i∈H Xi = ∅ we have x /∈

⋃∞
j 6=n=1Kn and thus by the above

x ∈ q−1[Kj ]. Therefore x = q(x) ∈ W ∩ Kj and thus W ∩ Kj is non-empty. This
shows that t ∈ clT Kj . Therefore Y is not σ-compact. Thus for this specific choice of P
Mrówka’s condition (W) fails. By Lemma 2.9 we have T = βY and if φ : βX → βY is
the continuous extension of idX then φ = q. Also, by the above Y does not have P while
φ−1[Y \X] = βX \ λPX. Therefore in the statements of Lemma 2.8 and Theorems 2.11
and 2.15 the requirement “P satisfies Mrówka’s condition (W)” cannot be omitted.
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3. Compactification-like P-extensions with countable remainder

It is a well known result of P. Alexandroff that every locally compact non-compact space
has a compactification with one-point remainder, called the one-point compactification
or the Alexandroff compactification of X. One can consider P-extensions with one-point
remainder (see [9], [12], [13], [14] and [15] for some recent results) or more generally,
P-extensions with countable remainder for various topological properties P. Below, after
some definitions we state some known results which motivated our study in this chapter.

Definition 3.1. Let n ∈ N. An extension with n-point (countable, respectively) remain-
der is called an n-point (a countable-point, respectively) extension. Similar definitions
apply for compactifications.

Countable-point compactifications are also called ℵ0-point compactifications or count-
able compactifications. Throughout this article countable means countable and infinite.

Notation 3.2. For a Tychonoff space X the set of all compactifications of X is denoted
by K (X).

In [18] K. D. Magill Jr. gave the following characterization of those spaces which have
an n-point compactification and thus generalized the well known result of P. Alexandroff.

Theorem 3.3 (Magill [18]). Let X be a locally compact space and let n ∈ N. The following
are equivalent:

(1) K (X) contains an element with n-point remainder.
(2) X = K ∪U1 ∪ · · · ∪Un, where K,U1, . . . , Un are pairwise disjoint, each U1, . . . , Un is

open in X and K ∪ Ui is non-compact for any i = 1, . . . , n.

Also, in a separate article [19], Magill characterized those spaces having a countable-
point compactification with compact remainder. Recall that a space X is called totally
disconnected if all (connected) components in X are one-point sets.

Theorem 3.4 (Magill [19]). Let X be a locally compact space. The following are equiva-
lent:

(1) K (X) contains an element with countable remainder.
(2) K (X) contains an element with n-point remainder for any n ∈ N.
(3) K (X) contains an element with infinite totally disconnected remainder.
(4) βX \X has an infinite number of (connected) components.

Magill’s studies were continued by various authors (see e.g. [2], [39] and [11] among
others). In [11] T. Kimura generalized Magill’s result of [18] (Theorem 3.3) and gave
the following characterization of spaces having a countable-point compactification with
compact remainder.

Theorem 3.5 (Kimura [11]). Let X be a locally compact space. The following are equiv-
alent:

(1) K (X) contains an element with countable remainder.
(2) There exists a bijectively indexed collection {Un : n ∈ N} of pairwise disjoint open

subsets of X with compact boundary and non-compact closure.
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In [23] J. R. McCartney generalized Magill’s result still further. To state McCartney’s
result, we need some preliminaries.

Let A be an infinite compact countable space. As in [22] we define the successive
derived sets A(ζ) of A for any ζ < Ω by A(0) = A, A(ζ+1) = (A(ζ))′ and

A(ζ) =
⋂
{A(η) : η < ζ}

whenever ζ is a limit ordinal. Then A(ζ)’s form a decreasing sequence of compact subsets
of A. Note that if for some ζ < Ω the set A(ζ) is infinite then A(ζ) \A(ζ+1) is also infinite,
as otherwise, since

A(ζ) = (A(ζ) \A(ζ+1)) ∪A(ζ+1),

the set A(ζ+1) will be a compact non-empty space without isolated points and therefore
A(ζ+1) ⊆ A will be uncountable. Since⋃

{A(ζ) \A(ζ+1) : ζ < Ω} ⊆ A

and A is countable there exists some λ < Ω such that A(λ) \ A(λ+1) = ∅. Suppose that
λ is the least with this property. Then by the above A(λ) is finite and thus it is empty.
Note that λ is not a limit ordinal, as otherwise, by definition A(λ) is non-empty, as it is
the intersection of a collection of compact non-empty subsets with the finite intersection
property. Let λ = σ+1. Then A(σ) is non-empty and since (A(σ))′ = A(λ) = ∅, it is finite.
We say that an infinite compact countable space A is of type (σ, n), where σ < Ω and
n ∈ N, if card(A(σ)) = n. From the above discussion it is clear that the type of A exists
and is uniquely determined.

Theorem 3.6 (McCartney [23]). Let X be a locally compact space and let 0 < σ < Ω.
The following are equivalent:

(1) K (X) contains an element with countable remainder of type (σ, 1).
(2) There exists a family {Uζ : ζ < σ} of infinite collections of pairwise disjoint open

subsets of X with compact boundary satisfying the following:

(a) For any ζ < σ, U ∈ Uζ and finite W ⊆
⋃
{Uη : η < ζ} the set clX U \

⋃
W is

non-compact.
(b) For any distinct ζ, η < σ, U ∈ Uζ and V ∈ Uη there exists a finite W ⊆

⋃
{Uξ :

ξ < ζ} such that either

clX U \
(
V ∪

⋃
W
)

or (clX U ∩ clX V ) \
⋃

W

is compact.
(c) For any ζ < η < σ and U ∈ Uη there exists an infinite V ⊆ Uζ such that for

any V ∈ V there exists a finite W ⊆
⋃
{Uξ : ξ < ζ} such that clX V \ (U ∪

⋃
W )

is compact.

It is worth mentioning that the general problem of characterizing spaces with a
countable-point compactification remains open. (See [10], also [3], for a characterization
of metrizable spaces having such compactifications.)

Our aim in this chapter is to generalize the above results to compactification-like P-
extensions. Note that part (2) of the lemma below generalizes Magill’s theorem in [19]
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(Theorem 3.4) provided that one replaces P and Q, respectively, by compactness and
regularity, and note that for these specific choices of P and Q and a locally compact
space X we have λPX = X and the two notions “Y is a minimal P-extension of X with
Q” and “Y is a compactification of X” coincide.

Lemma 3.7. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff space with Q.

(1) Let n ∈ N. The following are equivalent:

(a) MQ
P (X) contains an element with n-point remainder.

(b) OQP (X) contains an element with n-point remainder.
(c) X is locally-P and βX \ λPX contains n pairwise disjoint non-empty clopen

subsets.
(d) X is locally-P and βX \ λPX has at least n (connected) components.

(2) The following are equivalent:

(a) MQ
P (X) contains an element with countable remainder.

(b) OQP (X) contains an element with countable remainder.
(c) X is locally-P and βX \ λPX contains an infinite number of pairwise disjoint

non-empty clopen subsets.
(d) X is locally-P and βX \λPX has an infinite number of (connected) components.

(3) Let 0 < σ < Ω and let n ∈ N. The following are equivalent:

(a) MQ
P (X) contains an element with countable remainder of type (σ, n).

(b) OQP (X) contains an element with countable remainder of type (σ, n).
(c) X is locally-P and there exists a family {Hζ : ζ ≤ σ} of collections of pairwise

disjoint non-empty clopen subset of βX \ λPX satisfying the following:

(i) For any ζ < σ, card(Hζ) = ℵ0 and card(Hσ) = n.
(ii) For any ζ ≤ σ and H ∈Hζ we have

H \
⋃
{G ∈Hη : η < ζ} 6= ∅.

(iii) For any ζ < η ≤ σ, H ∈Hζ and G ∈Hη either

H ⊆ G ∪
⋃
{F ∈Hξ : ξ < ζ} or H ∩G ⊆

⋃
{F ∈Hξ : ξ < ζ}.

(iv) For any ζ < η ≤ σ and H ∈Hη the set{
F ∈Hζ : F ⊆ H ∪

⋃
{G ∈Hξ : ξ < ζ}

}
is infinite.

Proof. (1). It is clear that (1.c) implies (1.d) and that (1.b) implies (1.a).
(1.a) implies (1.c). Consider some Y ∈MQ

P (X) with an n-point remainder Y \X =
{p1, . . . , pn}. Let φ : βX → βY be the continuous extension of idX . Let V1, . . . , Vn be
pairwise disjoint open neighborhoods of p1, . . . , pn in βY , respectively. By Lemma 2.8 we
have βX \ λPX ⊆ φ−1[Y \X] and X is locally-P. Let i = 1, . . . , n. Then

φ
[
φ−1[Vi] \ λPX

]
⊆ φ[βX \ λPX] ⊆ φ

[
φ−1[Y \X]

]
⊆ Y \X



Compactification-like extensions 27

and therefore
φ
[
φ−1[Vi] \ λPX

]
∩ Vi ⊆ (Y \X) ∩ Vi = {pi}.

This gives

φ−1[Vi] \ λPX ⊆ φ−1
[
φ
[
φ−1[Vi] \ λPX

]]
∩ φ−1[Vi]

= φ−1
[
φ
[
φ−1[Vi] \ λPX

]
∩ Vi

]
⊆ φ−1(pi),

which implies that
φ−1[Vi] \ λPX = φ−1(pi) \ λPX. (3.1)

Let Hi denote the set in (3.1). Then Hi is clopen in βX \ λPX and it is non-empty, as
otherwise

βX \ λPX ⊆ φ−1[Y \X] \ φ−1(pi) = φ−1
[
(Y \X) \ {pi}

]
= φ−1

[(
Y \ {pi}

)
\X

]
,

which by Lemma 2.8 implies that the subspace Y \ {pi} of Y has P, contradicting the
minimality of Y . That Hi’s are pairwise disjoint follows from their definitions.

(1.d) implies (1.b). Let C1, . . . , Cn be n distinct components of βX \ λPX. Then
arguing as in the proof of Theorem 2.1 of [19] and since in compact spaces components
and quasi-components coincide, each component is the intersection of all clopen subsets
containing it (see Theorem 6.1.23 of [5]). Since

C1 ⊆ (βX \ λPX) \
n⋃
k=2

Ck

with the latter an open subset of βX \ λPX, by the compactness of βX \ λPX, there
exists a clopen subset H1 of βX \ λPX such that

C1 ⊆ H1 ⊆ (βX \ λPX) \
n⋃
k=2

Ck.

Suppose inductively that for some j = 1, . . . , n − 1 the pairwise disjoint clopen subsets
H1, . . . ,Hj of βX \ λPX are defined in such a way that

Ci ⊆ Hi ⊆ (βX \ λPX) \
( i−1⋃
k=1

Hk ∪
n⋃

k=i+1

Ck

)
for any i = 1, . . . , j. Note that Cj+1 ∩Hi = ∅ when i = 1, . . . , j. Thus

Cj+1 ⊆ (βX \ λPX) \
( j⋃
k=1

Hk ∪
n⋃

k=j+2

Ck

)
.

Let Hj+1 be a clopen subset of βX \ λPX such that

Cj+1 ⊆ Hj+1 ⊆ (βX \ λPX) \
( j⋃
k=1

Hk ∪
n⋃

k=j+2

Ck

)
.

By Lemma 2.10 we have X ⊆ λPX. Let T be the quotient space of βX obtained by
contracting the compact subsets

H1, . . . ,Hn−1, (βX \ λPX) \
n−1⋃
k=1

Hk
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of βX \ X to points p1, . . . , pn, respectively. Then T is Tychonoff and contains X as a
dense subspace. Consider the subspace Y = X ∪ {p1, . . . , pn} of T . By Lemma 2.8 we
have Y ∈ EQP (X). Since T is a compactification of Y there exists a continuous mapping
γ : βY → T such that γ|Y = idY . Let ψ : βX → βY be the continuous extension of
idX . Then since γψ|X = idX = q|X we have γψ = q. By Theorem 3.5.7 of [5] we have
γ[βY \ Y ] = T \ Y . Thus

ψ−1(pi) = ψ−1
[
γ−1(pi)

]
= (γψ)−1(pi) = q−1(pi)

for any i = 1, . . . , n. Therefore

ψ−1[Y \X] = q−1[Y \X] = βX \ λPX,
which by Theorem 2.15 implies that Y ∈ OP(X).

(2). It is clear that (2.b) implies (2.a).
(2.a) implies (2.d). Consider some Y ∈ MQ

P (X) with countable remainder. Let φ :
βX → βY be the continuous extension of idX . By Lemma 2.8 we have βX \ λPX ⊆
φ−1[Y \X] and X is locally-P. Let n ∈ N and consider some distinct elements p1, . . . , pn ∈
Y \X. Define a continuous f : βY → [1, n] such that f(pi) = i for any i = 1, . . . , n. Since
f [Y \X] is countable we can find some real numbers r1, . . . , rn+1 such that

r1 < 1 < r2 < 2 < · · · < rn < n < rn+1 and ri /∈ f [Y \X] for any i = 1, . . . , n+ 1.

Let i = 1, . . . , n. Define Bi = f−1[(ri, ri+1)]. Then
n⋃
i=1

φ−1[Bi] = φ−1
[ n⋃
i=1

Bi

]
⊇ φ−1[Y \X] ⊇ βX \ λPX.

Now φ−1[Bi] \ λPX is non-empty, as Bi is non-empty and by Theorem 2.11 the set
φ−1(p) \ λPX is non-empty for any p ∈ Y \X. Thus φ−1[Bi] \ λPX, where i = 1, . . . , n,
are n pairwise disjoint non-empty open (and therefore clopen, as their union is βX\λPX)
subsets of βX \ λPX, which implies that βX \ λPX has at least n components. Since n
is arbitrary the result follows.

(2.d) implies (2.c). Let C and D be distinct components of βX \λPX. Let U be open
in βX \ λPX and such that C ⊆ U and D ∩ U = ∅. Then arguing as in (1.d)⇒(1.b)
and since U is an open subset of βX \ λPX containing C there exists a clopen subset
V of βX \ λPX such that C ⊆ V ⊆ U . Define H1 to be either of the (non-empty) sets
V or (βX \ λPX) \ V which misses an infinite number of components of βX \ λPX.
Now inductively suppose that H1, . . . ,Hn are defined such that Hi’s are pairwise disjoint
non-empty clopen subsets of βX \ λPX and H1 ∪ · · · ∪Hn misses an infinite number of
components of βX \ λPX. Let E and F be distinct components of βX \ λPX missing
H1∪· · ·∪Hn and let W be open in βX \λPX and such that E ⊆W and F ∩W = ∅. Then
since W \ (H1 ∪ · · · ∪Hn) is an open neighborhood of E in βX \ λPX, arguing as above
there exists a non-empty clopen subset Hn+1 of βX \ λPX such that Hn+1 ∩Hi = ∅ for
any i = 1, . . . , n, and it misses an infinite number of components of βX \ λPX contained
in (βX \ λPX) \ (H1 ∪ · · · ∪Hn). The sequence H1, H2, . . . consists of pairwise disjoint
non-empty clopen subsets of βX \ λPX.

(2.c) implies (2.b). Suppose that X is locally-P and there exists a bijectively indexed
sequence H1, H2, . . . of pairwise disjoint non-empty clopen subsets of βX \ λPX. By
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Lemma 2.10 we have X ⊆ λPX. Let T be the space obtained from βX by contracting
the sets

(βX \ λPX) \
∞⋃
k=2

Hk, H2, H3, . . .

into points p1, p2, . . ., respectively, with the quotient mapping q : βX → T . Then T is
compact, since as we show it is Hausdorff (and a continuous image of βX). Suppose that
x, y ∈ T are distinct elements. We consider the following three cases:

Case 1. Suppose that x, y ∈ λPX. Since x and y can be separated by disjoint open
subsets in λPX and λPX is open in βX they can also be separated by disjoint
open subsets in T .

Case 2. Suppose that x ∈ λPX and y = pj for some j ∈ N. Let P and Q be disjoint
open neighborhoods of x and βX \ λPX in βX, respectively. Then q[P ] and q[Q]
are disjoint open subsets of T separating x and y. The case when x = pi for some
i ∈ N and y ∈ λPX is analogous.

Case 3. Suppose that x = pi and y = pj for some i, j ∈ N. Then either i ≥ 2 or j ≥ 2,
say j ≥ 2. Let P and Q be disjoint open neighborhoods of (βX \λPX)\Hj and Hj

in βX, respectively. Then q[P ] and q[Q] are disjoint open subsets of T separating
x and y.

Note that T contains X as a dense subspace. Consider the subspace Y = X ∪{p1, p2, . . .}
of T . Then Y is a countable-point extension of X with the compact remainder Y \X =
q[βX \ λPX]. Now since T is a compactification of Y and q−1[Y \X] = βX \ λPX, by
Lemma 2.8 we have Y ∈ EQP (X). To complete the proof we only need to verify that Y is
optimal. But this follows by an argument similar to the one in (1.d)⇒(1.b).

(3). It is clear that (3.b) implies (3.a).
(3.a) implies (3.c). Consider some Y ∈ MQ

P (X) with countable remainder of type
(σ, n). For any ζ ≤ σ let

(Y \X)(ζ) \ (Y \X)(ζ+1) = {pζi : i ∈ Jζ}

where pζi ’s are bijectively indexed. Note that if ζ < σ then card(Jζ) = ℵ0, as otherwise
(Y \X)(ζ) is finite and thus, since

(Y \X)(σ) ⊆ (Y \X)(ζ+1) =
(
(Y \X)(ζ)

)′
,

it follows that (Y \X)(σ) = ∅, contradicting card((Y \X)(σ)) = n > 0. Also

card(Jσ) = card
(
(Y \X)(σ) \ (Y \X)(σ+1)

)
= card

(
(Y \X)(σ)

)
= n.

Let Jζ = N for any ζ < σ and Jσ = {1, . . . , n}. For any ζ ≤ σ and i ∈ Jζ there exists an
open neighborhood V ζi of pζi in βY such that V ζi ∩ (Y \X)(ζ) = {pζi }. Indeed, we prove
the following.

Claim. For any ζ ≤ σ there exists a collection {W ζ
i : i ∈ Jζ} of open subsets of βY such

that W ζ
i ∩ (Y \X)(ζ) = {pζi } for any i ∈ Jζ and W ζ

i ∩W
ζ
j = ∅ for any distinct i, j ∈ Jζ .

Proof of the claim. Let ζ < σ. We inductively define W ζ
i ’s for any i ∈ Jζ . Let W ζ

1 be an
open neighborhood of pζ1 in βY such that clβY W

ζ
1 ⊆ V ζ1 . For an m ∈ N suppose that
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the open subsets W ζ
1 , . . . ,W

ζ
m of βY are defined such that W ζ

i ∩W
ζ
j = ∅ for any distinct

i, j = 1, . . . ,m and that

pζi ∈W
ζ
i ⊆ clβY W

ζ
i ⊆ V

ζ
i \ clβY

( i−1⋃
j=1

W ζ
j

)
for any i = 1, . . . ,m. Since

W ζ
i ∩ (Y \X)(ζ) ⊆ V ζi ∩ (Y \X)(ζ) = {pζi }

this implies that W ζ
i ∩ (Y \ X)(ζ) = {pζi } for any i = 1, . . . ,m; also note that pζm+1 /∈

clβY W
ζ
i . Thus V ζm+1 \ clβY (W ζ

1 ∪ · · · ∪W ζ
m) is an open neighborhood of pζm+1 in βY .

Define W ζ
m+1 to be an open neighborhood of pζm+1 in βY such that

clβY W
ζ
m+1 ⊆ V

ζ
m+1 \ clβY

( m⋃
j=1

W ζ
j

)
.

The case when ζ = σ is analogous.

Let ζ ≤ σ and i ∈ Jζ . Let fζi : βY → I be continuous with fζi (pζi ) = 0 and fζi [βY \
W ζ
i ] ⊆ {1} and let rζi ∈ (0, 1) \ fζi [Y \X], which exists, as Y \X is countable. Denote

Cζi = (fζi )−1
[
[0, rζi )

]
, Dζ

i = (fζi )−1
[
[0, rζi ]

]
and Hζ

i = φ−1[Cζi ] \ λPX

where φ : βX → βY is the continuous extension of idX . For any ζ ≤ σ let

Hζ = {Hζ
i : i ∈ Jζ}.

We verify that the collection {Hζ : ζ ≤ σ} has the desired properties. First note that for
any ζ ≤ σ and any distinct i, j ∈ Jζ we have

Hζ
i ∩H

ζ
j ⊆ φ

−1[Cζi ] ∩ φ−1[Cζj ] ⊆ φ−1[W ζ
i ] ∩ φ−1[W ζ

j ] = φ−1[W ζ
i ∩W

ζ
j ] = ∅.

By definition Hζ
i ’s are open in βX \ λPX. We show that Hζ

i ’s are closed in βX \ λPX
and non-empty. Let ζ ≤ σ and i ∈ Jζ . Note that by the choice of rζi we have

(fζi )−1(rζi ) ∩ (Y \X) = ∅

and thus
Cζi ∩ (Y \X) = Dζ

i ∩ (Y \X). (3.2)

Therefore

φ−1[Cζi ]∩φ−1[Y \X] = φ−1
[
Cζi ∩ (Y \X)

]
= φ−1

[
Dζ
i ∩ (Y \X)

]
= φ−1[Dζ

i ]∩φ−1[Y \X].

By Lemma 2.8 we have βX \λPX ⊆ φ−1[Y \X] (and X is locally-P), which by the above
yields

Hζ
i = φ−1[Cζi ] \ λPX = φ−1[Dζ

i ] \ λPX. (3.3)

This shows that Hζ
i is closed in βX \ λPX. Next, suppose to the contrary that Hζ

i = ∅.
Consider the subspace

Y ′ = X ∪
(
(Y \X) \ Cζi

)
of Y . Then Y ′ is an extension of X and Y ′ \X is compact, as it is closed in Y \X. Also

φ−1[Y ′ \X] = φ−1
[
(Y \X) \ Cζi

]
= φ−1[Y \X] \ φ−1[Cζi ] ⊇ βX \ λPX.
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Thus by Lemma 2.8 we have Y ′ ∈ EQP (X). Note that Y ′ is properly contained in Y , as
pζi /∈ Y ′, because fζi (pζi ) = 0 and thus pζi ∈ C

ζ
i . But this contradicts the minimality of Y .

This shows that each Hζ , where ζ ≤ σ, is a collection of pairwise disjoint non-empty
clopen subsets of βX \ λPX. Also, (3.c.i) holds, as card(Hζ) = card(Jζ) for any ζ ≤ σ.

We now verify (3.c.ii). Let ζ ≤ σ and H ∈Hζ . Suppose to the contrary that

H \
⋃
{G ∈Hη : η < ζ} = ∅.

Let H = Hζ
i for some i ∈ Jζ . Since Hζ

i is compact, as it is closed in βX \ λPX, there
exists some Hζj

ij
∈Hζj with ij ∈ Jζj and ζj < ζ, where j = 1, . . . , k and k ∈ N, such that

Hζ
i ⊆ H

ζ1
i1
∪ · · · ∪Hζk

ik
. Consider the subspace

Y ′ = X ∪
(

(Y \X) \
(
Cζi \

k⋃
j=1

D
ζj
ij

))
of Y . Using (3.3) we have

φ−1
[
Cζi \

k⋃
j=1

D
ζj
ij

]
\ λPX =

(
φ−1[Cζi ] \

k⋃
j=1

φ−1[Dζj
ij

]
)
\ λPX = Hζ

i \
k⋃
j=1

H
ζj
ij

= ∅

and thus

φ−1[Y ′\X] = φ−1
[
(Y \X)\

(
Cζi \

k⋃
j=1

D
ζj
ij

)]
= φ−1[Y \X]\φ−1

[
Cζi \

k⋃
j=1

D
ζj
ij

]
⊇ βX\λPX.

Note that Y ′ \ X is compact, as it is closed in Y \ X, and therefore by Lemma 2.8 we
have Y ′ ∈ EQP (X). We show that Y ′ is properly contained in Y . This contradicts the
minimality of Y and proves (3.c.ii). Indeed, we verify that pζi /∈ Y ′. By the definition of
fζi we have pζi ∈ Cζi . Also, for any j = 1, . . . , k we have pζi /∈ D

ζj
ij

, as otherwise since

D
ζj
ij
⊆W ζj

ij
it follows that pζi ∈W

ζj
ij

. But since ζj < ζ and thus ζj + 1 ≤ ζ we have

pζi ∈ (Y \X)(ζ) ⊆ (Y \X)(ζj+1) =
(
(Y \X)(ζj)

)′
and therefore W ζj

ij
, being an open neighborhood of pζi in βY , has an infinite intersection

with (Y \X)(ζj), contradicting the definition of W ζj
ij

.

Next, we show (3.c.iii). Suppose that ζ < η ≤ σ, H ∈ Hζ and G ∈ Hη. Let H = Hζ
i

and G = Hη
j for some i ∈ Jζ and j ∈ Jη. We have the following cases:

Case 1. Suppose that pζi ∈ Cηj . First note that each p ∈ Y \ X is of the form pξk for
some ξ ≤ σ and k ∈ Jξ. To show this let α < Ω be the least ordinal such that
p /∈ (Y \X)(α). Such an α exists, as (Y \X)(σ+1) = ∅, and it is necessarily not a
limit ordinal, as otherwise

p ∈
⋂{

(Y \X)(ξ) : ξ < α
}

= (Y \X)(α).

Let ξ be such that α = ξ + 1. Then p ∈ (Y \X)(ξ) \ (Y \X)(ξ+1) and thus p = pξk
for some k ∈ Jξ. Since Dζ

i ⊆W
ζ
i , by an argument similar to the one in (3.c.ii), for

any pξk ∈ D
ζ
i where k ∈ Jξ we have ξ ≤ ζ and if ξ = ζ then pξk = pζi , as by the
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definition of W ζ
i we have W ζ

i ∩ (Y \X)(ζ) = {pζi }. Therefore in this case

(Dζ
i \ C

η
j ) ∩ (Y \X) ⊆ {pξk : ξ < ζ and k ∈ Jξ} ⊆

⋃
{Cξk : ξ < ζ and k ∈ Jξ},

which (since βX \ λPX ⊆ φ−1[Y \X]) implies that

Hζ
i \H

η
j =

(
φ−1[Dζ

i ] \ φ−1[Cηj ]
)
\ λPX

⊆
((
φ−1[Dζ

i ] \ φ−1[Cηj ]
)
∩ φ−1[Y \X]

)
\ λPX

⊆
⋃{

φ−1[Cξk ] \ λPX : ξ < ζ and k ∈ Jξ
}

=
⋃
{Hξ

k : ξ < ζ and k ∈ Jξ}.

Thus
Hζ
i ⊆ H

η
j ∪

⋃
{F ∈Hξ : ξ < ζ}

and (3.c.iii) holds in this case.
Case 2. Suppose that pζi /∈ C

η
j . Arguing as in Case 1 we have

Dζ
i ∩ C

η
j ∩ (Y \X) ⊆ {pξk : ξ < ζ and k ∈ Jξ} ⊆

⋃
{Cξk : ξ < ζ and k ∈ Jξ}.

Therefore

Hζ
i ∩H

η
j =

(
φ−1[Dζ

i ] ∩ φ−1[Cηj ]
)
\ λPX

=
(
φ−1[Dζ

i ] ∩ φ−1[Cηj ] ∩ φ−1[Y \X]
)
\ λPX

⊆
⋃{

φ−1[Cξk ] \ λPX : ξ < ζ and k ∈ Jξ
}

=
⋃
{Hξ

k : ξ < ζ and k ∈ Jξ}.

Thus (3.c.iii) holds in this case as well.

Finally, we verify (3.c.iv). Suppose that ζ < η ≤ σ and H ∈ Hη. Let H = Hη
j for

some j ∈ Jη. We first verify that

Cηj ∩
(
(Y \X)(ζ) \ (Y \X)(ζ+1)

)
is infinite. Suppose it is finite. Since

pηj ∈ (Y \X)(η) ⊆ (Y \X)(ζ+1) =
(
(Y \X)(ζ)

)′
and Cηj is an open neighborhood of pηj in βY the set

Cηj ∩ (Y \X)(ζ) =
(
Cηj ∩

(
(Y \X)(ζ) \ (Y \X)(ζ+1)

))
∪
(
Cηj ∩ (Y \X)(ζ+1)

)
is infinite. But then since by (3.2) we have

Cηj ∩ (Y \X)(ζ+1) = Dη
j ∩ (Y \X)(ζ+1)

the latter set is an infinite compact space without isolated points and therefore uncount-
able. This contradiction shows that pζi ∈ Cηj for an infinite number of i ∈ Jζ . But if
pζi ∈ C

η
j for some i ∈ Jζ , arguing as in Case 1 of (3.c.iii) we have

Hζ
i ⊆ H

η
j ∪

⋃
{G ∈Hξ : ξ < ζ}.

This shows (3.c.iv).
(3.c) implies (3.b). Consider a family {Hζ : ζ ≤ σ} of collections of pairwise disjoint

non-empty clopen subsets of βX \ λPX satisfying (3.c.i)–(3.c.iv). For any ζ ≤ σ let
Hζ = {Hζ

i : i ∈ Jζ} where Hζ
i ’s are bijectively indexed. Note that if (ζ, i) 6= (η, j), where
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ζ, η ≤ σ, i ∈ Jζ and j ∈ Jη, then Hζ
i 6= Hη

j . This is clear if ζ = η, and if ζ < η then it
follows from (3.c.ii), as

∅ 6= Hη
i \
⋃
{G ∈Hξ : ξ < η} ⊆ Hη

i \H
ζ
j .

Similarly for η < ζ. Before we proceed with the main proof we prove the following
generalized version of (3.c.iv).

Claim. For any ζ, η1, . . . , ηk < η ≤ σ, where k is a non-negative integer (η1, . . . , ηk may
not be distinct) H ∈Hη and Hi ∈Hηi for any i = 1, . . . , k, the set{

F ∈Hζ : F ⊆
(
H \

k⋃
i=1

Hi

)
∪
⋃
{G ∈Hξ : ξ < ζ}

}
(3.4)

is infinite.

Proof of the claim. If k = 0 then the claim is simply (3.c.iv). Assume that k > 0. We
use transfinite induction on η. Suppose that η = 1, k ∈ N, ζ, η1, . . . , ηk < η, H ∈ Hη

and Hi ∈ Hηi for any i = 1, . . . , k. Then ζ, η1, . . . , ηk = 0. By (3.c.iv) the set F =
{F ∈ Hζ : F ⊆ H} is infinite. Now since the elements of Hζ are pairwise disjoint, each
F ∈ F \ {H1, . . . ,Hk} misses Hi for any i = 1, . . . , k, and thus F ⊆ H \ (H1 ∪ · · · ∪Hk).
Therefore (3.4) holds for η = 1. Now inductively suppose that (3.4) holds for any ξ < η.
Let ζ, η1, . . . , ηk < η ≤ σ, where k ∈ N, H ∈ Hη and Hi ∈ Hηi for any i = 1, . . . , k. We
may assume that η1, . . . , ηl−1 < ηl = · · · = ηk for some l ∈ N with l ≤ k. Let

K =
{
K ∈Hζ : K ⊆

(
H \

k⋃
i=1

Hi

)
∪
⋃
{G ∈Hξ : ξ < ζ}

}
.

We consider the following cases:

Case 1. Suppose that ηk < ζ. Since ζ < η, by (3.c.iv) the set

F =
{
F ∈Hζ : F ⊆ H ∪

⋃
{G ∈Hξ : ξ < ζ}

}
is infinite. Now for any F ∈ F we have

F \
⋃
{G ∈Hξ : ξ < ζ} ⊆ H \

⋃
{G ∈Hξ : ξ < ζ} ⊆ H \

k⋃
i=1

Hi

and thus F ∈ K . Therefore in this case F ⊆ K and thus K is infinite.
Case 2. Suppose that ηk = ζ. By (3.c.iv) the set

F =
{
F ∈Hζ : F ⊆ H ∪

⋃
{G ∈Hξ : ξ < ζ}

}
is infinite. Let F ∈ F \{H1, . . . ,Hk}. Then each Hi ∈Hηi = Hζ where i = l, . . . , k

is disjoint from F ∈ Hζ . On the other hand, since ηi < ζ for any i = 1, . . . , l − 1
we have

F \ {G ∈Hξ : ξ < ζ} ⊆ H \
l−1⋃
i=1

Hi,

which combined with the above gives F ∈ K . Therefore F \ {Hl, . . . ,Hk} ⊆ K

and thus K is infinite.
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Case 3. Suppose that ηk > ζ. Since ηk < η, by (3.c.iv) the set

L =
{
L ∈Hηk : L ⊆ H ∪

⋃
{G ∈Hξ : ξ < ηk}

}
is infinite. Choose some L ∈ L \ {Hl, . . . ,Hk}. Then

L ⊆ H ∪
⋃
{G ∈Hξ : ξ < ηk}

and thus by compactness L ⊆ H ∪G1 ∪ · · · ∪Gm, where Gi ∈Hξi , ξi < ηk for any
i = 1, . . . ,m and m ∈ N. Now since

ζ, ξ1, . . . , ξm, η1, . . . , ηl−1 < ηk < η

by our induction assumption the set

F =
{
F ∈Hζ : F ⊆

(
L \

( m⋃
i=1

Gi ∪
l−1⋃
i=1

Hi

))
∪
⋃
{G ∈Hξ : ξ < ζ}

}
is infinite. If F ∈ F then

F \
⋃
{G ∈Hξ : ξ < ζ} ⊆ L\

( m⋃
i=1

Gi∪
l−1⋃
i=1

Hi

)
=
(
L\

m⋃
i=1

Gi

)
\
l−1⋃
i=1

Hi ⊆ H \
l−1⋃
i=1

Hi,

which together with the fact that L ∈ Hηk is disjoint from Hi ∈ Hηi = Hηk for
any i = l, . . . , k, gives

F \
⋃
{G ∈Hξ : ξ < ζ} ⊆ H \

k⋃
i=1

Hi.

This shows that F ∈ K . Therefore F ⊆ K and thus K is infinite in this case as
well.

This proves the claim.

We now return to the main proof. Fix some k ∈ Jσ. For any ζ ≤ σ and i ∈ Jζ define

P ζi = Hζ
i \
⋃
{H ∈Hξ : ξ < ζ}

if (ζ, i) 6= (σ, k), and

P ζi = (βX \ λPX) \
⋃
{H ∈Hξ : ξ ≤ σ and H 6= Hσ

k }

if (ζ, i) = (σ, k).

Claim. The collection {P ζi : ζ ≤ σ and i ∈ Jζ} is bijectively indexed and partitions
βX \ λPX into pairwise disjoint non-empty subsets.

Proof of the claim. We first show that⋃
{P ζi : ζ ≤ σ and i ∈ Jζ} = βX \ λPX. (3.5)

Let x ∈ βX \λPX. If x /∈ Hζ
i for any ζ ≤ σ and i ∈ Jζ , then clearly x ∈ Pσk . In the other

case there exists some ζ ≤ σ such that x ∈ Hζ
i for some i ∈ Jζ . Let ζ be the least with

this property. If (ζ, i) 6= (σ, k), then by definition it is clear that x ∈ P ζi . If (ζ, i) = (σ, k)
then again x ∈ P ζi , as the elements of Hζ are pairwise disjoint and x /∈ H for any H ∈Hη

with η < ζ. This shows (3.5). Next, we show that P ζi ∩P
η
j = ∅ whenever ζ, η ≤ σ, i ∈ Jζ ,

j ∈ Jη and (ζ, i) 6= (η, j). First suppose that (ζ, i), (η, j) 6= (σ, k). If ζ = η then clearly
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P ζi ∩P
η
j ⊆ H

ζ
i ∩H

η
j = ∅. If ζ < η then P ζi ∩P

η
j ⊆ H

ζ
i ∩P

η
j = ∅. Similarly for η < ζ. Next,

suppose that (ζ, i) = (σ, k). Then P ζi ∩ P
η
j ⊆ P ζi ∩H

η
j = ∅. Similarly for (η, j) = (σ, k).

Finally, we verify that P ζi ’s are non-empty. Let ζ ≤ σ and i ∈ Jζ . If (ζ, i) 6= (σ, k) then
P ζi is non-empty by (3.c.ii). If (ζ, i) = (σ, k), then again using (3.c.ii) we have

∅ 6= Hζ
i \
⋃
{H ∈Hξ : ξ < ζ} ⊆ P ζi .

The fact that P ζi ’s are bijectively indexed is now immediate.

Now let T be the space obtained from βX by contracting each P ζi where ζ ≤ σ and
i ∈ Jζ to a point pζi and denote by q : βX → T the corresponding quotient mapping. By
Lemma 2.10 we have X ⊆ λPX. Consider the subspace

Y = X ∪ {pζi : ζ ≤ σ and i ∈ Jζ}

of T . In the remainder of the proof we show that Y ∈ OQP (X) and that the remainder of
Y is of type (σ, n). We first show that T is Hausdorff. Let s, t ∈ T be distinct. Consider
the following cases:

Case 1. Suppose that s, t ∈ T \ {pζi : ζ ≤ σ and i ∈ Jζ}. Then s, t ∈ λPX. Now since
λPX is open in βX and s and t can be separated in λPX by disjoint open subsets
they can also be separated by disjoint open subsets in T .

Case 2. Suppose that s ∈ T \ {pζi : ζ ≤ σ and i ∈ Jζ} and t = pηj for some η ≤ σ and
j ∈ Jη. Then s ∈ λPX. Now if U and V are disjoint open subsets of βX containing
s and βX \ λPX, respectively, then q[U ] and q[V ] are disjoint open neighborhoods
of s and t in T , respectively.

Case 3. Suppose that s = pζi and t = pηj for some ζ, η ≤ σ, i ∈ Jζ and j ∈ Jη. Without
any loss of generality we may assume that ζ ≤ η and (ζ, i) 6= (σ, k). Since Hζ

i is
clopen in βX \ λPX the sets Hζ

i and (βX \ λPX) \Hζ
i are compact open subsets

of βX \ λPX. Let U and V be disjoint open subsets of βX such that

Hζ
i = U ∩ (βX \ λPX) and (βX \ λPX) \Hζ

i = V ∩ (βX \ λPX).

Claim. For any ξ ≤ σ and l ∈ Jξ if P ξl ∩H
ζ
i is non-empty then P ξl ⊆ H

ζ
i .

Proof of the claim. Suppose that P ξl ∩H
ζ
i is non-empty for some ξ ≤ σ and l ∈ Jξ.

This implies that (ξ, l) 6= (σ, k), as we are assuming that (ζ, i) 6= (σ, k), and thus
by definition Pσk ∩H

ζ
i = ∅. Therefore

P ξl = Hξ
l \
⋃
{H ∈Hα : α < ξ}.

Note that ζ < ξ implies that P ξl ∩ H
ζ
i = ∅ and thus ξ ≤ ζ. If ζ = ξ, then since

P ξl ∩ H
ζ
i ⊆ Hξ

l ∩ H
ζ
i , the last set is non-empty and therefore P ξl ⊆ Hξ

l = Hζ
i . If

ζ > ξ, then by (3.c.iii) we have either

Hξ
l ⊆ H

ζ
i ∪

⋃
{H ∈Hα : α < ξ} or Hξ

l ∩H
ζ
i ⊆

⋃
{H ∈Hα : α < ξ}.

The latter case leads to a contradiction, as P ξl ∩H
ζ
i ⊆ H

ξ
l ∩H

ζ
i and

P ξl ∩
⋃
{H ∈Hα : α < ξ} = ∅.

The former case gives P ξl ⊆ H
ζ
i , which proves the claim.
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From the claim it follows that q−1[q[U ]] = U and q−1[q[V ]] = V . Thus q[U ] and
q[V ] are open subsets of T and they are disjoint. It is also clear that pζi ∈ q[U ], as
P ζi ⊆ Hζ

i ⊆ U . It remains to show that pηj ∈ q[V ]. Note that by our assumption
ζ ≤ η. To show that P ηj ∩H

ζ
i = ∅ we consider the following cases:

Case 3.a. Suppose that ζ = η and (η, j) 6= (σ, k). Then since pζi 6= pηj we have
i 6= j and therefore P ηj ∩H

ζ
i ⊆ H

η
j ∩H

ζ
i = ∅.

Case 3.b. Suppose that ζ = η and (η, j) = (σ, k). By our assumption (ζ, i) 6= (σ, k)
or equivalently Hζ

i 6= Hσ
k . Therefore P ηj ∩H

ζ
i = ∅ by the definition of P ηj .

Case 3.c. Suppose that ζ < η and (η, j) 6= (σ, k). By the definition of P ηj we have
P ηj ⊆ H

η
j \H

ζ
i and thus P ηj ∩H

ζ
i = ∅.

Case 3.d. Suppose that ζ < η and (η, j) = (σ, k). Then P ηj ∩ H
ζ
i = ∅ by the

definition of P ηj .

Thus in each case P ηj ∩H
ζ
i = ∅. Therefore P ηj ⊆ (βX \ λPX) \Hζ

i ⊆ V and thus
pηj ∈ q[V ].

This shows that T is Hausdorff and therefore compact, being a continuous image of βX.
It is easy to see that T contains X as a dense subspace, and thus since X ⊆ Y ⊆ T , it
follows that T is a compactification of Y and that Y is a Tychonoff extension of X. Also
Y \X = q[βX \ λPX] is compact. From these by Lemma 2.8 we have Y ∈ EQP (X). Now
by Theorem 2.15 and an argument similar to the one in (1.d)⇒(1.b) it follows that Y ∈
OP(X). It thus remains to show that Y \X is of type (σ, n), that is, card((Y \X)(σ)) = n.
Indeed, we prove the following.

Claim. For any ζ ≤ σ we have

(Y \X)(ζ) = {pηj : ζ ≤ η ≤ σ and j ∈ Jη}. (3.6)

Proof of the claim. The proof is by transfinite induction on ζ. Note that (3.6) clearly
holds when ζ = 0, as by definition (Y \X)(0) = Y \X. Suppose that 0 < α ≤ σ and that
(3.6) holds for any ζ < α. We show that (3.6) holds for α as well. Consider the following
cases:

Case 1. Suppose that α is a successor ordinal. Let α = γ + 1. Then by our induction
assumption

(Y \X)(γ) = {pηj : γ ≤ η ≤ σ and j ∈ Jη}. (3.7)

Let pηj ∈ (Y \ X)(α) where η ≤ σ and j ∈ Jη. Since (Y \ X)(α) ⊆ (Y \ X)(γ), by
(3.7) we have γ ≤ η. We show that γ 6= η. Suppose the contrary. Clearly η < σ,
as η = σ implies that σ = γ < α. Let U be an open subset of βX such that
Hη
j = U ∩ (βX \ λPX). Then as in the proof of the previous claim, P ξl ⊆ Hη

j for
any ξ ≤ σ and l ∈ Jξ such that P ξl ∩ H

η
j is non-empty. Thus q−1[q[U ]] = U and

therefore q[U ] is open in T . Since (η, j) 6= (σ, k), by definition P ηj ⊆ H
η
j ⊆ U . Thus

q[U ] is an open neighborhood of pηj in T and therefore q[U ]∩ (Y \X)(γ) is infinite.
Choose some s ∈ q[U ] ∩ (Y \ X)(γ) such that s 6= pηj , p

σ
k . Then by (3.7) we have
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s = pξl for some γ ≤ ξ ≤ σ and l ∈ Jξ. Since pξl ∈ q[U ] the set P ξl ∩H
η
j is non-empty

and thus P ξl ⊆ H
η
j . Consider the following cases:

Case 1.a. Suppose that ξ > γ. Then since we are assuming that γ = η, by the
definition of P ξl we have P ξl = P ξl ∩H

η
j = ∅, which is a contradiction.

Case 1.b. Suppose that ξ = γ. Then η = γ = ξ and therefore, since by the choice
of s we have pξl 6= pηj , it follows that P ξl = P ξl ∩H

η
j ⊆ H

ξ
l ∩H

η
j = ∅, which is

again a contradiction.

Thus in each case we are led to a contradiction, which shows that γ < η or α =
γ + 1 ≤ η. Therefore

(Y \X)(α) ⊆ {pηj : α ≤ η ≤ σ and j ∈ Jη}. (3.8)

Next, we show that the reverse inclusion holds in (3.8). Consider an element pηj
where α ≤ η ≤ σ and j ∈ Jη. Let V be an open neighborhood of pηj in T . We show
that V ∩ (Y \X)(γ) is infinite, which proves that

pηj ∈
(
(Y \X)(γ)

)′ = (Y \X)(γ+1) = (Y \X)(α).

First note that
Hη
j ⊆ q

−1[V ] ∪
⋃
{H ∈Hξ : ξ < η}. (3.9)

This readily follows from the definition of P ηj in the case when (η, j) 6= (σ, k). If
otherwise (η, j) = (σ, k), note that by the definition of P ηj we have

Hη
j \
⋃
{H ∈Hξ : ξ < η} ⊆ P ηj ⊆ q

−1[V ]

From (3.9) and by compactness there exist ξi < η and ki ∈ Jξi where i = 1, . . . ,m
and m ∈ N such that

Hη
j ⊆ q

−1[V ] ∪
m⋃
i=1

Hξi
ki
.

By the first claim and since γ, ξ1, . . . , ξm < η the set

F =
{
F ∈Hγ : F ⊆

(
Hη
j \

m⋃
i=1

Hξi
ki

)
∪
⋃
{G ∈Hξ : ξ < γ}

}
is infinite. Now for any Hγ

l ∈ F where l ∈ Jγ , since (γ, l) 6= (σ, k), as γ < α ≤ σ,
we have

P γl = Hγ
l \
⋃
{G ∈Hξ : ξ < γ} ⊆ Hη

j \
m⋃
i=1

Hξi
ki
⊆ q−1[V ]

and thus pγl ∈ V . Therefore V ∩ (Y \X)(γ) is infinite. This shows that

pηj ∈
(
(Y \X)(γ)

)′ = (Y \X)(α),

which proves the reverse inclusion in (3.8).
Case 2. Suppose that α is a limit ordinal. We have

(Y \X)(α) =
⋂
γ<α

(Y \X)(γ)

=
⋂
γ<α

{pηj : γ ≤ η ≤ σ and j ∈ Jη} = {pηj : α ≤ η ≤ σ and j ∈ Jη}.

This completes the inductive proof of the claim.
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In particular, we have shown that card((Y \X)(σ)) = card(Jσ) = n. Thus Y \X is of
type (σ, n).

Remark. Note that in Lemma 3.7 above part (3) implies (2), but since the proof for (3)
is quite long, a separate proof is given for (2).

The characterization given in Lemma 3.7 is external (to X). Our next theorem is
dual to Lemma 3.7 and gives an internal characterization of those spaces which have a
compactification-like P-extension with finite remainder, countable remainder and count-
able remainder of type (σ, n). But we first need a few more lemmas.

Lemma 3.8. Let X be a Tychonoff space and let P be a clopen hereditary finitely additive
perfect topological property. Then for any subset A of X if clβX A ⊆ λPX then clX A ⊆
Z ⊆ C for some Z ∈ Z (X) and C ∈ Coz(X) such that clX C has P.

Proof. The sets clβX A and βX \ λPX are disjoint closed subsets of βX and thus they
are completely separated in βX. Let f : βX → I be continuous with f [clβX A] ⊆ {0} and
f [βX \ λPX] ⊆ {1}. Let

Z = f−1
[
[0, 1/3]

]
∩X ∈ Z (X) and C = f−1

[
[0, 1/2)

]
∩X ∈ Coz(X).

Then clX A ⊆ Z ⊆ C and since

clβX C = clβX
(
f−1

[
[0, 1/2)

]
∩X

)
= clβX f−1

[
[0, 1/2)

]
⊆ f−1

[
[0, 1/2]

]
⊆ λPX

by Lemma 2.4 the set clX C has P.

Lemma 3.9. Let X be a Tychonoff space and let A be an infinite compact countable subset
of X. Then there exists a bijectively indexed collection {Vn : n ∈ N} of pairwise disjoint
open subsets of X such that Vn ∩A is compact and non-empty for any n ∈ N.

Proof. We inductively define a sequence V1, V2, . . . of pairwise disjoint open subsets of
X such that Vn ∩ A is compact and non-empty, A \ clX(V1 ∪ · · · ∪ Vn) is infinite and
Vn ∩ A = clX Vn ∩ A for any n ∈ N. Let a, b ∈ A be distinct and let f : X → I
be continuous with f(a) = 0 and f(b) = 1. Since f [A] is countable there exists some
r ∈ (0, 1) \ f [A]. Either f−1[[0, r)] ∩ A or f−1[(r, 1]] ∩ A, say the latter, is infinite. Let
V1 = f−1[[0, r)]. Since V1 ∩ A = f−1[[0, r]] ∩ A is closed in A, it is compact, and thus
since

f−1
[
(r, 1]

]
⊆ X \ f−1

[
[0, r]

]
⊆ X \ clX V1

the set A \ clX V1 is infinite and

V1 ∩A = f−1
[
[0, r]

]
∩A = clX V1 ∩A.

Suppose that for some n ∈ N the pairwise disjoint open subsets V1, . . . , Vn of X are
defined such that A \ clX(V1 ∪ · · · ∪ Vn) is infinite, Vi ∩A is compact and non-empty and
Vi∩A = clX Vi∩A for i = 1, . . . , n. Choose some distinct c, d ∈ A\ clX(V1∪· · ·∪Vn) and
let g : X → I be continuous with g(c) = 0 and g(d) = 1. Choose some s ∈ (0, 1) \ g[A].
Then at least one of(

g−1
[
[0, s)

]
\ clX

( n⋃
i=1

Vi

))
∩A and

(
g−1

[
(s, 1]

]
\ clX

( n⋃
i=1

Vi

))
∩A
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say the latter, is infinite. Define

Vn+1 = g−1
[
[0, s)

]
\ clX

( n⋃
i=1

Vi

)
.

Then V1, . . . , Vn+1 are pairwise disjoint and since clX Vn+1 ⊆ g−1[[0, s]] we have(
g−1

[
(s, 1]

]
\ clX

( n⋃
i=1

Vi

))
∩A ⊆ A \ clX

(n+1⋃
i=1

Vi

)
.

Therefore A \ clX(V1 ∪ · · · ∪ Vn+1) is infinite. By the choice of Vi’s we have

A \
n⋃
i=1

Vi = A \
n⋃
i=1

clX Vi.

Therefore

clX Vn+1 ∩A ⊆
(
g−1

[
[0, s]

]
\

n⋃
i=1

Vi

)
∩A =

(
A \

n⋃
i=1

Vi

)
∩ g−1

[
[0, s]

]
=
(
A \

n⋃
i=1

clX Vi
)
∩ g−1

[
[0, s]

]
=
(
A \

n⋃
i=1

clX Vi
)
∩ g−1

[
[0, s)

]
=
(
g−1

[
[0, s)

]
\

n⋃
i=1

clX Vi
)
∩A = Vn+1 ∩A,

which implies that Vn+1 ∩ A = clX Vn+1 ∩ A is compact, as it is closed in the compact
set A. This completes the inductive step.

Let X be a Tychonoff space and let αX be a compactification of X. For an open
subset U of X, the extension of U to αX is defined to be

ExαX U = αX \ clαX(X \ U).

If γX denotes the Freudenthal compactification of a rim-compact space X (a space which
has a base consisting of open subsets with compact boundary) then for any open subset
U of X we have clγX U \X = ExγX U \X (see [34], as mentioned in [11]). Using this, in
[11] the author defined an appropriate upper semicontinuous decomposition of γX and
then proved that a locally compact space X has a countable-point compactification if
and only if it has a pairwise disjoint sequence {Un : n ∈ N} of open subsets each with
compact boundary and non-compact closure. Here we only deal with extensions in βX.
Also, we use the simplified notation ExXU instead of ExβXU . The following lemma is
well known (see Lemma 7.1.13 of [5] or Lemma 3.1 of [37]).

Lemma 3.10. Let X be a Tychonoff space and let U and V be open subsets of X. Then

(1) X ∩ ExX U = U and thus clβX ExX U = clβX U .
(2) ExX(U ∩ V ) = ExX U ∩ ExX V .

The following lemma was proved by E. G. Skljarenko [32] and rediscovered by E. K. van
Douwen [37].
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Lemma 3.11 (Skljarenko [32] and van Douwen [37]). Let X be a Tychonoff space and let
U be an open subset of X. Then

bdβX ExX U = clβX bdX U.

Lemma 3.12. Let X be a Tychonoff space and let P be a clopen hereditary topological
property which is inverse invariant under perfect mappings. Let U be an open subset of
X such that bdX U ⊆ Z ⊆ C where Z ∈ Z (X), C ∈ Coz(X) and clX C has P. Then

clβX U \ λPX = ExX U \ λPX.

Proof. By Lemma 2.14 we have clβX Z ⊆ λPX. The result then follows, as by Lem-
mas 3.10 and 3.11 we have

clβX U = clβX ExX U = ExX U ∪ bdβX ExX U = ExX U ∪ clβX bdX U

and clβX bdX U ⊆ clβX Z.

In [23] J. R. McCartney characterized those spaces which have a compactification
with compact countable remainder of type (σ, n) (Theorem 3.6). Indeed, in the proof, for
a given space X which satisfies the properties of Theorem 3.6, the author formed a new
set Y by adjoining a set of points to X and then constructed a topology on Y that turned
it into a compactification of X with the desired properties. The proof given in Theorem
3.13(3) below can be applied to give an alternative proof to this theorem of McCartney
in [23] (Theorem 3.6). Also, note that parts (1.d) and (2.d) below generalize and give
alternative proofs for the theorems of K. D. Magill Jr. and T. Kimura in [18] and [11],
respectively (Theorems 3.3 and 3.5, respectively). One should simply replace P and Q,
respectively, by compactness and regularity and note that, for any compact subset A of
a locally compact space X there exists a continuous f : X → I such that f [A] ⊆ {0}, and
that f−1[[0, r]] is compact for any r ∈ (0, 1).

Theorem 3.13. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q.

(1) Let n ∈ N. The following are equivalent:

(a) MQ
P (X) contains an element with n-point remainder.

(b) OQP (X) contains an element with n-point remainder.
(c) X is locally-P and X = K ∪ U1 ∪ · · · ∪ Un where K,U1, . . . , Un are pairwise

disjoint, each U1, . . . , Un is open in X with non-P closure and bdX K ⊆ Z ⊆ C

for some Z ∈ Z (X) and C ∈ Coz(X) such that clX C has P.
(d) X is locally-P and X = U∪Z1∪· · ·∪Zn where U,Z1, . . . , Zn are pairwise disjoint,

clX U has P and each Z1, . . . , Zn ∈ Z (X) is non-P.

(2) The following are equivalent:

(a) MQ
P (X) contains an element with countable remainder.

(b) OQP (X) contains an element with countable remainder.
(c) X is locally-P and there exists a bijectively indexed collection {Un : n ∈ N} of

pairwise disjoint open subsets of X, each with non-P closure and such that for
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any n ∈ N there exist some Zn ∈ Z (X) and Cn ∈ Coz(X) such that clX Cn has
P and bdX Un ⊆ Zn ⊆ Cn.

(d) X is locally-P and there exists a bijectively indexed collection {Zn : n ∈ N} of
non-P zero-sets of X such that X = Z1 ⊇ Z2 ⊇ · · · and such that for any n ∈ N
there exist non-P sets Sn ∈ Z (X) and Kn ⊆ X such that Zn \Zn+1 = Sn ∪Kn,
where Kn ⊆ Tn ⊆ Cn for some Tn ∈ Z (X) and Cn ∈ Coz(X) such that clX Cn
has P.

(3) Let 0 < σ < Ω and let n ∈ N. The following are equivalent:

(a) MQ
P (X) contains an element with countable remainder of type (σ, n).

(b) OQP (X) contains an element with countable remainder of type (σ, n).
(c) X is locally-P and there exists a family {Uζ : ζ ≤ σ} of collections of pairwise

disjoint non-empty open subset of X satisfying the following:

(i) For any ζ < σ, card(Uζ) = ℵ0 and card(Uσ) = n.

(ii) For any ζ ≤ σ and U ∈ Uζ there exist some Z ∈ Z (X) and C ∈ Coz(X)
such that clX C has P and bdX U ⊆ Z ⊆ C.

(iii) For any ζ ≤ σ, U ∈ Uζ and finite V ⊆
⋃
{Uη : η < ζ} the set clX U \

⋃
V

is non-P.

(iv) For any ζ < η ≤ σ, U ∈ Uζ and V ∈ Uη there exist some Z ∈ Z (X) such
that Z has P and a finite V ⊆

⋃
{Uξ : ξ < ζ} such that either

clX U \
(
V ∪

⋃
V
)
⊆ Z or (clX U ∩ clX V ) \

⋃
V ⊆ Z.

(v) For any ζ < η ≤ σ and U ∈ Uη there exists an infinite V ⊆ Uζ such
that for any V ∈ V there exist some Z ∈ Z (X) which has P and a finite
W ⊆

⋃
{Uξ : ξ < ζ} such that clX V \ (U ∪

⋃
W ) ⊆ Z.

Proof. (1). By Lemma 3.7 it follows that (1.a) and (1.b) are equivalent.
(1.a) implies (1.c). Consider some Y ∈MQ

P (X) with an n-point remainder Y \X =
{p1, . . . , pn}. Let V1, . . . , Vn be pairwise disjoint open neighborhoods of p1, . . . , pn in βY ,
respectively. Let φ : βX → βY denote the continuous extension of idX . Let i = 1, . . . , n.
Let fi : βX → I be continuous with

fi
[
φ−1(pi)

]
⊆ {0} and fi

[
βX \ φ−1[Vi]

]
⊆ {1}.

Let

Ui = f−1
i

[
[0, 1/2)

]
∩X and K = X \

n⋃
i=1

Ui.

Then X = K ∪ U1 ∪ · · · ∪ Un and since Ui ⊆ φ−1[Vi] (and Vi’s are pairwise disjoint) the
sets K,U1, . . . , Un are pairwise disjoint. To show that clX Ui has P suppose the contrary.
Let

S = f−1
i

[
[0, 1/3]

]
∩X ∈ Z (X).

Then S has P, as it is closed in clX Ui. Therefore

φ−1(pi) ⊆ f−1
i

[
[0, 1/3)

]
⊆ intβX clβX

(
f−1
i

[
[0, 1/3]

]
∩X

)
= intβX clβX S ⊆ λPX.
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By Lemma 2.8 the space X is locally-P and βX \ λPX ⊆ φ−1[Y \ X]. Now again by
Lemma 2.8 and since by the above

βX \ λPX ⊆ φ−1[Y \X] \ φ−1(pi) = φ−1
[
(Y \X) \ {pi}

]
= φ−1

[(
Y \ {pi}

)
\X

]
,

the extension Y \ {pi} of X has P. This contradicts the minimality of Y . Let

Z = X ∩
n⋃
i=1

f−1
i (1/2) ∈ Z (X) and C = X ∩

n⋃
i=1

f−1
i

[
(1/3, 2/3)

]
∈ Coz(X).

Arguing as in the proof of Lemma 3.7 ((1.a)⇒(1.c)) we have

φ−1(pi) \ λPX = φ−1[Vi] \ λPX.

Therefore by the definition of fi we have

clβX C ⊆
n⋃
i=1

f−1
i

[
[1/3, 2/3]

]
⊆

n⋃
i=1

(
φ−1[Vi] \ φ−1(pi)

)
⊆ λPX,

which by Lemma 2.4 implies that clX C has P. Finally

bdX K = clX K ∩ clX(X \K) ⊆ X ∩
n⋂
j=1

f−1
j

[
[1/2, 1]

]
∩

n⋃
i=1

f−1
i

[
[0, 1/2]

]
= X ∩

n⋃
i=1

n⋂
j=1

f−1
j

[
[1/2, 1]

]
∩ f−1

i

[
[0, 1/2]

]
⊆ X ∩

n⋃
i=1

f−1
i (1/2),

which implies that bdX K ⊆ Z ⊆ C.
(1.c) implies (1.d). First note that since U1, . . . , Un are pairwise disjoint and open,

for any distinct i, j = 1, . . . , n we have bdX Ui ∩ Uj = ∅. Let i = 1, . . . , n. Then

bdX Ui ⊆ (X \ Ui) ∩
n⋂

i 6=j=1

(X \ Uj) = X \
n⋃
j=1

Uj = K,

which combined with bdX Ui ⊆ clX Ui ⊆ clX(X \ K) gives bdX Ui ⊆ bdX K. By
Lemma 3.12 this implies that clβX Ui \ λPX = ExX Ui \ λPX; let Hi denote the last
set. By Lemma 2.4 the set Hi is non-empty, as by our assumption clX Ui is non-P. Let
fi : βX → I be continuous with

fi[Hi] ⊆ {0} and fi[βX \ ExX Ui] ⊆ {1}

for i = 1, . . . , n− 1 and

fn

[
(βX \ λPX) \

n−1⋃
i=1

Hi

]
⊆ {0} and fn

[ n−1⋃
i=1

clβX Ui
]
⊆ {1}.

Let

Zi = f−1
i

[
[0, 1/2]

]
∩X ∈ Z (X) and U = X \

n⋃
i=1

Zi.

By the definition of fi we have Zi ⊆ ExX Ui for any i = 1, . . . , n− 1. Now since ExX Ui’s
are pairwise disjoint (as Ui’s are; see Lemma 3.10) Zi’s are pairwise disjoint when i =
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1, . . . , n− 1, and therefore when i = 1, . . . , n, as

Zn ∩
n−1⋃
i=1

clβX Ui = ∅

and Zi ⊆ clβX Ui for any i = 1, . . . , n− 1, as ExX Ui ⊆ clβX Ui (see Lemma 3.10). Since

U = X \
n⋃
i=1

f−1
i

[
[0, 1/2]

]
⊆ βX \

n⋃
i=1

f−1
i

[
[0, 1/2)

]
⊆ λPX

we have clβX U ⊆ λPX, and thus by Lemma 2.4 it follows that clX U has P. To complete
the proof we need to verify that Zi is non-P. But this follows easily, as otherwise

Hi ⊆ f−1
i

[
[0, 1/2)

]
⊆ intβX clβX

(
f−1
i

[
[0, 1/2]

]
∩X

)
= intβX clβX Zi ⊆ λPX,

which contradicts the fact Hi is non-empty.
(1.d) implies (1.a). For any i = 1, . . . , n let fi : X → I be continuous with

fi[Zi] ⊆ {0} and fi

[ i−1⋃
k=1

Zk ∪
n⋃

k=i+1

Zk

]
⊆ {1}

and let Fi : βX → I be the continuous extension of fi.

Claim. Let r ∈ (0, 1) and let i, j = 1, . . . , n be distinct. Then

clβX f−1
i

[
[0, r]

]
∩ clβX f−1

j

[
[0, r]

]
⊆ λPX.

Proof of the claim. Let r < s < 1. By the definition of fi’s and since Zi∩Zj = ∅ we have

S = f−1
i

[
[0, s]

]
∩ f−1

j

[
[0, s]

]
⊆ (Zi ∪ U) ∩ (Zj ∪ U) ⊆ U.

If k = i, j then

clβX f−1
k

[
[0, r]

]
⊆ F−1

k

[
[0, r]

]
⊆ F−1

k

[
[0, s)

]
⊆ intβX clβX f−1

k

[
[0, s]

]
and therefore

clβX f−1
i

[
[0, r]

]
∩ clβX f−1

j

[
[0, r]

]
⊆ intβX clβX f−1

i

[
[0, s]

]
∩ intβX clβX f−1

j

[
[0, s]

]
= intβX

(
clβX f−1

i

[
[0, s]

]
∩ clβX f−1

j

[
[0, s]

])
= intβX clβX

(
f−1
i

[
[0, s]

]
∩ f−1

j

[
[0, s]

])
= intβX clβX S.

Note that S ∈ Z (X) has P, as it is closed in clX U , and thus intβX clβX S ⊆ λPX.

Claim. Let r ∈ (0, 1). Then

clβX
( n⋂
i=1

f−1
i

[
[r, 1]

])
⊆ λPX.

Proof of the claim. Let 0 < t < r and let

T =
n⋂
i=1

f−1
i

[
[t, 1]

]
∈ Z (X).



44 M. R. Koushesh

Then

clβX
( n⋂
i=1

f−1
i

[
[r, 1]

])
⊆

n⋂
i=1

F−1
i

[
[r, 1]

]
⊆

n⋂
i=1

F−1
i

[
(t, 1]

]
⊆

n⋂
i=1

intβX clβX f−1
i

[
[t, 1]

]
= intβX

( n⋂
i=1

clβX f−1
i

[
[t, 1]

])
= intβX clβX

( n⋂
i=1

f−1
i

[
[t, 1]

])
= intβX clβX T.

Now since

T =
n⋂
i=1

f−1
i

[
[t, 1]

]
⊆

n⋂
i=1

(X \ Zi) ⊆ X \
n⋃
i=1

Zi = U

and clX U has P, its closed subset T has P, and therefore intβX clβX T ⊆ λPX.

Now let r ∈ (0, 1) be fixed. Note that

βX \ λPX =
(

clβX
( n⋃
i=1

f−1
i

[
[0, r]

])
∪ clβX

( n⋂
i=1

f−1
i

[
[r, 1]

]))
\ λPX

and thus by the above claim

βX \ λPX = clβX
( n⋃
i=1

f−1
i

[
[0, r]

])
\ λPX =

n⋃
i=1

(
clβX f−1

i

[
[0, r]

]
\ λPX

)
.

By the first claim it now follows that βX \ λPX is the union of n of its pairwise disjoint
closed (and thus clopen) subsets which are also non-empty, as Zi ⊆ f−1

i [[0, r]] for any
i = 1, . . . , n, and therefore since Zi is non-P, using Lemma 2.4 we have

∅ 6= clβX Zi \ λPX ⊆ clβX f−1
i

[
[0, r]

]
\ λPX.

(2) (2.a) implies (2.c). Consider some Y ∈ MQ
P (X) with countable remainder. By

Lemma 3.9 there exists a bijectively indexed collection {Vn : n ∈ N} of pairwise disjoint
open subsets of βY such that Bn = Vn ∩ (Y \ X) is compact and non-empty for any
n ∈ N. Let n ∈ N. Let fn : βX → I be continuous with

fn
[
φ−1[Bn]

]
⊆ {0} and fn

[
βX \ φ−1[Vn]

]
⊆ {1}

where φ : βX → βY is the continuous extension of idX and define Un = f−1
n [[0, 1/2)]∩X.

Then Un’s are pairwise disjoint open subsets of X. Also, clX Un is non-P, as otherwise,
arguing as in (1.a)⇒(1.c) we have f−1

n [[0, 1/3)] ⊆ λPX. Consider the subspace Y ′ =
Y \Bn of Y . By Lemma 2.8 we have βX \ λPX ⊆ φ−1[Y \X] and X is locally-P. Since
φ−1[Bn] ⊆ f−1

n [[0, 1/3)] we have

φ−1[Y ′\X] = φ−1
[
(Y \Bn)\X

]
= φ−1

[
(Y \X)\Bn

]
= φ−1[Y \X]\φ−1[Bn] ⊇ βX\λPX.

Now since Y ′ \X = (Y \X) \ Vn is compact, Lemma 2.8 implies that Y ′ has P, contra-
dicting the minimality of Y . Note that

bdX Un = clX Un ∩ clX(X \ Un) ⊆ f−1
n

[
[0, 1/2]

]
∩ f−1

n

[
[1/2, 1]

]
∩X = f−1

n (1/2) ∩X.

Therefore if

Zn = f−1
n (1/2) ∩X ∈ Z (X) and Cn = f−1

n

[
(1/3, 2/3)

]
∩X ∈ Coz(X)
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then bdX Un ⊆ Zn ⊆ Cn. Since βX \ λPX ⊆ φ−1[Y \ X], arguing as in the proof of
Lemma 3.7 ((1.a)⇒(1.c)), we have

φ−1[Bn] \ λPX = φ−1[Vn] \ λPX

and thus by the definition of fn it follows that

clβX Cn ⊆ f−1
n

[
[1/3, 2/3]

]
⊆ φ−1[Vn] \ φ−1[Bn] ⊆ λPX.

By Lemma 2.4 this implies that clX Cn has P.
(2.c) implies (2.a). Let {Un : n ∈ N} satisfy the assumption of the theorem. Let

n ∈ N. By Lemma 3.12 we have clβX Un \ λPX = ExX Un \ λPX; let Hn denote the last
set. Note that Hn is clopen in βX \ λPX and that Hn’s are pairwise disjoint, as Un’s
are (see Lemma 3.10). Also, Hn is non-empty, as otherwise clβX Un ⊆ λPX, which by
Lemma 2.4 implies that clX Un has P, contradicting our assumption.

(2.a) implies (2.d). By Lemma 3.7 the space X is locally-P and there exists a bi-
jectively indexed sequence H1, H2, . . . of pairwise disjoint non-empty clopen subsets of
βX \ λPX. Let n ∈ N. Let fn : βX → I be continuous with

fn
[
(βX \ λPX) \Hn

]
⊆ {0} and fn[Hn] ⊆ {1}

and let

Zn =
n−1⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X ∈ Z (βX)

with the empty intersection interpreted as βX. Clearly X = Z1 ⊇ Z2 ⊇ · · · . Note that

Hn ⊆ (βX \ λPX) \
n−1⋃
i=1

Hi ⊆
n−1⋂
i=1

(
(βX \ λPX) \Hi

)
⊆
n−1⋂
i=1

f−1
i

[
[0, 1/2)

]
. (3.10)

To show that Zn is non-P, suppose the contrary. Then
n−1⋂
i=1

f−1
i

[
[0, 1/2)

]
⊆
n−1⋂
i=1

intβX clβX
(
f−1
i

[
[0, 1/2]

]
∩X

)
= intβX

(n−1⋂
i=1

clβX
(
f−1
i

[
[0, 1/2]

]
∩X

))
= intβX clβX

(n−1⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X

)
= intβX clβX Zn ⊆ λPX

and therefore Hn ⊆ λPX, which is a contradiction, as Hn ⊆ βX \ λPX is non-empty.
Now

Zn \ Zn+1 =
(n−1⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X

)
\
( n⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X

)
=
(
βX \ f−1

n

[
[0, 1/2]

])
∩
n−1⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X
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= f−1
n

[
(1/2, 1]

]
∩
n−1⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X

=
(
f−1
n

[
(1/2, 2/3)

]
∪ f−1

n

[
[2/3, 1]

])
∩
n−1⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X = Kn ∪ Sn

where

Kn = f−1
n

[
(1/3, 2/3)

]
∩
n−1⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X,

Sn = f−1
n

[
[2/3, 1]

]
∩
n−1⋂
i=1

f−1
i

[
[0, 1/2]

]
∩X.

Then Sn ∈ Z (X) and Kn ⊆ Tn ⊆ Cn, where

Tn = f−1
n

[
[1/2, 2/3]

]
∩X ∈ Z (X) and Cn = f−1

n

[
(1/3, 3/4)

]
∩X ∈ Coz(X).

Since
clβX Cn = clβX

(
f−1
n

[
(1/3, 3/4)

]
∩X

)
⊆ f−1

n

[
[1/3, 3/4]

]
⊆ λPX

by Lemma 2.4 the set clX Cn has P. If Sn has P, then using (3.10) and arguing as above,

Hn ⊆ f−1
n

[
(2/3, 1]

]
∩
n−1⋂
i=1

f−1
i

[
[0, 1/2)

]
⊆ intβX clβX Sn ⊆ λPX

which as we argued above is a contradiction. Thus Sn is non-P. Finally, note that as
argued above Hn ⊆ clβX Sn, and therefore Sn is non-empty. This implies that Zn \Zn+1

is non-empty and thus Zn’s are bijectively indexed.
(2.d) implies (2.a). Let n ∈ N. Then

X = Z1 =
n−1⋃
i=1

(Zi \ Zi+1) ∪ Zn =
n−1⋃
i=1

(Si ∪Ki) ∪ Zn

and thus

βX =
n−1⋃
i=1

(clβX Si ∪ clβX Ki) ∪ clβX Zn.

By Lemma 2.14 we have clβX Ki ⊆ clβX Ti ⊆ λPX for any i ∈ N. Therefore

βX \ λPX =
n−1⋃
i=1

(clβX Si \ λPX) ∪ (clβX Zn \ λPX).

Since S1, . . . , Sn−1, Zn ∈ Z (X) are pairwise disjoint, their closures in βX also are pair-
wise disjoint. Thus by the above βX \ λPX is the union of n of its pairwise disjoint
non-empty (as S1, . . . , Sn−1, Zn are non-P; see Lemma 2.4) closed (and therefore clopen)
subsets. Lemma 3.7 now completes the proof.

(3). The equivalence of (3.a) and (3.b) follows from Lemma 3.7.
(3.a) implies (3.c). By Lemma 3.7 the space X is locally-P and there exists a family

{Hζ : ζ ≤ σ} of collections of pairwise disjoint non-empty clopen subsets of βX \ λPX
satisfying conditions (3.c.i)–(3.c.iv) of Lemma 3.7. For any ζ ≤ σ let Hζ = {Hζ

i : i ∈ Jζ}
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be bijectively indexed. Let Jζ = N for any ζ < σ and Jσ = {1, . . . , n}. Also, for any ζ ≤ σ
and i ∈ Jζ let Aζi be an open subset of βX such that Hζ

i = Aζi \ λPX.

Claim. For any ζ ≤ σ there exists a collection {W ζ
i : i ∈ Jζ} of pairwise disjoint open

subsets of βX such that W ζ
i \ λPX = Hζ

i for any i ∈ Jζ .

Proof of the claim. Let ζ < σ. We inductively define W ζ
i ’s for i ∈ Jζ . Let W ζ

1 be an open
subset of βX such that Hζ

1 ⊆ W ζ
1 ⊆ clβXW

ζ
1 ⊆ Aζ1. For an m ∈ N, suppose inductively

that the open subsets W ζ
1 , . . . ,W

ζ
m of βX are defined in such a way that

Hζ
i ⊆W

ζ
i ⊆ clβXW

ζ
i ⊆ A

ζ
i \ clβX

(i−1⋃
j=1

W ζ
j

)
for any i = 1, . . . ,m. Note that Hζ

m+1 ∩ clβXW
ζ
i = ∅ for any i = 1, . . . ,m. Let W ζ

m+1 be
an open subset of βX such that

Hζ
m+1 ⊆W

ζ
m+1 ⊆ clβXW

ζ
m+1 ⊆ A

ζ
m+1 \ clβX

( m⋃
j=1

W ζ
j

)
.

Similarly for the case when ζ = σ.

Let ζ ≤ σ and i ∈ Jζ . Since W ζ
i is an open neighborhoods of the compact (and thus

closed) subset Hζ
i of βX, there exists a continuous fζi : βX → I with

fζi [Hζ
i ] ⊆ {0} and fζi [βX \W ζ

i ] ⊆ {1}.

Define
Uζi = (fζi )−1

[
[0, 1/2)

]
∩X.

Let Uζ = {Uζi : i ∈ Jζ} for any ζ ≤ σ. We verify that the family {Uζ : ζ ≤ σ} satisfies
(3.c.i)–(3.c.v). Let ζ ≤ σ. Let i ∈ Jζ . Since

Hζ
i ⊆ (fζi )−1

[
[0, 1/2)

]
⊆ clβX(fζi )−1

[
[0, 1/2)

]
= clβX

(
(fζi )−1

[
[0, 1/2)

]
∩X

)
= clβX U

ζ
i

and Hζ
i is non-empty, Uζi is non-empty. Also, for any distinct i, j ∈ Jζ we have Uζi ∩U

ζ
j ⊆

W ζ
i ∩W

ζ
j = ∅. Thus the collection Uζ = {Uζi : i ∈ Jζ} is bijectively indexed and consists

of pairwise disjoint non-empty open subsets of X. Note that (3.c.i) holds trivially.
To show (3.c.ii) note that for any ζ ≤ σ and i ∈ Jζ we have

bdX U
ζ
i = clX U

ζ
i ∩ clX(X \Uζi ) ⊆ (fζi )−1

[
[0, 1/2]

]
∩ (fζi )−1

[
[1/2, 1]

]
∩X ⊆ (fζi )−1(1/2).

Thus
clβX bdX U

ζ
i \ λPX ⊆ (fζi )−1(1/2) \ λPX ⊆ (W ζ

i \H
ζ
i ) \ λPX = ∅,

which by Lemma 3.8 shows (3.c.ii).
Next, we verify (3.c.iii). Let ζ ≤ σ, U ∈ Uζ and V ⊆

⋃
{Uη : η < ζ} be finite.

Suppose to the contrary that clX U \
⋃

V has P. Let U = Uζi for some i ∈ Jζ and
V = {Uη1j1 , . . . , U

ηm
jm
}, where m is a non-negative integer, and ηk < ζ and jk ∈ Jηk for

any k = 1, . . . ,m. Let

S =
(

(fζi )−1
[
[0, 1/3]

]
\

m⋃
k=1

(fηkjk )−1
[
[0, 1/2)

])
∩X ∈ Z (X).
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By the above (fζi )−1[[0, 1/3]] ∩ X ⊆ clX U
ζ
i . Thus S ⊆ clX U \

⋃
V and then S, being

closed in the last set, has P. This implies that

Hζ
i \

m⋃
k=1

W ηk
jk
⊆ (fζi )−1

[
[0, 1/3)

]
\

m⋃
k=1

(fηkjk )−1
[
[0, 1/2]

]
⊆ intβX clβX S ⊆ λPX.

Therefore

Hζ
i \
⋃
{G ∈Hη : η < ζ} ⊆ Hζ

i \
m⋃
k=1

Hηk
jk

=
(
Hζ
i \

m⋃
k=1

W ηk
jk

)
∩ (βX \ λPX) = ∅,

which contradicts (3.c.ii) of Lemma 3.7. Thus (3.c.iii) holds.
To show (3.c.iv) let ζ < η ≤ σ, U ∈ Uζ and V ∈ Uη. Then U = Uζi and V = Uηj for

some i ∈ Jζ and j ∈ Jη. By (3.c.iii) of Lemma 3.7 we have either

Hζ
i ⊆ H

η
j ∪

⋃
{F ∈Hξ : ξ < ζ} (3.11)

or
Hζ
i ∩H

η
j ⊆

⋃
{F ∈Hξ : ξ < ζ}. (3.12)

We consider the following cases. For simplicity of notation let r = 1/2. Note that by the
definition of fζi for any ζ ≤ σ and i ∈ Jζ we have

Hζ
i ⊆ (fζi )−1

[
[0, r)

]
\ λPX ⊆ (fζi )−1

[
[0, r]

]
\ λPX ⊆W ζ

i \ λPX = Hζ
i

and therefore
(fζi )−1

[
[0, r]

]
\ λPX = (fζi )−1

[
[0, r)

]
\ λPX = Hζ

i .

Case 1. If (3.11) holds then by compactness Hζ
i ⊆ H

η
j ∪H

ξ1
k1
∪ · · · ∪Hξm

km
, where m is a

non-negative integer, ξl < ζ and kl ∈ Jξl for any l = 1, . . . ,m. We have

clβX
(

clX U
ζ
i \
(
Uηj ∪

m⋃
l=1

Uξlkl

))
⊆ (fζi )−1

[
[0, r]

]
\
(

(fηj )−1
[
[0, r)

]
∪
m⋃
l=1

(fξlkl )
−1
[
[0, r)

])
and thus

clβX
(

clX U
ζ
i \
(
Uηj ∪

m⋃
l=1

Uξlkl

))
\ λPX ⊆ Hζ

i \
(
Hη
j ∪

m⋃
l=1

Hξl
kl

)
= ∅.

Now by Lemma 3.8 it follows that

clX U
ζ
i \
(
Uηj ∪

m⋃
l=1

Uξlkl

)
⊆ Z ⊆ C

for some Z ∈ Z (X) and C ∈ Coz(X), where clX C, and therefore Z, has P, as it
is closed in clX C. Thus (3.c.iv) holds in this case.

Case 2. If (3.12) holds then by compactness Hζ
i ∩H

η
j ⊆ H

ξ1
k1
∪ · · · ∪Hξm

km
, where m is a

non-negative integer, ξl < ζ and kl ∈ Jξl for any l = 1, . . . ,m. We have

clβX
(

(clX U
ζ
i ∩clX U

η
j )\

m⋃
l=1

Uξlkl

)
⊆
(
(fζi )−1

[
[0, r]

]
∩(fηj )−1

[
[0, r]

])
\
m⋃
l=1

(fξlkl )
−1
[
[0, r)

]
and thus

clβX
(

(clX U
ζ
i ∩ clX U

η
j ) \

m⋃
l=1

Uξlkl

)
\ λPX ⊆ (Hζ

i ∩H
η
j ) \

m⋃
l=1

Hξl
kl

= ∅.

Now as in the previous case (3.c.iv) follows.
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Finally, we verify (3.c.v). Let ζ < η ≤ σ and U ∈ Uη. Then U = Uηj for some j ∈ Jη.
By (3.c.iv) of Lemma 3.7 there exists an infinite J ⊆ Jζ such that

Hζ
i ⊆ H

η
j ∪

⋃
{G ∈Hξ : ξ < ζ}

for any i ∈ J . Now an argument similar to the one above shows that

clX U
ζ
i \
(
Uηj ∪

m⋃
l=1

Uξlkl

)
⊆ Z

for some Z ∈ Z (X) which has P, some non-negative integer m, some ξl < ζ and some
kl ∈ Jξl where l = 1, . . . ,m. Thus (3.c.v) holds.

(3.c) implies (3.a). To prove (3.a) we verify condition (3.c) of Lemma 3.7. Suppose
that X is locally-P and there exists a family {Uζ : ζ ≤ σ} of collections of pairwise
disjoint non-empty open subsets of X satisfying (3.c.i)–(3.c.v). For any ζ ≤ σ let Uζ =
{Uζi : i ∈ Jζ} be bijectively indexed. Then card(Jζ) = ℵ0 if ζ < σ, and card(Jσ) = n. Let
ζ ≤ σ and i ∈ Jζ . Define

Hζ
i = clβX U

ζ
i \ λPX.

By Lemma 3.12 and (3.c.ii) we have Hζ
i = ExX U

ζ
i \ λPX, which shows that Hζ

i is
clopen in βX \ λPX. Also, Hζ

i is non-empty, as otherwise clβX U
ζ
i ⊆ λPX, which by

Lemma 2.4 implies that clX U
ζ
i has P, contradicting (3.c.iii). Since Hζ

i ⊆ ExX U
ζ
i and

Uζi ’s are pairwise disjoint, by Lemma 3.10 the sets Hζ
i are also pairwise disjoint. For any

ζ ≤ σ let Hζ = {Hζ
i : i ∈ Jζ}, which is bijectively indexed, as Hζ

i ’s are non-empty, and
for any distinct i, j ∈ Jζ we have Hζ

i ∩H
ζ
j = ∅. We verify that the family {Hζ : ζ ≤ σ}

has the desired properties. Condition (3.c.i) of Lemma 3.7 holds trivially.
To prove condition (3.c.ii) of Lemma 3.7 let H ∈Hζ for some ζ ≤ σ, and suppose to

the contrary that

H \
⋃
{G ∈Hη : η < ζ} = ∅.

Then H = Hζ
i for some i ∈ Jζ . By compactness Hζ

i ⊆ Hη1
k1
∪ · · · ∪Hηm

km
, where m ∈ N,

ηl < ζ and kl ∈ Jηl for any l = 1, . . . ,m. We have

clβX
(

clX U
ζ
i \

m⋃
l=1

Uηlkl

)
⊆ clβX U

ζ
i \

m⋃
l=1

ExX U
ηl
kl

and therefore

clβX
(

clX U
ζ
i \

m⋃
l=1

Uηlkl

)
\ λPX ⊆ Hζ

i \
m⋃
l=1

Hηl
kl

= ∅.

Lemma 2.4 now implies that clX U
ζ
i \(U

η1
k1
∪· · ·∪Uηmkm ) has P. But this contradicts (3.c.iii).

Next, we show condition (3.c.iii) of Lemma 3.7. Suppose that ζ < η ≤ σ, H ∈ Hζ

and G ∈ Hη. Let H = Hζ
i and G = Hη

j where i ∈ Jζ and j ∈ Jη. By (3.c.iv) there exist
a finite V ⊆

⋃
{Uξ : ξ < ζ} and a Z ∈ Z (X) such that Z has P, and either

clX U
ζ
i \
(
Uηj ∪

⋃
V
)
⊆ Z (3.13)
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or
(clX U

ζ
i ∩ clX U

η
j ) \

⋃
V ⊆ Z. (3.14)

Let V = {Uξ1k1 , . . . , U
ξm
km
}, where m is a non-negative integer, ξl < ζ and kl ∈ Jξl for any

l = 1, . . . ,m. We consider the following cases:

Case 1. If (3.13) holds then

ExX U
ζ
i ⊆ clβX ExX U

ζ
i = clβX U

ζ
i ⊆ clβX

(
Uηj ∪

m⋃
l=1

Uξlkl ∪ Z
)

and thus

ExX U
ζ
i \
(

clβX U
η
j ∪

m⋃
l=1

clβX U
ξl
kl

)
⊆ intβX clβX Z ⊆ λPX.

From this it follows that

H ⊆ G ∪
m⋃
l=1

Hξl
kl
⊆ G ∪

⋃
{F ∈Hξ : ξ < ζ}.

Case 2. If (3.14) holds then using Lemma 3.10 we have

ExX U
ζ
i ∩ ExX U

η
j ⊆ clβX(ExX U

ζ
i ∩ ExX U

η
j )

= clβX ExX(Uζi ∩ U
η
j ) = clβX(Uζi ∩ U

η
j ) ⊆ clβX

( m⋃
l=1

Uξlkl ∪ Z
)

and thus

(ExX U
ζ
i ∩ ExX U

η
j ) \

m⋃
l=1

clβX U
ξl
kl
⊆ intβX clβX Z ⊆ λPX,

which yields

H ∩G ⊆
m⋃
l=1

Hξl
kl
⊆
⋃
{F ∈Hξ : ξ < ζ}.

This shows condition (3.c.iii) of Lemma 3.7 in either case.
Finally, to show (3.c.iv) of Lemma 3.7 suppose that ζ < η ≤ σ and H ∈ Hη. Let

H = Hη
j for some j ∈ Jη. By (3.c.v) there exists an infinite J ⊆ Jζ such that for any

i ∈ J there exist a Z ∈ Z (X) such that Z has P and a finite W ⊆
⋃
{Uξ : ξ < ζ} such

that clX U
ζ
i \ (Uηj ∪

⋃
W ) ⊆ Z. Arguing as above we obtain

Hζ
i ⊆ H ∪

⋃
{F ∈Hξ : ξ < ζ}.

Thus {
F ∈Hζ : F ⊆ H ∪

⋃
{G ∈Hξ : ξ < ζ}

}
is infinite.

The following generalizes a theorem of K. D. Magill Jr. in [19] (Theorem 3.4).

Corollary 3.14. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff space with Q. The following are equivalent:
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(1) MQ
P (X) contains an element with n-point remainder (equivalently, OQP (X) contains

an element with n-point remainder) for any n ∈ N.
(2) MQ

P (X) contains an element with countable remainder (equivalently, OQP (X) con-
tains an element with countable remainder).

Proof. This follows from Lemma 3.7 and the observation that βX \ λPX has an infinite
number of components if and only if it has at least n components for any n ∈ N.

Theorem 3.15. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space.

(1) Let n ∈ N. If X has a perfect image Y with Q such that MQ
P (Y ) (OQP (Y ), respectively)

contains an element with n-point remainder, then so does X.
(2) If X has a perfect image Y with Q such that MQ

P (Y ) (OQP (Y ), respectively) contains
an element with countable remainder, then so does X.

(3) Let 0 < σ < Ω and let n ∈ N. If X has a perfect image Y with Q such that MQ
P (Y )

(OQP (Y ), respectively) contains an element with countable remainder of type (σ, n),
then so does X.

Proof. We prove the theorem in the case of minimal extensions. From this and Theo-
rem 3.13 the result will then follow in the case of optimal extensions as well.

(1). Suppose that f : X → Y is a perfect surjective mapping such that Y has Q (thus
X also hasQ, asQ is inverse invariant under perfect mappings) and that MQ

P (Y ) contains
an element with n-point remainder where n ∈ N. Note that Y (having a Tychonoff
extension) is Tychonoff and thus by Theorem 3.13 the space Y is locally-P and Y =
K ∪ U1 ∪ · · · ∪ Un, where K,U1, . . . , Un are pairwise disjoint, each U1, . . . , Un is open in
Y with non-P closure and bdY K ⊆ Z ⊆ C for some Z ∈ Z (Y ) and C ∈ Coz(Y ) such
that clY C has P. Then

X = f−1[Y ] = f−1[K] ∪
n⋃
i=1

f−1[Ui]

and f−1[K], f−1[U1], . . . , f−1[Un] are pairwise disjoint. We show that the closure of each
open subset f−1[U1], . . . , f−1[Un] of X is non-P. Suppose to the contrary that clX f−1[Ui]
has P for some i = 1, . . . , n. Now since

f | clX f−1[Ui] : clX f−1[Ui]→ f
[
clX f−1[Ui]

]
is a perfect surjective mapping and P is invariant under perfect mappings, f [clX f−1[Ui]]
has P. Since f is surjective we have

Ui = f
[
f−1[Ui]

]
⊆ f

[
clX f−1[Ui]

]
and since f is closed, it follows that clY Ui ⊆ f [clX f−1[Ui]] and thus clY Ui, being closed
in the latter, has P. But this is a contradiction. Also,

bdX f−1[K] = clX f−1[K] ∩ clX
(
X \ f−1[K]

)
= clX f−1[K] ∩ clX f−1[Y \K]

⊆ f−1[clY K] ∩ f−1
[
clY (Y \K)

]
= f−1

[
clY K ∩ clY (Y \K)

]
= f−1[bdY K] ⊆ f−1[Z] ⊆ f−1[C]
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and f−1[Z] ∈ Z (X) and f−1[C] ∈ Coz(X). Note that since the mapping

f |f−1[clY C] : f−1[clY C]→ clY C

is perfect and surjective (since f is surjective), the set clY C has P, and (since P is
inverse invariant under perfect mappings) the set f−1[clY C], and thus its closed subset
clX f−1[C], has P. Finally, Lemma 2.5 implies that X is locally-P. Thus the result follows
from Theorem 3.13.

(2). This is analogous to part (1) using the characterization given in Theorem 3.13.
(3). Suppose that f : X → Y is a perfect surjective mapping such that Y has Q and

that MQ
P (Y ) contains an element with countable remainder of type (σ, n). Note that as

in part (1) it follows that X has Q and Y is Tychonoff. By Theorem 3.13 the space Y
is locally-P and there exists a family {Uζ : ζ ≤ σ} of collections of pairwise disjoint
non-empty open subsets of Y satisfying conditions (3.c.i)–(3.c.v) of that theorem. For
any ζ ≤ σ let Aζ = {f−1[U ] : U ∈ Uζ}. Then each Aζ , where ζ ≤ σ, consists of pairwise
disjoint non-empty (since f is surjective) open subsets of X. We verify that {Aζ : ζ ≤ σ}
satisfies conditions (3.c.i)–(3.c.v) of Theorem 3.13. Condition (3.c.i) holds trivially: since
f is surjective, each Aζ with ζ ≤ σ is bijectively indexed and thus card(Aζ) = card(Uζ)
for any ζ ≤ σ. Condition (3.c.ii) follows by an argument similar to part (1) and the
fact that {Uζ : ζ ≤ σ} satisfies a similar condition. To show condition (3.c.iii) suppose
to the contrary that for some ζ ≤ σ, U ∈ Uζ and finite V ⊆

⋃
{Uη : η < ζ} the set

clX f−1[U ] \ f−1[
⋃

V ] has P. Since f is closed and surjective we have

clY U \
⋃

V ⊆ clY f
[
f−1[U ]

]
\
⋃

V

⊆ f
[
clX f−1[U ]

]
\ f
[
f−1

[⋃
V
]]
⊆ f

[
clX f−1[U ] \ f−1

[⋃
V
]]
.

But the latter has P, as P is invariant under perfect mappings, thus its closed subset
clY U \

⋃
V has P, which is a contradiction. To show condition (3.c.iv) suppose that

ζ < η ≤ σ, U ∈ Uζ and V ∈ Uη. Since {Uζ : ζ ≤ σ} satisfies a similar condition, there
exist a Z ∈ Z (Y ) which has P, and a finite V ⊆

⋃
{Uξ : ξ < ζ} such that either

clY U \
(
V ∪

⋃
V
)
⊆ Z or (clY U ∩ clY V ) \

⋃
V ⊆ Z.

Since f |f−1[Z] : f−1[Z] → Z is perfect and surjective (since f is surjective) and P is
inverse invariant under perfect mappings, f−1[Z] ∈ Z (X) has P. In the first case

clX f−1[U ] \
(
f−1[V ] ∪ f−1

[⋃
V
])
⊆ f−1[clY U ] \

(
f−1[V ] ∪ f−1

[⋃
V
])
⊆ f−1[Z]

and in the second case(
clX f−1[U ] ∩ clX f−1[V ]

)
\ f−1

[⋃
V
]

⊆
(
f−1[clY U ] ∩ f−1[clY V ]

)
\ f−1

[⋃
V
]
⊆ f−1[Z].

The proof for condition (3.c.v) is analogous. Note that by Lemma 2.5 the space X is
locally-P. The result now follows.



Compactification-like extensions 53

4. Compactification-like P-extensions as partially ordered sets

In this chapter we consider classes of compactification-like P-extensions of a Tychonoff
space X as partially ordered sets. We define two partial orders ≤inj and ≤surj (besides ≤
itself) on the set of all extensions of X. These partial orders behave nicely when restricted
to classes of compactification-like P-extensions of X and their introduction leads to some
interesting results which characterize compactification-like P-extensions of X among all
Tychonoff P-extensions of X with compact remainder. We continue with the study of
relationships between the order-structure of classes of compactification-like P-extensions
of X (partially ordered with ≤) and the topology of the subspace βX \ λPX of its
outgrowth βX \X. This generalizes a well known result of K. D. Magill Jr. in [20] which
relates the order-structure of the set of all compactifications of a locally compact space X
and the topology of βX\X. We conclude this chapter with a result which characterizes the
largest (with respect to ≤) compactification-like P-extension of X. This largest element
(which we explicitly introduce as a subspace of the Stone–Čech compactification βX of
X) turns out to be also the largest among all Tychonoff P-extensions of X with compact
remainder.

We start with the following definition.

Definition 4.1. Let X be a space and let Y and Y ′ be extensions of X. We write
Y ≤inj Y

′ if there exists a continuous injective f : Y ′ → Y such that f |X = idX .

The relation ≤inj defines a partial order on the set of all extensions of a space X. The
following lemma (see also Lemma 4.6) is a counterpart of Lemma 2.13.

Lemma 4.2. Let X be a Tychonoff space and let Y1, Y2 ∈ EP(X) be such that Y1 ≤ Y2.
The following are equivalent:

(1) Y1 ≤inj Y2.
(2) Any element of F (Y1) contains at most one element of F (Y2).

Proof. Let φi : βX → βYi where i = 1, 2, be the continuous extension of idX . Since
Y1 ≤ Y2 there exists a continuous f : Y2 → Y1 such that f |X = idX . Let fβ : βY2 → βY1

be the continuous extension of f . As shown in the proof of Lemma 2.13 we have fβφ2 = φ1

and f [Y2 \X] ⊆ Y1 \X.
(1) implies (2). Suppose that f : Y2 → Y1 introduced above is moreover injective. Let

p ∈ Y1 \X and let pi ∈ Y2 \X, where i = 1, 2, be such that φ−1
2 (pi) ⊆ φ−1

1 (p). Choose
some si ∈ φ−1

2 (pi) for any i = 1, 2 (such si’s exist, as φ2 is surjective). Then

f(p1) = fβ(p1) = fβ
(
φ2(s1)

)
= φ1(s1) = p = φ1(s2) = fβ

(
φ2(s2)

)
= fβ(p2) = f(p2),

which implies that p1 = p2. Thus φ−1
2 (p1) = φ−1

2 (p2).
(2) implies (1). We show that the mapping f : Y2 → Y1 introduced above is injective.

Let pi ∈ Y2 \ X, where i = 1, 2, be such that f(p1) = f(p2) and let p ∈ Y1 \ X denote
their common value. Note that

φ−1
2 (pi) ⊆ φ−1

2

[
f−1(p)

]
⊆ φ−1

2

[
f−1
β (p)

]
= (fβφ2)−1(p) = φ−1

1 (p)

for any i = 1, 2, which by (2) implies that φ−1
2 (p1) = φ−1

2 (p2) and therefore p1 = p2.
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Notation 4.3. Let R be a relation on a set X and let Y ⊆ X. Denote

R|Y =
{

(y, x) ∈ R : y ∈ Y
}
.

In the next result we give an order-theoretic characterization of OQP (X). (Compare
with its dual result Theorem 4.8 on MQ

P (X).) Recall that a subset A of a partially ordered
set (X,≤) is said to be cofinal if for any x ∈ X there exists some a ∈ A with x ≤ a.

Theorem 4.4. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q. Then

(1) OQP (X) = {Y : Y is maximal in (EQP (X),≤inj)}.
(2) OQP (X) is the smallest cofinal subset of (EQP (X),≤inj).
(3) OQP (X) is the unique cofinal subset of (EQP (X),≤inj) on which the two relations ≤inj

and = coincide.
(4) OQP (X) is the largest subset E of EQP (X) such that

(≤inj|E ) ⊆ =. (4.1)

Proof. (2). To show that OQP (X) is cofinal in EQP (X) with respect to ≤inj let Y ∈ EQP (X).
Let φ : βX → βY be the continuous extension of idX . By Lemma 2.8 the space X is
locally-P and βX \ λPX ⊆ φ−1[Y \X]. Also, by Lemma 2.10 we have X ⊆ λPX. Let

P =
{
p ∈ Y \X : φ−1(p) \ λPX 6= ∅

}
.

Form the quotient space T of βX by contracting each subset φ−1(p) \ λPX where p ∈ P
to a point tp and denote by q : βX → T the quotient mapping. Arguing as in the
proof of Theorem 2.15 ((1)⇒(2)) shows that T is compact. Consider the subspace Z =
X∪q[βX \λPX] of T . Then Z is a Tychonoff extension of X with the compact remainder
Z \X = q[βX \ λPX]. Note that T is a compactification of Z. Let ψ : βX → βZ and f :
βZ → T be the continuous extensions of idX and idZ , respectively. Since the continuous
mapping fψ : βX → T coincides with q on X we have fψ = q. By Lemma 2.8 and
Theorem 2.15 to show that Z ∈ OQP (X) it suffices to show that ψ−1[Z \X] = βX \λPX.
But this follows, as by Theorem 3.5.7 of [5] (and since βZ and T are compactifications
of Z and f is continuous with f |Z = idZ) we have f [βZ \ Z] = T \ Z and therefore

ψ−1[Z \X] = ψ−1
[
f−1[Z \X]

]
= (fψ)−1[Z \X] = q−1[Z \X] = βX \ λPX.

Note that for any p ∈ P (and again, since f [βZ \ Z] = T \ Z) we have

ψ−1(tp) = ψ−1
[
f−1(tp)

]
= (fψ)−1(tp) = q−1(tp) ⊆ φ−1(p) \ λPX.

Define g : Z → Y by g(tp) = p when p ∈ P and g(x) = x when x ∈ X. By the proof
of Lemma 2.13 ((2)⇒(1)) (note that ψ−1(tp) ⊆ φ−1(p) for any p ∈ P ) the mapping g is
continuous, and by its definition, it is moreover injective. Thus Y ≤inj Z. This shows the
cofinality of OQP (X) in EQP (X) with respect to ≤inj.

To complete the proof we need to show that OQP (X) is contained in every subset
S of EQP (X) cofinal with respect to ≤inj. Indeed, let Z ∈ OQP (X). Then Z ≤inj S for
some S ∈ S . We show that S and Z are equivalent extensions of X. To show this, by
Lemma 2.13 it suffices to verify that F (S) = F (Z). Let ψ : βX → βZ and ϕ : βX → βS

be the continuous extensions of idX . By Theorem 2.15 we have ψ−1[Z \X] = βX \λPX.
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Now since Z ≤ S (as Z ≤inj S) by Lemma 2.13, for any s ∈ S\X we have ϕ−1(s) ⊆ ψ−1(z)
for some z ∈ Z \X. Therefore ϕ−1[S \X] ⊆ βX \ λPX and thus since by Lemma 2.8 we
have βX \λPX ⊆ ϕ−1[S \X] it follows that ϕ−1[S \X] = βX \λPX. Now let s′ ∈ S \X.
Then by Lemma 2.13 (and since Z ≤ S) we have ϕ−1(s′) ⊆ ψ−1(z′) for some z′ ∈ Z \X.
Suppose that ϕ−1(s′) 6= ψ−1(z′). There exists some s′′ ∈ S \ X such that s′′ 6= s′ and
ϕ−1(s′′)∩ψ−1(z′) is non-empty. Thus ϕ−1(s′′) ⊆ ψ−1(z′). But by Lemma 4.2 this implies
that ϕ−1(s′′) = ϕ−1(s′), which is a contradiction, as s′′ 6= s′ (and ϕ is surjective). This
shows that ϕ−1(s′) = ψ−1(z′). Therefore F (S) ⊆ F (Z). To show the reverse inclusion
note that for any z ∈ Z \ X, since ψ−1(z) ⊆ βX \ λPX the set ψ−1(z) ∩ ϕ−1(s) is
non-empty for some s ∈ S \ X, and thus ψ−1(z) = ϕ−1(s), as F (S) ⊆ F (Z) (and
the elements of F (Z) are pairwise disjoint). Therefore F (Z) ⊆ F (S), which shows the
equality in the latter. By Lemma 2.13 we have S ≤ Z and Z ≤ S, which implies that Z
and S are equivalent. Thus Z ∈ S . This shows that OQP (X) ⊆ S .

(1). By Theorem 2.15 any element of OQP (X) is maximal in EQP (X) with respect to
≤inj. The converse follows from part (2), because if Y ∈ EQP (X) is maximal with respect
to ≤inj then Y ≤inj T for some T ∈ OQP (X), which yields Y = T and thus Y ∈ OQP (X).

(3). Note that by (2) the set OQP (X) is cofinal in EQP (X) with respect to ≤inj. Also,
by (1) the relations ≤inj and = coincide on OQP (X). Now let E be a subset of EQP (X)
cofinal with respect to ≤inj and such that ≤inj and = coincide on E . Let S ∈ E . By the
cofinality of OQP (X) (with respect to ≤inj) we have S ≤inj T for some T ∈ OQP (X), and
by the cofinality of E we have T ≤inj Z for some Z ∈ E . Then S ≤inj Z and thus (since
S,Z ∈ E ) we have S = Z. Therefore S = T , which implies that S ∈ OQP (X). This shows
that E ⊆ OQP (X). Note that by (2) we have also OQP (X) ⊆ E , which proves equality.

(4). By part (1) the set OQP (X) satisfies (4.1). Now let E be a subset of EQP (X) which
satisfies (4.1). Let S ∈ E . By part (2) the set OQP (X) is cofinal in EQP (X) with respect
to ≤inj. Therefore there exists some T ∈ OQP (X) such that S ≤inj T . By (4.1) we have
S = T , which implies that S ∈ OQP (X). Thus E ⊆ OQP (X).

Definition 4.5. Let X be a space and let Y and Y ′ be extensions of X. We let Y ≤surj Y
′

if there exists a continuous surjective f : Y ′ → Y such that f |X = idX .

The relation ≤surj defines a partial order on the set of all extensions of a space X.

Lemma 4.6. Let X be a Tychonoff space and let Y1, Y2 ∈ EP(X) be such that Y1 ≤ Y2.
The following are equivalent:

(1) Y1 ≤surj Y2.
(2) Any element of F (Y1) contains at least one element of F (Y2).

Proof. Let φi : βX → βYi, where i = 1, 2, be the continuous extension of idX . Since
Y1 ≤ Y2 there exists a continuous f : Y2 → Y1 such that f |X = idX . Let fβ : βY2 → βY1

be the continuous extension of f . As shown in the proof of Lemma 2.12 of [14] we have
fβφ2 = φ1 and f [Y2 \X] ⊆ Y1 \X.

(1) implies (2). Suppose that f : Y2 → Y1 introduced above is moreover surjective.
Let p1 ∈ Y1 \X and let p2 ∈ Y2 \X be such that f(p2) = p1. Then

φ−1
2 (p2) ⊆ φ−1

2

[
f−1(p1)

]
⊆ φ−1

2

[
f−1
β (p1)

]
= (fβφ2)−1(p1) = φ−1

1 (p1).
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(2) implies (1). We show that f : Y2 → Y1 is surjective. Let p1 ∈ Y1\X. Let p2 ∈ Y2\X
be such that φ−1

2 (p2) ⊆ φ−1
1 (p1). Choose an s ∈ φ−1

2 (p2) (φ2 is surjective). Then since

s ∈ φ−1
1 (p1) = (fβφ2)−1(p1) = φ−1

2

[
f−1
β (p1)

]
we have p2 = φ2(s) ∈ f−1

β (p1), which implies that f(p2) = fβ(p2) = p1.

Lemma 4.7. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff space with Q. Let Y ∈MQ

P (X) and let T ∈ EQP (X) be such that T ≤surj Y .
Then T ∈MQ

P (X).

Proof. Let F ∈ F (T ). By Lemma 4.6 there exists G ∈ F (Y ) such that G ⊆ F . By Theo-
rem 2.11 the set G\λPX is non-empty and thus F \λPX is non-empty. By Theorem 2.11
the result follows.

In the next result we give an order-theoretic characterization of MQ
P (X).

Theorem 4.8. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q. Then

(1) MQ
P (X) is the largest cofinal subset of (EQP (X),≤) on which the relations ≤ and

≤surj coincide.
(2) MQ

P (X) is the largest subset of (EQP (X),≤surj) in which OQP (X) is cofinal.
(3) MQ

P (X) is the largest subset E of EQP (X) such that

(≤|E ) ⊆ ≤surj. (4.2)

(4) MQ
P (X) is the smallest cofinal subset E of (EQP (X),≤) such that((

EQP (X)× E
)
∩ ≤surj

)
⊆ E × EQP (X). (4.3)

Proof. (1). First we show that MQ
P (X) is cofinal in EQP (X) with respect to ≤. Let Y ∈

EQP (X). Let φ : βX → βY be the continuous extension of idX . Consider the subspace

T = X ∪
{
p ∈ Y \X : φ−1(p) \ λPX 6= ∅

}
of Y . We show that T ∈ MQ

P (X) and Y ≤ T . Obviously, T is a Tychonoff extension
of X. By Lemma 2.8 we have βX \ λPX ⊆ φ−1[Y \ X] (and X is locally-P) and thus
T \X = φ[βX \ λPX] is compact. Also, since βY is a compactification of T and by the
definition of T we have βX \ λPX ⊆ φ−1[T \X], again by Lemma 2.8 it follows that T
has both P and Q. Let ψ : βX → βT and f : βT → βY be the continuous extensions of
idX and idT , respectively. The continuous mappings fψ and φ agree on X, and therefore
they are identical. Since βY is a compactification of T (and f |T = idT ), by Theorem
3.5.7 of [5] we have f [βT \ T ] = βY \ T . Thus

ψ−1(p) = ψ−1
[
f−1(p)

]
= (fψ)−1(p) = φ−1(p)

for any p ∈ T \X. Lemma 2.13 then yields Y ≤ T . By the definition of T we have

ψ−1(p) \ λPX = φ−1(p) \ λPX 6= ∅

for any p ∈ T \X, which by Theorem 2.11 implies that T ∈MQ
P (X).

By Theorem 2.11 the relations ≤ and ≤surj coincide on MQ
P (X). Now let E be a

subset of EQP (X) cofinal with respect to ≤ and such that ≤ and ≤surj coincide on E .
Let S ∈ E . By Theorem 4.4(2) the set OQP (X) is cofinal in EQP (X) with respect to ≤.
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Therefore there exists T ∈ OQP (X) with S ≤ T . By the cofinality of E with respect to
≤ there exists Z ∈ E with T ≤ Z. Then S ≤ Z and thus (since S,Z ∈ E ) by our
assumption S ≤surj Z. But by Theorem 2.15 (since T ≤ Z) we have Z ∈MQ

P (X), which
by Lemma 4.7 yields S ∈MQ

P (X). Thus E ⊆MQ
P (X).

(2). By the definitions we have OQP (X) ⊆MQ
P (X). Also, if Y ∈MQ

P (X) then by The-
orem 4.4(2) we have Y ≤ T for some T ∈ OQP (X) and thus Y ≤surj T by Theorem 2.11.
This shows the cofinality of OQP (X) in MQ

P (X). Now let E be a subset of EQP (X) in which
OQP (X) is cofinal with respect to ≤surj. Let S ∈ E . By cofinality there exists Z ∈ OQP (X)
with S ≤surj Z. By Lemma 4.7 we have S ∈MQ

P (X). Thus E ⊆MQ
P (X).

(3). By Theorem 2.11(1.e) the set E = MQ
P (X) satisfies (4.2). Now let E be a subset

of EQP (X) which satisfies (4.2). Let S ∈ E . By (1) the set MQ
P (X) is cofinal in EQP (X)

with respect to ≤. Therefore there exists Y ∈MQ
P (X) with S ≤ Y . Thus S ≤surj Y by

(4.2). By Lemma 4.7 it follows that S ∈MQ
P (X). Therefore E ⊆MQ

P (X).
(4). By (1) the set MQ

P (X) is cofinal in EQP (X) with respect to ≤. Also, by Lemma 4.7
the set E = MQ

P (X) satisfies (4.3). Now let E be a subset of EQP (X) cofinal with respect
to ≤ and satisfying (4.3). Let Y ∈ MQ

P (X). By the cofinality of E we have Y ≤ S for
some S ∈ E . By Theorem 2.11(1.e) we have Y ≤surj S and thus by (4.3) it follows that
Y ∈ E . Therefore MQ

P (X) ⊆ E .

Recall that a partially ordered set (L,≤) is called a lattice if together with any pair of
elements a, b ∈ L it contains their least upper bound a∨ b and their greatest lower bound
a ∧ b. Our next purpose is to generalize the following result of K. D. Magill Jr. of [20],
which relates the order-structure of the lattice of compactifications of a locally compact
space X to the topology of the outgrowth βX \X. (The theorem has been generalized in
various directions; see [24] for a different proof; see [31] for generalizations to non-locally
compact spaces; see [42] and [4] for a zero-dimensional version, and [30] for extension to
mappings.) Our results here will relate the order-structure of classes of compactification-
like P-extensions of a Tychonoff space X to the topology of the subspace βX \ λPX
of βX.

Theorem 4.9 (Magill [20]). Let X and Y be locally compact non-compact spaces. The
following are equivalent:

(1) (K (X),≤) and (K (Y ),≤) are order-isomorphic.
(2) βX \X and βY \ Y are homeomorphic.

Remark. The above theorem fails if the spaces under consideration are not locally com-
pact (see [35]).

The following simple observation will be used quite often in the future (sometimes
without explicit reference).

Lemma 4.10. Let X be a Tychonoff locally-P space where P is a clopen hereditary finitely
additive perfect topological property. Then X is non-P if and only if λPX is non-compact
if and only if λPX 6= βX.

Proof. IfX has P then by the definition of λPX (and since obviouslyX ∈ Z (X)) we have
βX = intβX clβX X ⊆ λPX. Thus λPX = βX is compact. Note that if λPX is compact,
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then since X ⊆ λPX (as X is locally-P; see Lemma 2.10) we have clβX X ⊆ λPX.
Therefore by Lemma 2.4 the space X has P.

Recall that if (A,≤) and (B,≤) are partially ordered sets, a mapping f : A → B

is said to be an order-homomorphism if for any c, d ∈ A we have f(c) ≤ f(d) whenever
c ≤ d. An order-homomorphism f : A→ B is called an order-isomorphism if it is bijective
and f−1 : B → A is also an order-homomorphism. Two partially ordered sets (A,≤) and
(B,≤) are said to be order-isomorphic (denoted by (A,≤) ∼= (B,≤)) if there exists an
order-isomorphism between them.

Lemma 4.11. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. Then(

OQP (X),≤
) ∼= (K (λPX),≤

)
.

Proof. Let Y ∈ OQP (X). Let φ : βX → βY be the continuous extension of idX . Recall that
βY is the quotient space of βX obtained by contracting each φ−1(p), where p ∈ Y \X,
to a point, with φ as the corresponding quotient mapping (see Lemma 2.9). By Theorem
2.15 we have φ−1[Y \X] = βX \ λPX and thus we may assume that λPX ⊆ βY . Also,
X is dense in βY , as X is dense in Y and by Lemma 2.10 we have X ⊆ λPX. Therefore
λPX is dense in βY and thus βY is a compactification of λPX. Define

Θ :
(
OQP (X),≤

)
→
(
K (λPX),≤

)
by

Θ(Y ) = βY

for any Y ∈ OQP (X). By the above Θ is well defined. We verify that Θ is an order-
isomorphism.

Claim. Θ is an order-homomorphism.

Proof of the claim. Let Y1 ≤ Y2 where Y1, Y2 ∈ OQP (X). By definition there exists a
continuous f : Y2 → Y1 such that f |X = idX . Let fβ : βY2 → βY1 be the continuous
extension of f . By the above βYi ∈ K (λPX) for any i = 1, 2. Then fβ |λPX = idλPX , as
they both coincide with idX on X and thus by definition Θ(Y1) = βY1 ≤ βY2 = Θ(Y2).

Claim. Θ is surjective.

Proof of the claim. Let T ∈ K (λPX). Consider the subspace Y = X ∪ (T \ λPX) of T .
We verify that Y ∈ OQP (X) and that Θ(Y ) = T . Note that X is dense in T and therefore
X is dense in Y , as X is dense in λPX and λPX is dense in T . By definition λPX is
an open subset of βX and thus it is locally compact. Also, X ⊆ λPX and therefore
Y \ X = T \ λPX is compact. This shows that Y ∈ E (X). Also, βλPX = βX, as
X ⊆ λPX ⊆ βX. Let g : βX → T be the continuous extension of idλPX . By Theorem
3.5.7 of [5] we have g[βX \ λPX] = T \ λPX. Thus

βX \ λPX ⊆ g−1
[
g[βX \ λPX]

]
= g−1[T \ λPX] = g−1[Y \X].

Since X is locally-P, by Lemma 2.8 we have Y ∈ EQP (X). To show that Y is optimal
let Z ∈ Z (X) be such that Z ⊆ C for some C ∈ Coz(X) such that clX C has P. By
Lemma 2.14 we have clβX Z ⊆ λPX. Therefore since Z = g[Z] ⊆ g[clβX Z] and the latter
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is compact, clT Z ⊆ g[clβX Z]. Since g[clβX Z] ⊆ g[λPX] = λPX we have clT Z ⊆ λPX

and thus
clY Z ∩ (Y \X) ⊆ clT Z ∩ (T \ λPX) = ∅.

Theorem 2.15 now implies that Y ∈ OQP (X). Let φ : βX → βY be the continuous
extension of idX . By Theorem 2.15 we have φ−1[Y \ X] = βX \ λPX, which implies
that φ|λPX = idλPX . (Recall the construction of βY and the representation of φ given
in Lemma 2.9.) Let h : βY → T be the continuous extension of idY . The continuous
mapping hφ : βX → T is such that hφ|X = idX = g|X and therefore hφ = g. Thus (and
since φ|λPX = idλPX) we have h|λPX = g|λPX = idλPX and therefore, since h|Y = idY
and Y ∪ λPX = βY it follows that h = idβY . In particular, idβY = h : βY → T is
continuous and it is surjective (as its image contains X and X is dense in T ) and thus,
since βY is compact, it is a homeomorphism. Therefore T = βY = Θ(Y ).

Claim. For any Y1, Y2 ∈ OQP (X) if Θ(Y1) ≤ Θ(Y2) then Y1 ≤ Y2.

Proof of the claim. Let Θ(Y1) ≤ Θ(Y2) for some Y1, Y2 ∈ OQP (X). Since βY1 ≤ βY2, by
definition there exists a continuous l : βY2 → βY1 such that l|λPX = idλPX . By Theorem
3.5.7 of [5] we have l[βY2 \ λPX] = βY1 \ λPX. Note that Yi \X = βYi \ λPX for any
i = 1, 2. To see this, observe that if φi : βX → βYi where i = 1, 2, denotes the continuous
extension of idX then βYi is the quotient space of βX obtained by contracting the fibers
φ−1
i (p) where p ∈ Yi \X to points with the quotient mapping φi, and by Theorem 2.15

we have φ−1
i [Yi \X] = βX \ λPX. Therefore l[Y2 \X] = Y1 \X. Thus l|Y2 : Y2 → Y1 and

obviously it continuously extends idX . Therefore by definition Y1 ≤ Y2.

The third claim implies that Θ is injective and that Θ−1 is an order-homomorphism.
This shows that Θ is an order-isomorphism.

Recall that a partially ordered set (L,≤) is called a complete upper semilattice (com-
plete lower semilattice, respectively) if for any non-empty subset A of L the least upper
bound

∨
A (the greatest lower bound

∧
A, respectively) exists in L. A partially ordered

set (L,≤) is called a complete lattice if it is both a complete upper semilattice and a
complete lower semilattice. It is well known that for any Tychonoff X the set K (X) of
its all compactifications, partially ordered with ≤, is a complete upper semilattice, and
it is a complete lattice if and only if X is locally compact (see Propositions 4.2(a) and
4.3(e) of [29]). The following corollary of Lemma 4.11 is now immediate.

Corollary 4.12. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q. Then (OQP (X),≤) is a complete lattice.

The following theorem relates the order-structure of the set of optimal P-extensions
of a Tychonoff locally-P space X and the topology of the subspace βX \ λPX of βX.
This generalizes K. D. Magill Jr.’s theorem [20, Theorem 5.1] provided that one replaces
P and Q, respectively, by compactness and regularity, and notes that for these specific
choices of P and Q and a locally compact space X we have λPX = X and OQP (X)
= K (X).

Theorem 4.13. Let P and Q be a pair of compactness-like topological properties. Let X
and Y be Tychonoff locally-P non-P spaces with Q. The following are equivalent:
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(1) (OQP (X),≤) and (OQP (Y ),≤) are order-isomorphic.
(2) βX \ λPX and βY \ λPY are homeomorphic.

Proof. Note that λPX is locally compact, as it is open in βX, and by Lemma 4.10
(since X is non-P) it is non-compact. Also, since X is locally-P, by Lemma 2.10 we
have X ⊆ λPX and thus (since λPX ⊆ βX) we have βλPX = βX. Similar statements
hold for Y . By Theorem 5.1 the partially ordered sets K (λPX) and K (λPY ) are order-
isomorphic if and only if βλPX \ λPX (= βX \ λPX) and βλPY \ λPY (= βY \ λPY )
are homeomorphic. Now Lemma 4.11 shows the equivalence of (1) and (2).

Our next purpose is to state and prove a result for minimal P-extensions which is
analogous to (1)⇒(2) in Theorem 4.13. As we will see, there is no counterpart for (2)⇒(1)
in Theorem 4.13 in the case of minimal P-extensions. This will be shown by means of
an example. (This is the first place in this article where the duality between minimal
P-extensions and optimal P-extensions disappears.) The example, however, is long and
quite technical, and requires several lemmas. The reader who is not interested in the
construction of the example may skip Lemmas 4.21, 4.22, 4.26, 4.28, 4.29, 4.30, 4.31, 4.33
and 4.34 and replace Lemma 4.33 by Lemma 4.32 in the proof of Theorem 4.36 ((1)⇒(2)).

The following lemma is a counterpart of Lemma 4 in [20].

Lemma 4.14. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. For an n ∈ N, let K1, . . . ,Kn be n pairwise
disjoint compact subsets of βX \X such that Ki \λPX is non-empty for any i = 1, . . . , n.
Then there exists a unique Y in MQ

P (X) such that

F (Y ) =
{
{p} : p ∈ (βX \ λPX) \

n⋃
i=1

Ki

}
∪ {K1, . . . ,Kn}. (4.4)

Proof. Let T be the space obtained from βX by contracting the sets K1, . . . ,Kn to points
p1, . . . , pn, respectively, and denote by q : βX → T the quotient mapping. Since Ki’s are
compact, T is Hausdorff and thus compact, being a continuous image of βX. Consider
the subspace

Y = q
[
X ∪ (βX \ λPX) ∪

n⋃
i=1

Ki

]
of T . Then Y is a Tychonoff extension of X with the compact remainder

Y \X = q
[
(βX \ λPX) ∪

n⋃
i=1

Ki

]
.

Note that T is a compactification of Y and thus Y ∈ EQP (X) by Lemma 2.8. Also, by
Lemma 2.9 if φ : βX → βY continuously extends idX , then βY coincides with the
quotient space of βX obtained by contracting each fiber φ−1(p) where p ∈ Y \ X to
a point, that is, βY = T . This shows (4.4). The fact that Y ∈ MQ

P (X) follows from
Theorem 2.11.

For the uniqueness part, let Y ′ ∈ MQ
P (X) be such that F (Y ′) = F (Y ). Let ψ :

βX → βY ′ be the continuous extension of idX . By Lemma 2.9 we have βY ′ = T and
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ψ = q. Thus

Y ′ = q
[
X ∪ (βX \ λPX) ∪

n⋃
i=1

Ki

]
= Y.

Notation 4.15. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q. Let n ∈ N and let K1, . . . ,Kn be n
pairwise disjoint compact subsets of βX \ X such that Ki \ λPX is non-empty for any
i = 1, . . . , n. Denote by eX(K1, . . . ,Kn) the unique element of MQ

P (X) such that

F
(
eX(K1, . . . ,Kn)

)
=
{
{p} : p ∈ (βX \ λPX) \

n⋃
i=1

Ki

}
∪ {K1, . . . ,Kn}.

The next lemma is a counterpart of Lemma 6 in [20].

Lemma 4.16. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. Let Ki, where i = 1, 2, be a compact subset
of βX \X such that Ki \ λPX is non-empty. Then

(1) eX(K1) ∧ eX(K2) = eX(K1,K2) if K1 ∩K2 = ∅.
(2) eX(K1) ∧ eX(K2) = eX(K1 ∪K2) if K1 ∩K2 6= ∅.
Here ∧ is the operation in MQ

P (X).

Proof. This follows from Lemma 2.13. In (2) note that if Y ∈ MQ
P (X) is such that

Y ≤ eX(Ki) for any i = 1, 2, then by Lemma 2.13 we have Ki ⊆ Fi for some Fi ∈ F (Y ).
But by our assumption K1 ∩ K2 is non-empty and thus F1 ∩ F2 is non-empty, which
implies that F1 = F2. Therefore K1 ∪K2 ⊆ F1 and thus again by Lemma 2.13 it follows
that Y ≤ eX(K1 ∪K2).

Let (X,≤) be a partially ordered set with the largest element u. An element a ∈ X
is called an anti-atom in X if a 6= u and there exists no x ∈ X with a < x < u.

The following lemma is a counterpart of Lemma 9 in [20].

Lemma 4.17. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. The following are equivalent:

(1) Y is an anti-atom in MQ
P (X).

(2) Y = eX({a, b}) for some distinct a, b ∈ βX\X such that either a /∈ λPX or b /∈ λPX.

Proof. Note that MQ
P (X) has the largest element ζPX = X ∪ (βX \λPX). To show this

first note that by Lemma 2.10 we have X ⊆ λPX. Thus ζPX is a Tychonoff extension of
X which (since λPX is open in βX) has a compact remainder. Since X ⊆ ζPX ⊆ βX we
have βζPX = βX (see Corollary 3.6.9 of [5]). It follows from Lemma 2.8 (with Y = X,
f = idX , T = ζPX, αT = βX and φ = idβX) that ζPX has both P and Q and from
Theorem 2.11 that ζPX ∈ MQ

P (X). That ζPX is the largest element of MQ
P (X) now

follows from Theorem 2.11 and Lemma 2.13.
That (2) implies (1) is trivial.
(1) implies (2). Suppose that Y is an anti-atom in MQ

P (X). We show that except
for a 2-element set the rest of the sets in F (Y ) are singletons; the uniqueness part
of Lemma 4.14 will then imply (2). Suppose to the contrary that there exist distinct
F1, F2 ∈ F (Y ) such that card(Fi) ≥ 2 for any i = 1, 2. By Theorem 2.11 the set Fi \λPX
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is non-empty for any i = 1, 2; choose distinct ai, bi ∈ Fi such that ai /∈ λPX. Then
eX({ai, bi}), where i = 1, 2, are distinct elements of MQ

P (X) and Y ≤ eX({ai, bi}), which
contradicts (1). Thus there is at most one set in F (Y ) which is not a singleton, and since
Y 6= ζPX, there is at least one such set. Let F ∈ F (Y ) be such that card(F ) ≥ 2. Suppose
that card(F ) > 2. By Theorem 2.11 the set F \ λPX is non-empty. Let a ∈ F \ λPX
and let b, c ∈ F be distinct elements distinct from a. Then eX({a, b}) and eX({a, c}) are
distinct elements of MQ

P (X) and Y ≤ eX({a, b}) and Y ≤ eX({a, c}). This contradiction
proves that card(F ) = 2.

Definition 4.18. Let P and Q be a pair of compactness-like topological properties.
Let X be a Tychonoff locally-P non-P space with Q. An anti-atom Y = eX({a, b}) of
MQ
P (X) is said to be of type (I) if {a, b} ∩ λPX is non-empty; otherwise, Y is said to be

of type (II).

The purpose of the next two lemmas is to give an order-theoretic characterization of
anti-atoms of type (I) (and thus anti-atoms of type (II) as well) in MQ

P (X).

Lemma 4.19. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q such that card(λPX \X) ≥ 2. Then

(1) card(βX \ λPX) = 1 if and only if for any pair of distinct anti-atoms Y and Y ′ in
MQ
P (X) we have

card
({
T : T is an anti-atom in MQ

P (X) and Y ∧ Y ′ ≤ T
})

= 2.

(2) card(βX \λPX) = 2 if and only if there exists an anti-atom Y in MQ
P (X) such that

for any anti-atom Y ′ in MQ
P (X) with Y ′ 6= Y we have

card
({
T : T is an anti-atom in MQ

P (X) and Y ∧ Y ′ ≤ T
})

= 3.

(3) card(βX \ λPX) ≥ 3 if and only if there exist some anti-atoms Y , Y ′ and Y ′′ in
MQ
P (X) such that

card
({
T : T is an anti-atom in MQ

P (X) and Y ∧ Y ′ ∧ Y ′′ ≤ T
})

= 6.

Here ∧ is the operation in MQ
P (X).

Proof. Since X is locally-P, by Lemma 2.10 we have X ⊆ λPX, and since X is moreover
non-P, by Lemma 4.10 the set βX \ λPX is non-empty.

(1). Suppose that card(βX \ λPX) = 1. Let βX \ λPX = {a}.
Let Y and Y ′ be distinct anti-atoms in MQ

P (X). Then by Lemma 4.17 we have

Y = eX
(
{a, b}

)
and Y ′ = eX

(
{a, c}

)
for some b, c ∈ λPX \X. By Lemmas 2.13 and 4.14 the elements b and c are distinct. By
Lemma 4.16 we have

Y ∧ Y ′ = eX
(
{a, b}

)
∧ eX

(
{a, c}

)
= eX

(
{a, b, c}

)
.

Using Lemmas 2.13, 4.14 and 4.17 it now follows that there are only two anti-atoms T
in MQ

P (X) with Y ∧ Y ′ ≤ T , namely,

eX
(
{a, b}

)
and eX

(
{a, c}

)
.
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To show the converse, suppose that card(βX \ λPX) 6= 1. Choose distinct a, b ∈
βX \ λPX and c ∈ λPX \X. By Lemma 4.17 the elements

Y = eX
(
{a, b}

)
, Y ′ = eX

(
{a, c}

)
and Y ′′ = eX

(
{b, c}

)
are anti-atoms in MQ

P (X) and by Lemmas 2.13 and 4.14 they are distinct. By Lemma
4.16 we have

Y ∧ Y ′ = eX
(
{a, b}

)
∧ eX

(
{a, c}

)
= eX

(
{a, b, c}

)
and if T is either Y , Y ′ or Y ′′ then by Lemmas 2.13, 4.14 and 4.17 we have Y ∧ Y ′ ≤ T .

(2). Suppose that card(βX \ λPX) = 2. Let βX \ λPX = {a, b}.
Let Y = eX({a, b}). Then by Lemma 4.17 the element Y is an anti-atom in MQ

P (X).
Now let Y ′ be an anti-atom in MQ

P (X) with Y ′ 6= Y . By Lemma 4.17 we have Y ′ =
eX({c, d}) for some distinct c, d ∈ βX \ X with either c /∈ λPX or d /∈ λPX. Without
any loss of generality we may assume that c /∈ λPX and c = a. By Lemma 4.16 we have

Y ∧ Y ′ = eX
(
{a, b}

)
∧ eX

(
{a, d}

)
= eX

(
{a, b, c}

)
.

Now using Lemmas 2.13, 4.14 and 4.17 if T is either

eX
(
{a, b}

)
, eX

(
{a, d}

)
or eX

(
{b, d}

)
(4.5)

then T is an anti-atom in MQ
P (X) and Y ∧ Y ′ ≤ T , and conversely any anti-atom T in

MQ
P (X) with Y ∧ Y ′ ≤ T is of the above form. By Lemmas 2.13 and 4.14 the elements

in (4.5) are distinct.
To show the converse, suppose that card(βX \λPX) 6= 2. Either card(βX \λPX) = 1

or card(βX \ λPX) ≥ 3. Consider the following cases:

Case 1. Suppose that card(βX \ λPX) = 1. Let βX \ λPX = {a}. Let Y be an anti-
atom in MQ

P (X). By Lemma 4.17 we have Y = eX({a, b}) for some b ∈ λPX \X.
Let c ∈ λPX \ X be distinct from b. (Such a c exists, as we are assuming that
card(λPX \ X) ≥ 2.) Let Y ′ = eX({a, c}). Then by Lemma 4.17 the element Y ′

is an anti-atom in MQ
P (X) and by Lemmas 2.13 and 4.14 we have Y ′ 6= Y . By

Lemma 4.16 we have

Y ∧ Y ′ = eX
(
{a, b}

)
∧ eX

(
{a, c}

)
= eX

(
{a, b, c}

)
.

Now using Lemmas 2.13, 4.14 and 4.17 it follows that the anti-atoms T in MQ
P (X)

with Y ∧ Y ′ ≤ T are exactly eX({a, b}) and eX({a, c}).
Case 2. Suppose that card(βX \ λPX) ≥ 3. Let Y be an anti-atom in MQ

P (X). By
Lemma 4.17 we have Y = eX({a, b}) for some distinct a, b ∈ βX \ X with either
a /∈ λPX or b /∈ λPX. Choose c ∈ βX \ λPX and d ∈ λPX \X such that neither
c /∈ {a, b} nor d /∈ {a, b}. (Again, we are using the fact that card(λPX \X) ≥ 2.) Let
Y ′ = eX({c, d}). Then by Lemma 4.17 the element Y ′ is an anti-atom in MQ

P (X)
and by Lemmas 2.13 and 4.14 we have Y ′ 6= Y . By Lemma 4.16 we have

Y ∧ Y ′ = eX
(
{a, b}

)
∧ eX

(
{c, d}

)
= eX

(
{a, b}, {c, d}

)
.

Now as above the anti-atoms T in MQ
P (X) with Y ∧Y ′ ≤ T are exactly eX({a, b})

and eX({c, d}).
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Thus in either case for a given anti-atom Y in MQ
P (X) we can find an anti-atom Y ′ in

MQ
P (X) distinct from Y with at most two anti-atoms T in MQ

P (X) with Y ∧ Y ′ ≤ T .
(3). Suppose that card(βX \ λPX) ≥ 3.
Choose distinct a, b, c ∈ βX \ λPX and d ∈ λPX \X. By Lemma 4.17 the elements

Y = eX
(
{a, b}

)
, Y ′ = eX

(
{b, c}

)
and Y ′′ = eX

(
{c, d}

)
are anti-atoms in MQ

P (X). By Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, b}

)
∧ eX

(
{b, c}

)
∧ eX

(
{c, d}

)
= eX

(
{a, b, c}

)
∧ eX

(
{c, d}

)
= eX

(
{a, b, c, d}

)
and therefore, using Lemmas 2.13, 4.14 and 4.17 it follows that there are six anti-atoms
T in MQ

P (X) with Y ∧ Y ′ ∧ Y ′′ ≤ T , namely,

eX
(
{a, b}

)
, eX

(
{a, c}

)
, eX

(
{a, d}

)
, eX

(
{b, c}

)
, eX

(
{b, d}

)
and eX

(
{c, d}

)
.

To show the converse, suppose that card(βX \ λPX) ≤ 2. Consider the following
cases:

Case 1. Suppose that card(βX \ λPX) = 1. Let βX \ λPX = {a}. Let Y , Y ′ and Y ′′

be anti-atoms in MQ
P (X). By Lemma 4.17 we have

Y = eX
(
{a, b}

)
, Y ′ = eX

(
{a, c}

)
and Y ′′ = eX

(
{a, d}

)
for some b, c, d ∈ λPX \X. Using Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, b}

)
∧ eX

(
{a, c}

)
∧ eX

(
{a, d}

)
= eX

(
{a, b, c}

)
∧ eX

(
{a, d}

)
= eX

(
{a, b, c, d}

)
and therefore, using Lemmas 2.13, 4.14 and 4.17 it follows that the only anti-atoms
T in MQ

P (X) with Y ∧ Y ′ ∧ Y ′′ ≤ T are eX({a, b}), eX({a, c}) and eX({a, d}).
Case 2. Suppose that card(βX \ λPX) = 2. Let βX \ λPX = {a, b}. Let Y , Y ′ and Y ′′

be anti-atoms in MQ
P (X). Consider the following cases:

Case 2.a. Suppose that eX({a, b}) /∈ {Y, Y ′, Y ′′}. Consider the following cases:

Case 2.a.i. Suppose that

Y = eX
(
{c, d}

)
, Y ′ = eX

(
{c, e}

)
and Y ′′ = eX

(
{c, f}

)
where c is either a or b and d, e, f ∈ λPX \X. By Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{c, d}

)
∧ eX

(
{c, e}

)
∧ eX

(
{c, f}

)
= eX

(
{c, d, e}

)
∧ eX

(
{c, f}

)
= eX

(
{c, d, e, f}

)
and therefore, again using Lemmas 2.13, 4.14 and 4.17 it follows that
the only anti-atoms T in MQ

P (X) with Y ∧ Y ′ ∧ Y ′′ ≤ T are eX({c, d}),
eX({c, e}) and eX({c, f}).

Case 2.a.ii. Suppose that either

Y = eX
(
{a, d}

)
, Y ′ = eX

(
{a, e}

)
and Y ′′ = eX

(
{b, f}

)
or

Y = eX
(
{b, d}

)
, Y ′ = eX

(
{b, e}

)
and Y ′′ = eX

(
{a, f}

)
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where d, e, f ∈ λPX \X. Without any loss of generality we may assume
that the first of the above cases occurs. Suppose that f /∈ {d, e}. Then by
Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, d}

)
∧ eX

(
{a, e}

)
∧ eX

(
{b, f}

)
= eX

(
{a, d, e}

)
∧ eX

(
{b, f}

)
= eX

(
{a, d, e}, {b, f}

)
and therefore as above it then follows that the anti-atoms T in MQ

P (X)
with Y ∧ Y ′ ∧ Y ′′ ≤ T are exactly eX({a, d}), eX({a, e}) and eX({b, f}).
Now suppose that f ∈ {d, e}, say f = d. Then by Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, d}

)
∧ eX

(
{a, e}

)
∧ eX

(
{b, f}

)
= eX

(
{a, d, e}

)
∧ eX

(
{b, d}

)
= eX

(
{a, b, d, e}

)
and therefore as above it follows that the anti-atoms T in MQ

P (X) such
that Y ∧ Y ′ ∧ Y ′′ ≤ T are exactly eX({a, b}), eX({a, d}), eX({a, e}),
eX({b, d}) and eX({b, e}).

Case 2.b. Suppose that eX({a, b}) ∈ {Y, Y ′, Y ′′}, say Y = eX({a, b}). Consider
the following cases:
Case 2.b.i. Suppose that Y ′ = eX({c, d}) and Y ′′ = eX({c, e}) where c is

either a or b, say c = a, and d, e ∈ λPX \ X. Then by Lemma 4.16 we
have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, b}

)
∧ eX

(
{a, d}

)
∧ eX

(
{a, e}

)
= eX

(
{a, b, d}

)
∧ eX

(
{a, e}

)
= eX

(
{a, b, d, e}

)
and therefore using Lemmas 2.13, 4.14 and 4.17 it follows that the anti-
atoms T in MQ

P (X) such that Y ∧ Y ′ ∧ Y ′′ ≤ T are exactly eX({a, b}),
eX({a, d}), eX({a, e}), eX({b, d}) and eX({b, e}).

Case 2.b.ii. Suppose that Y ′ = eX({a, d}) and Y ′′ = eX({b, e}) where d, e ∈
λPX \X. Then by Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, b}

)
∧ eX

(
{a, d}

)
∧ eX

(
{b, e}

)
= eX

(
{a, b, d}

)
∧ eX

(
{b, e}

)
= eX

(
{a, b, d, e}

)
and therefore as above it follows that the anti-atoms T in MQ

P (X) such
that Y ∧ Y ′ ∧ Y ′′ ≤ T are exactly eX({a, b}), eX({a, d}), eX({a, e}),
eX({b, d}) and eX({b, e}).

Thus in either case for any given anti-atoms Y , Y ′ and Y ′′ of MQ
P (X) there are at most

five anti-atoms T in MQ
P (X) with Y ∧ Y ′ ∧ Y ′′ ≤ T .

Lemma 4.20. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q such that card(λPX \X) ≥ 2.

(1) Suppose that card(βX \ λPX) = 1. Then any anti-atom of MQ
P (X) is of type (I).

(2) Suppose that card(βX \ λPX) = 2. Then an anti-atom Y of MQ
P (X) is of type (I) if

and only if there exists an anti-atom Y ′ of MQ
P (X) such that

card
({
T : T is an anti-atom in MQ

P (X) and Y ∧ Y ′ ≤ T
})

= 2.
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(3) Suppose that card(βX \ λPX) ≥ 3. Then an anti-atom Y of MQ
P (X) is of type (I) if

and only if there exists an anti-atom Y ′ of MQ
P (X) with Y ′ 6= Y such that for any

anti-atom Y ′′ of MQ
P (X) we have

card
({
T : T is an anti-atom in MQ

P (X) and Y ∧ Y ′ ∧ Y ′′ ≤ T
})
≤ 5.

Here ∧ is the operation in MQ
P (X).

Proof. By Lemmas 2.10 and 4.10 we have X ⊆ λPX and that βX \ λPX is non-empty.
(1). This is obvious.
(2). Suppose that card(βX \λPX) = 2. Let βX \λPX = {a, b}. Suppose that Y is an

anti-atom in MQ
P (X) of type (I). Then Y = eX({c, e}) where c is either a or b, say c = a,

and e ∈ λPX \X. Choose some d ∈ λPX \X such that d 6= e. (Such a d exists, as we are
assuming that card(λPX \X) ≥ 2.) Then by Lemma 4.17 the element Y ′ = eX({b, d})
is an anti-atom in MQ

P (X). By Lemma 4.16 we have

Y ∧ Y ′ = eX
(
{a, e}

)
∧ eX

(
{b, d}

)
= eX

(
{a, e}, {b, d}

)
and thus the anti-atoms T in MQ

P (X) with Y ∧ Y ′ ≤ T are exactly eX({a, e}) and
eX({b, d}) which by Lemmas 2.13 and 4.14 are distinct.

To show the converse, suppose that an anti-atom Y of MQ
P (X) is not of type (I).

Then necessarily Y = eX({a, b}). Let Y ′ be an anti-atom of MQ
P (X). If Y ′ = Y then the

only anti-atom T of MQ
P (X) with Y = Y ∧ Y ′ ≤ T is Y itself. Suppose that Y ′ 6= Y .

Using Lemmas 2.13, 4.14 and 4.17 we have Y ′ = eX({c, e}), where c is either a or b, say
c = a, and e ∈ λPX \X. By Lemma 4.16 we have

Y ∧ Y ′ = eX
(
{a, b}

)
∧ eX

(
{a, e}

)
= eX

(
{a, b, e}

)
and therefore, again using Lemmas 2.13, 4.14 and 4.17 there are exactly three anti-atoms
T of MQ

P (X) with Y ∧ Y ′ ≤ T , namely, eX({a, b}), eX({a, e}) and eX({b, e}). Thus in
either case the number of anti-atoms T in MQ

P (X) with Y ∧ Y ′ ≤ T is not 2.
(3). Suppose that card(βX \ λPX) ≥ 3. Suppose that Y is an anti-atom in MQ

P (X)
of type (I). By Lemma 4.17 we have Y = eX({a, b}) for some distinct a, b ∈ βX \ X
such that either a /∈ λPX or b /∈ λPX. Choose some c ∈ λPX \X distinct from b (this
is possible as we are assuming that card(λPX \X) ≥ 2) and let Y ′ = eX({a, c}). Then
Y ′ is an anti-atom in MQ

P (X) by Lemma 4.17, and Y ′ 6= Y by Lemmas 2.13 and 4.14.
Let Y ′′ be an anti-atom in MQ

P (X). By Lemma 4.17 we have Y ′′ = eX({d, e}) where
d, e ∈ βX \ X are distinct and either d /∈ λPX or e /∈ λPX. Consider the following
cases:

Case 1. Suppose that {a, b, c} ∩ {d, e} = ∅. By Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, b}

)
∧ eX

(
{a, c}

)
∧ eX

(
{d, e}

)
= eX

(
{a, b, c}

)
∧ eX

(
{d, e}

)
= eX

(
{a, b, c}, {d, e}

)
and therefore using Lemmas 2.13, 4.14 and 4.17 the anti-atoms T in MQ

P (X) such
that Y ∧ Y ′ ∧ Y ′′ ≤ T are exactly eX({a, b}), eX({a, c}) and eX({d, e}).
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Case 2. Suppose that {a, b, c} ∩ {d, e} 6= ∅. By Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, b}

)
∧ eX

(
{a, c}

)
∧ eX

(
{d, e}

)
= eX

(
{a, b, c}

)
∧ eX

(
{d, e}

)
= eX

(
{a, b, c, d, e}

)
.

Consider the following cases:

Case 2.a. Suppose that a ∈ {d, e}, say a = d. Consider the following cases:

Case 2.a.i. Suppose that {d, e} ∩ λPX = ∅. Now using Lemmas 2.13, 4.14
and 4.17 the anti-atoms T in MQ

P (X) with Y ∧ Y ′ ∧ Y ′′ ≤ T are exactly
eX({a, b}), eX({a, c}), eX({a, e}), eX({b, e}) and eX({c, e}).

Case 2.a.ii. Suppose that {d, e} ∩ λPX 6= ∅. Then necessarily e ∈ λPX and
therefore as above the anti-atoms T in MQ

P (X) such that Y ∧Y ′∧Y ′′ ≤ T
are exactly eX({a, b}), eX({a, c}) and eX({a, e}).

Case 2.b. Suppose that a /∈ {d, e}. Then {b, c}∩{d, e} is non-empty. Without any
loss of generality we may assume that c = d. This implies that e /∈ λPX

and therefore again using Lemmas 2.13, 4.14 and 4.17 the anti-atoms T in
MQ
P (X) with Y ∧Y ′ ∧Y ′′ ≤ T are exactly eX({a, b}), eX({a, c}), eX({a, e}),

eX({b, e}) and eX({c, e}).

Thus for this choice of Y ′, for any anti-atom Y ′′ of MQ
P (X) the number of anti-atoms T

of MQ
P (X) with Y ∧ Y ′ ∧ Y ′′ ≤ T is at most 5.

To show the converse, suppose that an anti-atom Y of MQ
P (X) is not of type (I). Then

Y = eX({a, b}) for some distinct a, b ∈ βX \ λPX. Let Y ′ be an anti-atom in MQ
P (X)

distinct from Y . By Lemma 4.17 we have Y ′ = eX({c, d}) for some distinct c, d ∈ βX \X
with either c /∈ λPX or d /∈ λPX. Consider the following cases:

Case 1. Suppose that {a, b} ∩ {c, d} = ∅. Let Y ′′ = eX({b, c}). By Lemma 4.17 the
element Y ′′ is an anti-atom in MQ

P (X). By Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, b}

)
∧ eX

(
{c, d}

)
∧ eX

(
{b, c}

)
= eX

(
{a, b}

)
∧ eX

(
{b, c, d}

)
= eX

(
{a, b, c, d}

)
and therefore using Lemmas 2.13, 4.14 and 4.17 there are exactly six anti-atoms T
in MQ

P (X) such that Y ∧ Y ′ ∧ Y ′′ ≤ T , namely, eX({a, b}), eX({a, c}), eX({a, d}),
eX({b, c}), eX({b, d}) and eX({c, d}).

Case 2. Suppose that {a, b}∩{c, d} 6= ∅. Without any loss of generality we may assume
that b = c. Consider the following cases:

Case 2.a. Suppose that d /∈ λPX. Choose some e ∈ λPX \X. (This is possible as
we are assuming that card(λPX \X) ≥ 2.)

Case 2.b. Suppose that d ∈ λPX. Choose some e ∈ βX \λPX distinct from both
a and b. (This is possible as we are assuming that card(βX \ λPX) ≥ 3.)

Now let Y ′′ = eX({a, e}). By Lemma 4.17 the element Y ′′ is an anti-atom in
MQ
P (X). By Lemma 4.16 we have

Y ∧ Y ′ ∧ Y ′′ = eX
(
{a, b}

)
∧ eX

(
{b, d}

)
∧ eX

(
{a, e}

)
= eX

(
{a, b, d}

)
∧ eX

(
{a, e}

)
= eX

(
{a, b, d, e}

)
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and therefore as above there are exactly six anti-atoms T in MQ
P (X) such that

Y ∧ Y ′ ∧ Y ′′ ≤ T , namely, eX({a, b}), eX({a, d}), eX({a, e}), eX({b, d}), eX({b, e})
and eX({d, e}).

Thus in either case for a given anti-atom Y ′ of MQ
P (X) distinct from Y there is an anti-

atom Y ′′ in MQ
P (X) with exactly six anti-atoms T in MQ

P (X) such that Y ∧Y ′∧Y ′′ ≤ T .

The following lemma together with Lemmas 4.19 and 4.20 above gives an order-
theoretic characterization of one-point extensions in MQ

P (X).

Lemma 4.21. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff locally-P non-P space with Q and let Y ∈ MQ

P (X). The following are
equivalent:

(1) Y is a one-point extension of X.
(2) Y ≤ T for any anti-atom T of MQ

P (X) of type (II).

Proof. Let φ : βX → βY be the continuous extension of idX . By Lemma 2.8 we have
βX \ λPX ⊆ φ−1[Y \ X]. Also, Lemmas 2.10 and 4.10 imply that X ⊆ λPX and that
βX \ λPX is non-empty.

(1) implies (2). Note that F (Y ) = {φ−1[Y \X]}. Let T be an anti-atom in MQ
P (X)

of type (II). Then Y = eX({a, b}) for some distinct a, b ∈ βX \ λPX. Since {a, b} ⊆
φ−1[Y \X] it follows from Lemmas 2.13 and 4.14 that Y ≤ T .

(2) implies (1). Note that Y \ X is non-empty, as βX \ λPX ⊆ φ−1[Y \ X] and
βX \ λPX is non-empty. Suppose that card(Y \X) ≥ 2. Let F,G ∈ F (Y ) be distinct.
By Theorem 2.11 both F \ λPX and G \ λPX are non-empty. Let a ∈ F \ λPX and
b ∈ G \λPX. Then T = eX({a, b}) is an anti-atom in MQ

P (X) of type (II), while Y � T .
This shows that Y \X is a one-point set.

The following lemma is well known. It is included here for the sake of completeness.

Lemma 4.22. Let X be a Tychonoff space. Then for any compact non-empty subset C of
βX \X there exists a unique one-point Tychonoff extension Y of X with C = φ−1[Y \X],
where φ : βX → βY is the continuous extension of idX .

Proof. Let Z be the quotient space of βX obtained by contracting C to a point p with
the quotient mapping q : βX → Z. Note that Z is compact, being a Hausdorff continuous
image of βX. Consider the subspace Y = X ∪{p} of Z. Then Y is a one-point Tychonoff
extension of X. We show that Z = βY and q = φ where φ : βX → βY is the continuous
extension of idX . Note that Z is a compactification of Y , as it contains Y as a dense
subspace. Thus to show that Z = βY it suffices to verify that any continuous h : Y → I
is continuously extendable over Z. Indeed, let G : βX → I be the continuous extension
of hq|(X ∪ C) : X ∪ C → I. (Note that β(X ∪ C) = βX, as X ⊆ X ∪ C ⊆ βX; see
Corollary 3.6.9 of [5].) Define H : T → I such that H|(βX ∪ C) = G|(βX ∪ C) and
H(p) = h(p). Then H|Y = h, and since Hq = G is continuous, H is continuous. This
shows that Z = βY . That q = φ follows easily, as they are both continuous and coincide
with idX on the dense subset X of βX. We have

C = q−1(p) = q−1[Y \X] = φ−1[Y \X].
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For the uniqueness part, note that if T is also a one-point Tychonoff extension of X such
that C = ψ−1[T \ X], where ψ : βX → βT is the continuous extension of idX , then
F (T ) = {C} = F (Y ) and thus T = Y by Lemma 2.13.

Notation 4.23. For a Tychonoff space X and a compact non-empty subset C of βX \X
denote by eCX the unique one-point Tychonoff extension Y of X with C = φ−1[Y \X],
where φ : βX → βY is the continuous extension of idX .

Notation 4.24. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q. Denote

MX
P = eCX

where C = βX \ λPX.

Remark. In Notation 4.24 the set C = βX \ λPX is a compact subset of βX \X and
it is non-empty; see Lemma 4.10. Therefore the above definition of eCX makes sense.

In the following we associate to any element Y in MQ
P (X) a certain one-point ex-

tension YU in MQ
P (X). This will be used in Lemma 4.31 when we order-theoretically

characterize the locally compact elements of MQ
P (X).

Notation 4.25. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q and let Y ∈MQ

P (X). Denote

YU = eCX

where C = φ−1[Y \X] and φ : βX → βY is the continuous extension of idX .

Remark. The definition in Notation 4.25 makes sense, as C is a compact subset of
βX \X and since by Lemma 2.8 we have βX \ λPX ⊆ φ−1[Y \X], it is non-empty (as
βX \ λPX is non-empty; see Lemma 4.10).

The following lemma together with Lemmas 4.19, 4.20 and 4.21 gives an order-
theoretic characterization of the element YU we already associated to any Y in MQ

P (X).

Lemma 4.26. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q and let Y ∈MQ

P (X). Then YU is the largest
T ∈MQ

P (X) satisfying the following:

(1) T is a one-point extension of X.
(2) T ≤ Y ′ for any anti-atom Y ′ of MQ

P (X) of type (I) such that Y ≤ Y ′.

Proof. Let φ : βX → βY and φU : βX → βYU denote the continuous extensions of
idX . By Lemma 4.22 we have φ−1[Y \ X] = φ−1

U [YU \ X] and thus YU ∈ MQ
P (X) by

Lemma 2.8 and Theorem 2.11, as βX \ λPX ⊆ φ−1[Y \X] and by Lemma 4.10 the set
βX \λPX is non-empty. Obviously, YU satisfies (1). To show that YU satisfies (2), let Y ′

be an anti-atom of MQ
P (X) of type (I) such that Y ≤ Y ′. Let Y ′ = eX({a, b}). Then by

Lemmas 2.13 and 4.14 we have {a, b} ⊆ F for some F ∈ F (Y ). Since F ⊆ φ−1[Y \X] we
have {a, b} ⊆ φ−1

U [YU \X] and therefore, again by Lemmas 2.13 and 4.14 it follows that
YU ≤ Y ′. Now we show that YU is the largest element of MQ

P (X) satisfying (1)–(2). Let
(1)–(2) hold for some T ∈MQ

P (X). Let ψ : βX → βT be the continuous extension of idX .
To show that T ≤ YU , by Lemma 2.13, it suffices to show that φ−1

U [YU \X] ⊆ ψ−1[T \X].
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Let c ∈ φ−1
U [YU \ X]. Suppose that c ∈ βX \ λPX. Then obviously c ∈ ψ−1[T \ X], as

βX \λPX ⊆ ψ−1[T \X] by Lemma 2.8. Now suppose that c ∈ λPX. Since c ∈ φ−1[Y \X]
there exists G ∈ F (Y ) such that c ∈ G. By Theorem 2.11 the set G \λPX is non-empty.
Let d ∈ G \ λPX. Then Y ′ = eX({c, d}) is an anti-atom in MQ

P (X) of type (I) which by
Lemmas 2.13 and 4.14 is such that Y ≤ Y ′. Thus by our assumption T ≤ Y ′. Therefore
again using Lemmas 2.13 and 4.14 it follows that {c, d} ⊆ ψ−1[T \X]. Thus c ∈ ψ−1[T \X]
in this case as well. Hence φ−1

U [YU \X] ⊆ ψ−1[T \X], which completes the proof.

In the following we define, and then order-theoretically characterize, certain elements
of MQ

P (X). This will have an application in the order-theoretic characterization of locally
compact elements of MQ

P (X) given in Lemma 4.31.

Definition 4.27. Let P and Q be a pair of compactness-like topological properties. Let
X be a Tychonoff locally-P non-P space with Q. An element Y ∈ MQ

P (X) is called
almost optimal provided that λPX ∩ φ−1[Y \X] is compact, where φ : βX → βY is the
continuous extension of idX .

Lemma 4.28. Let P and Q be a pair of compactness-like topological properties. Let X be
a Tychonoff locally-P non-P space with Q. Let {Yi : i ∈ I} ⊆ MQ

P (X) be a non-empty
collection of one-point extensions of X. Then

(1) The least upper bound
∨
i∈I Yi exists in MQ

P (X).
(2) If Y =

∨
i∈I Yi then Y is a one-point extension of X and

φ−1[Y \X] =
⋂
i∈I

φ−1
i [Yi \X]

where φ : βX → βY and φi : βX → βYi for any i ∈ I denote the continuous
extensions of idX .

Here ∨ is the operation in MQ
P (X).

Proof. Let φi : βX → βYi for any i ∈ I be the continuous extension of idX . Let

C =
⋂
i∈I

φ−1
i [Yi \X].

Then C is compact, as it is closed in βX, and obviously C ⊆ βX \ X, as φi|X = idX
for any i ∈ I (and I is non-empty). By Lemma 2.8 we have βX \ λPX ⊆ φ−1

i [Yi \ X]
for any i ∈ I. Therefore βX \ λPX ⊆ C, which implies that C is non-empty, as by
Lemma 4.10 the set βX \ λPX is non-empty. Let Y = eCX. Then Y is a one-point
Tychonoff extension of X and Y ∈ MQ

P (X) by Lemma 2.8 and Theorem 2.11, since if
φ : βX → βY denotes the continuous extensions of idX , then using Lemma 4.22 we have
βX \λPX ⊆ C = φ−1[Y \X]. By Lemma 2.13 it is obvious that Yi ≤ Y for any i ∈ I, as
φ−1[Y \X] = C ⊆ φ−1

i [Yi \X]. We only need to show that Y ≤ Y ′ for any Y ′ ∈MQ
P (X)

which satisfies Yi ≤ Y ′ for any i ∈ I. Indeed, let F ∈ F (Y ′). By Lemma 2.13 we have
F ⊆ φ−1

i [Yi \X] for any i ∈ I and thus

F ⊆
⋂
i∈I

φ−1
i [Yi \X] = C = φ−1[Y \X].

Therefore Y ≤ Y ′ again by Lemma 2.13.
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The following lemma together with Lemmas 4.19, 4.20 and 4.21 gives an order-
theoretic characterization of almost optimal elements of MQ

P (X). Recall that a Tychonoff
space X is locally compact if and only if it is open in βX (see Theorem 3.5.8 of [5]). We
use this well known fact in the proof of the following lemma.

Lemma 4.29. Let P and Q be a pair of compactness-like topological properties. Let X be
a locally compact locally-P non-P space with Q and let Y ∈MQ

P (X). The following are
equivalent:

(1) Y is almost optimal.
(2) For any collection {Yi : i ∈ I} ⊆ MQ

P (X) of one-point extensions of X such that
YU ∨

∨
i∈I Yi = MX

P we have YU ∨
∨k
j=1 Yij = MX

P for some k ∈ N and some
i1, . . . , ik ∈ I.

Here ∨ is the operation in MQ
P (X).

Proof. Let φ : βX → βY and φU : βX → βYU denote the continuous extensions of idX .
By Lemma 4.22 we have φ−1[Y \X] = φ−1

U [YU \X].
(1) implies (2). Suppose that λPX∩φ−1[Y \X] is compact. Let {Yi : i ∈ I} ⊆MQ

P (X)
be a collection of one-point extensions of X with YU ∨

∨
i∈I Yi = MX

P . By Lemmas 4.22
and 4.28 we have

φ−1
U [YU \X] ∩

⋂
i∈I

φ−1
i [Yi \X] = βX \ λPX

where φi : βX → βYi for any i ∈ I denotes the continuous extension of idX . Now

λPX ∩ φ−1[Y \X] ∩
⋂
i∈I

φ−1
i [Yi \X] = λPX ∩ φ−1

U [YU \X] ∩
⋂
i∈I

φ−1
i [Yi \X] = ∅

and therefore by the compactness of λPX ∩ φ−1[Y \X] it follows that

λPX ∩ φ−1[Y \X] ∩
k⋂
j=1

φ−1
ij

[Yij \X] = ∅

for some k ∈ N and some i1, . . . , ik ∈ I. This implies that

φ−1[Y \X] ∩
k⋂
j=1

φ−1
ij

[Yij \X] ⊆ βX \ λPX.

But by Lemma 2.8 we have βX \ λPX ⊆ φ−1[Y \X] and βX \ λPX ⊆ φ−1
i [Yi \X] for

any i ∈ I. Thus from the above

φ−1
U [YU \X] ∩

k⋂
j=1

φ−1
ij

[Yij \X] = φ−1[Y \X] ∩
k⋂
j=1

φ−1
ij

[Yij \X] = βX \ λPX.

Lemma 4.28 now implies that YU ∨
∨k
j=1 Yij = MX

P .
(2) implies (1). First note that X ⊆ λPX (see Lemma 2.10) and βX \ λPX is non-

empty (see Lemma 4.10). To show (1) we have to verify that λPX∩φ−1[Y \X] is compact.
Note that λPX ∩ φ−1[Y \X] ⊆ λPX \X, as obviously φ−1[Y \X] ⊆ βX \X, because
φ|X = idX . Let {Ui : i ∈ I} be an open cover of λPX ∩ φ−1[Y \X] in λPX \X. Note
that each Ui, where i ∈ I, is open in βX \X, as Ui is open in λPX \X and the latter
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is open in βX \ X, because λPX is open in βX. Let Ci = (βX \ X) \ Ui where i ∈ I.
Then Ci is closed in βX \ X and thus compact, as βX \ X is compact (because X is
locally compact), and it is non-empty, as it contains βX \ λPX. Let Yi = eCiX and let
φi : βX → βYi denote the continuous extension of idX . By Lemma 4.22 we have

φ−1
i [Yi \X] = Ci = (βX \X) \ Ui. (4.6)

We have

φ−1[Y \X] ∩
⋂
i∈I

φ−1
i [Yi \X] = φ−1[Y \X] ∩

⋂
i∈I

(
(βX \X) \ Ui

)
= φ−1[Y \X] ∩

(
(βX \X) \

⋃
i∈I

Ui

)
⊆ φ−1[Y \X] ∩

(
(βX \X) \

(
λPX ∩ φ−1[Y \X]

))
⊆ βX \ λPX

and therefore

φ−1
U [YU \X] ∩

⋂
i∈I

φ−1
i [Yi \X] = φ−1[Y \X] ∩

⋂
i∈I

φ−1
i [Yi \X] = βX \ λPX

as by Lemma 2.8 we have βX \ λPX ⊆ φ−1[Y \X] and βX \ λPX ⊆ φ−1
i [Yi \X] for any

i ∈ I. Lemma 4.28 now implies that YU∨
∨
i∈I Yi = MX

P , which yields YU∨
∨k
j=1 Yij = MX

P
for some k ∈ N and some i1, . . . , ik ∈ I. Again, using Lemma 4.28 we have

φ−1[Y \X] ∩
k⋂
j=1

φ−1
ij

[Yij \X] = φ−1
U [YU \X] ∩

k⋂
j=1

φ−1
ij

[Yij \X] = βX \ λPX

and thus by (4.6) it follows that

φ−1[Y \X] ∩
(

(βX \X) \
k⋃
j=1

Uij

)
= φ−1[Y \X] ∩

k⋂
j=1

(
(βX \X) \ Uij

)
= φ−1[Y \X] ∩

k⋂
j=1

φ−1
ij

[Yij \X] = βX \ λPX.

Therefore

λPX ∩ φ−1[Y \X] ∩
(

(βX \X) \
k⋃
j=1

Uij

)
= ∅,

which implies that

λPX ∩ φ−1[Y \X] ⊆
k⋃
j=1

Uij .

That is λPX ∩ φ−1[Y \X] is compact.

Lemma 4.30. Let X be a locally compact space and let Y ∈ E (X). The following are
equivalent:

(1) Y is locally compact.
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(2) φ−1[Y \X] is open in βX \X, where φ : βX → βY is the continuous extension of
idX .

Proof. Recall that by Lemma 2.9 the space βY is the quotient space of βX obtained
by contracting each φ−1(p) where p ∈ Y \ X to a point, with the continuous extension
φ : βX → βY of idX as the quotient mapping.

(1) implies (2). Note that Y is open in βY and thus φ−1[Y ] is open in βX. Therefore

φ−1[Y \X] = φ−1[Y ] ∩ (βX \X)

is open in βX \X.
(2) implies (1). Let U be an open subset of βX such that φ−1[Y \X] = U ∩ (βX \X).

Since X is locally compact, it is open in βX. Thus U ∪X is open in βX and therefore
Y = φ[U ∪X] is open in βY . This shows that Y is locally compact.

The following lemma together with Lemmas 4.19, 4.20, 4.21, 4.26 and 4.29 gives an
order-theoretic characterization of locally compact elements of MQ

P (X).

Lemma 4.31. Let P and Q be a pair of compactness-like topological properties. Let X be
a locally compact locally-P non-P space with Q and let Y ∈MQ

P (X). The following are
equivalent:

(1) Y is locally compact.
(2) There exists an almost optimal one-point extension Y ′ ∈MQ

P (X) such that for any
anti-atom T of MQ

P (X) of type (I), either YU ≤ T or Y ′ ≤ T , but not both.

Proof. Let φ : βX → βY and φU : βX → βYU denote the continuous extensions of idX .
By Lemmas 2.8 and 4.22 we have βX \λPX ⊆ φ−1[Y \X] and φ−1[Y \X] = φ−1

U [YU \X].
Also, by Lemmas 2.10 and 4.10 we have X ⊆ λPX and βX \ λPX is non-empty.

(1) implies (2). By Lemma 4.30 the set φ−1[Y \X] is open in βX \X. Let

C =
(
(βX \X) \ φ−1[Y \X]

)
∪ (βX \ λPX).

Then C ⊆ βX \ X is compact, being the union of two compact subspaces, and it is
obviously non-empty, as it contains βX \ λPX. Let Y ′ = eCX. Then Y ′ is a Tychonoff
one-point extension of X and by Lemma 4.22, if ψ : βX → βY ′ denotes the continuous
extension of idX then ψ−1[Y ′ \X] = C. Therefore by Lemma 2.8 and Theorem 2.11 we
have Y ′ ∈MQ

P (X), as βX \ λPX ⊆ C. Also, Y ′ is almost optimal, as

λPX ∩ ψ−1[Y ′ \X] = λPX ∩ C = (βX \X) \ φ−1[Y \X]

is compact. (Note that (βX \ X) \ φ−1[Y \ X] ⊆ λPX, as βX \ λPX ⊆ φ−1[Y \ X].)
Now consider an anti-atom T of MQ

P (X) of type (I). Then T = eX({a, b}) for some
a ∈ βX \ λPX and b ∈ λPX \X. Consider the following cases:

Case 1. Suppose that b ∈ φ−1[Y \X]. Then a ∈ φ−1[Y \X], as a ∈ βX \λPX and thus
{a, b} ⊆ φ−1

U [YU \X]. Lemmas 2.13 and 4.14 now imply that YU ≤ T .
Case 2. Suppose that b /∈ φ−1[Y \ X]. Then necessarily b ∈ C = ψ−1[Y ′ \ X]. But

also a ∈ ψ−1[Y ′ \ X], as a ∈ βX \ λPX and βX \ λPX ⊆ ψ−1[Y ′ \ X]. Thus
{a, b} ⊆ ψ−1[Y ′ \X]. Again Lemmas 2.13 and 4.14 imply that Y ′ ≤ T .
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Obviously, YU ≤ T and Y ′ ≤ T cannot hold simultaneously, as then {a, b} ⊆ φ−1
U [YU \X]

and {a, b} ⊆ ψ−1[Y ′ \ X]. But b ∈ ψ−1[Y ′ \ X] = C implies, by the choice of b, that
b ∈ (βX \X) \ φ−1[Y \X], which is not possible, as b ∈ φ−1[Y \X].

(2) implies (1). Let ψ : βX → βY ′ denote the continuous extension of idX . By Lemma
4.30 to prove that Y is locally compact it suffices to show that φ−1[Y \ X] is open in
βX \X. We show this by verifying that

(βX \X) \ φ−1[Y \X] = λPX ∩ ψ−1[Y ′ \X]. (4.7)

Choose some a ∈ βX \ λPX. Let b ∈ (βX \X) \ φ−1[Y \X] and suppose to the contrary
that b /∈ ψ−1[Y ′ \X]. Let T = eX({a, b}). Then T is an anti-atom in MQ

P (X) of type (I),
and by Lemmas 2.13 and 4.14 neither YU ≤ T nor Y ′ ≤ T , as neither {a, b} ⊆ φ−1[Y \X]
nor {a, b} ⊆ ψ−1[Y ′ \X]. This is a contradiction. Therefore

(βX \X) \ φ−1[Y \X] ⊆ λPX ∩ ψ−1[Y ′ \X]. (4.8)

To show the reverse inclusion in (4.8), let c ∈ λPX∩ψ−1[Y ′\X]. Suppose to the contrary
that c /∈ (βX\X)\φ−1[Y \X], or equivalently that c ∈ φ−1[Y \X], as c ∈ βX\X, because
c ∈ ψ−1[Y ′ \X] and ψ−1[Y ′ \X] ⊆ βX \X, since ψ|X = idX . Let T ′ = eX({a, c}). Then
T ′ is an anti-atom in MQ

P (X) of type (I) and by Lemmas 2.13 and 4.14 both YU ≤ T ′ and
Y ′ ≤ T ′, as both {a, c} ⊆ φ−1[Y \X] and {a, c} ⊆ ψ−1[Y ′ \X], because by Lemma 2.8
we have βX \λPX ⊆ φ−1[Y \X] and βX \λPX ⊆ ψ−1[Y ′ \X] and a ∈ βX \λPX. This
contradicts our assumption and proves (4.7). Now since λPX ∩ ψ−1[Y ′ \X] is compact,
as Y ′ is almost optimal, (βX \X) \ φ−1[Y \X] is compact and thus closed in βX \X.
Equivalently, φ−1[Y \X] is open in βX\X, as φ−1[Y \X] ⊆ βX\X, because φ|X = idX .

The following lemma together with Lemmas 4.19 and 4.20 gives an order-theoretic
characterization of optimal elements of MQ

P (X).

Lemma 4.32. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff locally-P non-P space with Q and let Y ∈ MQ

P (X). The following are
equivalent:

(1) Y ∈ OQP (X).
(2) There exists no anti-atom T in MQ

P (X) of type (I) with Y ≤ T .

Proof. Let φ : βX → βY denote the continuous extension of idX .
(1) implies (2). Let T be an anti-atom in MQ

P (X) such that Y ≤ T . Let T =
eX({a, b}) where a, b ∈ βX \ X are distinct such that either a /∈ λPX or b /∈ λPX.
By Lemmas 2.13 and 4.14 we have {a, b} ⊆ F for some F ∈ F (Y ). But F ⊆ φ−1[Y \X]
and φ−1[Y \X] = βX \ λPX by Theorem 2.15. Thus {a, b} ⊆ βX \ λPX, which shows
that T is of type (II).

(2) implies (1). By Theorem 2.15 to show (1) it suffices to show that φ−1[Y \X] =
βX \ λPX. Suppose otherwise. By Lemma 2.8 we have βX \ λPX ⊆ φ−1[Y \X]. Thus
φ−1[Y \X] * βX\λPX. Choose b ∈ φ−1[Y \X] such that b /∈ βX\λPX. Then b ∈ φ−1(p)
for some p ∈ Y \ X. By Theorem 2.11 the set φ−1(p) \ λPX is non-empty. Choose an
a ∈ φ−1(p)\λPX. Note that a, b ∈ βX \X, as a, b ∈ φ−1[Y \X] and φ|X = idX . Consider
the anti-atom T = eX({a, b}) of MQ

P (X). Then T is of type (I), and since {a, b} ⊆ φ−1(p),
by Lemmas 2.13 and 4.14 we have Y ≤ T . This is a contradiction.
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The following is an immediate corollary of our previous lemmas.

Lemma 4.33. Let P and Q be a pair of compactness-like topological properties. Let X
and Y be Tychonoff locally-P non-P spaces with Q such that card(λPX \ X) ≥ 2 and
card(λPY \ Y ) ≥ 2. Let

Θ :
(
MQ
P (X),≤

)
→
(
MQ
P (Y ),≤

)
be an order-isomorphism. Let T ∈MQ

P (X). Then

(1) If T is an anti-atom in MQ
P (X) (an anti-atom in MQ

P (X) of type (I), an anti-atom
in MQ

P (X) of type (II), respectively), then so is Θ(T ).
(2) If T is optimal, then so is Θ(T ).
(3) If T is a one-point extension, then so is Θ(T ).

Suppose that X and Y are moreover locally compact. Then

(4) If T is almost optimal, then so is Θ(T ).
(5) If T is locally compact, then so is Θ(T ).

Proof. This follows from the previous lemmas, as Lemmas 4.19 and 4.20 imply (1), part
(1) and Lemma 4.32 imply (2), part (1) and Lemma 4.21 imply (3), part (3) and Lemma
4.29 imply (4), and finally parts (1), (3), (4) and Lemma 4.31 imply (5), noting that by
Lemma 4.26 (and parts (1) and (3)) we have Θ(SU ) = (Θ(S))U for any S ∈MQ

P (X).

Lemma 4.34. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff locally-P non-P space with Q. Let T = eX({a, b}) be an anti-atom in
MQ
P (X) of type (I) where a /∈ λPX and b ∈ λPX. Let T ′ = eX({c, d}) be an anti-atom

in MQ
P (X) of type (I) such that T 6= T ′. The following are equivalent:

(1) b /∈ {c, d}.
(2) card({T ′′ : T ′′ is an anti-atom in MQ

P (X) and T ∧ T ′ ≤ T ′′}) = 2.

Proof. (1) implies (2). Consider the following cases:

Case 1. Suppose that a ∈ {c, d}, say a = c. By Lemma 4.16 we have

T ∧ T ′ = eX
(
{a, b}

)
∧ eX

(
{a, d}

)
= eX

(
{a, b, d}

)
.

Now using Lemmas 2.13, 4.14 and 4.17 there are only two anti-atoms T ′′ in MQ
P (X)

with T ∧ T ′ ≤ T ′′, namely eX({a, b}) and eX({a, d}).
Case 2. Suppose that a /∈ {c, d}. Again by Lemma 4.16 we have

T ∧ T ′ = eX
(
{a, b}

)
∧ eX

(
{c, d}

)
= eX

(
{a, b}, {c, d}

)
and thus as above there are only 2 anti-atoms T ′′ in MQ

P (X) with T ∧ T ′ ≤ T ′′,
namely eX({a, b}) and eX({c, d}).

Therefore (2) holds in either case.
(2) implies (1). Suppose to the contrary that b ∈ {c, d}, say b = c. Note that using

Lemmas 2.13, 4.14 and 4.17 it follows that a 6= d, as T 6= T ′, and thus there are exactly
three anti-atoms T ′′ in MQ

P (X) with T ∧ T ′ ≤ T ′′, namely eX({a, b}), eX({a, d}) and
eX({b, d}). This is a contradiction.
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The following lemma gives an internal (to X) characterization of spaces X with
card(λPX \X) ≥ 2. This assumption has been used before in several statements.

Lemma 4.35. Let X be a Tychonoff space and let P be a clopen hereditary finitely additive
perfect topological property. The following are equivalent:

(1) card(λPX \X) ≥ 2.
(2) There exist a pair of disjoint non-compact zero-sets of X each contained in a cozero-

set of X whose closure (in X) has P.

Proof. (1) implies (2). Let zi ∈ λPX \ X where i = 1, 2 be distinct and let Ui be an
open neighborhood of zi in λPX (and therefore in βX, as λPX is open in βX) such that
U1 ∩U2 = ∅. Let fi : βX → I be continuous with f(zi) = 0 and fi[βX \Ui] ⊆ {1} and let

Zi = f−1
i

[
[0, 1/3]

]
∩X ∈ Z (X) and Ci = f−1

i

[
[0, 1/2)

]
∩X ∈ Coz(X).

Note that Zi ⊆ f−1
i [[0, 1/3]] ⊆ Ui and thus Z1 ∩ Z2 = ∅. Also, since

zi ∈ f−1
i

[
[0, 1/3)

]
⊆ intβX clβX

(
f−1
i

[
[0, 1/3]

]
∩X

)
⊆ clβX

(
f−1
i

[
[0, 1/3]

]
∩X

)
= clβX Zi

the set clβX Zi \X is non-empty and therefore Zi is non-compact. Then

clβX Ci = clβX
(
f−1
i

[
[0, 1/2)

]
∩X

)
= clβX f−1

i

[
[0, 1/2)

]
⊆ f−1

i

[
[0, 1/2]

]
⊆ Ui ⊆ λPX

and thus by Lemma 2.4 the closure clX Ci has P.
(2) implies (1). Let Zi ∈ Z (X) be non-compact with Zi ⊆ Ci where Ci ∈ Coz(X)

and clX Ci has P and Z1 ∩ Z2 = ∅. By Lemma 2.14 we have clβX Zi ⊆ λPX. Since Zi is
non-compact, clβX Zi \X is non-empty. Also

clβX Z1 ∩ clβX Z2 = clβX(Z1 ∩ Z2) = ∅.

Therefore card(λPX \X) ≥ 2.

Theorem 4.36. Let P and Q be a pair of compactness-like topological properties. Let X
and Y be Tychonoff locally-P non-P spaces with Q such that each space contains a pair
of disjoint non-compact zero-sets each contained in a cozero-set whose closure has P.
Consider the following:

(1) (MQ
P (X),≤) and (MQ

P (Y ),≤) are order-isomorphic.
(2) βX \ λPX and βY \ λPY are homeomorphic.

Then (1) implies (2), while (2) does not necessarily imply (1).

Proof. By Lemma 4.35 we have card(λPX \ X) ≥ 2 and card(λPY \ Y ) ≥ 2. To show
that (1) implies (2) let

Θ :
(
MQ
P (X),≤

)
→
(
MQ
P (Y ),≤

)
denote an order-isomorphism. By Lemma 4.33 we have Θ(OQP (X)) ⊆ OQP (Y ). Now, since

Θ−1 :
(
MQ
P (Y ),≤

)
→
(
MQ
P (X),≤

)
is also an order-isomorphism, again, using Lemma 4.33 we have Θ−1(OQP (Y )) ⊆ OQP (X),
or equivalently, OQP (Y ) ⊆ Θ(OQP (X)). Therefore Θ(OQP (X)) = OQP (Y ). Thus

Θ|OQP (X) :
(
OQP (X),≤

)
→
(
OQP (Y ),≤

)
is an order-isomorphism. By Theorem 4.13 this now implies (2).
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Next, by means of an example, we show that (2) does not necessarily imply (1). Let

X = N⊕
⊕
i<Ω

Ri and Y =
⊕
i<Ω

Ri

where Ri for any i < Ω is the subspace [0,∞) of R. Let P be the Lindelöf property and let
Q be regularity. Then P and Q is a pair of compactness-like topological properties (see
Example 2.16) and X and Y are locally compact non-Lindelöf spaces each containing a
pair of disjoint non-compact clopen Lindelöf subsets. (Just consider Ri and Rj for some
distinct i, j < Ω as the desired pair.) Note that

λPX = clβX N ∪
⋃{

clβX
(⋃
i∈J

Ri

)
: J ⊆ [0,Ω) is countable

}
(4.9)

and
λPY =

⋃{
clβY

(⋃
i∈J

Ri

)
: J ⊆ [0,Ω) is countable

}
, (4.10)

since, for example, in the first case, for any Lindelöf Z ∈ Z (X) we have

Z ⊆ N ∪
⋃
i∈J

Ri

for some countable J ⊆ [0,Ω), and conversely, if J ⊆ [0,Ω) is countable then

S = N ∪
⋃
i∈J

Ri

is a clopen Lindelöf subset of X, and thus clβX S = intβX clβX S ⊆ λPX. (Note that
a clopen subset of a Tychonoff space has a clopen closure in its Stone–Čech compact-
ification; see Corollary 3.6.5 of [5].) We now verify that βX \ λPX and βY \ λPY are
homeomorphic. Since X contains Y as a closed subspace (and it is normal) the spaces
clβX Y and βY are equivalent compactifications of Y (see Corollary 3.6.8 of [5]). Therefore
for any countable J ⊆ [0,Ω) we have

clβY
(⋃
i∈J

Ri

)
= cl(clβX Y )

(⋃
i∈J

Ri

)
= clβX

(⋃
i∈J

Ri

)
∩ clβX Y = clβX

(⋃
i∈J

Ri

)
.

Thus by (4.10) we have

λPY =
⋃{

clβX
(⋃
i∈J

Ri

)
: J ⊆ [0,Ω) is countable

}
. (4.11)

Then by (4.9) we have
λPX = clβX N ∪ λPY

and also, since X = N ∪ Y ,

βX = clβX(N ∪ Y ) = clβX N ∪ clβX Y = clβX N ∪ βY.

Note that for any countable J ⊆ [0,Ω) we have

clβX N ∩ clβX
(⋃
i∈J

Ri

)
= ∅

as N and
⋃
i∈J Ri are disjoint zero-sets (in fact clopen subsets) of X. Therefore by (4.11),

clβX N ∩ λPY = ∅.
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Also

clβX N ∩ βY = clβX N ∩ clβX Y = ∅.

It now follows that

βX \ λPX = (clβX N ∪ βY ) \ (clβX N ∪ λPY ) = βY \ λPY.

This shows (2). Next, we show that the partially ordered sets MQ
P (X) and MQ

P (Y ) are
not order-isomorphic. But first, we need to prove the following.

Claim. Let D be a non-empty clopen subset of βY \ Y . Then clβY Ri \ Y ⊆ D for some
i < Ω.

Proof of the claim. Let g : βY \ Y → I be continuous with

g[D] ⊆ {0} and g
[
(βY \ Y ) \D

]
⊆ {1}.

Since Y is locally compact, βY \ Y is closed in (the normal space) βY and thus by the
Tietze–Urysohn Theorem g = G|(βY \ Y ) for some continuous G : βY → I. Let

V = G−1
[
[0, 1/2)

]
∩ Y.

Then V is an open subset of Y . Since

G−1
[
[0, 1/2)

]
\ Y ⊆ clβY G−1

[
[0, 1/2)

]
\ Y = clβY

(
G−1

[
[0, 1/2)

]
∩ Y

)
\ Y

⊆ G−1
[
[0, 1/2]

]
\ Y

and

G−1
[
[0, 1/2)

]
\ Y = g−1

[
[0, 1/2)

]
= D = g−1

[
[0, 1/2]

]
= G−1

[
[0, 1/2]

]
\ Y

it follows that

D = clβY
(
G−1

[
[0, 1/2)

]
∩ Y

)
\ Y = clβY V \ Y.

Also, bdY V is compact, as

bdY V = clY V \ V ⊆
(
G−1

[
[0, 1/2]

]
∩ Y

)
\
(
G−1

[
[0, 1/2)

]
∩ Y

)
=
(
G−1

[
[0, 1/2]

]
\G−1

[
[0, 1/2)

])
∩ Y

= G−1(1/2) ∩ Y ⊆ G−1(1/2),

which implies that

clβY bdY V \ Y ⊆ G−1(1/2) \ Y = g−1(1/2) = ∅.

Therefore clβY bdY V ⊆ Y and thus bdY V = clβY bdY V ∩ Y = clβY bdY V is compact,
as it is closed in βY . Let

H = {i < Ω : bdY V ∩Ri 6= ∅}.

Note that H is finite, as bdY V is compact. To prove the claim suppose to the contrary
that clβY Ri \ Y * D for any i < Ω. Then

clβY Ri \ Y = clβY Ri \Ri = βRi \Ri
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as clβY Ri and βRi are equivalent compactifications of Ri, because Ri is closed in Y (and
Y is normal), and therefore since βRi \Ri is connected (see Problem 6L of [8]), we have

clβY Ri ∩D = (clβY Ri \ Y ) ∩D = ∅ (4.12)

for any i < Ω. Now let i < Ω be such that V ∩Ri is non-empty. If bdRi(V ∩Ri) = ∅ then
V ∩Ri is clopen in Ri, and since Ri is connected, V ∩Ri = Ri, that is, Ri ⊆ V . But then

∅ 6= βRi \Ri = clβY Ri \ Y ⊆ clβY V \ Y = D,

which by (4.12) cannot be true. Thus

bdY V ∩Ri = bdRi(V ∩Ri) 6= ∅,

that is, i ∈ H. Therefore V ⊆
⋃
i∈H Ri. Now

D = clβY V \ Y ⊆ clβY V ⊆ clβY
(⋃
i∈H

Ri

)
=
⋃
i∈H

clβY Ri,

which again contradicts (4.12), as D is non-empty. This proves the claim.

Now we prove that MQ
P (X) and MQ

P (Y ) are not order-isomorphic. Suppose the con-
trary and let

Θ :
(
MQ
P (X),≤

)
→
(
MQ
P (Y ),≤

)
denote an order-isomorphism. Let

C = (βX \X) \ clβX N.

Then C is a clopen non-empty subset of βX \X. (Note that βX \X is closed in βX, as
X is locally compact, and clβX N is clopen in βX, as N is clopen in X.) Let T = eCX.
Then T is a one-point Tychonoff extension of X, which by Lemmas 4.22 and 4.30 is
locally compact. By Lemmas 2.8 and 4.22 and Theorem 2.11 we have T ∈MQ

P (X). Let
S = Θ(T ). Then by Lemma 4.33 the element S is a one-point locally compact extension
of Y . Denote by ψ : βY → βS the continuous extension of idY . Then D = ψ−1(S \ Y ) is
clopen in βY \ Y by Lemma 4.30, and obviously D 6= βY \ Y , as S is not the smallest
element in MQ

P (Y ), because T is not the smallest element in MQ
P (X), since C 6= βX \X.

By the above claim, clβY Ri \ Y ⊆ (βY \ Y ) \ D for some i < Ω. Choose some distinct
b′, c′ ∈ clβY Ri \ Y (which exist, as by the above clβY Ri \ Y = βRi \ Ri) and choose
a′ ∈ βY \ λPY (which exists, as Y is non-Lindelöf; see Lemma 4.10). Let

S′ = eY
(
{a′, b′}

)
and S′′ = eY

(
{a′, c′}

)
and let

T ′ = Θ−1(S′) and T ′′ = Θ−1(S′′).

By Lemma 4.33 both T ′ and T ′′ are anti-atoms in MQ
P (X) of type (I), as S′ and S′′ are

anti-atoms in MQ
P (Y ) of type (I). Let

T ′ = eX
(
{a, b}

)
and T ′′ = eX

(
{c, d}

)
where b, d ∈ λPX. Note that b′ /∈ {a′, c′}, which by Lemma 4.34 yields b /∈ {c, d}. We
have neither T ≤ T ′ nor T ≤ T ′′, as neither

Θ(T ) = S ≤ S′ = Θ(T ′) nor Θ(T ) = S ≤ S′′ = Θ(T ′′)
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because b′, c′ /∈ D; see Lemmas 2.13 and 4.14. Thus again by Lemmas 2.13, 4.14 and
4.22 neither {a, b} ⊆ C nor {c, d} ⊆ C, which implies that b, d /∈ C, or b, d ∈ clβX N, as
a, c ∈ βX \ λPX ⊆ C. But, since clβX N \ N is zero-dimensional, there exists a clopen
subset E of βX \ X containing b, but not d, such that it contains βX \ λPX. This by
Lemmas 4.22 and 4.33 corresponds to a one-point locally compact element of MQ

P (X),
namely, eEX. By Lemma 4.33 the element Θ(eEX) is a one-point locally compact element
in MQ

P (Y ). Now if FY (Θ(eEX)) = {G}, then by Lemma 4.30 the set G is a clopen subset
of βY \ Y , and neither

clβY Ri \ Y ⊆ G nor (clβY Ri \ Y ) ∩G = ∅

as b′ ∈ G and c′ /∈ G, because {a′, b′} ⊆ G and {a′, c′} * G, since Θ(eEX) ≤ S′ and
Θ(eEX) � S′′, as

eEX ≤ Θ−1(S′) = T ′ and eEX � Θ−1(S′′) = T ′′

because {a, b} ⊆ E and {c, d} * E, again by Lemmas 2.13, 4.14 and 4.22. This contradicts
the fact that clβY Ri \ Y is connected.

In the final result of this chapter we introduces the largest (with respect to the partial
order ≤) compactification-like P-extension of a Tychonoff space X. This largest element
(also introduced in the proof of Lemma 4.17) turns out to be a familiar subspace of the
Stone–Čech compactification of X. We formally define this element and prove some of its
properties which characterize it among all P-extensions of X with compact remainder.

Theorem 4.37. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff locally-P non-P space with Q. Consider the subspace

ζPX = X ∪ (βX \ λPX)

of βX. Then

(1) ζPX is the largest element (with respect to ≤) of either EQP (X), MQ
P (X) or OQP (X).

(2) For any Y ∈ EQP (X) consider the following properties:

(a) For any S,Z ∈ Z (X) where S ∩ Z ⊆ C for some C ∈ Coz(X) such that clX C
has P, we have clY S ∩ clY Z ⊆ X.

(b) Y satisfies the following:

(i) For any S,Z ∈ Z (X) we have

clY (S ∩ Z) \X = (clY S ∩ clY Z) \X.

(ii) For any Z ∈ Z (X) where Z ⊆ C for some C ∈ Coz(X) such that clX C has
P, we have clY Z ⊆ X.

Then ζPX is characterized in EQP (X) by either of the above properties.

Proof. (1). By Lemma 2.10 we have X ⊆ λPX. Thus ζPX is a Tychonoff extension of
X with the compact remainder ζPX \X = βX \ λPX. Since X ⊆ ζPX ⊆ βX we have
βζPX = βX (see Corollary 3.6.9 of [5]). Therefore by Lemma 2.8 (with f = idX and
φ = idβX) we have ζPX ∈ EQP (X) and by Theorem 2.15 it follows that ζPX ∈ OQP (X)
and thus ζPX ∈MQ

P (X). Now let Y ∈ EQP (X) and let φ : βX → βY be the continuous
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extension of idX . By Lemma 2.8 we have βX \ λPX ⊆ φ−1[Y \X]. Therefore

φ[ζPX] = φ
[
X ∪ (βX \ λPX)

]
= φ[X] ∪ φ[βX \ λPX]

= X ∪ φ[βX \ λPX] ⊆ X ∪ φ
[
φ−1[Y \X]

]
⊆ X ∪ (Y \X) = Y

and thus φ|ζPX : ζPX → Y . Since the latter fixes X pointwise this shows that Y ≤ ζPX.
Therefore Y is the largest element of EQP (X).

(2). Let Y = ζPX. We show that Y satisfies (2.a) and (2.b). To show (2.a) suppose
that S,Z ∈ Z (X) are such that S ∩Z ⊆ C for some C ∈ Coz(X) such that clX C has P.
Then by Lemma 2.14 we have clβX(S ∩ Z) ⊆ λPX and thus

clY S ∩ clY Z = clβX S ∩ clβX Z ∩ Y = clβX(S ∩ Z) ∩ Y ⊆ λPX ∩ Y ⊆ X.

To show (2.b) note that for any S,Z ∈ Z (X) we have

clY (S ∩ Z) = clβX(S ∩ Z) ∩ Y = clβX S ∩ clβX Z ∩ Y = clY S ∩ clY Z.

Therefore (2.b.i) holds. Note that since (2.a) holds, (2.b.ii) holds as well.

Now suppose that some Y ∈ EQP (X) satisfies (2.a). Let φ : βX → βY be the contin-
uous extension of idX . Recall the construction of βY and the representation of φ given
in Lemma 2.9. Note that (2.a) in particular implies that clY Z ∩ (Y \ X) = ∅ for any
Z ∈ Z (X) such that Z ⊆ C for some C ∈ Coz(X) such that clX C has P. Thus by
Theorem 2.15 we have Y ∈ OP(X) and therefore φ−1[Y \X] = βX \λPX. We show that
for any p ∈ Y \X the set φ−1(p) consists of a single point, which implies that Y = ζPX.
Suppose to the contrary that for some p ∈ Y \X there exist distinct a, b ∈ φ−1(p). Let
f : βX → I be continuous with f(a) = 0 and f(b) = 1. Let

S = f−1
[
[0, 1/3]

]
∩X and Z = f−1

[
[2/3, 1]

]
∩X.

Then S,Z ∈ Z (X) and S∩Z = ∅. Thus (and since X is a non-empty Tychonoff locally-P
space, and P is hereditary with respect to closed subsets of Hausdorff spaces and thus
containing some C ∈Coz(X) such that clXC has P) by our assumption clY S∩clY Z ⊆X.
We show that p ∈ clY S ∩ clY Z; this contradiction proves that Y = ζPX. Let V be an
open neighborhood of p in Y and let the open subset V ′ of βY be such that V = V ′ ∩Y .
Then φ−1[V ′]∩ f−1[[0, 1/3)] and φ−1[V ′]∩ f−1[(2/3, 1]] are open neighborhoods of a and
b in βX, respectively, and therefore have non-empty intersection with X. Note that

φ−1[V ′] ∩ f−1
[
[0, 1/3)

]
∩X ⊆ S ∩ V and φ−1[V ′] ∩ f−1

[
(2/3, 1]

]
∩X ⊆ Z ∩ V.

Thus p ∈ clY S ∩ clY Z. Finally, we show that (2.b) implies (2.a). This together with
the above proves the theorem. Suppose that (2.b) holds. Let S,Z ∈ Z (X) be such that
S ∩ Z ⊆ C for some C ∈ Coz(X) such that clX C has P. Then by (2.b.ii) we have
clY (S ∩ Z) ⊆ X. Therefore using (2.b.i) we have

(clY S ∩ clY Z) \X = clY (S ∩ Z) \X = ∅

and thus clY S ∩ clY Z ⊆ X.
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5. Applications

5.1. Tight P-extensions. In [20] K. D. Magill Jr. proved the following theorem relating
the order-structure of the set of all compactifications of a locally compact space X to the
topology of βX \X. Recall that order-isomorphic lattices are called lattice-isomorphic.

Theorem 5.1 (Magill [20]). Let X and Y be locally compact non-compact spaces. The
following are equivalent:

(1) (K (X),≤) and (K (Y ),≤) are lattice-isomorphic.
(2) βX \X and βY \ Y are homeomorphic.

The idea of generalizing the above result led J. Mack, M. Rayburn and R. G. Woods
[17] to introduce and study a new class of extensions. We state some definitions and
results from [17] below. The reader may find it useful to compare these results with those
we have already obtained in the previous chapter.

Let X be a Tychonoff space and let P be a topological property. A Tychonoff P-
extension of X is called tight if it does not contain properly any other P-extension of X.
Now let P be a topological property which is closed hereditary, productive and is such
that if a Tychonoff space is the union of a compact space and a space with P then it
has P. Let X be a Tychonoff space. Define the P-reflection γPX of X by

γPX =
⋂
{T : T has P and X ⊆ T ⊆ βX}.

If P is compactness then γPX = βX and if P is realcompactness then γPX = υX (the
Hewitt realcompactification of X). Also, γPX has P by Corollary 2.4 of [17]. Denote
by P(X) the set of all tight P-extensions of X. As remarked in [17], for a Tychonoff
locally-P non-P space X there is the largest one-point extension X∗ in P(X). Let

P∗(X) =
{
T ∈P(X) : X∗ ≤ T

}
and for any T ∈P∗(X), if fT : βX → βT denotes the continuous extension of idX , let

D∗(X) =
{
T ∈P∗(X) : fT [γPX] = T

}
.

Theorem 5.2 (Mack, Rayburn and Woods [17]). Let X and Y be Tychonoff locally-P
non-P spaces. If (P∗(X),≤) and (P∗(Y ),≤) are lattice-isomorphic then γPX \X and
γPY \ Y are homeomorphic.

The following main result of [17] generalizes Magill’s theorem [20, Theorem 5.1].

Theorem 5.3 (Mack, Rayburn and Woods [17]). Let X and Y be Tychonoff locally-
P non-P spaces and suppose that D∗(X) = P∗(X) and D∗(Y ) = P∗(Y ). Suppose
moreover that γPX \ X and γPY \ Y are C∗-embedded in γPX and γPY , respectively.
The following are equivalent:

(1) (P∗(X),≤) and (P∗(Y ),≤) are lattice-isomorphic.
(2) γPX \X and γPY \ Y are homeomorphic.

The topological properties considered in [17] are all assumed to be productive while
the topological properties we have considered are hardly productive. (As shown in Ex-
ample 2.16 specific examples of compactness-like topological properties are mostly cov-
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ering properties which are normally not expected to be productive.) However, there are
topological properties which satisfy the two sets of requirements. We need to know the
relation between the classes of compactification-like P-extensions of a Tychonoff space X
and the class of its tight P-extensions with compact remainder; in particular, we need to
know if these two coincide. In this section we apply some of our previous results to obtain
analogous results in the context of tight P-extensions with compact countable remainder.
Also, we give examples to show that the concepts of “tight P-extension with compact re-
mainder”, “minimal P-extension” and “optimal P-extension” in general do not coincide.

We start with the following result which together with Lemma 3.7 and Theorem 3.13
characterizes spaces having a tight P-extension with compact countable remainder. Note
that by definitions, the notions of “n-point minimal P-extension” and “n-point tight P-
extension” coincide for any n ∈ N. Thus Lemma 3.7 and Theorem 3.13 also characterize
spaces with an n-point tight P-extension.

Theorem 5.4. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q. The following are equivalent:

(1) X has a countable-point minimal P-extension with Q.
(2) X has a countable-point optimal P-extension with Q.
(3) X has a countable-point tight P-extension with compact remainder with Q.

Proof. The equivalence of (1) and (2) follows from Theorem 3.13.
(1) implies (3). By Lemma 3.7(2.c) the space X is locally-P and βX \ λPX contains

an infinite bijectively indexed sequence H1, H2, . . . of pairwise disjoint non-empty clopen
subsets. Let pi’s, T , q and Y be as in Lemma 3.7 ((2.c)⇒(2.b)). Then Y is a countable-
point Tychonoff P-extension of X with compact remainder with Q. We show that Y is
also a tight P-extension. Suppose to the contrary that there exists a P-extension Y ′ of X
properly contained in Y . Choose pn ∈ Y \Y ′ for n ∈ N. The sets Hn and (βX \λPX)\Hn

are closed in βX, as they are closed in βX \ λPX. Let fn : βX → I be continuous with

fn[Hn] ⊆ {0} and fn
[
(βX \ λPX) \Hn

]
⊆ {1}.

When n = 1 note that p1 is obtained by contracting a set containing H1. The set

Zn = f−1
n

[
[0, 1/2]

]
∩X = q

[
f−1
n

[
[0, 1/2]

]]
∩ Y ′ ∈ Z (X)

has P, as it is closed in Y ′. Therefore

Hn ⊆ f−1
n

[
[0, 1/2)

]
⊆ intβX clβX

(
f−1
n

[
[0, 1/2]

]
∩X

)
= intβX clβX Zn ⊆ λPX,

which is a contradiction. This shows that Y is also a tight P-extension. That (3) implies
(1) is trivial and follows from definitions.

The following is a counterpart for Corollary 3.14. Thus it too (besides Corollary 3.14)
may be considered as a generalization of Magill’s theorem [19, Theorem 3.4].

Theorem 5.5. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space with Q. The following are equivalent:

(1) X has an n-point tight P-extension with Q for any n ∈ N.
(2) X has a countable-point tight P-extension with compact remainder with Q.
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Proof. As noted before, the notions of “n-point minimal P-extension” and “n-point tight
P-extension” coincide for any n ∈ N. The result now follows from Theorems 3.13 and
5.4.

Theorem 5.6. Let P and Q be a pair of compactness-like topological properties. Let X
be a Tychonoff space.

(1) Let n ∈ N. If X has a perfect image with Q which has an n-point tight P-extension
with Q, then so does X.

(2) If X has a perfect image with Q which has a countable-point tight P-extension with
compact remainder with Q, then so does X.

Proof. This follows from Theorems 3.15 and 5.4.

In the following we give examples of a topological property P and Tychonoff spaces
X for which the notion of “tight P-extension with compact remainder” differs from both
“minimal P-extension” and “optimal P-extension”. For convenience, for a space X and
a topological property P, denote by TP(X) the set of all tight P-extensions of X with
compact remainder. Observe that by definition TP(X) ⊆MP(X).

Example 5.7. Let P be ℵ0-boundedness (see Example 2.16 for the definition) and let
X = D(ℵ1) (the discrete space of cardinality ℵ1). Note that P is closed hereditary, pro-
ductive, finitely additive, perfect and satisfies Mrówka’s condition (W) (thus by Corollary
2.6 of [17], if a Tychonoff space is the union of a compact space and a space with P, then
it has P). Then λPX = X, as any ℵ0-bounded Z ∈ Z (X) is finite. Therefore

OP(X) = MP(X) = K (X)

where as before K (X) is the set of all compactifications of X. In [41] it is shown that

γPX =
⋃
{clβX A : A ⊆ X is countable}.

Now γPX is a P-extension of X (as γPX always has P; see Corollary 2.4 of [17]) and
obviously it is contained properly in βX. Therefore βX ∈ OP(X), while βX /∈ TP(X).

Example 5.8. Let P be ℵ0-boundedness and let X = [0,Ω)\{ω}. Note that X is locally
compact; denote by X∗ the one-point compactification of X. Then X∗ ∈ TP(X), as the
only extension of X contained properly in X∗ is X itself, which does not have P, because
ω /∈ X. Now let φ : βX → X∗ be the continuous extension of idX . Then

φ−1[X∗ \X] = βX \X 6= βX \ λPX (5.1)

as λPX \X is non-empty. To show the latter simply let Z = (ω,Ω) and observe that Z
is clopen in X (thus a zero-set in X) and it has P. Since Z is non-compact,

∅ 6= clβX Z \X = intβX clβX Z \X ⊆ λPX \X.

Now by Theorem 2.15 from (5.1) it follows that X∗ /∈ OP(X).

5.2. On a question of S. Mrówka and J. H. Tsai. Let X and E be Hausdorff spaces.
The space X is said to be E-completely regular if X is homeomorphic to a subspace of a
product Eα for some cardinal α (see [6] and [26]). In [28] (see also [36]) the authors proved
that for a topological property P which is regular-closed hereditary, finitely additive with
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respect to closed subsets (that is, if a Hausdorff space is the finite union of its closed
subsets with P, then it has P) and satisfy Mrówka’s condition (W), every E-completely
regular (where E is regular and subject to some restrictions) locally-P space has a one-
point E-completely regular P-extension (see [21] for related results). The authors then
posed the following more general question: For what pairs of topological properties P
and Q is it true that every locally-P space with Q has a one-point extension with both
P and Q? Indeed, the systematic study of this sort of question dates back to the times
when P. Alexandroff proved that every locally compact (Hausdorff) non-compact space
has a one-point compact (Hausdorff) extension (thus answering the above question in
the case when P is compactness and Q is the property of being Hausdorff). Since then
the question has been considered by various authors for specific choices of P and Q. The
following corollary of Lemma 2.8 provides an answer to the above question of S. Mrówka
and J. H. Tsai (see also Theorem 4.1 of [16] for a related result).

Theorem 5.9. Let P be a compactness-like topological property. Let Q be a topological
property which is either

• clopen hereditary, inverse invariant under perfect mappings and satisfying Mrówka’s
condition (W), or
• strong zero-dimensionality.

Let X be a Tychonoff non-P space with Q. The following are equivalent:

(1) X is locally-P.
(2) X has a one-point Tychonoff extension with both P and Q.

Proof. That (2) implies (1) is obvious.
(1) implies (2). By Lemma 2.10 we have X ⊆ λPX. Let T be the space obtained from

βX by contracting the compact subset βX \ λPX to a point p (note that βX \ λPX is
non-empty by Lemma 4.10). Then T is Tychonoff. Consider the subspace Y = X ∪ {p}
of T .

Case 1. Suppose that Q is hereditary with respect to clopen subsets, inverse invariant
under perfect mappings and satisfies (W). Lemma 2.8 then implies that Y is a
one-point Tychonoff extension of X with both P and Q.

Case 2. Suppose that Q is strong zero-dimensionality. By Lemma 2.8 (with Q being
regularity in its statement) the space Y is a one-point Tychonoff P-extension of X.
We verify that Y is strongly zero-dimensional. Note that T is a compactification
of Y . Let φ : βX → βY and γ : βY → T be the continuous extensions of idX and
idY , respectively. Since γφ : βX → T agrees with q on X we have γφ = q. Since
T is a compactification of Y (and γ|Y = idY ), by Theorem 3.5.7 of [5] we have
γ[βY \ Y ] = T \ Y . Thus γ−1(p) = {p} and

φ−1(p) = φ−1
[
γ−1(p)

]
= (γφ)−1(p) = q−1(p) = βX \ λPX.

By Lemma 2.9 we have βY = T and φ = q. Using zero-dimensionality of βX it is
easy to verify that βY is zero-dimensional, that is, Y is strongly zero-dimensional.

Therefore (2) holds in either case.
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6. Question

We conclude with a question which naturally arose in connection with our study.

Question 6.1. LetX be a space, let P be a topological property and let Y be a Tychonoff
P-extension of X with compact remainder. The extension Y of X is called maximal if
the topology of Y is maximal (with respect to inclusion) among all topologies which turn
Y into a Tychonoff P-extension of X with compact remainder. Thus Y is an optimal
P-extension of X if it is both a minimal and a maximal P-extension of X. Now to what
extent and how the results of this article can be rephrased in order to remain valid in the
new context?
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