
1. Introduction

In this paper we consider systems of differential operators on Rn whose coefficients have

certain asymptotic properties as |x| → ∞. These elliptic operators define continuous

maps between weighted function spaces on R
n which are locally modeled on Sobolev,

Hölder or other types of spaces, but which contain a derivative dependent weight that

controls behaviour as |x| → ∞. In this setting we obtain results of the following types,

which parallel those of the standard theory for elliptic operators on compact manifolds:

• A priori estimates for solutions.

• Regularity results relating solutions in different weighted spaces.

• The Fredholm property for operators acting between certain weighted spaces.

• Dependence of the Fredholm index on the weighted spaces.

In order to avoid a large number of lengthy definitions in the Introduction we presently

restrict our attention to the formulation of our results for the case of scalar operators

acting on weighted function spaces modeled on Sobolev spaces of integral order. At the

end of the Introduction we indicate where the corresponding results for the general case

can be found.

For the purpose of defining our class of elliptic operators we introduce the following

symbol classes (see Section 1.1 for basic notation).

Definition 1.1. For any β ∈ R define Scβ to be the set of those functions p ∈ C∞loc for

which there exist a ∈ C∞(Sn−1) and q ∈ C∞loc satisfying the following conditions:

(i) Writing x ∈ Rn∗ in polar coordinates as x = (r, ω) we have

p(x) = a(ω)r−β + q(x)

whenever |x| = r ≥ 1.

(ii) For any multi-index α we have an estimate of the form

Dα
x q(x) = o(|x|

−β−|α|) as |x| → ∞.

The function a(ω)r−β defined on Rn∗ will be called the principal part of p.

Let A(x,Dx) be a differential operator on Rn of order m. Thus we can write

A(x,Dx) =
∑

|α|≤m

pα(x)Dα
x(1)

where pα ∈ C∞loc for each multi-index α with |α| ≤ m. We say that A is an admissible

elliptic operator provided pα ∈ Scm−|α| for each |α| ≤ m and A is uniformly elliptic on
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Rn in the sense that ∣∣∣
∑

|α|=m

pα(x)ξα
∣∣∣ ≥ C|ξ|m(2)

for all x, ξ ∈ Rn (where C is some positive constant). Examples of admissible elliptic

operators include the Laplacian −∆ and the Schrödinger operator −∆ + V whenever

V ∈ Sc2; in particular, V must decay at least as quickly as |x|−2.

In order to define the function spaces on which A shall act we need to introduce the

weight function Λ defined on Rn by Λ(x) = (1 + |x|2)1/2.

Definition 1.2. For p ∈ [1,∞), k ∈ Z and β ∈ R define a norm ‖·‖Hp,kβ
on C∞0 by

‖u‖p
Hp,kβ
=
∑

|α|≤k

\
Λp(β+|α|)(x)|Dα

xu(x)|
p dnx,

and let Hp,k
β denote the Banach space obtained by taking the completion of C∞0 with

respect to this norm.

For p ∈ (1,∞), k ∈ Z \ N0 and β ∈ R let q ∈ (1,∞) be given by 1/p + 1/q = 1 and

define Hp,k
β to be the Banach space obtained by taking the dual of Hq,−k

−β with respect

to the L2 pairing on Rn.

If A is an admissible elliptic operator of order m then A defines a continuous map

Hp,k+m
β−m → Hp,k

β for any p ∈ (1,∞), k ∈ Z and β ∈ R. We obtain the following regularity

result relating solutions of the equation Au = f for some different values of p, k and β.

Theorem 1.3. Let p, q ∈ (1,∞), k, l ∈ Z, β, γ ∈ R and suppose we have either β+n/p <

γ+n/q or β+n/p ≤ γ+n/q and p ≥ q. If Au ∈ Hp,k
β ∩H

q,l
γ for some u ∈ H

q,l+m
γ−m then

we also have u ∈ Hp,k+m
β−m . Furthermore,

‖u‖Hp,k+mβ−m
≤ C(‖Au‖Hp,kβ

+ ‖u‖Hq,l+mγ−m
)

for all such u.

In order to proceed with further regularity results and Fredholm properties for the

map A : Hp,k+m
β−m → Hp,k

β we must eliminate a countable set of values of β. These values

are related to the eigenvalues of an associated spectral problem which we now introduce.

Suppose A is an admissible elliptic operator of order m given by (1). We define the

principal part of A to be the operator A0 on Rn∗ given by

A0(x,Dx) =
∑

|α|≤m

aα(ω)r|α|−mDα
x ,

where, for each |α| ≤ m, aα(ω)r|α|−m is the principal part of pα. It is easy to see that

the ellipticity estimate (2) for A implies that A0 is elliptic on Rn∗ .

The principal part of A can be rewritten in the form

A0(x,Dx) =
m∑

j=0

Am−j(ω,Dω)(rDr)
j(r−m · ),

where, for j=0, . . . ,m, Aj(ω,Dω) is a differential operator on S
n−1 of order at most j.
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We associate with A an operator pencil BA : C → L (Hm(Sn−1), L2(Sn−1)), which is

defined by

BA(λ) =

m∑

j=0

Am−j(ω,Dω)λ
j

for each λ ∈ C. The spectrum of this operator pencil is the set

σ(BA) = {λ ∈ C | BA(λ) : H
m(Sn−1)→ L2(Sn−1) is not invertible}.

The geometric and algebraic multiplicities of any λ0 ∈ σ(BA) can be respectively de-

fined as dimKerBA(λ0) and the sum of the lengths of a set of maximal Jordan chains

corresponding to λ0 (see Section 3.3 or [GGK] for more details).

By using the ellipticity of A0 it can be shown that σ(BA) consists of isolated points

of finite algebraic multiplicity and that any strip of finite width parallel to the real

axis contains at most finitely many points of σ(BA) (see Theorem 5.2.1 in [KMR] or

Theorem 1.2.1 in [NP], for example).

The projection of σ(BA) onto the imaginary axis is of particular importance and will

be denoted by Γ (A); that is,

Γ (A) = {Imλ | λ ∈ σ(BA)} ⊂ R.

In particular, the above discussion implies that Γ (A) consists of isolated points and, given

γ ∈ Γ (A), the total algebraic multiplicity of all those λ ∈ σ(BA) with Imλ = γ is finite.

The Fredholm property for A is related to the spectrum of the associated operator

pencil through the set Γ (A) as follows.

Theorem 1.4. Let p ∈ (1,∞), k ∈ Z and β ∈ R. If β + n/p 6∈ Γ (A) then the map

A : Hp,k+m
β−m → Hp,k

β is Fredholm.

We also obtain a Γ (A) dependent regularity result complementing Theorem 1.3.

Theorem 1.5. Let p, q ∈ (1,∞), k, l ∈ Z, β, γ ∈ R and suppose β + n/p and γ + n/q

belong to the same component of R \ Γ (A). If Au ∈ Hp,k
β ∩ H

q,l
γ for some u ∈ H

q,l+m
γ−m

then we also have u ∈ Hp,k+m
β−m . Furthermore,

‖u‖Hp,k+mβ−m
≤ C(‖Au‖Hp,kβ

+ ‖u‖Hq,l+mγ−m
)

for all such u.

As a consequence of Theorems 1.4 and 1.5 we also obtain a stability result for the

Fredholm index of A.

Theorem 1.6. Let p, q ∈ (1,∞), k, l ∈ Z, β, γ ∈ R and suppose β + n/p and γ + n/q

belong to the same component of R\Γ (A). Then the Fredholm maps A : Hp,k+m
β−m → Hp,k

β

and A : Hq,l+m
γ−m → Hq,l

γ have the same index.

If the parameter β is varied so that β + n/p moves between components of R \ Γ (A)

then the index of the corresponding map will change. This change is related to more

detailed information about the spectrum of the operator pencil BA.

Theorem 1.7. Let p ∈ (1,∞), k ∈ Z and β1, β2 ∈ R with β1 ≤ β2 and βi + n/p 6∈ Γ (A)

for i = 1, 2. Set Σ = {λ ∈ σ(B) | Imλ ∈ [β1, β2]} and , for each λ ∈ Σ, let mλ denote
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the algebraic multiplicity of λ. Then we have

IndexA(β1) = IndexA(β2) +
∑

λ∈Σ

mλ,

where A(βi) denotes the map A : Hp,k+m
βi−m

→ Hp,k
βi
for i = 1, 2.

Let A∗(x,D) denote the differential operator obtained by taking the formal adjoint of

A(x,Dx) (with respect to the standard Lebesgue measure on R
n). By using the definition

of the symbol classes Scβ it is straightforward to check thatA∗ is also an admissible elliptic

operator. Furthermore, we have

Γ (A∗) = (n+m)− Γ (A).(3)

In the case when A is formally self-adjoint we can determine the Fredholm index

entirely from knowledge of the spectrum of the operator pencil BA.

Theorem 1.8. Let p ∈ (1,∞), k ∈ Z and , for any γ ∈ R, let A(γ) denote the map

A : Hp,k+m
γ−m → Hp,k

γ . Now suppose A is formally self-adjoint. Then Γ (A) is symmetric

about (n+m)/2 and , for any β ∈ R with β + n/p 6∈ Γ (A), we have

IndexA(n+m−β−2n/p) = − IndexA(β).

In particular , we have either (n+m)/2 6∈ Γ (A), in which case IndexA(m/2+n/2−n/p) = 0,

or (n + m)/2 ∈ Γ (A), in which case the sum of the algebraic multiplicities of those

λ ∈ σ(BA) with Imλ = (n+m)/2 is even (say 2d for some d ∈ N) and

IndexA(m/2+n/2−n/p−ε) = d = − IndexA(m/2+n/2−n/p+ε)

for all sufficiently small ε > 0.

The paper is arranged as follows. In Section 2 we define the general class of weighted

function spaces on which our elliptic operators act, as well as related weighted function

spaces for the associated “model operators”. The majority of that section is devoted to

establishing the basic properties of these spaces that are necessary in order to work with

them. In particular, Section 2.3.5 gives details of how some previously defined weighted

function spaces (including the weighted Sobolev spaces of Definition 1.2) arise in this

general setting.

The full class of elliptic operators on Rn to which our results apply is introduced at the

beginning of Section 4 (see Definition 4.3). This class is basically a generalisation of the

class of (scalar) admissible elliptic operators introduced above to cover the case of systems

with Douglis–Nirenberg type ellipticity. The generalisations of Theorems 1.3 to 1.8 are

given in Theorems 4.12, 4.22, 4.18, 4.19, 4.23 and 4.26 respectively (Remarks 2.22 and 2.36

provide the details needed to derive the results given above from their counterparts in

Section 4). Additionally, it is shown that the finite dimensionality of the kernel implied by

Theorem 1.4 (or Theorem 4.22) remains valid without restriction on the parameter β (see

Theorem 4.17). Finally, at the end of Section 4, we give some index formulae for elliptic

operators whose principal part is homogeneous with constant coefficients (see Theorems

4.29, 4.30 and 4.31).

The main results are obtained from results for “model operators” on Πn and Rn∗ .

These operators provide the necessary generalisation of the operators BA and A0 in-
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troduced above and are dealt with in Section 3. The isomorphism results contained in

Sections 3.4 and 3.5 (for Πn and R
n
∗ respectively) are also of interest in their own right.

Broadly speaking, there appear to be two areas of research related to the results

presented here. The older of these areas appears principally in the Russian literature and

was centred around the problem of elliptic operators on bounded domains with conical

singularities on the boundary. The motivation for a lot of this work came from applications

to the mechanics and electrodynamics of continua and to numerical methods.

The difference between the problems of elliptic operators on Rn and on domains with

conical singularities on the boundary is a largely superficial one—in some sense ∞ can

be regarded as a one-point boundary of Rn which is of conical type. Both problems can

be split into the study of standard elliptic problems on bounded domains and of elliptic

problems in neighbourhoods of the singular points. In turn, the latter can be reduced

to the study of model elliptic problems on conical or cylindrical domains. The model

problems and the arguments used to go from results for these to results for the actual

problems are similar in many respects. In particular, the study of the model problems

suggests a natural choice of weighted function spaces, which, in turn, gives rise to a

natural choice of weighted function spaces for the original problems.

Early work on the problem of elliptic operators on domains with conical singularities

on the boundary includes [Es], [K1], [Lop], and the fundamental paper [K2], in which

the general approach to these problems was refined and applied to scalar operators of

arbitrary order in weighted Sobolev spaces based on Hk, k ∈ N0. Aspects of the theory

were developed by authors including V. G. Maz’ya, B. A. Plamenevskĭı, S. A. Nazarov,

V. A. Kozlov, J. Rossmann and M. Dauge (see [KMR] for a comprehensive list of refer-

ences). The paper [MP] and the monograph [Da] are of particular relevance to the work

presented here; in [MP] generalisations were made to systems of operators on weighted

Lp Sobolev spaces of integral order and weighted Hölder spaces, whilst in [Da] weighted

L2 Sobolev spaces of fractional order were considered. The monographs [Gr], [Da], [NP]

and [KMR], as well as the overview paper [Pl], provide expositions of (aspects of) this

theory, further results and references, and some notes on the historical development of

this work.

Although the presumed existence of parallel results for elliptic operators on R
n has

been remarked upon by several authors (see in particular Remark 4.1.5 in [NP]) the

problem was considered explicitly in only a handful of papers from this area, the most

significant of these being [BK]. Here Theorem 4.22 was established for scalar operators

and the model spaces E = Hk, k ∈ N0, whilst Theorem 4.17 was given for scalar operators

and the model spaces E = Lp, p ∈ (1,∞), when β = n/p. The possibility of generalisation

to systems of operators was also observed in [BK]. However, since [BK], no detailed study

of the problem on R
n appears to have been carried out by authors in this area.

The second area of research related to the results presented here is connected to the

study of elliptic problems on non-compact manifolds, with motivation coming from ap-

plications to global analysis on non-compact manifolds, especially in questions related to

general relativity. Initial work in this area centred on Rn (as the simplest of a class of

non-compact manifolds) and elliptic operators of the form A0+Q where A0 is a homoge-
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neous operator with constant coefficients andQ is a perturbation with variable coefficients

which have suitable decay at infinity. The approach used in this work was fundamentally

different from that taken here; it was based on establishing mapping properties for an

explicit class of related convolution operators. This technique was essentially introduced

in the key paper [NW] where it was shown that such operators have a finite-dimensional

kernel when acting on Hp,k, p ∈ (1,∞), k ∈ N0.

The weighted function spaces suggested by the estimates in [NW] (i.e. the spaces

Hp,k
β appearing in Definition 1.2 above) were explicitly defined in [C1] and the theory

was developed steadily in a series of papers thereafter; these included [C2], [C3], [Loc],

[M1], [M2], [CC], [Mu], [LM1], [Ben], [De] and [BP]. In particular, Theorem 4.29 was given

for the model spaces E = Hp,k, p ∈ (1,∞), k ∈ N0 in [LM1] (see also [LM2]), and for the

model spaces E = Cl+σ, l ∈ N0, σ ∈ (0, 1) in [BP]. It should be remarked that the papers

[C2], [C3], [CC], [Loc] and [De] also considered operators of the above type on non-

compact manifolds which are “asymptotically Euclidean”. The essential modifications

needed to consider such problems relate to the non-Euclidean part of the manifold—this

is bounded and can be treated using the well developed theory for elliptic operators on

compact manifolds.

The techniques of the above papers seem to be well suited to operators which are ap-

propriate perturbations of homogeneous constant coefficient operators and even allow for

the computation of the index and the characterisation of kernels and cokernels in certain

cases. However, these techniques do not appear to generalise easily to cover operators

with arbitrarily varying coefficients. In [LM3] a switch was made to techniques similar to

those employed here, and Theorems 4.22, 4.23 and 4.26 were established for the model

spaces E = Hp,k, p ∈ (1,∞), k ∈ N0. In fact, these theorems were established for an

appropriately defined class of operators on non-compact manifolds which have finitely

many cylindrical ends (Rn being the special case of a manifold with a single cylindrical

end homeomorphic to R
+×Sn−1). Along with [BK], the results of [LM3] appear to be

the closest existing results to those presented here.

The work on non-compact manifolds cited above can be viewed as being part of a

broader collection of work on elliptic operators on non-compact manifolds. Apart from

the inherent interest of such problems, results parallel to the well known ones for elliptic

operators on compact manifolds have useful applications in many areas of geometry and

analysis. However, it is not possible to develop a theory as comprehensive as that for

compact manifolds; to obtain useful results one is forced to restrict to classes of prob-

lems where there is some kind of relationship between the asymptotic behaviour of the

operators and the asymptotic properties of the function spaces on which they are acting.

Of the large and diverse collection of work in this area we mention only a brief (and

necessarily subjective) selection. In [CH] and [M3] necessary and sufficient conditions

for certain types of (pseudo-)differential operators to be Fredholm when acting between

Sobolev spaces on a complete Riemannian manifold were formulated in terms of objects

related to the operator’s symbol. In [Ei] several approaches to the study of the spectral

theory of certain self-adjoint differential operators on non-compact manifolds were pre-

sented, whilst in [An] manifolds with asymptotically negative curvature were considered.



Fredholm properties of elliptic operators on R
n 11

Finally we mention the very general works [MM], [Ma] and [Sc] which gave results re-

lated to various special classes of (pseudo-)differential operators on compact manifolds

with boundaries (including “totally characteristic operators” and “edge operators”). By

using appropriate coordinate transformations these results can be reformulated for certain

operators on non-compact manifolds; in particular, the general framework used in these

works allows one to consider operators similar to those considered here, at least when

they are classically elliptic and act between weighted spaces modeled on Hk, k ∈ N0.

The present paper extends existing work in its consideration of much more general

types of function spaces. Apart from filling numerous gaps in the existing collection of re-

sults (in particular for weighted Lp Sobolev spaces of negative integral order and weighted

Hölder spaces) numerous new types of spaces are considered; perhaps the most important

of these are the weighted Lp Sobolev spaces of arbitrary real order. The key technique

employed to achieve this lies in a characterisation of pseudo-differential operators given in

[Bea] which allows the generalisation of results about the model operators (see Section 3).

The inclusion of spaces of “negative order” in our general setting means we can

consider dual problems as well as operators arising from problems in variational form. In

particular, the use of duality simplifies the argument needed to go from the semi-Fredholm

property to the Fredholm property (i.e. from Theorem 4.16 to Theorem 4.22). In most

existing work in this area some type of parametrix or regulariser is constructed for the

corresponding step (n.b. duality is also used in [KMR]).

In this paper, as in the majority of the literature cited above, the necessary weighted

function space results are proved locally. Due to the more general function space setting of

the present work a more complete set of related weighted function space results has been

obtained here. However, it should be pointed out that many of these results probably

appear in the function space literature.

One application of the results presented here is to the study of zero modes (or zero

energy bound states) of the Dirac–Weyl operator σ.(D − A) on R3 (here σ is the vector

of Pauli matrices and A is a real vector potential); this will appear in [El].

1.1. Notation. In this section we introduce some (not necessarily standard) notation

and conventions that will be used throughout the paper.

We define N0 = N ∪ {0} to be the set of non-negative integers; thus a multi-index α

is simply an element of Nn0 with |α| := α1 + . . .+ αn.

The sets Rn \ 0 and R×Sn−1 are denoted by Rn∗ and Π
n respectively. The letter

ω is used to denote a point on Sn−1, whilst (r, ω) and (t, ω) denote polar coordinates

on Rn∗ and cylindrical coordinates on Π
n respectively. When necessary, Sn−1, Rn∗ and

Πn will be considered as Riemannian manifolds with the obvious choice of Riemannian

metrics (i.e. that given by the standard embedding into Rn as the unit sphere for Sn−1,

the restriction of the Euclidean metric for R
n
∗ and the product metric for Π

n).

For i ∈ {1, . . . , n} we use Di to denote the differential operator −i∂/∂xi on Rn.

By Dx we mean the vector differential operator (D1, . . . , Dn) whilst Dr and Dt are used

to denote the differential operators −i∂/∂r and −i∂/∂t on R+ and R respectively. Finally,

the notation A(ω,Dω) is used to mean that A is a differential operator on S
n−1.



12 D. M. Elton

For any manifoldM with volume measure dM let (·, ·)M denote the L
2 pairing onM ;

that is, (u, v)M =
T
M
uv dM for all appropriate u and v. The associated sesquilinear

pairing is then 〈u, v〉M := (u, v)M . We use these pairings with M being R
n, Sn−1, R

n
∗

or Πn. In all cases dM is the volume measure induced by our choice of the Riemannian

metric; in particular, the volume measures on Rn, Rn∗ and Π
n are dnx (the Lebesgue

measure), dnx = rn−1drdSn−1 and dtdSn−1 respectively, where dSn−1 is the standard

volume measure on Sn−1 inherited from its embedding into Rn as the unit sphere.

Let D ′ denote the set of distributions on Rn and D ′(M) the set of distributions on

an arbitrary manifold M (see Section 6.3 of [H1] for further details). The pairing (u, v)M
can be defined for all u ∈ C∞0 (M) and v ∈ D ′(M); in particular, this pairing can be

viewed as a way of identifying elements of D ′(M) with distributional densities on M .

If E ⊂ D ′(M) for some manifold M we use Eloc to denote the set of u ∈ D ′(M) with

φu ∈ E for all φ ∈ C∞0 (M). On the other hand, for open U ⊆M , E(U) denotes the set of

(equivalence classes of) restrictions of elements u ∈ E to U . If φ ∈ C∞0 (U) and u ∈ E(U)

we can extend φu by 0 outside U to enable us to consider it as an element of E.

We use Λ to denote the weight function defined on Rn by Λ(x) = (1+ |x|2)1/2. Let S

and S ′ denote respectively the locally convex spaces of Schwartz class functions on Rn

and its dual, the set of tempered distributions on Rn. The topology of the former is

provided by the semi-norms

pl(u) :=
∑

|α|≤l

sup
x∈Rn

Λl(x)|Dα
xu(x)|

for any l ∈ N0, whilst we choose the weak dual topology for the latter.

For any l ∈ N0 we use C
l to denote the set of bounded l times continuously differen-

tiable functions on Rn, provided with the norm

‖u‖Cl =
∑

|α|≤l

sup
x∈Rn

|Dα
xu(x)|.

We put C∞ =
⋂
l∈N0

Cl and provide this set with the locally convex topology induced

by the collection of semi-norms {‖·‖Cl | l ∈ N0}. The set of smooth functions on Rn

(without restrictions on growth at infinity) is then denoted by C∞loc. We also use C
∞
0 for

the set of smooth functions on Rn with compact support.

For p ∈ [1,∞] and s ∈ R we use Hp,s to denote the Sobolev space on R
n of “functions

with s p-integrable derivatives”. This notation will be simplified to Hs in the case p = 2

and Lp in the case s = 0. Other spaces appearing as examples include the Hölder spaces

Cl+σ for l ∈ N0 and σ ∈ [0, 1) (n.b. we set C
l+0 = Cl) and the Zygmund spaces Cs for

s ∈ R+. A detailed account of all these spaces can be found in [T1].

Let BS denote the set of R-valued functions ζ ∈ C∞ which are constant in a neigh-

bourhood of 0 and ∞. We also use BS01 to denote the subset of BS containing those ζ

with ζ = 0 in a neighbourhood of 0 and ζ = 1 in a neighbourhood of ∞.

If χ1 and χ2 are R-valued functions we write χ1 ≺ χ2 (or, alternatively, χ2 ≻ χ1)

provided χ2 = 1 on supp(χ1). If χ1 ≺ χ2 then it clearly follows that χ1χ2 = χ1.

We use C to denote any positive constant whose exact value is not important but

which may depend only on the things it is allowed to in a given problem (i.e. parameters
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defining function spaces but not the actual element of the space under consideration etc.).

Constants depending on something extra are indicated with appropriate function type

notation whilst subscripts are added if we need to keep track of the value of a particular

constant (e.g. C1(u) etc.).

We use the notation κ(u) ≍ ̺(u) to indicate that the quantities κ(u) and ̺(u) satisfy

the inequalities Cκ(u) ≤ ̺(u) ≤ Cκ(u) for all relevant u (possibly including parameter

values). Generally κ and ̺ will be norms of some description.

2. Function spaces

In this section we introduce classes of weighted function spaces for our elliptic operators

and associated “model” operators. In order to define these spaces and establish the basic

results necessary to work with them, we use general constructions and arguments applied

to specific “model spaces”.

Definition 2.1. A model space E is a Banach space of functions with the following

properties:

(A1) We have continuous inclusions S →֒ E →֒ S ′.

(A2) Multiplication defines a continuous bilinear map C∞ × E → E.

(A3) The norm ‖·‖E is translationally invariant.

(A4) If ψ is a diffeomorphism on Rn which is linear outside some compact set then

the pull-back ψ∗ : S ′ → S ′ restricts to give an isomorphism on E.

Throughout this paper the letters E, F and G are used to denote model spaces.

Remark 2.2. Examples of model spaces include the Sobolev spaces Hp,s for p ∈ [1,∞]

and s ∈ R, the Hölder spaces Ck+σ for k ∈ N0 and σ ∈ [0, 1) and the Zygmund spaces

Cs for s ∈ R
+.

Lemma 2.3. Suppose ψ : U → V is a diffeomorphism between open subsets of Rn and

χ ∈ C∞0 (V ). Then ‖ψ
∗(χu)‖E ≍ ‖χu‖E for all u ∈ E(V ).

Proof. Any point x ∈ U has a neighbourhood in U outside which ψ can be extended

linearly to give a diffeomorphism of Rn. Choose a finite collection {Ui}i∈I of such neigh-

bourhoods which cover ψ−1(supp(χ)) and, for each i ∈ I, let ψi : R
n → R

n denote a

diffeomorphism which is linear outside a compact region and satisfies ψi(x) = ψ(x) for

all x ∈ Ui. Thus {ψi(Ui)}i∈I ∪ {R
n \ supp(χ)} is an open cover of Rn. Choosing any

partition of unity {φi}i∈I ∪ {φ∞} subordinate to this cover we clearly have
∑
i∈I φi = 1

on supp(χ). Conditions (A2) and (A4) now give

‖ψ∗(χu)‖E ≤
∑

i∈I

‖ψ∗(φiχu)‖E =
∑

i∈I

‖ψ∗i (φiχu)‖E

≤ C
∑

i∈I

‖φiχu‖E ≤ C sup
i∈I
‖φiχu‖E ≤ C‖χu‖E

for all u ∈ E(V ). Symmetry completes the result.
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Definition 2.4. Suppose E is a model space and l ∈ N0. We define the space E
l to be

the set of all u ∈ S ′ satisfying Dα
xu ∈ E for each multi-index α with |α| ≤ l, equipped

with the norm

‖u‖El =
∑

|α|≤l

‖Dα
xu‖E .

Remark 2.5. It is straightforward to check that El is again a model space. Furthermore,

the differential operator Dα
x clearly defines a continuous map E

l → E whenever |α| ≤ l.

Definition 2.6. For any model space E we define E0 to be the separable subspace of E

obtained by taking the closure of S in E.

Remark 2.7. It is straightforward to check that E0 is again a model space. Furthermore,

C∞0 is a dense subset of S (see Proposition VI.1.3 in [Yo], for example) so E0 = Cl(S ) =

Cl(C∞0 ); in particular, S is dense in E (i.e. E = E0) iff C
∞
0 is dense in E.

2.1. Weighted function spaces on Πn. For any chart (ψ,U) on Sn−1 we can define

a corresponding chart (Ψ,R × U) on Πn by setting Ψ(t, ω) = (t, ψ(ω)) ∈ R × ψ(U) ⊆

Rn for all (t, ω) ∈ R × U . Now suppose {(ψi, Ui)}i∈I is a finite atlas for S
n−1 and let

{(Ψi,R×Ui)}i∈I be the corresponding atlas for Π
n. Choose a partition of unity {χi}i∈I

which is subordinate to the cover {Ui}i∈I of S
n−1. We also consider {χi}i∈I to be a

partition of unity subordinate to the cover {R× Ui}i∈I of Π
n by regarding each χi as a

function on Πn which is independent of t.

Let E and F be model spaces on R
n and R

n−1 respectively. We define E(Πn) to be

the set of u ∈ D ′(Πn) with (Ψ−1i )
∗(χiu) ∈ E for each i ∈ I. On this set we define a norm

‖u‖E(Πn) =
∑

i∈I

‖(Ψ−1i )
∗(χiu)‖E .(4)

We define the normed space F (Sn−1) in a similar fashion with Ψi replaced by ψi. Standard

calculations using conditions (A2) and (A4) show that E(Πn) and F (Sn−1) are Banach

spaces which are independent of the choice of atlas {(ψi, Ui)}i∈I and partition of unity

{χi}i∈I (up to equivalent norms); the next result is a somewhat more general statement

of this fact for the space E(Πn).

Lemma 2.8. Suppose {(φj , Vj)}j∈J is a finite atlas for S
n−1 and {ζj}j∈J is a collection

of functions in C∞(Sn−1) with supp(ζj) ⊂ Vj for each j ∈ J and |
∑

j∈J ζj | ≥ C > 0

on Sn−1. Let {(Φj ,R × Vj)}j∈J be the corresponding atlas for Π
n and consider ζj as

a function on Πn which is independent of t. Then u ∈ E(Πn) iff u ∈ D ′(Πn) and

(Φ−1j )
∗(ζju) ∈ E for each j ∈ J . Furthermore,

‖u‖E(Πn) ≍
∑

j∈J

‖(Φ−1j )
∗(ζju)‖E .

Proof. For each i ∈ I choose χ′i ∈ C∞0 (Ui) with χ
′
i ≻ χi. Then, for each j ∈ J , set

ζ̃ij = (ζjχ
′
i) ◦ Ψ

−1
i ∈ C

∞ (here we are considering ζjχ
′
i to be a function on Π

n which is

independent of t and extending ζ̃ij by 0 outside R× ψi(Ui)). For u ∈ E(Π
n) and j ∈ J ,

(Φ−1j )
∗(ζju) =

∑

i∈I

(Φ−1j )
∗(ζjχ

′
iχiu) =

∑

i∈I

(Ψi ◦ Φ
−1
j )
∗(ζ̃ij(Ψ

−1
i )
∗(χiu)).
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Using Lemma 2.3 (with the obvious minor modification) and condition (A2) we now get

(Φ−1j )
∗(ζju) ∈ E and

‖(Φ−1j )
∗(ζju)‖E ≤ C

∑

i∈I

‖(Ψ−1i )
∗(χiu)‖E ≤ C‖u‖E(Πn).

Our assumption on the ζj ’s implies ζ := (
∑
j∈J ζj)

−1 ∈ C∞(Sn−1). By using the

partition of unity on Sn−1 given by {ζζj}j∈J , the remainder of the result can be completed

with an argument similar to that above.

Remark 2.9. We note the following technically useful consequence of Lemma 2.8. For

each i ∈ I choose χ′i ∈ C
∞
0 (Ui) with χ

′
i ≻ χi. Then

‖u‖E(Πn) =
∑

i∈I

‖(Ψ−1i )
∗(χiu)‖E ≍

∑

i∈I

‖(Ψ−1i )
∗(χ′iu)‖E

for all u ∈ E(Πn).

Lemma 2.10. Suppose (ψ,U) is a chart for Sn−1 and let (Ψ,R × U) be the correspond-

ing chart for Πn. Also suppose χ ∈ C∞0 (U) (considered as a function on Π
n which is

independent of t) and define χ̃ = χ ◦Ψ−1 ∈ C∞. Then χu ∈ E(Πn) iff (Ψ−1)∗(χu) ∈ E

whilst ‖χu‖E(Πn) ≍ ‖(Ψ
−1)∗(χu)‖E. On the other hand , χ̃v ∈ E iff Ψ∗(χ̃v) ∈ E(Πn)

whilst ‖χ̃u‖E ≍ ‖Ψ
∗(χ̃u)‖E(Πn).

Proof. The first part of this result follows easily from Lemma 2.8 applied to the atlas

{(ψ,U)}∪{(ψi, Ui)} for S
n−1 and any partition of unity {ζ}∪{ζi}i∈I which is subordinate

to the covering {U} ∪ {Ui \ supp(χ)}i∈I of S
n−1 (n.b. ζχ = χ and ζiχ = 0 for each i ∈ I

in this case).

Choose χ′ ∈ C∞0 (U) with χ
′ ≻ χ and set χ̃′ = χ′ ◦ Ψ−1 ∈ C∞. The second part of

the result follows from the first part by taking u = Ψ∗(χ̃′v).

Remark 2.11. Suppose K is a locally convex space which satisfies conditions (A1), (A2)

and (A4). By applying (4) to individual semi-norms we can obviously define a new locally

convex space K(Πn) ⊂ D ′(Πn). In particular, we shall need the locally convex spaces

S (Πn), S ′(Πn) and C∞(Πn). It is straightforward to check that condition (A1) gives

us continuous inclusions S (Πn) →֒ E(Πn) →֒ S ′(Πn) for any model space E. It is also

clear that C∞(Πn) =
⋂
l∈N0

Cl(Πn) whilst the topology on C∞(Πn) is that induced by

the collection of semi-norms {‖·‖Cl(Πn) | l ∈ N0}.

Lemma 2.12. For any model space E multiplication defines a continuous bilinear map

C∞(Πn)× E(Πn)→ E(Πn).

Proof. Condition (A2) for E means we can find l ∈ N0 such that

‖φu‖E ≤ C‖φ‖Cl‖u‖E

for all φ ∈ C∞ and u ∈ E. With the notation of Remark 2.9 it follows that

‖(Ψ−1i )
∗(χiφu)‖E = ‖(Ψ

−1
i )
∗(χiφ)(Ψ

−1
i )
∗(χ′iu)‖E ≤ C‖(Ψ

−1
i )
∗(χiφ)‖Cl‖(Ψ

−1
i )
∗(χ′iu)‖E

for any φ ∈ C∞(Πn) and u ∈ E(Πn). Combining this with Remark 2.9 and the fact that
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I is finite, we then get

‖φu‖E(Πn) ≤ C
∑

i∈I

‖(Ψ−1i )
∗(χiφu)‖E

≤ C
∑

i∈I

‖(Ψ−1i )
∗(χiφ)‖Cl‖(Ψ

−1
i )
∗(χ′iu)‖E ≤ C‖φ‖Cl(Πn)‖u‖E(Πn)

for all φ ∈ C∞(Πn) and u ∈ E(Πn).

Given a model space E and β ∈ R we define ZβE to be the set of u ∈ D ′(Πn) with

eβtu ∈ E(Πn). On this set we define a norm

‖u‖ZβE = ‖e
βtu‖E(Πn).(5)

Clearly, ZβE is a Banach space and ZβE ⊂ E(Π
n)loc.

Remark 2.13. An easy consequence of Lemma 2.12 is that multiplication defines a con-

tinuous bilinear map C∞(Πn)× ZβE → ZβE for any model space E and β ∈ R.

Remark 2.14. With K as in Remark 2.11 it is clear that we can define a locally convex

space ZβK ⊂ D ′(Πn) for any β ∈ R. It is straightforward to check that condition (A1)

gives us continuous inclusions ZβS →֒ ZβE →֒ ZβS
′ for any model space E and β ∈ R.

In order to work with the spaces ZβE (and other spaces to be defined below) we need

to introduce a set of auxiliary functions. Choose φ0 ∈ C
∞(R) with φ0 = 0 on (−∞,−2/3],

φ0 = 1 on [−1/3,∞) and Ranφ0 = [0, 1]. For any i, j ∈ Z ∪ {±∞} with j ≥ i define

φij ∈ C
∞(Πn) by

φij(t, ω) = φ0(t− i)− φ0(t− j − 1).

Therefore φij is non-negative, supp(φij) ⊆ (i−1, j+1)×S
n−1 and φij = 1 on [i, j]×S

n−1.

We also set φi = φi∞ so φij = φi − φj+1.

Remark 2.15. Suppose φ ∈ C∞(Πn) satisfies supp(φ) ⊆ [i, j] × Sn−1 for some i, j ∈

Z ∪ {±∞} with i ≤ j. Then we have

‖φu‖ZβE =
∥∥∥

j∑

k=i

φkkφu
∥∥∥
ZβE
≤

j∑

k=i

‖φkkφu‖ZβE

for all u ∈ E(Πn)loc. On the other hand, {φkk}k∈Z is a bounded subset of C
∞(Πn) so

Remark 2.13 implies

sup
i≤k≤j

‖φkkφu‖ZβE ≤ C‖φu‖ZβE

for all u ∈ E(Πn)loc.

For any k ∈ Z we can write eβt = eβkeβ(t−k) where eβ(t−k) and its derivatives can be

bounded independently of k ∈ Z on supp(φkk) ⊆ (k − 1, k + 1). Lemma 2.12 then gives

‖φkku‖ZβE ≍ e
βk‖φkku‖E(Πn),(6)

where the equivalence constants are independent of k.

2.2. Weighted function spaces on Rn∗ and Rn. Let Θ : Πn → Rn∗ denote the

diffeomorphism defined by Θ(t, ω) = (r, ω) where r = et. Under the pull-back Θ∗ we
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clearly have

r → et, rDr → Dt and r−1 dr → dt.(7)

Now Θ∗ defines an isomorphism D ′(Rn∗ ) → D ′(Πn). For any model space E and β ∈ R

we define YβE ⊂ D ′(Rn∗ ) to be the preimage of ZβE under Θ
∗ with the induced norm.

Therefore the restricted map

Θ∗ : YβE → ZβE(8)

is an isomorphism, and

‖u‖YβE = ‖Θ
∗u‖ZβE for any u ∈ YβE.(9)

Choose θ ∈ BS01 with θ = 1 on {|x| ≥ 2}, θ = 0 on {|x| ≤ 1} and Ran θ = [0, 1]. For

any model space E and β ∈ R we define XβE to be the set of u ∈ D ′ with (1− θ)u ∈ E

and θu ∈ YβE. On this set we define a norm

‖u‖XβE = ‖(1− θ)u‖E + ‖θu‖YβE .

Straightforward calculations show that XβE ⊂ Eloc, XβE is a Banach space and the

definition is independent of the choice of θ (up to equivalence of norms). These and other

observations are summarised in the following result.

Lemma 2.16. Suppose β ∈ R, ζ ∈ BS01 and η ∈ C
∞
0 is a non-negative function for which

η + ζ is bounded away from 0. Then u ∈ XβE iff ηu ∈ E and ζu ∈ YβE. Furthermore,

all such u satisfy an estimate of the from

‖u‖XβE ≍ ‖ηu‖E + ‖ζu‖YβE .

Also, for u ∈ E(Rn∗ )loc we have ζu ∈ XβE iff ζu ∈ YβE whilst all such u satisfy an

estimate of the form ‖ζu‖XβE ≍ ‖ζu‖YβE .

Remark 2.17. Suppose f ∈ C∞ is constant on a neighbourhood of 0 and satisfies f ◦Θ ∈

C∞(Πn) (we could take f ∈ BS, for example). For any β ∈ R, Remark 2.13 and (8) then

imply that multiplication by f defines a continuous map YβE → YβE. By coupling this

observation with Lemma 2.16 and the fact that f is constant on a neighbourhood of 0,

it follows easily that multiplication by f also defines a continuous map XβE → XβE.

Remark 2.18. Suppose β, γ ∈ R and ζ ∈ BS01. Making straightforward applications of

Lemma 2.16 (with η = 1− ζ) we can obtain the following:

(i) If ζu ∈ XγE for some u ∈ XβE then we also have u ∈ XγE.

(ii) If ζu ∈ YγE and u = 0 in a neighbourhood of 0 for some u ∈ YβE then we also

have u ∈ YγE.

For each i, j ∈ Z ∪ {±∞} with j ≥ i define ζi, ζij ∈ C∞ by ζi = φi ◦ Θ
−1 and

ζij = φij ◦ Θ
−1 (n.b. there are no problems with smoothness at 0 since φi and φij are

constant in a neighbourhood of −∞×Sn−1). Also set ηi = ζ−∞i−1. Therefore ζi ∈ BS01,

ηi ∈ C
∞
0 and ηi + ζi = 1. The next result follows from Lemma 2.16 with ζ = ζ0, η = η0

and the observation that ζ0ζi = ζi, η0ζi = 0 for any i ∈ N.

Lemma 2.19. Given i ∈ N we have ‖ζiu‖XβE ≍ ‖ζiu‖YβE for any u ∈ XβE, where the

equivalence constants are independent of i.
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2.3. Basic properties

2.3.1. Isomorphisms

Proposition 2.20. Suppose E is a model space and β, γ ∈ R. Then multiplication by

eγt, rγ and Λγ defines isomorphisms Zβ+γE → ZβE, Yβ+γE → YβE and Xβ+γE → XβE

respectively.

Proof. The first isomorphism is an immediate consequence of (5) whilst the second then

follows from (7) and (8). Now define a smooth function f on Rn by f = ζ0Λ
γr−γ . It

follows that f ◦ Θ is a smooth function on Πn with f(Θ(t, ω)) = 0 for t ≤ −1 and

f(Θ(t, ω)) = (1 + e−2t)γ/2 for t ≥ 1. Hence f ◦ Θ ∈ C∞(Πn), so multiplication by f

defines a continuous map YβE → YβE by Remark 2.17. Combining this observation with

Lemma 2.16, the identity ζ1Λ
γ = fζ1r

γ and the second part of the present result, we

now have

‖Λγu‖XβE ≤ C(‖η1Λ
γu‖E + ‖fζ1r

γu‖YβE) ≤ C(‖η1Λ
γu‖E + ‖ζ1u‖Yβ+γE) ≤ C‖u‖Xβ+γE

for all u ∈ Xβ+γE (n.b. η1Λ
γ ∈ C∞0 is non-negative whilst η1Λ

γ + ζ1 is bounded away

from 0). A similar argument for Λ−γ now completes the result.

2.3.2. Inclusions

Remark 2.21. It is easy to see that any continuous inclusion E →֒ F between model

spaces E and F induces continuous inclusions ZβE →֒ ZβF , YβE →֒ YβF and XβE →֒

XβF for any β ∈ R.

By a local inclusion Eloc →֒ Floc we mean that Eloc ⊆ Floc and ‖φu‖F ≤ C‖φu‖E for

φ ∈ C∞0 and all u ∈ Eloc (where C may depend on φ).

Remark 2.22. We have a local inclusion Hp1,s1
loc →֒ Hp2,s2

loc whenever p1, p2 ∈ [1,∞) and

s1, s2 ∈ R satisfy s1 ≥ s2 and s1 −n/p1 ≥ s2 −n/p2. The additional condition p1 ≤ p2 is

needed in order to get a continuous inclusion Hp1,s1 →֒ Hp2,s2 . We also have continuous

inclusions Hp1,s1 →֒ Cs2 whenever s1−n/p1 ≥ s2 > 0 and H
p1,s1 →֒ Ck whenever k ∈ N0

satisfies s1 − n/p1 > k. Further details can be found in Sections 2.3.2, 2.7.1 and 3.3.1

of [T1].

Obviously, a continuous inclusion E →֒ F leads to a local inclusion Eloc →֒ Floc.

Although the converse does not hold in general we can obtain the following related results,

the first of which is an easy consequence of the compactness of Sn−1.

Lemma 2.23. A local inclusion Eloc →֒ Floc for model spaces E and F on R
n−1 induces

a continuous inclusion E(Sn−1) →֒ F (Sn−1).

Lemma 2.24. Suppose we have a local inclusion Eloc →֒ Floc for some model spaces E

and F . If β ∈ R, ε > 0, l ∈ Z and φ± ∈ C
∞(Πn) with supp(φ±) ⊆ ±[l,+∞) × S

n−1,

then

‖φ±u‖ZβF ≤ C(ε, l)‖φ±u‖Zβ±εE

for any u ∈ E(Πn)loc. Furthermore, C(ε, l) can be chosen independently of φ±.

Proof. Clearly, condition (A3) implies that the norm ‖·‖F (Πn) is invariant under trans-

lations with respect to the first variable of Πn. With the help of (6) it follows that the



Fredholm properties of elliptic operators on R
n 19

local inclusion Eloc →֒ Floc leads to an estimate

‖φkkv‖ZβF ≤ Ce
−εk‖φkkv‖Zβ+εE(10)

for any k ∈ Z and v ∈ E(Πn)loc, where C is independent of k. On the other hand,∑
k≥l φkk = 1 on supp(φ+). Combined with Remark 2.15 and (10) this implies

‖φ+u‖ZβF ≤
∑

k≥l

‖φkkφ+u‖ZβF ≤ C
∑

k≥l

e−εk‖φkkφ+u‖Zβ+εE

≤ C(sup
k≥l
‖φkkφ+u‖Zβ+εE)

∑

k≥l

e−εk ≤ C‖φ+u‖Zβ+εE

for any u ∈ E(Πn)loc. Clearly, a similar argument can be used for φ−.

Remark 2.25. If φ± are as in the previous lemma it is easy to check that multiplication

by φ± defines continuous maps ZβS → Zβ∓εS and ZβS
′ → Zβ∓εS

′ for any β ∈ R and

ε ≥ 0.

Proposition 2.26. Suppose we have a local inclusion Eloc →֒ Floc for some model spaces

E and F . If β, γ ∈ R with β < γ then we have a continuous inclusion XγE →֒ XβF .

This result obviously implies that we have a continuous inclusion

XγE →֒ XβE for β ≤ γ.(11)

Proof. Let u ∈ XγE. Therefore u ∈ Eloc ⊆ Floc. Now Lemma 2.16 gives

‖u‖XβF ≤ C(‖η1u‖F + ‖ζ1u‖YβF ).(12)

However, (9) and Lemma 2.24 (with φ+ = φ1) combine to give

‖ζ1u‖YβF = ‖φ1Θ
∗u‖ZβF ≤ C‖φ1Θ

∗u‖ZγE = ‖ζ1u‖YγE .

Together with the definition of local inclusion and (12) this shows that

‖u‖XβF ≤ C(‖η1u‖E + ‖ζ1u‖YγE) ≤ C‖u‖XγE ,

the last inequality following from a further application of Lemma 2.16.

We finish this section with some results which are direct consequences of condi-

tions (A1) to (A3) for model spaces. We will make use of the collection of semi-norms

{pl | l ∈ N0} forS introduced in Section 1.1; in particular, we observe that pl′(u) ≤ pl(u)

whenever 0 ≤ l′ ≤ l.

Lemma 2.27. We have Clloc →֒ Eloc for all sufficiently large l ∈ N0.

Proof. The continuous inclusion S →֒ E given by condition (A1) simply means that we

can find l′ ∈ N0 such that ‖u‖E ≤ Cpl′(u) for all u ∈ S . Now let l ∈ N0 with l ≥ l
′. Also

let φ ∈ C∞0 and choose φ1 ∈ C
∞
0 with φ1 ≻ φ. Therefore Dα

x (φu) = φ1D
α
x (φu) for any

multi-index α whilst Λlφ1 ∈ C
∞
0 . Hence

‖φu‖E ≤ Cpl(φu) = C
∑

|α|≤l

‖Λlφ1D
α
x (φu)‖L∞ ≤ C

∑

|α|≤l

‖Dα
x (φu)‖L∞ = C‖φu‖Cl

for all u ∈ S . The result now follows from the fact that if u ∈ Cl then we can approximate

φu arbitrarily closely (in the Cl norm) by φu′ for some u′ ∈ S .
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Lemma 2.28. Suppose L is a locally convex space whose topology is given by a countable

collection of semi-norms {ql | l ∈ N}. Also suppose X and Y are Banach spaces and

T : L×X → Y is a bilinear mapping which is continuous in each variable. Then we can

find l ∈ N and a constant C such that

‖T (a, x)‖Y ≤ C‖x‖X

l∑

i=1

qi(a)(13)

for all (a, x) ∈ L×X.

Proof. Without loss of generality we may assume that the semi-norms are defined so that

qi ≤ qj for all i, j ∈ N with i ≤ j. Therefore (13) can be rewritten as

‖T (a, x)‖Y ≤ C‖x‖X ql(a)

for all (a, x) ∈ L×X. Suppose an estimate of this form is not valid. It follows that we can

find a sequence {ai}i∈N in L such that qi(ai) ≤ 1 and ‖T (ai, ·)‖L (X,Y ) → ∞ as i→ ∞.

Now the continuity of the map T (·, x) : L→ Y gives us j ∈ N and a constant C such that

‖T (ai, x)‖Y ≤ Cqj(ai) for all i ∈ N. It follows that the set {T (ai, x) | i ∈ N} is bounded

in Y (by the maximum of Cqj(a1), . . . , Cqj(aj−1) and C). The Uniform Boundedness

Theorem (see Section II.1 in [Yo], for example) then implies {‖T (ai, ·)‖L (X,Y ) | i ∈ N}

must also be bounded. The result now follows by contradiction.

Lemma 2.29. We have El →֒ C0 for all sufficiently large l ∈ N0.

Proof. Using the inclusion E →֒ S ′ and the dual pairing S ×S ′ → C we can define a

continuous bilinear map S × E → C by (φ, u) 7→ (φ, u)Rn . By Lemma 2.28 we can thus

find j ∈ N and a constant C such that

|(φ, u)Rn | ≤ C‖u‖E pj(φ)

for all φ∈S and u∈E. Now suppose χ∈C∞0 and choose χ1, χ2 ∈C
∞
0 with χ2≻χ1≻χ.

Thus Dα
x (χ1φ) = χ2D

α
x (χ1φ) and Λ

jχ2 ∈ C
∞
0 so

pj(χ1φ) =
∑

|α|≤j

‖Λjχ2D
α
x (χ1φ)‖L∞ ≤ C‖χ1φ‖Cj ≤ C‖φ‖Hj+n

for all φ ∈ S , where we have used the continuous inclusion Hj+n →֒ Cj in the last

inequality. Therefore

|(φ, χu)Rn | = |(χ1φ, χu)Rn | ≤ C‖χu‖E ‖φ‖Hj+n

for all u ∈ E and φ ∈ S . Now let l ∈ N0 with l > 2n + j. Choose l
′ ∈ 2N0 so that

2n+ j ≤ l′ ≤ l. Now the Fourier multiplier Λ−l
′

(D) defines an isomorphism on S whose

inverse is simply the constant coefficient differential operator Λl
′

(D) of order l′ (recall

that l′ is even). Therefore

|(φ, χu)Rn | = |(Λ
l′(D)Λ−l

′

(D)φ, χu)Rn | = |(Λ
−l′(D)φ,Λl

′

(D)(χu))Rn |(14)

≤ C‖Λl
′

(D)(χu)‖E‖Λ
−l′(D)φ‖Hj+n ≤ C‖χu‖El‖φ‖H−n

for all u ∈ El and φ ∈ S , where the last inequality follows from Remark 2.5, the fact that

Λ−l
′

(D) defines an isomorphism Hj+n−l′ → Hj+n, and the inequality j + n − l′ ≤ −n.

Since S is dense in H−n, (14) implies that for any u ∈ El we have χu ∈ Hn (the dual



Fredholm properties of elliptic operators on R
n 21

space of H−n) with a corresponding norm estimate. Since we have a continuous inclusion

Hn →֒ C0 whilst χ ∈ C∞0 was arbitrary, we finally arrive at a local inclusion E
l
loc →֒ C0loc.

Let {χI}I∈Zn be a partition of unity of Rn where χ0 ∈ C
∞
0 and, for each I ∈ Zn,

χI(x) = χ0(x− I). Using conditions (A2) and (A3) we thus have ‖χIu‖El ≤ C‖u‖El for

all u ∈ El, where C is independent of I ∈ Zn. On the other hand, it is clear that ‖u‖C0 ≤

C supI∈Zn ‖χIu‖C0 (where for C we can take #{I ∈ Zn | supp(χ0) ∩ supp(χI) 6= ∅}).

The fact that we have a continuous inclusion El →֒ C0 now follows from the existence of

a local inclusion.

Clearly, a continuous inclusion E →֒ F for model spaces E and F leads to a continuous

inclusion El →֒ F l for any l ∈ N0. Coupling this observation with Lemmas 2.27 and 2.29

we immediately get the following.

Corollary 2.30. For any model spaces E and F we have a local inclusion Elloc →֒ Floc
for all sufficiently large l ∈ N0.

2.3.3. Derivatives. For each i ∈ {1, . . . , n} we can write

Di = r
−1(bi(ω)(rDr) + Pi(ω,Dω))(15)

where bi(ω) = xi/r ∈ C∞(Sn−1) and Pi(ω,Dω) is a first order differential operator

on Sn−1. Now any first order differential operator A on Sn−1 can be written as a (not

necessarily unique) linear combination

A = a0 +

n∑

i=1

aiPi

where a0, . . . , an ∈ C
∞(Sn−1). On the other hand, b21 + . . . + b

2
n = 1 while b1P1 + . . . +

bnPn = 0. Defining differential operators Bi on Π
n by Bi = bi(ω)Dt + Pi(ω,Dω) for

i = 1, . . . , n we thus arrive at the following result.

Lemma 2.31. If A(ω,Dω, Dt) is a first order differential operator on Π
n whose coeffi-

cients do not depend upon t then we can write

A = a0 +

n∑

i=1

aiBi

for some a0, . . . , an ∈ C
∞(Sn−1).

Lemma 2.32. Suppose E is a model space and β ∈ R. Then

‖u‖ZβE1 ≍ ‖u‖ZβE +
n∑

i=1

‖Biu‖ZβE

for all u ∈ D ′(Πn) (where we define the norm of a function not belonging to the rel-

evant space to be +∞). In particular , Bi defines a continuous map ZβE
1 → ZβE for

i = 1, . . . , n.

Proof. Consider the notation of Remark 2.9 and let i ∈ I and j ∈ {1, . . . , n}. Now

(Ψ−1i )
∗χiBjχ

′
iΨ
∗
i is a first order differential operator on Rn whose coefficients are con-

tained in C∞ (in fact, the coefficients do not depend upon the first variable and are
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compactly supported with respect to the rest). Thus we have

‖(Ψ−1i )
∗χi(Bj + iβbj)χ

′
iΨ
∗
i v‖E ≤ C‖v‖E1

for any v ∈ D ′. On the other hand, eβtBju = (Bj + iβbj)e
βtu so

(Ψ−1i )
∗χie

βtBju = (Ψ
−1
i )
∗χi(Bj + iβbj)χ

′
iΨ
∗
i (Ψ

−1
i )
∗χ′ie

βtu

for any i ∈ I, j ∈ {1, . . . , n} and u ∈ D ′(Πn). Since we clearly have ‖u‖XβE ≤ C‖u‖XβE1 ,

the above results combine to give

‖u‖ZβE +
n∑

i=1

‖Biu‖ZβE ≤ C‖u‖ZβE1

for all u ∈ D ′(Πn).

Let i ∈ I. Using Definition 2.4 we get

‖(Ψ−1i )
∗χie

βtu‖E1 ≤ ‖(Ψ
−1
i )
∗χie

βtu‖E +
n∑

j=1

‖Dj(Ψ
−1
i )
∗χie

βtu‖E

for all u ∈ D ′(Πn). On the other hand, we can write

Dj(Ψ
−1
i )
∗χie

βtu = (Ψ−1i )
∗χ′ie

βtAiju

where Aij = χ
′
iΨ
∗(Dj − iβδj1)(Ψ

−1)∗χi is a first order differential operator on Π
n whose

coefficients are independent of t. By Lemma 2.10, Remark 2.9 and (5) we thus have

‖u‖ZβE1 ≤ C
(
‖u‖ZβE +

∑

i∈I

n∑

j=1

‖Aiju‖ZβE
)

for all u ∈ D ′(Πn). On the other hand, using Lemma 2.31 and the fact that multiplication

by an element of C∞(Sn−1) defines a continuous map on ZβE (see Remark 2.13), we get

‖Aiju‖ZβE ≤ C
(
‖u‖ZβE +

n∑

j′=1

‖Bj′u‖ZβE
)

for all u ∈ D ′(Πn). Clearly, the last two estimates complete the result.

For any i ∈ {1, . . . , n}, (7) and (15) give us Di = r−1(Θ−1)∗BiΘ
∗. With the help

of (8) and Proposition 2.20, Lemma 2.32 now implies that

‖u‖YβE1 ≍ ‖u‖YβE +
n∑

i=1

‖Diu‖Yβ+1E(16)

for all u ∈ D ′(Rn∗ ).

Proposition 2.33. Let E be a model space, l ∈ N0 and β ∈ R. Given u ∈ D ′ we have

u ∈ XβE
l iff Dα

xu ∈ Xβ+|α|E for all multi-indices α with |α| ≤ l. Furthermore,

‖u‖XβEl ≍
∑

|α|≤l

‖Dα
xu‖Xβ+|α|E

for all u ∈ XβE
l. In particular , the differential operator Dα

x defines a continuous map

XβE
l → Xβ+|α|E whenever |α| ≤ l.
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Proof. Induction clearly reduces the proof to the case l = 1. Now let i ∈ {1, . . . , n} and

u ∈ D ′. Since ζ0, η2 ≻ Diζ1 = −Diη1 several applications of Lemma 2.16 and condition

(A2) give us

‖(Diζ1)u‖Yβ+1E = ‖ζ0(Diζ1)u‖Yβ+1E ≤ C‖(Diζ1)u‖Xβ+1E

≤ C(‖η2(Diζ1)u‖E + ‖ζ2(Diζ1)u‖Yβ+1E)

= C‖(Diη1)u‖E ≤ C‖η2u‖E ≤ C‖u‖XβE .

Combining this with Definition 2.4, Lemma 2.16 and (16) we thus have

‖Diu‖Xβ+1E ≤ C(‖η1Diu‖E + ‖ζ1Diu‖Yβ+1E)

≤ C(‖Di(η1u)‖E + ‖Di(ζ1u)‖Yβ+1E + ‖u‖XβE)

≤ C(‖η1u‖E1 + ‖ζ1u‖YβE1 + ‖u‖XβE) ≤ C‖u‖XβE1

and

‖u‖XβE1 ≤ C(‖η1u‖E1 + ‖ζ1u‖YβE1)

≤ C
(
‖η1u‖E + ‖ζ1u‖YβE +

n∑

i=1

(‖Di(η1u)‖E + ‖Di(ζ1u)‖Yβ+1E)
)

≤ C
(
‖u‖XβE +

n∑

i=1

(‖η1Diu‖E + ‖ζ1Diu‖Yβ+1E)
)

≤ C
(
‖u‖XβE +

n∑

i=1

‖Diu‖Xβ+1E
)

for all u ∈ D ′. The result follows.

2.3.4. Separable subspaces. Suppose E is a model space and let E0 denote the separable

subspace obtained by taking the closure of C∞0 (see Definition 2.6 and Remark 2.7).

Lemma 2.34. For any β ∈ R, ZβE0 is the closure of C
∞
0 (Π

n) in ZβE, YβE0 is the

closure of C∞0 (R
n
∗ ) in YβE and XβE0 is the closure of C

∞
0 in XβE.

Proof. For any β ∈ R it is easy to check that C∞0 (Π
n) ⊂ ZβE whilst the isometric

inclusion E0 →֒ E leads to an isometric inclusion ZβE0 →֒ ZβE. Since ZβE0 is complete

it thus remains to show that C∞0 (Π
n) is dense in ZβE0. In turn, by the isomorphism

eβt : ZβE0 → E0(Π
n) (see (5)) and the definition of the norm on E0(Π

n), it is clear that

the first part of the result is completed by the following.

Claim: Suppose (Ψ,R×U) and χ are as in Lemma 2.10. If u ∈ E0(Π
n) and ε > 0 then

there exists uε ∈ C
∞
0 (Π

n) with ‖χu− uε‖E0(Πn) < ε. Indeed, choose χ1 ∈ C
∞
0 (U) with

χ1 ≻ χ and set χ̃1 = χ1 ◦ Ψ
−1 ∈ C∞. Now Lemma 2.10 shows that (Ψ−1)∗(χu) ∈ E0 so,

given any δ > 0, we can find vδ ∈ C
∞
0 with ‖(Ψ

−1)∗(χu)− vδ‖E < δ. On the other hand,

χ̃1 ∈ C
∞ so condition (A2) implies

‖(Ψ−1)∗(χu)− χ̃1vδ‖E = ‖χ̃1((Ψ
−1)∗(χu)− vδ)‖E < Cδ

where C is independent of δ. Setting uδ = Ψ∗(χ̃1vδ) ∈ C
∞
0 (Π

n) we deduce from Lem-

ma 2.10 that ‖χu− uδ‖E(Πn) < Cδ where C is again independent of δ. This completes

the claim.
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The second part of the result follows from (8) and the fact that Θ∗(C∞0 (R
n
∗ )) =

C∞0 (Π
n).

By arguments as above it is clear that XβE0 is a closed subspace of XβE which

contains C∞0 . Now let u ∈ XβE0. By Lemma 2.16, η1u ∈ E0 and ζ1u ∈ YβE0 so, given

δ > 0, we can find v ∈ C∞0 and w ∈ C
∞
0 (R

n
∗ ) with ‖η1u− v‖E , ‖ζ1u− w‖YβE < δ. Thus

η2v + ζ0w ∈ C
∞
0 . On the other hand, condition (A2) gives

‖η1u− η2v‖E = ‖η2(η1u− v)‖E < Cδ,(17)

whilst from Remark 2.17 we have

‖ζ1u− ζ0w‖YβE = ‖ζ0(ζ1u− w)‖YβE < Cδ.(18)

Combining (17), (18) and Lemma 2.16 we get

‖u− (η2v + ζ0w)‖XβE ≤ ‖η1u− η2v‖XβE + ‖ζ1u− ζ0w‖XβE

≤ C(‖η1u− η2v‖E + ‖ζ1u− ζ0w‖YβE) < Cδ.

The fact that C is independent of δ completes the result.

2.3.5. Equivalent norms for some model spaces. In this section we consider some equiv-

alent norms on the spaces XβE when E is either a Sobolev space of positive integral order

or a Hölder space. In particular, this will allow us to identify the spaces Hp,k
β given in

Definition 1.2 in the Introduction with XβE for appropriate β and E.

Proposition 2.35. Suppose β ∈ R, p ∈ [1,∞) and k ∈ N0. Given u ∈ D ′ we have

u ∈ XβH
p,k iff Dα

xu is a measurable function for all multi-indices α with |α| ≤ k and
∑

|α|≤k

\
Λp(β+|α|)−n(x)|Dα

xu(x)|
p dnx < +∞.(19)

Furthermore, the quantity on the left hand side of (19) is equivalent to ‖u‖p
XβHp,k

.

Remark 2.36. Let β ∈ R, p ∈ [1,∞) and k ∈ N0. Since the Sobolev space H
p,k contains

C∞0 as a dense subset, Lemma 2.34 and Proposition 2.35 immediately imply that the space

Hp,k
β given in Definition 1.2 in the Introduction is simply Xβ+n/pH

p,k (up to equivalent

norms).

Proof of Proposition 2.35. Propositions 2.20 and 2.33 reduce our task to proving the

result under the assumptions that β = 0 and k = 0.

Let I, ψi, Ψi, Ui and χi be as given in the introduction to Section 2.1. Now the

pull-back of the density dnx on R × ψi(Ui) ⊆ Rn is a density on R × Ui ⊂ Πn so we

can write (Ψi)
∗(dnx) = Ji dt dS

n−1 for some positive function Ji defined on R × Ui. In

particular, \
(Ψ−1i )

∗v dnx =
\
vJi dt dS

n−1

for any measurable function v which is supported on R× Ui. Now Ji is independent of t

whilst supp(χi) ⊂ Ui is compact. Therefore Ji is bounded and bounded away from 0 on

R× supp(χi). Hence we have
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‖(Ψ−1i )
∗(χiu)‖

p
Lp =

\
|(Ψ−1i )

∗(χiu)|
p dnx =

\
|χiu|

pJi dt dS
n−1 ≍

\
|χiu|

p dt dSn−1

for any measurable function u on Πn. From the definition of Z0L
p (see (4) and (5)) and

the finiteness of I it follows that

‖u‖p
Z0Lp
≍
\(∑

i∈I

|χiu|
)p
dt dSn−1 =

\
|u|p dt dSn−1,

where we have used the identity ∑

i∈I

|χiu| = |u|(20)

(recall that {χi}i∈I is a partition of unity). From (7) we have

(Θ−1)∗dtdSn−1 = r−1drdSn−1 = r−nrn−1drdSn−1 = |x|−ndnx

so (9) now gives

‖u‖p
Y0Lp
≍
\
|Θ∗u|pdt dSn−1 =

\
|u|p (Θ−1)∗(dt dSn−1) =

\
|x|−n|u|pdnx

for all measurable functions u on Rn∗ . Finally, Lemma 2.16 gives

‖u‖p
X0Lp
≍ ‖η0u‖

p
Lp + ‖ζ0u‖

p
Y0Lp

≍
\
(|η0(x)|

p + |x|−n|ζ0(x)|
p)|u(x)|p dnx ≍

\
Λ−n(x)|u(x)|p dnx

for all measurable functions u on Rn, where the last line follows from the existence of

constants C1, C2 > 0 such that

C1Λ
−n(x) ≤ |η0(x)|

p + |x|−n|ζ0(x)|
p ≤ C2Λ

−n(x)

for all x ∈ Rn.

A simpler version of the previous argument can be used to find an equivalent norm

for the spaces XβC
l when β ∈ R and l ∈ N0.

Proposition 2.37. Suppose β ∈ R and l ∈ N0. Given u ∈ D ′ we have u ∈ XβC
l iff u is

l times continuously differentiable and
∑

|α|≤l

sup
x∈Rn

Λβ+|α|(x)|Dα
xu(x)| < +∞.(21)

Furthermore, the quantity on the left hand side of (21) is equivalent to ‖u‖XβCl .

Proof. Once again Propositions 2.20 and 2.33 reduce our task to proving the result in

the case β = 0 and l = 0.

If u is a continuous function on Πn then (4) and (5) give

‖u‖Z0C0 =
∑

i∈I

sup
x∈R×ψi(Ui)

|(χiu)(Ψ
−1
i (x))| ≍ sup

(t,ω)∈Πn

∑

i∈I

|(χiu)(t, ω)| = sup
(t,ω)∈Πn

|u(t, ω)|

where we have used the finiteness of I and (20) in the second last and last steps respec-

tively. From (9) we now get

‖u‖Y0C0 ≍ sup
(t,ω)∈Πn

|u(Θ(t, ω))| = sup
x∈Rn∗

|u(x)|,
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for all continuous functions u on Rn∗ , whilst Lemma 2.16 finally gives

‖u‖X0C0 ≍ sup
x∈Rn

|η0(x)u(x)|+ sup
x∈Rn

|ζ0(x)u(x)|

≍ sup
x∈Rn

(|η0(x)u(x)|+ |ζ0(x)u(x)|) = sup
x∈Rn

|u(x)|

for all continuous functions u on Rn.

It is clear from the proof of Proposition 2.37 that we have

‖u‖YβCl ≍
∑

|α|≤l

sup
x∈Rn∗

|x|β+|α||Dα
xu(x)|(22)

for any β ∈ R and l ∈ N0. This observation will be useful below.

For any l ∈ N0 and σ ∈ (0, 1) the Hölder space C
l+σ can be defined as the collection

of all those functions u ∈ Cl for which
∑

|α|≤l

sup
x∈Rn

|Dα
xu(x)|+

∑

|α|=l

sup
x,y∈R

n

x6=y

|Dα
xu(x)−D

α
xu(y)| · |x− y|

−σ < +∞.

We can use this sum to define the norm ‖·‖Cl+σ on C
l+σ.

Remark 2.38. Suppose V ⊆ Rn is open and {Bx}x∈V is a collection of open subsets of

V for which there exists a constant κ > 0 such that V ∩ {y | |x− y| < κ} ⊆ Bx for all

x ∈ V . It is straightforward to check that

‖u‖C0+σ ≍ sup
x∈V
|u(x)|+ sup

x∈V
y∈Bx\{x}

|u(x)− u(y)| · |x− y|−σ

for all continuous functions u with supp(u) ⊆ V .

As was the case for the model spacesHp,k and Cl we can obtain an explicit description

of the space XβC
l+σ.

Proposition 2.39. Suppose β ∈ R, l ∈ N0 and σ ∈ (0, 1). Given u ∈ D ′ we have

u ∈ XβC
l+σ iff u is l times continuously differentiable and

(23)
∑

|α|≤l

sup
x∈Rn

|(Λβ+|α|Dα
xu)(x)|

+
∑

|α|=l

sup
x,y∈R

n

x6=y

|(Λβ+l+σDα
xu)(x)− (Λ

β+l+σDα
xu)(y)| · |x− y|

−σ < +∞.

Furthermore, the quantity on the left hand side of (23) is equivalent to ‖·‖XβCl+σ .

The proof of Proposition 2.39 will be preceded by some technical results for which we

introduce the following notation: if u is a continuous function on R
n let ‖u‖σ denote the

left hand side of (23) when β = 0 and l = 0.

Lemma 2.40. For continuous functions u on Rn,

‖u‖σ ≍ sup
x∈Rn

|u(x)|+ sup
x,y∈R

n

0<|x−y|<Λ(x)

Λσ(x)|u(x)− u(y)| · |x− y|−σ.
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Proof. Since σ ∈ (0, 1) we have 1− tσ ≤ 1− t ≤ (1− t)σ for all t ∈ [0, 1]. It follows that

|Λσ(x)− Λσ(y)| ≤ |Λ(x)− Λ(y)|σ ≤ |x− y|σ(24)

for all x, y ∈ Rn. If u is any continuous function on Rn we thus have
∣∣|(Λσu)(x)− (Λσu)(y)| − Λσ(x)|u(x)− u(y)|

∣∣ ≤ |Λσ(x)− Λσ(y)| · |u(y)| ≤ |x− y|σ|u(y)|
for all x, y ∈ Rn. Hence

‖u‖σ ≍ sup
x∈Rn

|u(x)| + sup
x,y∈R

n

x6=y

Λσ(x)|u(x)− u(y)| · |x− y|−σ.

On the other hand, |x− y|−σ ≤ Λ−σ(x) whenever |x− y| ≥ Λ(x). Therefore

sup
x,y∈R

n

|x−y|≥Λ(x)

Λσ(x)|u(x)− u(y)| · |x− y|−σ ≤ 2 sup
x∈Rn

|u(x)|.

The result now follows.

Lemma 2.41. We have ‖uv‖σ ≤ C‖u‖X0C1‖v‖σ for all u ∈ X0C
1 and continuous func-

tions v on Rn.

Proof. For any u ∈ X0C
1 Proposition 2.37 gives us

|u(x)| ≤ C‖u‖X0C1(25)

and
1|Diu(x)| ≤ C‖u‖X0C1Λ

−1(x), i = 1, . . . , n,(26)

for all x ∈ Rn. Now suppose x, y ∈ Rn with 0 < |x− y| ≤ Λ(y). Thus x and y both

belong to the ball of radius 2Λ(y) centred at the origin. Combining this observation with

(26) and the fact that Λσ−1(y)|x− y|1−σ ≤ 1 we then get

Λσ(y)|u(x)− u(y)| · |x− y|−σ ≤ CΛσ(y)|x− y|1−σ‖u‖X0C1Λ
−1(y) ≤ C‖u‖X0C1 .

On the other hand, if x, y ∈ R
n with |x− y| ≥ Λ(y) then Λσ(y)|x− y|−σ ≤ 1 so

Λσ(y)|u(x)− u(y)| · |x− y|−σ ≤ C‖u‖X0C1

by (25). Combining the above estimates we thus get

Λσ(y)|u(x)− u(y)| · |x− y|−σ ≤ C‖u‖X0C1(27)

for all x, y ∈ R
n with x 6= y.

Suppose v is a continuous function and x, y ∈ Rn with x 6= y. Using (25) and (27) we

thus have

|(Λσuv)(x)− (Λσuv)(y)| · |x− y|−σ

≤ |u(x)| · |(Λσv)(x)− (Λσv)(y)| · |x− y|−σ + |v(y)|Λσ(y)|u(x)− u(y)| · |x− y|−σ

≤ C‖u‖X0C1(|(Λ
σv)(x)− (Λσv)(y)| · |x− y|−σ + |v(y)|).

The result now follows from the definition of ‖·‖σ.

Proof of Proposition 2.39. Propositions 2.20 and 2.33 reduce our task to proving the

result in the case β = 0 and l = 0.

Consider the notation introduced in the first paragraph of Section 2.1 and let Θ be

as given in Section 2.2. Now, for each i ∈ I, define open sets Vi,Wi ⊂ R
n by Vi =
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(0,∞) × ψi(Ui) and Wi = Θ(Ψ−1i (Vi)). Thus the map Φi := Θ ◦ Ψ−1i : Vi → Wi is

a diffeomorphism. Also define a function ̺i by ̺i(x) = ζ1(x)χi(Φ
−1
i (x)) for x ∈ Wi

and ̺i(x) = 0 for x 6∈ Wi. It is easy to see that ̺i is smooth and independent of |x|

for sufficiently large |x|; it follows from Proposition 2.37 that ̺i ∈ X0C
1. Finally, set

V = {|x| < 3} ⊂ Rn, so η1 ∈ C
∞
0 (V ) ⊂ X0C

1.

Since {χi}i∈I is a partition of unity on Π
n we have η1 +

∑
i∈I ̺i = η1 + ζ1 = 1.

Together with Lemma 2.41 and the fact that I is finite this gives

‖u‖σ ≍ ‖η1u‖σ +
∑

i∈I

‖̺iu‖σ

for all continuous functions u on Rn. On the other hand, the definition of X0C
0+σ means

we have
‖u‖X0C0+σ ≍ ‖η1u‖C0+σ +

∑

i∈I

‖Φ∗i (̺iu)‖C0+σ

for all u ∈ X0C
0+σ. The following claims thus complete the result.

Claim (i): We have ‖v‖C0+σ ≍ ‖v‖σ for all continuous functions v with supp(v) ⊆ V .

This is a straightforward consequence of Remark 2.38, Lemma 2.40 and the fact that

Λ(x) ≍ 1 for x ∈ V (n.b. V is bounded).

Claim (ii): If i ∈ I then ‖Φ∗i v‖C0+σ ≍ ‖v‖σ for all continuous functions v with supp(v)

⊆ Vi. If we write y ∈ Rn in the form y = (t, w) with t ∈ R and w ∈ Rn−1 then

Φi(y) = etψ−1i (w) (where we are considering S
n−1 to be the unit sphere in Rn). Thus,

for all y1, y2 ∈ Vi with |y1 − y2| < 1,

|Φi(y1)− Φi(y2)| ≍ e
t1(|1− et2−t1 | · |ψ−1i (w2)|+ |ψ

−1
i (w1)− ψ

−1
i (w2)|)(28)

≍ et1(|t1 − t2|+ |w1 − w2|)

≍ Λ(Φi(y1))|y1 − y2|,

where the inequalities |t1 − t2| ≤ |y1 − y2| < 1 and |Φi(y1)| = e
t1 ≥ 1 have been used in

the second last and last lines respectively. For each y1 ∈ Vi set

By1 = {y2 ∈ Vi | |Φi(y1)− Φi(y2)| < Λ(Φi(y1))}

Estimate (28) implies there exists κ > 0 such that Vi ∩ {y2 | |y1 − y2| < κ} ⊆ By1 for all

y1 ∈ Vi. Further use of (28) together with Remark 2.38 and Lemma 2.40 then gives

‖Φ∗i v‖C0+σ ≍ sup
y∈Vi

|v(Φi(y))|+ sup
y1∈Vi

y2∈By1\{y1}

|v(Φi(y1))− v(Φi(y2))| · |y1 − y2|
−σ

≍ sup
x∈Wi

|v(x)|+ sup
x1,x2∈Wi

0<|x1−x2|<Λ(x1)

Λσ(x1)|v(x1)− v(x2)| · |x1 − x2|
−σ ≍ ‖v‖σ

for all continuous functions v with supp(v) ⊂ Vi.

Remark 2.42. Let β ∈ R, l ∈ N0 and σ ∈ (0, 1). By using Proposition 2.39 it can be

seen that XβC
l+σ coincides with the space Cσ+lβ (R

n) defined in [Ben]. Also, by Propo-

sition 2.20, Lemma 2.34 and the obvious modification of Proposition 2.39 for the spaces

YβC
l+σ, it can be seen that YβC

l+σ
0 coincides with the space Λl,σβ+l+σ(R

n
∗ ) defined in

Section 3.6.4 of [NP] (here Cl+σ0 denotes the separable subspace of Cl+σ obtained by
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taking the completion of C∞0 ). The non-separable space YβC
l+σ contains elements which

behave as O(|x|−β) for |x| → 0,∞ and is strictly larger than YβC
l+σ
0 (see Section 2.3.9

for a related discussion).

2.3.6. Dual spaces. Suppose E is a model space. By definition S is dense in E0 so any

element in the dual of E0 is uniquely determined by its action onS . We can thus uniquely

identify elements of the dual of E0 with tempered distributions on R
n, i.e. elements ofS ′.

Furthermore, a norm can be defined on E∗0 by the expression

‖v‖E∗0 = sup
06=u∈S

|(u, v)Rn |

‖u‖E
= sup
06=u∈C∞0

|(u, v)Rn |

‖u‖E
,(29)

where the second equality follows from the density of C∞0 in E0 (see Remark 2.7). Ap-

plying standard duality arguments to conditions (A1) to (A4) we obtain the following.

Lemma 2.43. If E is a model space then so is E∗0 .

If E and F are model spaces we shall write E∗0 = F provided these spaces agree as

subsets of S ′ and ‖·‖F is equivalent to the norm given by (29). In other words, E
∗
0 = F

iff there are constants C1, C2 > 0 such that the following hold:

(D1) For each u ∈ C∞0 and v ∈ F we have |(u, v)Rn | ≤ C1‖u‖E‖v‖F .

(D2) For each v ∈ F there exists 0 6= u ∈ C∞0 with |(u, v)Rn | ≥ C2‖u‖E‖v‖F .

Suppose E is a model space and β ∈ R. Using Lemma 2.34 and an argument similar to

that above, we can identify the dual spaces (ZβE0)
∗, (YβE0)

∗ and (XβE0)
∗ with subspaces

of D ′(Πn), D ′(Rn∗ ) and D ′ respectively. The pairings (·, ·)Πn , (·, ·)Rn∗ and (·, ·)Rn then

allow us to define norms on these dual spaces (as in the second part of (29)) and compare

them with existing spaces.

Remark 2.44. For any β ∈ R the pairing (·, ·)Πn on Π
n extends to a dual pairing

ZβS
′ × Z−βS → C.

Lemma 2.45. If E is a model space and β ∈ R then (ZβE0)
∗ = Z−β(E

∗
0).

Here “equality” is understood in the sense of equivalent norms; that is, we have

expressions similar to (D1) and (D2) above.

Proof. Let F = E∗0 and consider the notation of Remark 2.9. Now, for i ∈ I, the pull-

back under Ψ−1i of the density χ′idtdS
n−1 is a smooth density on R

n. Thus we can

write (Ψ−1i )
∗(χ′i dtdS

n−1) = Ji d
nx where Ji ∈ C

∞ (in fact, Ji is independent of t and

compactly supported in the remaining variables). It follows that

(u, χiv)Πn = (χ
′
iχ
′
ie
βtu, χie

−βtv)Rn = (Ji(Ψ
−1
i )
∗(χ′ie

βtu), (Ψ−1i )
∗(χie

−βtv))Rn

for all u ∈ C∞0 (Π
n) and v ∈ D ′(Πn). Using (D1), (A2) (to deal with Ji), Remark 2.9

and (5), we therefore have

|(u, v)Πn | ≤
∑

i∈I

|(u, χiv)Πn | ≤ C
∑

i∈I

‖Ji(Ψ
−1
i )
∗(χ′ie

βtu)‖E‖(Ψ
−1
i )
∗(χie

−βtv)‖F

≤ C
∑

i∈I

‖(Ψ−1i )
∗(χ′ie

βtu)‖E
∑

i∈I

‖(Ψ−1i )
∗(χie

−βtv)‖F ≤ C‖u‖ZβE‖v‖Z−βF

for all u ∈ C∞0 (Π
n) and v ∈ Z−βF .
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Now let v ∈ Z−βF . By definition

‖v‖Z−βF =
∑

i∈I

‖(Ψ−1i )
∗(χie

−βtv)‖F .

Hence we can find i ∈ I such that

‖v‖Z−βF ≤ C1‖(Ψ
−1
i )
∗(χie

−βtv)‖F ;

n.b. i may depend on v but C1 does not (we can define C1 to be the number of elements

in I). Using (D2) we can now choose 0 6= φ ∈ C∞0 such that

|(φ, (Ψ−1i )
∗(χie

−βtv))Rn | ≥ C2‖φ‖E‖(Ψ
−1
i )
∗(χie

−βtv)‖F(30)

≥ C−11 C2‖φ‖E‖v‖Z−βF .

Define J ′i ∈ C
∞(Πn) by χ′iΨ

∗
i (d

nx) = J ′idtdS
n−1 and set u = χiJ

′
ie
−βtΨ∗i φ ∈ C

∞
0 (Π

n).

By (5), Lemma 2.10 and condition (A2) (n.b. (Ψ−1i )
∗(χiJ

′
i) ∈ C

∞), it follows that

‖u‖ZβE = ‖χiJ
′
iΨ
∗
i φ‖E(Πn) ≤ C‖(Ψ

−1
i )
∗(χiJ

′
i)φ‖E ≤ C3‖φ‖E .(31)

On the other hand, the definition of J ′i gives us

(u, v)Πn = (J
′
iχie

−βtΨ∗i φ, v)Πn(32)

= (J ′iΨ
∗
i φ, χie

−βtv)Πn = (φ, (Ψ
−1
i )
∗(χie

−βtv))Rn .

Combining (30), (31) and (32), we then get

|(u, v)Πn | ≥ C
−1
1 C2‖φ‖E‖v‖Z−βF ≥ C

−1
1 C2C

−1
3 ‖u‖ZβE‖v‖Z−βF .

Under the pull-back induced by the diffeomorphism Θ : Πn → Rn∗ (from Section 2.2)

we have Θ∗dnx = entdtdSn−1. It follows that (u, v)Rn∗ = (Θ
∗u, entΘ∗v)Πn for any u ∈

C∞0 (R
n
∗ ) and v ∈ D ′(Rn∗ ). Now suppose E is a model space and β ∈ R. With the help of

(5) and (8), Lemma 2.45 then gives

‖v‖Yn−β(E∗0 ) = ‖e
ntΘ∗v‖Z−β(E∗0 ) ≍ sup

06=w∈C∞0 (Π
n)

|(w, entΘ∗v)Πn |

‖w‖ZβE

= sup
06=u∈C∞0 (R

n
∗ )

|(Θ∗u, entΘ∗v)Πn |

‖Θ∗u‖ZβE
= sup
06=u∈C∞0 (R

n
∗ )

|(u, v)Rn∗ |

‖u‖YβE
= ‖v‖(YβE0)∗

for all v ∈ Yn−β(E
∗
0); that is, we have

(YβE0)
∗ = Yn−β(E

∗
0).(33)

Proposition 2.46. If E is a model space and β ∈ R then (XβE0)
∗ = Xn−β(E

∗
0).

Proof. Let F = E∗0 and choose 0 6= v ∈ Xn−βF . Now η2η1 = η1, ζ0ζ1 = ζ1 and η2 + ζ0 ≥

η1 + ζ1 = 1 so, for any u ∈ C
∞
0 ,

(u, v)Rn = (η2u, η1v)Rn + (ζ0u, ζ1v)Rn∗
while

‖u‖XβE ≍ ‖η2u‖E + ‖ζ0u‖YβE and ‖v‖Xn−βF ≍ ‖η1v‖F + ‖ζ1v‖Yn−βF ,(34)

by Lemma 2.16. Together with (33) this implies

|(u, v)Rn | ≤ |(η2u, η1v)Rn |+ |(ζ0u, ζ1v)Rn∗ | ≤ C(‖η2u‖E‖η1u‖F + ‖ζ0u‖YβE‖ζ1v‖Yn−βF )

≤ C(‖η2u‖E + ‖ζ0u‖YβE)(‖η1v‖F + ‖ζ1v‖Yn−βF ) ≤ C‖u‖XβE‖v‖Xn−βF

for any u ∈ C∞0 .
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By the second part of (34) we have

‖v‖Xn−βF ≤ C1(‖η1v‖F + ‖ζ1v‖Yn−βF ).

Consider the following cases.

Case (i): ‖v‖Xn−βF ≤ 2C1‖η1v‖F . Using (D2) choose w ∈ C∞0 with ‖w‖E = 1 and

‖v‖Xn−βF ≤ 4C1|(w, η1v)Rn |. Set u = η1w, so u ∈ C
∞
0 , ‖v‖Xn−βF ≤ 4C1|(u, v)Rn | and

‖u‖XβE ≤ C(‖η2u‖E + ‖ζ2u‖YβE) = C‖η1w‖E ≤ C2

by Lemma 2.16, where C2 is independent of u and v.

Case (ii): ‖v‖Xn−βF ≤ 2C1‖ζ1v‖Yn−βF . Using (33) choose w ∈ C∞0 (R
n
∗ ) with ‖w‖YβE

= 1 and ‖v‖Xn−βF ≤ 4C1|(w, ζ1v)Rn |. Set u = ζ1w, so u ∈ C
∞
0 , ‖v‖Xn−βF ≤ 4C1|(u, v)Rn |

and

‖u‖XβE ≤ C(‖η0u‖E + ‖ζ0u‖YβE) = C‖ζ1w‖YβE ≤ C2

by Lemma 2.16, where C2 is independent of u and v.

By combining the two cases it follows that we can find 0 6= u ∈ C∞0 with

‖u‖XβE ‖v‖Xn−βF ≤ 4C1C2|(u, v)Rn |.

2.3.7. Multiplication

Proposition 2.47. Suppose multiplication defines a continuous bilinear map E×F → G

for some model spaces E, F and G. Then multiplication also defines continuous bilinear

maps ZβE × ZγF → Zβ+γG, YβE × YγF → Yβ+γG and XβE × XγF → Xβ+γG for any

β, γ ∈ R.

Proof. We can prove that multiplication defines a continuous bilinear map E(Πn) ×

F (Πn)→ G(Πn) by an argument identical to that given for Lemma 2.12. The first two

parts of the result now follow from (5) and (8) respectively.

Now η2η1 = η1 and ζ1ζ0 = ζ1 so ζ1uζ0v = ζ1uv and η2uη1v = ζ1uv. However,

η2 + ζ1, η1 + ζ0 ≥ 1, so Lemma 2.16 and the continuity of multiplication as a map

E × F → G and as a map YβE × YγF → Yβ+γG gives

‖uv‖Xβ+γG ≤ C(‖η1uv‖G + ‖ζ1uv‖Yβ+γG) ≤ C(‖η2u‖E‖η1v‖F + ‖ζ1u‖YβE‖ζ0v‖YγF )

≤ C(‖η2u‖E + ‖ζ1u‖YβE)(‖η1v‖F + ‖ζ0v‖YγF ) ≤ C‖u‖XβE‖v‖XγF

for any u ∈ XβE and v ∈ XγF .

Remark 2.48. Suppose multiplication defines a continuous bilinear map E × F → G for

some model spaces E, F and G. A straightforward consequence of Definition 2.4 and the

Leibniz rule is that multiplication also defines a continuous bilinear map El × F l → Gl

for any l ∈ N0.

Let E′ denote the closure of E ∩ C∞loc in E with the induced norm (n.b. we have

E0 ⊆ E′ ⊆ E although both inclusions could be strict in general). If u ∈ E ∩ C∞loc and

v ∈ G∗0 then (uv, f)Rn = (v, fu)Rn and ‖uf‖G ≤ C‖u‖E‖f‖F for all f ∈ C
∞
0 . Using (29)

we thus get

‖uv‖F∗0 = sup
06=f∈C∞0

|(uv, f)Rn |

‖f‖F
≤ C‖u‖E sup

f∈C∞0
uf 6=0

|(v, uf)Rn |

‖uf‖G
≤ C‖u‖E‖v‖G∗0 .
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By taking completions we finally see that multiplication defines a continuous bilinear

map E′ ×G∗0 → F ∗0 .

For any model space E, condition (A2) ensures that multiplication defines a contin-

uous bilinear map C∞ × E → E. Since the topology on C∞ is defined by the collec-

tion of semi-norms {‖·‖Cl | l ∈ N0}, we can find l ∈ N0 and a constant C such that

‖φu‖E ≤ C‖φ‖Cl‖u‖E ≤ C‖φ‖Cl+1‖u‖E for all u ∈ E and φ ∈ C
∞. The fact that the

closure of C∞ in Cl includes Cl+1 now completes the following result.

Lemma 2.49. For all sufficiently large l ∈ N0, multiplication defines a continuous bilinear

map Cl × E → E.

We conclude this section with an immediate consequence of Proposition 2.47 and

Lemma 2.49 which will be used later in dealing with symbols.

Proposition 2.50. Suppose E is a model space and β, γ ∈ R. Then, for all sufficiently

large l ∈ N0, multiplication defines continuous bilinear maps ZγC
l × ZβE → Zβ+γE,

YγC
l × YβE → Yβ+γE and XγC

l × XβE → Xβ+γE.

2.3.8. Compactness. Let E and F be model spaces. We say E is locally compact in F

if multiplication by any φ ∈ C∞0 defines a compact map E → F ; in particular, it follows

that we have a local inclusion Eloc →֒ Floc.

Proposition 2.51. Suppose E, F and G are model spaces with E locally compact in G

and for which multiplication defines a continuous bilinear map E×F → G. Let β, γ ∈ R

and v ∈ XγF0. Then multiplication by v defines a compact map XβE → Xβ+γG.

Proof. Initially suppose v ∈ C∞0 . Let {ui}i∈N ⊂ XβE be a bounded sequence. By

Lemma 2.16 it follows that {vui}i∈N is a bounded sequence in E. By local compactness

we can thus find a subsequence {vui(j)}j∈N which is convergent in G. Lemma 2.16 then

implies this subsequence must also be convergent in Xβ+γG. It follows that multiplication

by v defines a compact map XβE → Xβ+γG.

Now let v be an arbitrary element of XγF0. Let ε > 0 and, using Lemma 2.34, choose

vε ∈ C
∞
0 with ‖v − vε‖XγF < ε. Proposition 2.47 then implies that multiplication by v−vε

defines a map in L (XβE,Xβ+γG) with norm at most Cε, where C is independent of ε.

The result now follows from the fact that the set of compact maps in L (XβE,Xβ+γG) is

closed (see Theorem III.4.7 in [Ka] for example).

2.3.9. Some results relating to symbols. Let l ∈ N0. Clearly, φ0 ∈ C
∞(Πn) ⊂ Cl(Πn),

whilst φi is simply a translation of φ0 for any i ∈ Z. Condition (A3) for Cl(Πn) = Z0C
l

then implies ‖φi‖Z0Cl is independent of i ∈ Z. However, ζi = φi◦Θ
−1 (by definition) so (9)

now implies ‖ζi‖Y0Cl is also independent of i ∈ Z. Since 1 ∈ X0C
l (by Proposition 2.37),

Lemma 2.19 now completes the following result.

Lemma 2.52. Let l ∈ N0. Then ‖ζi‖Y0Cl and ‖ζi‖X0Cl are bounded uniformly for i ∈ N.

Proposition 2.47 and the fact that multiplication defines a continuous bilinear map

Cl × Cl → Cl show that multiplication also defines a continuous bilinear map X0C
l ×

XβC
l → XβC

l for any β ∈ R. For a given u ∈ XβC
l, Lemmas 2.19 and 2.52 now imply

‖ζiu‖XβCl and ‖ζiu‖YβCl are bounded uniformly for i ∈ N.
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Lemma 2.53. Let l ∈ N0, β ∈ R and u ∈ XβC
l. Then the following are equivalent:

(i) ‖ζiu‖XβCl → 0 as i→∞.

(ii) ‖ζiu‖YβCl → 0 as i→∞.

(iii) Dα
xu(x) = o(|x|

−β−|α|) as x→∞ for each |α| ≤ l.

Proof. The equivalence of (i) and (ii) follows from Lemma 2.19.

(iii)⇒(ii). Let i ∈ N0. Using (22) and the Leibniz rule we have

‖ζiu‖YβCl ≤ C
∑

|α|≤l

sup
x∈Rn∗

|x|β+|α||Dα
x (ζiu)(x)|

≤ C
( ∑

|α|≤l

sup
x∈Rn∗

|x||α||Dα
x ζi(x)|

)( ∑

|α|≤l

sup
x∈supp(ζi)

|x|β+|α||Dα
xu(x)|

)

≤ C‖ζi‖Y0Cl
∑

|α|≤l

sup
x∈supp(ζi)

|x|β+|α||Dα
xu(x)|,

where the constants are independent of i. With the help of Lemma 2.52 and the fact that

supp(ζi) ⊂ {|x| > ei−1} we now get (iii)⇒(ii).

(ii)⇒(iii). Suppose (iii) is not satisfied. Thus we can find some multi-index α with

|α| ≤ l and a sequence of points {xj}j∈N with xj →∞ such that

|xj |
β+|α||Dα

xu(xj)| ≥ C > 0 for all j ∈ N.(35)

Choose a sequence {j(i)}i∈N with j(i)→∞ as i→∞ and |xj(i)| > ei. Therefore ζi = 1

on a neighbourhood of xj(i) so (22) gives

‖ζiu‖YβCl ≥ C
∑

|α|≤l

sup
x∈Rn∗

|x|β+|α||Dα
x (ζiu)(x)| ≥ C|xj(i)|

β+|α||Dα
xu(xj(i))|.

The fact that (ii) is not satisfied now follows from (35).

By Lemma 2.34 we know that, for any β ∈ R, XβC
l
0 is the separable subspace of

XβC
l obtained by taking the closure of C∞0 with respect to the norm ‖·‖XβCl . Elements

of XβC
l
0 can be given an alternative characterisation as follows.

Proposition 2.54. Suppose l ∈ N0, β ∈ R and u ∈ XβC
l. Then u ∈ XβC

l
0 iff Dα

xu(x) =

o(|x|−β−|α|) as x→∞ for each multi-index α with |α| ≤ l.

Remark 2.55. It follows that Λ−s ∈ XβC
l
0 for any l ∈ N0 and β, s ∈ R with β < s.

Proof. By Lemma 2.53 it suffices to show u ∈ XβC
l
0 iff ‖ζiu‖XβCl → 0 as i→∞.

Let u ∈ XβC
l
0 and ε > 0. Thus we can find uε ∈ C

∞
0 with ‖u− uε‖XβCl ≤ ε. Now

suppose i ∈ N is sufficiently large so that supp(uε) ⊆ {|x| < ei−1}. Since ζi = 0 on the

latter set we have ζiu = ζi(u− uε). Lemma 2.52 and the continuity of multiplication as

a bilinear map X0C
l × XβC

l → XβC
l now imply ‖ζiu‖XβCl ≤ Cε for some C which is

independent of ε. It follows that ‖ζiu‖XβCl → 0 as i→∞.

On the other hand, suppose ‖ζiu‖XβCl → 0 as i→∞. Let ε > 0 and choose I ∈ N so

that ‖ζIu‖XβCl ≤ ε. Now Lemma 2.16 gives us a constant C1 such that

‖ηI+1v‖XβCl ≤ C1‖ηI+1v‖Cl(36)
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for all v ∈ XβC
l. Since ηIu ∈ C

l with supp(ηIu) ⊂ {|x| < eI+1} we can find uε ∈ C
∞
0

with supp(uε) ⊂ {|x| < eI+1} and ‖ηIu− uε‖Cl ≤ ε/C1. It follows that ηI+1(ηIu−uε) =

ηIu−uε so (36) gives ‖ηIu− uε‖XβCl ≤ ε. However, u = ηIu+ζIu so ‖u− uε‖XβCl ≤ 2ε.

From Definition 1.1 and Proposition 2.37 it is clear that we have

Scγ ⊂ XγC
l(37)

for any γ ∈ R and l ∈ N0. Together with Proposition 2.50 this implies the following.

Proposition 2.56. If E is a model space and β, γ ∈ R then multiplication by any p ∈ Scγ

defines a continuous map XβE → Xβ+γE.

Remark 2.57. Suppose γ ∈ R and p ∈ Scγ with principal part r−γa(ω). For any f ∈ BS

define a function pf by

pf (x) = f(x)p(x) + (1− f(x))r
−γa(ω).

If f = 1 on a neighbourhood of 0 it is clear that pf ∈ Sc
γ with the same principal part

as p. On the other hand, if f = 0 on a neighbourhood of 0 then Lemma 2.16 and (22)

imply pf is contained in YγC
l for any l ∈ N0.

Finally, condition (ii) of Definition 1.1 and Lemma 2.53 give the following result.

Lemma 2.58. Suppose γ ∈ R and p ∈ Scγ with principal part r−γa(ω). Then, for any

l ∈ N0,

lim
i→∞
‖ζi(p− a(ω)r

−γ)‖YγCl = 0 = limi→∞
‖ζi(p− a(ω)r

−γ)‖XγCl .

2.4. Admissible spaces

Definition 2.59. For anym∈R let Symm denote the set of functions on a∈C∞loc(R
n×Rn)

which satisfy estimates of the form

|Dα
xD

α′

ξ a(x, ξ)| ≤ Cα,α′Λ
m−|α′|(ξ)(38)

for all multi-indices α and α′. The best constants in (38) provide Symm with a collection

of semi-norms making it into a locally convex space.

For any a ∈ Symm we shall use a(x,Dx) to denote the pseudo-differential operator

defined by the symbol a(x, ξ). The set of all pseudo-differential operators of order m

(i.e. the set of all operators defined by symbols in Symm) will be denoted by ΨOpm.

Remark 2.60. For any m ∈ R the pairing (a, u) 7→ a(x,Dx)u defines a continuous bi-

linear map Symm × S → S and a bilinear map Symm × S ′ → S ′ which is sepa-

rately continuous in each variable. If m, l ∈ R it can also be shown that the composition

of operators in ΨOpm and ΨOpl gives an operator in ΨOpm+l, whilst the adjoint of

an operator in ΨOpm is again in ΨOpm. Furthermore, the corresponding symbol maps

Symm × Syml → Syml+m and Symm → Symm are continuous bilinear and continuous

anti-linear respectively. Further details can be found in Section 18.1 of [H2], for example.

If a ∈ Symm for some m ∈ R then we can write

a(x,Dx)u =
\
Ka(x, y)u(y) d

ny(39)
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for all u ∈ S ′, where Ka ∈ S ′(Rn × Rn) is the Schwartz kernel of a(x,Dx); that is,

Ka(x, y) = (2π)
−nâ(x, y − x) where â is the Fourier transform of a(x, ξ) with respect to

the second variable (see Section 18.1 of [H2], for example).

Lemma 2.61. We have Ka ∈ S (Rn×Rn) iff a ∈ S (Rn×Rn). Furthermore, in this case

a(x,Dx) defines a continuous map S ′ → S .

Proof. The first part of the result follows from the fact that the Fourier transform defines

an isomorphism S → S . Now suppose Ka ∈ S (Rn×Rn) and choose any multi-index α

and s ∈ R. Then (39) gives

|Λs(x)Dα
xa(x,Dx)u| ≤ |(Λ

s(x)Dα
xKa(x, ·), u)Rn |(40)

for all u ∈ S ′. The assumption that Ka ∈ S (Rn × Rn) implies that Λs(x)Dα
xKa(x, ·)

forms a bounded subset of S as x varies over Rn. The second part of the result now

follows from (40) and the continuity of the dual pairing of S and S ′.

As a corollary of this result we have the following.

Corollary 2.62. Let s ∈ R and φ1, φ2 ∈ C
∞ with supp(φ1) ∩ supp(φ2) = ∅ and either

φ1 ∈ C
∞
0 or φ2 ∈ C

∞
0 . Then the pseudo-differential operator φ1(x)Λ

s(Dx)φ2(x) defines

a continuous map S ′ → S .

Proof. The Schwartz kernel of the operator φ1(x)Λ
s(Dx)φ2(x) is

K(x, y) = (2π)−nφ1(x)ψ(y − x)φ2(y)

where ψ ∈ S ′ is the Fourier transform of Λs. By standard properties of the Fourier

transform of symbols (see Proposition VI.4.1 in [St], for example) ψ is smooth and rapidly

decaying away from 0, along with all its derivatives. On the other hand, φ1 and φ2 have

disjoint supports, at least one of which is compact. It follows that K ∈ S (Rn × Rn).

Lemma 2.61 now completes the result.

Using the mapping properties of pseudo-differential operators we can now single out

a special class of model spaces which will provide the natural function space setting for

our main results.

Definition 2.63. An admissible space is a model space E satisfying the following addi-

tional condition:

(B) We have a continuous bilinear map Sym0×E → E which sends (a, u) to a(x,Dx)u.

Remark 2.64. Condition (A2) for a model space is a special case of condition (B).

Example 2.65. A rich class of admissible spaces is provided by the Besov spaces Bspq for

s ∈ R and p, q ∈ [1,∞], and the Triebel–Lizorkin spaces F spq for s ∈ R and p, q ∈ [1,∞]

with q 6= 1 if p = ∞; see [T1] and [T2] for the definitions of these spaces and the

justification of conditions (A1) to (A4) and (B) (1).

(1) In the cited literature the continuity of the bilinear map in condition (B) is established
explicitly only for the second variable. However, the full continuity of this map can be obtained
easily from the proof of the relevant result (Theorem 6.2.2 in [T2]) by using symbol norms of a
to make simple estimates of the constants appearing therein.
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The classes of Besov spaces and Triebel–Lizorkin spaces include a large number of

the “standard” function spaces as follows (see [T1]):

F sp2 = H
p,s (the Sobolev or Bessel-potential spaces) for s ∈ R and p ∈ (1,∞),

F 0p2 = hp (the local Hardy spaces) for p ∈ [1,∞),

F 0∞2 = bmo (the inhomogeneous version of BMO),

Bs∞∞ = C
s (the Zygmund spaces) for s > 0,

Bspp = F
s
pp =W

s
p (the Slobodetskĭı spaces) for s ∈ R+ \ N and p ∈ [1,∞),

Bspq = Λ
s
p,q (the Lipschitz spaces) for s > 0, p ∈ [1,∞) and q ∈ [1,∞].

The most notable omissions from this list are the spaces Cl for l ∈ N0; these spaces do

not satisfy condition (B) (n.b. although the Zygmund space Cs coincides with the Hölder

space Cl+σ whenever l ∈ N0, σ ∈ (0, 1) and s = l + σ, we only have a strict inclusion

Cl ⊂ Cl when l ∈ N).

Definition 2.66. Suppose E is an admissible space and let s ∈ R. We define Es to be

the set of u ∈ S ′ for which Λs(Dx)u ∈ E. Furthermore, we give this set a norm ‖·‖Es

defined by ‖u‖Es = ‖Λ
s(Dx)u‖E .

Remark 2.67. If E = Hp,s for some s ∈ R and p ∈ (1,∞) then Es
′

= Hp,s+s′ for any

s′ ∈ R. Likewise, if E = Cs for some s > 0 then Es
′

= Cs+s
′

for any s′ ∈ R, provided

s+ s′ > 0.

Proposition 2.68. Suppose s,m ∈ R. Then the assignment (a, u) 7→ a(x,Dx)u defines

a continuous bilinear map Symm × Es → Es−m. In particular , for any s ∈ R and

multi-index α, the differential operator Dα
x defines a continuous map E

s+|α| → Es.

Proof. Given a ∈ Symm define a new symbol b ∈ Sym0 as the symbol of the pseudo-

differential operator b(x,Dx) = Λ
s−m(Dx)a(x,Dx)Λ

−s(Dx). Standard results on the cal-

culus of pseudo-differential operators (see Remark 2.60) imply that the assignment a 7→ b

defines a continuous map Symm → Sym0. On the other hand, Λs−m(Dx)a(x,Dx)u =

b(x,Dx)Λ
s(Dx)u for any u ∈ S ′. The result now follows from Definition 2.66 and condi-

tion (B) on the admissible space E.

Proposition 2.69. Any admissible spaces E and F have the following properties:

(i) If s ∈ R then Es is again an admissible space.

(ii) If s, s′ ∈ R then (Es)s
′

= Es+s
′

.

(iii) If s = l ∈ N0 then E
s = El up to equivalent norms (where El is as given by

Definition 2.4).

(iv) We have a continuous inclusion E →֒ F iff we have a continuous inclusion

Es →֒ F s for any s ∈ R.

(v) We have a local inclusion Eloc →֒ Floc iff we have a local inclusion E
s
loc →֒ F sloc

for any s ∈ R.

(vi) The space E0 and its dual E
∗
0 are admissible spaces.

(vii) If s ∈ R then (Es)0 = (E0)
s and (Es0)

∗ = (E∗0)
−s.

Proof. (i) The only non-trivial conditions are (B) and (A4) (n.b. condition (A2) is covered

by condition (B)). The former is established in Proposition 2.68 whilst the latter uses
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the fact that conjugation of a pseudo-differential operator by a diffeomorphism which is

linear outside a compact region gives another pseudo-differential operator of the same

order (see Theorem 18.1.17 in [H2], for example (2)).

(ii) This is an easy consequence of the identity Λs(Dx)Λ
s′(Dx) = Λ

s+s′(Dx).

(iii) Suppose u ∈ Es and let α be a multi-index with |α| ≤ l = s. Thus Λs(Dx)u ∈ E

whilst ξαΛ−s(ξ) defines a symbol in Sym0 so Dα
xΛ
−s(Dx) defines a continuous map on E

(by condition (B) for the admissible space E). Hence Dα
xu = Dα

xΛ
−s(Dx)Λ

s(Dx)u ∈ E

and we have a norm estimate of the form

‖Dα
xu‖E ≤ C‖Λ

s(Dx)u‖E = C‖u‖Es .

The existence of a continuous inclusion Es →֒ El now follows from the definition of El.

On the other hand, we can write

Λ2s(Dx) = Λ
2l(Dx) =

(
1 +

n∑

i=1

D2i

)l
=
∑

|α|≤l

aαDα
xD

α
x(41)

for some constants aα ∈ C. Now suppose u ∈ El. Therefore Dα
xu ∈ E with ‖D

α
xu‖E ≤

C1,α‖u‖El (see Remark 2.5) whilst Λ
−s(ξ)ξα ∈ Sym0 so Λ−s(Dx)D

α
x defines a continuous

map on E. Hence Λ−s(Dx)D
α
xD

α
xu ∈ E and

‖Λ−s(Dx)D
α
xD

α
xu‖E ≤ C2,α‖u‖El .

With the help of (41) it follows that

Λs(Dx)u =
∑

|α|≤l

aαΛ−s(Dx)D
α
xD

α
xu ∈ E

and ‖u‖Es = ‖Λ
s(Dx)u‖E ≤ C‖u‖El . This completes the proof of part (iii).

(iv) The fact that a continuous inclusion E →֒ F induces a continuous inclusion

Es →֒ F s is trivial. Part (ii) now gives the converse.

(v) Let φ ∈ C∞0 and choose φ1, φ2 ∈ C
∞
0 with φ1 ≻ φ and φ2 = 1 on a neighbourhood

of supp(φ1). Setting φ3 = 1− φ2 we deduce that φ3 ∈ C
∞ and supp(φ1) ∩ supp(φ3) = ∅.

Now let u ∈ Esloc. Therefore φu ∈ Es or, equivalently, Λs(Dx)φu ∈ E. By the local

inclusion Eloc →֒ Floc it follows that φ2Λ
s(Dx)φu ∈ F and

‖φ2Λ
s(Dx)φu‖F ≤ C1‖φu‖Es ,(42)

where C1 may depend on φ (through φ2) but not on u. On the other hand, Corollary 2.62

implies that φ3Λ
s(Dx)φ1 defines a continuous map S ′ → S . Condition (A1) for the

model spaces Es and F then shows that φ3Λ
s(Dx)φ1 defines a continuous map E

s → F .

Therefore φ3Λ
s(Dx)φu = φ3Λ

s(Dx)φ1φu ∈ F and

‖φ3Λ
s(Dx)φu‖F ≤ C2‖φu‖Es ,(43)

where C1 may depend on φ (through φ1 and φ3) but not on u. Since φ2 + φ3 = 1, (42)

and (43) combine to establish the existence of a local inclusion Esloc →֒ F sloc. Part (ii) now

gives the converse.

(2) Technically the result in [H2] only gives a local version of what we need; however, it is
easy to see how the proof can be modified to give the conjugation result as stated above.
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(vi) Condition (B) for E0 follows from the same condition for E and the fact that

pseudo-differential operators preserve the set S (which is dense in E0). For the dual

space we can use Lemma 2.43 and the fact that the map which sends a pseudo-differential

operator a(x,Dx) ∈ ΨOp
0 to its adjoint induces an (anti-linear) isomorphism on Sym0

(see Remark 2.60).

(vii) Clearly, (E0)
s ⊆ Es whilst Λs(Dx) : (E0)

s → E0 is an isomorphism which

preserves the set S . The fact that S is dense in E0 now implies the same is true

for (E0)
s, with the first identity following immediately. The second identity can be ob-

tained from (29) and the expression (u, v)Rn = (Λ
s(Dx)u,Λ

−s(Dx)v)Rn , which is valid

for all u ∈ S and v ∈ S ′.

For the proofs of the next three results let ψ denote a choice of function in C∞0 with

ψ = 1 in a neighbourhood of 0 and Ranψ = [0, 1]. Also, for each j ∈ N, define ψj ∈ C
∞
0

by ψj(x) = ψ(x/j).

Lemma 2.70. Suppose f ∈ E for some admissible space E. Then we can find a sequence

{fj}j∈N ⊂
⋂
s∈R

Es with fj → f in E−δ for any δ > 0.

Proof. For each j ∈ N set fj = ψj(Dx)f . Since ψj(ξ) ∈ Sym
m for any m ∈ R, Proposi-

tion 2.68 gives fj ∈ E
s for any s ∈ R. On the other hand, a straightforward check shows

Λ−δ(ξ)ψj(ξ) → Λ−δ(ξ) in Sym0 for any δ > 0. Condition (B) for the admissible space

E then implies Λ−δ(Dx)fj → Λ−δ(Dx)f in E for any δ > 0; by definition this means

fj → f in E−δ.

Although the space XβE need not contain C
∞
0 as a dense subset for a general admis-

sible space E, Lemma 2.70 leads to the following slightly weaker result.

Lemma 2.71. Suppose f ∈ XβE for some admissible space E and β ∈ R. Then we can

find a sequence {fi}i∈N ⊂ C
∞
0 such that fi → f in Xβ−εE

−δ for any ε, δ > 0.

Proof.

Claim: Given f ∈ ZβE we can find a sequence {fj}j∈N ⊂
⋂
s∈R
ZβE

s with fj → f

in ZβE
−δ for any δ > 0. Since multiplication by eβt defines an isomorphism ZβE

s →

Z0E
s = Es(Πn) for any s ∈ R, we may prove the Claim assuming β = 0. Consider the

notation of Remark 2.9 and define χ̃′i = χi ◦ Ψ
−1
i ∈ C

∞ for each i ∈ I. Now Lemma 2.10

implies gi := (Ψ
−1
i )
∗(χif) ∈ E so Lemma 2.70 gives us a sequence {gij}j∈N ⊂

⋂
s∈R

Es

with gij → gi in E
−δ for any δ > 0. Condition (A2) and the fact that χ′i ≻ χi then give

χ̃′igij → χ̃′igi = gi in E
−δ for any δ > 0. Setting

fj =
∑

i∈I

Ψ∗i (χ̃
′
igij)

for any j ∈ N, we deduce from Lemma 2.10 that {fj}j∈N ⊂
⋂
s∈R

Es(Πn) whilst

fj →
∑

i∈I

Ψ∗i gi =
∑

i∈I

χif = f

in E−δ(Πn) for any δ > 0. This completes the Claim.

Let f ∈ XβE. By Lemma 2.16 we have η0f ∈ E and ζ0f ∈ YβE so Lemma 2.70 and

the above Claim (coupled with (8)) give us sequences {gj}j∈N ⊂
⋂
s∈R

Es and {hj}j∈N ⊂
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⋂
s∈R
YβE

s with gj → η0f in E
−δ and hj → ζ0f in YβE

−δ for any δ > 0. For any j ∈ N

define further functions by f ′j = η1gj + ζ−1hj and fj = ψjf
′
j . Another application of

Lemma 2.16 now shows {f ′j}j∈N ⊂
⋂
s∈R
XβE

s and f ′j → (η1η0 + ζ−1ζ0)f = f in XβE
−δ

for any δ > 0.

By Remark 2.21 and Lemma 2.29 we can find k ∈ N0 so that we have a continuous

inclusion XβE
k+l →֒ XβC

l for all l ∈ N0. It follows that {f
′
j}j∈N ⊂

⋂
l∈N
XβC

l ⊂ C∞loc.

Therefore {fj}j∈N ⊂ C∞0 . Now let ε, δ > 0. A straightforward application of Proposi-

tion 2.37 shows ψj → 1 in X−εC
l for any l ∈ N0. Proposition 2.50 and the convergence

f ′j → f in XβE
−δ then imply fj → f in Xβ−εE

−δ.

Lemma 2.72. The set C∞0 is dense in both S and S ′.

Proof. For the density of C∞0 in S see Proposition VI.1.3 in [Yo]. Now let f ∈ S ′ and,

for each j ∈ N, set fj = ψj(x)ψj(Dx)f . Thus fj has compact support (contained in

supp(ψj)) whilst the symbol ψj(x)ψj(ξ) is contained in C
∞
0 (R

n×R
n) so Lemma 2.61

gives fj ∈ S . Therefore {fj}j∈N ⊂ C
∞
0 .

A straightforward check shows Λ−1(x)ψj(x)ψj(Dx)→ Λ−1(x) in Sym1 so Remark 2.60

gives Λ−1(x)fj → Λ−1(x)f in S ′. Since the operator (of multiplication by) Λ(x) defines

a continuous map on S ′ we now get fj → f in S ′.

The next result follows from Lemma 2.72 and an argument similar to that used to

prove the Claim in the proof of Lemma 2.71.

Lemma 2.73. For any β ∈ R the set ZβS is dense in ZβS
′.

The compactness results given in Section 2.3 can be refined for admissible spaces.

We begin with two technical lemmas, the first of which is essentially the Ascoli–Arzelà

Theorem (see Section III.3 of [Yo]).

Lemma 2.74. Any bounded subset of S is pre-compact.

Lemma 2.75. If E is an admissible space and s > 0 then Es is locally compact in E.

Proof. Let φ ∈ C∞0 and choose a sequence {ψi}i∈N ⊂ C∞0 such that ψi → Λ−s in

X0C
∞ (which is possible by Remark 2.55 since s > 0). It follows that the sequence

of symbols φ(x)ψi(ξ) converges to φ(x)Λ
−s(ξ) in Sym0 and so the pseudo-differential

operator φ(x)ψi(Dx) converges to φ(x)Λ
−s(Dx) in L (E,E) (by condition (B) for the

admissible space E). However, the map Es → E given by multiplication by φ can be

written as φ(x)Λ−s(Dx)Λ
s(Dx) where Λ

s(Dx) acts as an isomorphism Es → E. By the

fact that the set of compact operators is closed in L (E,E) it therefore suffices to show

that the operator φ(x)ψi(ξ) defines a compact map E → E for any i ∈ N.

Now φ(x)ψi(ξ)∈C
∞
0 (R

n×R
n)⊂S (Rn×R

n) so Lemma 2.61 implies that φ(x)ψi(Dx)

defines a continuous map S ′ → S . On the other hand, condition (A1) for the admissible

space E gives us continuous inclusions E →֒ S ′ and S →֒ E. By composing these maps

and using Lemma 2.74 it follows that φ(x)ψi(Dx) defines a compact map E → E.

Lemma 2.75 and Proposition 2.51 (with E, F and G replaced by Es, F and E re-

spectively) immediately lead to the following useful result.
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Proposition 2.76. Let β, γ, s ∈ R with s > 0 and suppose that , for an admissible space

E and a model space F , multiplication defines a continuous bilinear map E×F → E (or ,

more generally , Es × F → E). Then multiplication by any φ ∈ XγF0 defines a compact

map XβE
s → Xβ+γE.

Corollary 2.77. Suppose E is an admissible space and β, γ, s ∈ R with γ > β and

s > 0. Then the inclusion XγE
s →֒ XβE is compact.

Proof. By Lemma 2.49 we know that multiplication defines a continuous map E×Cl → E

for all sufficiently large l ∈ N0. Furthermore, β − γ < 0 so 1 ∈ Xβ−γC
l
0 by Remark 2.55.

The result now follows directly from an application of Proposition 2.76.

For any admissible space E, β ∈ R, k ∈ N and vector κ = (κ1, . . . , κk) of non-negative

integers, we define the following product spaces:

Eκ =
k∏

i=1

Eκi , Z
κ
βE =

k∏

i=1

ZβE
κi , Y

κ
βE =

k∏

i=1

Yβ−κiE
κi , X

κ
βE =

k∏

i=1

Xβ−κiE
κi .

Let r±κ denote the matrix operator given as multiplication by diag(r±κ1 , . . . , r±κk). Thus

(8) and Proposition 2.20 imply that we have an isomorphism

Θ∗r−κ : YκβE
r−κ

−→
k∏

i=1

YβE
κi

Θ∗

−→ ZκβE(44)

with inverse

rκ(Θ−1)∗ : ZκβE
(Θ−1)∗

−−−→
k∏

i=1

YβE
κi

rκ

−→ YκβE.(45)

Finally, let πκ denote the projection defined on any of the above product spaces by

(πκu)i =

{
ui if κi > 0,

0 if κi = 0.

Clearly, πκ commutes with multiplication by a scalar or a diagonal matrix.

2.5. Elliptic operators. Unless otherwise stated, we shall assume that the coefficients

of any differential operator on Rn are contained in C∞. In particular, condition (A2) and

Remark 2.5 imply that any differential operator A(x,Dx) on Rn of order m defines a

continuous map Em → E for any model space E.

Definition 2.78. Let A(x,Dx) be a k × k system of differential operators on R
n with

entries Aij(x,Dx) for i, j = 1, . . . , k. We say that A is elliptic on some open set U ⊆ Rn

if the following conditions are satisfied:

(i) There exist vectors µ = (µ1, . . . , µk) and ν = (ν1, . . . , νk) of non-negative integers

such that ordAij = µj−νi (with Aij = 0 whenever µj−νi < 0). Furthermore, mini νi = 0.

(ii) Let aij(x, ξ) denote the principal symbol of Aij(x, ξ) (so aij(x, ξ) is a homogeneous

polynomial of degree µj−νi in ξ) and define detA(x, ξ) to be the determinant of the k×k

matrix with entries aij(x, ξ). Then detA(x, ξ) 6= 0 for any (x, ξ) ∈ U × R
n
∗ .
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We say that A is uniformly elliptic on U if condition (ii) can be replaced by the

following stronger condition:

(ii)′ Set [µ − ν] =
∑k
i=1(µi − νi) and let detA(x, ξ) be defined as in condition (ii)

above. Then |detA(x, ξ)| ≥ C|ξ|
[µ−ν] for all (x, ξ) ∈ U × Rn.

We shall refer to the pair (µ, ν) as the order of A.

In the case of scalar operators (i.e. when k = 1) this definition of ellipticity clearly

reduces to the usual one. Furthermore, ν1 = 0 and µ1 = m, the usual order of the

operator. On the other hand, if A is elliptic on some open set U then A is uniformly

elliptic on any bounded open set V with Cl(V ) ⊆ U .

Remark 2.79. If n ≥ 3 then ellipticity implies that [µ − ν] is even (say 2l) and the

polynomial equation detA(x, ξ + tη), ξ, η ∈ Rn∗ , has exactly l roots with Im t > 0 (and

hence exactly l roots with Im t < 0). These conditions need not be satisfied when n = 2

and must be imposed as extra assumptions when working with boundary value problems.

However, we do not need to impose such assumptions here.

Remark 2.80. Suppose A and B are k×k systems of differential operators of order (µ, ν)

on U ⊆ Rn. Furthermore, suppose the coefficients of B are bounded (pointwise on U) by

some function b(x). Then we have

|detA+B(x, ξ)− detA(x, ξ)| ≤ C(b(x) + b
k(x))|ξ|[µ−ν]

for all (x, ξ) ∈ U × Rn, where C may depend on A but not on B, b or (x, ξ). It follows

that if A is uniformly elliptic on U and b is bounded by a sufficiently small constant

(depending on A) then A+ B is also uniformly elliptic on U .

Suppose A is an operator of order (µ, ν) which is uniformly elliptic on an open set

U ⊆ Rn. Clearly, A defines a continuous map Eµ → Eν for any admissible space E.

Condition (B) for admissible spaces and the calculus of pseudo-differential operators also

allow us to derive the following regularity result and elliptic estimates.

Theorem 2.81. Suppose A is a k×k system of differential operators on Rn of order (µ, ν)

which is uniformly elliptic on some open set U ⊆ R
n. Suppose further that χ1, χ2 ∈ C

∞

with χ1 ≺ χ2 and supp(χ1) ⊆ U . If u ∈ S ′ satisfies χ2Au ∈ E
ν and πµχ2u ∈ (E

−1)µ

for some admissible space E, then we also have χ1u ∈ E
µ. Furthermore,

‖χ1u‖Eµ ≤ C(‖χ2Au‖Eν + ‖πµχ2u‖(E−1)µ)

for any such u.

Proof. Without loss of generality we may assume χ2 = 1 on a neighbourhood of supp(χ1)

(if this were not the case we could simply replace χ2 with χ3χ2 where χ3 ∈ C
∞ is chosen

so that χ3χ2 = 1 on χ
−1
2 (1/2,+∞)). It follows that we can find χ ∈ C

∞ with χ1 ≺ χ ≺ χ2
and supp(χ) ⊆ U .

For i, j ∈ {1, . . . , k} let Aij(x,Dx) denote the ijth entry of A(x,Dx) and Aij(x, ξ) ∈

Symµj−νi its (full) symbol. Also, let A(x, ξ) denote the k×k matrix with entries Aij(x, ξ)

and A(x, ξ) the determinant of this matrix; in particular, A(x, ξ) ∈ Symm where m =

[µ − ν]. Now, by the definition of uniform ellipticity, we can find B(x, ξ) ∈ Sym−m

such that χ1(x)A(x, ξ)B(x, ξ) ≡ χ1(x) (mod Sym
−1). Let A†ij(x, ξ) denote the ijth co-



42 D. M. Elton

factor of the matrix A(x, ξ). Hence A†ij(x, ξ) ∈ Sym
m−µj+νi . Also, set Bij(x, ξ) =

(−1)i+jB(x, ξ)A†ji(x, ξ) ∈ Sym
νj−µi , define Bij(x,Dx) ∈ ΨOpνj−µi to be the pseudo-

differential operator with symbol Bij(x, ξ) and let B denote the k × k system of pseudo-

differential operators with entries Bij .

If i, j, l ∈ {1, . . . , k} the differential operator Bilχ1Alj is contained in ΨOp
µj−µi and

has symbol χ1(x)Bil(x, ξ)Alj(x, ξ) (mod Sym
µj−µi−1). Therefore the ijth entry of Bχ1A

is contained in ΨOpµj−µi and, modulo an element of Symµj−µi−1, has symbol

k∑

l=1

χ1(x)Bil(x, ξ)Alj(x, ξ) = χ1(x)δijA(x, ξ)B(x, ξ) ≡ χ1(x)δij .

Hence

Bχ1A = χ1 + C(46)

where C is a k × k matrix of pseudo-differential operators whose ijth entry is contained

in ΨOpµj−µi−1. In particular, B and C define continuous maps

B : Eν → Eµ and C : (E−1)µ → Eµ.(47)

Using the assumption of uniform ellipticity on A we can choose ξ0 ∈ Rn so that

A(x, ξ0) = detA(x, ξ0) is bounded away from 0 uniformly for x ∈ U . For each i, j ∈

{1, . . . , k} set Dij(x) = (−1)
i+jχ(x)A†ji(x, ξ0)/A(x, ξ0) ∈ C

∞ and let D denote the k× k

matrix of multiplication operators whose ijth entry is given by
{
Dij(x) if µi = 0,

0 if µi > 0.
(48)

Now, as matrices, D(x)χ(x)A(x, ξ0) = χ(x)(I − πµ) (where πµ is simply the diagonal

matrix with a 1 in the ith position if µi > 0 and 0 otherwise). Since (I − πµ)
2 = I − πµ

while A(x, ξ)(I − πµ) is independent of ξ (n.b. if µj = 0 then Aij is a zeroth order

differential operator) we have DχA(I−πµ) = χ(I−πµ) as differential operators. Coupled

with the relation χ ≺ χ2 and the fact that A is a differential operator this gives

χ = χπµ +DχA(I − πµ) = χπµχ2 +Dχχ2A−DχAπµχ2.(49)

On the other hand, condition (A2), (48) and the fact that νj ≥ 0 clearly imply that D

defines a continuous map

D : (E−1)ν → (E−1)µ.(50)

Using (46) and (49), the relations χ1 ≺ χ ≺ χ2 and the fact that A is a differential

operator, we get

χ1 = Bχ1Aχ− Cχ = Bχ1χ2A− Cχπµχ2 − CDχχ2A+ CDχAπµχ2.(51)

We also observe that A defines a continuous map

A : (E−1)µ → (E−1)ν .(52)

The first part of the result now follows if we apply (51) to u and use condition (A2), the

continuous inclusion E →֒ E−1 and the mapping properties given by (47), (50) and (52).

On the other hand, we can combine norm estimates for the various continuous maps to

get
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‖χ1u‖Eµ ≤ C(‖χ2Au‖Eν + ‖πµχ2u‖(E−1)µ + ‖Dχχ2Au‖(E−1)µ + ‖DχAπµχ2u‖(E−1)µ)

≤ C(‖χ2Au‖Eν + ‖πµχ2u‖(E−1)µ + ‖χ2Au‖(E−1)ν + ‖Aπµχ2u‖(E−1)ν )

≤ C(‖χ2Au‖Eν + ‖πµχ2u‖(E−1)µ)

for all such u.

Suppose ψ is a diffeomorphism on Rn which is linear outside some compact set. By

considering the standard rules for transforming principal symbols of differential operators

it is clear that a system of differential operators A is elliptic on an open set U iff the

operator (ψ−1)∗Aψ∗ is elliptic on the open set ψ(U). It follows that the definition of

ellipticity can be applied to systems of differential operators on a smooth manifold. The

next result is used to justify a later remark (n.b. Sn−1 can be replaced by any compact

manifold without boundary).

Theorem 2.82. Suppose A is a k × k system of differential operators on Sn−1 of order

(µ, ν). If A is elliptic and u ∈ D ′(Sn−1) satisfies Au ∈ Eν(Sn−1) ∩ F ν(Sn−1) and

πµu ∈ Fµ(Sn−1) for some admissible spaces E and F (on R
n−1) then we also have

u ∈ Eµ(Sn−1). Furthermore,

‖u‖Eµ(Sn−1) ≤ C(‖Au‖Eν(Sn−1) + ‖πµu‖Fµ(Sn−1))

for all such u.

Proof. We can obtain the result with F = E−1 by applying Theorem 2.81 on coordinate

charts and patching the conclusion together with the help of observations similar to

Lemma 2.10 and Remark 2.9. Induction, Lemma 2.23, Corollary 2.30 and Proposition 2.69

then complete the result for general F .

3. Model problems

3.1. Elliptic operators on Πn and a priori estimates

Definition 3.1. A differential operator B = B(t, ω,Dt, Dω) on Π
n is said to be uniform

if its coefficients are contained in C∞(Πn).

Suppose B is a uniform scalar operator on Πn of order m and E is an admissible

space. By Lemma 2.32 and Proposition 2.50 (n.b. C∞(Πn) =
⋂
l∈N0
Z0C

l) it is clear that

B defines a continuous map ZβE
m → ZβE for any β ∈ R. We also have

eβtB(t, ω,Dt, Dω) = B(t, ω,Dt + iβ,Dω)(e
βt · )(53)

for any β ∈ R, where B(t, ω,Dt + iβ,Dω) is once again a uniform operator on Π
n. This

observation essentially allows us to take β = 0 when studying the properties of the map

B : ZβE
m → ZβE for a uniform operator B.

Let B be a uniform operator onΠn of order (µ, ν) with entries Bij for i, j ∈ {1, . . . , k}.

As above, let detB(x, ξ) denote the determinant of the k × k matrix formed from the

principal symbols of the operators Bij . We shall say that B is a uniform elliptic operator

on Πn if we can find C > 0 such that |detB(x, ξ)| ≥ C|ξ|
[µ−ν]
Πn for all (x, ξ) ∈ T ∗Πn,
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where |·|Πn denotes the norm on the fibres of the cotangent bundle T
∗Πn given by the

Riemannian metric on Πn.

For i, j ∈ {1, . . . , k}, Bij is a uniform scalar operator on Π
n of order µj − νi, so

the above discussion implies that Bij defines a continuous map ZβE
µj → ZβE

νi for any

β ∈ R. It follows that B defines a continuous map ZµβE → Z
ν
βE. We shall denote this

map by B(E,β) or B(β) when we need to make clear the spaces B is acting between.

Lemma 3.2. Suppose E is an admissible space and β ∈ R. If Bu ∈ ZνβE for some

u ∈ ZµβE
−1 then we also have u ∈ ZµβE. Furthermore,

‖u‖ZµβE ≤ C(‖Bu‖Z
ν
βE
+ ‖πµu‖ZµβE−1)

for all u ∈ ZµβE.

Proof. Suppose χ1 ∈ C∞(Sn−1) with supp(χ1) 6= Sn−1. Thus we can choose a chart

(ψ,U) of Sn−1 with supp(χ1) ⊂ U . Let (Ψ,R×U) be the corresponding chart of Π
n and

choose further functions χ2, χ3 ∈ C
∞
0 (U) with χ3 ≻ χ2 ≻ χ1. Also, define χ̃i ∈ C

∞ by

χ̃i = χi ◦ Ψ
−1 (extended by 0) for i = 1, 2, 3.

Using the transformation properties of the principal symbol of a differential operator

under diffeomorphisms (see Section 18.1 in [H2], for example) it is straightforward to check

that the operator (Ψ−1)∗χ3Bχ3Ψ
∗ is uniformly elliptic on the open set χ̃−13 (1/2,∞). The-

orem 2.81 then gives us the following: if χ̃2(Ψ
−1)∗χ3Bχ3Ψ

∗v ∈ Eν for some v ∈ (E−1)µ

then χ̃1v ∈ E
µ and we have an estimate of the form

‖χ̃1v‖Eµ ≤ C(‖χ̃2(Ψ
−1)∗χ3Bχ3Ψ

∗v‖Eν + ‖πµχ̃2v‖(E−1)µ).

Putting v = (Ψ−1)∗(χ3u) and using the fact that B is a differential operator we get

χ̃2(Ψ
−1)∗χ3Bχ3Ψ

∗v = (Ψ−1)∗χ2χ3Bχ
2
3u = (Ψ

−1)∗χ2Bu.

Combining these observations with Lemma 2.10 we now get the following: if χ2Bu ∈ Z
ν
0E

for some u ∈ Zµ0E
−1 then χ1u ∈ Z

µ
0E and we have an estimate of the form

‖χ1u‖Zµ0E ≤ C(‖χ2Bu‖Zν0E + ‖πµχ2u‖Z
µ
0E
−1) ≤ C(‖Bu‖Zν0E + ‖πµu‖Zµ0E−1),

the second inequality coming from Remark 2.13 and the fact that χ2 ∈ C
∞(Πn). The

result now follows by allowing χ1 to vary through the elements of a suitable partition of

unity on Sn−1.

We need to make a couple of general observations before we proceed to the next

regularity result.

Remark 3.3. By Proposition 2.50 multiplication defines a continuous bilinear map Z0C
l×

ZβE → ZβE for all sufficiently large l ∈ N0. Using the translational invariance of the

norm on Z0C
l = Cl(Πn) and the fact that φij = φi − φj+1 we can bound ‖φij‖Z0Cl

independently of i, j ∈ Z∪{±∞} with i ≤ j. It follows that multiplication by φij defines

a continuous map ZβE → ZβE whose operator norm can be bounded independently

of i, j.

Remark 3.4. Suppose B is a uniform operator on Πn of order (µ, ν) and φ ∈ C∞(Πn).

Then the ijth entry of the commutator [B, φ] is the uniform scalar operator [Bij , φ] of

order at most µj−νi−1; in particular, [Bij , φ] = 0 whenever νi ≥ µj whilst [B, φ] defines
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a continuous map ZµβE
−1 → ZνβE. Furthermore, the operator norm of this map can be

estimated by the Z0C
l norm of φ and the coefficients of B for some sufficiently large

l ∈ N0.

Lemma 3.5. Suppose E is an admissible space, β ∈ R, i, j ∈ Z ∪ {±∞} with i ≤ j and

l ∈ N0. If φi−l,j+lBu ∈ Z
ν
βE and φi−l,j+lu ∈ Z

µ
βE
−l for some u ∈ D ′(Πn) then we also

have φiju ∈ Z
µ
βE. Furthermore,

‖φiju‖ZµβE ≤ C(‖φi−l,j+lBu‖Z
ν
βE
+ ‖πµφi−l,j+lu‖ZµβE−l)

for all such u, where C is independent of i, j.

Proof. Induction clearly reduces the result to the case l = 1. Now suppose we have

φi−1,j+1Bu ∈ Z
ν
βE and φi−1,j+1u ∈ Z

µ
βE
−1 for some u ∈ D ′(Πn). Therefore φiju ∈

Z
µ
βE
−1 whilst φij ≺ φi−1,j+1 and B is a differential operator so

Bφiju = φijφi−1,j+1Bu+ [B, φij ]φi−1,j+1u.(54)

By Remark 3.3 we know that multiplication by φij defines a continuous map Z
ν
βE →

Z
ν
βE with norm bounded independently of i, j. On the other hand, Remark 3.4 implies

[B, φij ] maps Z
µ
βE
−1 → ZνβE continuously with operator norm bounded independently

of i, j. Combining these observations with (54) and our original hypothesis we thus get

Bφiju ∈ Z
ν
βE with a norm estimate of the form

‖Bφiju‖ZνβE ≤ C(‖φi−1,j+1Bu‖ZνβE + ‖πµφi−1,j+1u‖ZµβE−1),

where C is independent of i, j. Lemma 3.2 (applied to φiju) now implies φiju ∈ Z
µ
βE and

‖φiju‖ZµβE ≤ C(‖φi−1,j+1Bu‖Z
ν
βE
+ ‖πµφi−1,j+1u‖ZµβE−1 + ‖πµφiju‖Z

µ
βE
−1),

where C is independent of i, j. A further application of Remark 3.3 clearly completes the

result.

3.2. Adjoint operators. Suppose B is a uniform elliptic operator on Πn of order (µ, ν)

with entries Bij for i, j ∈ {1, . . . , k}. Let B
∗ denote the formal adjoint of B (with respect

to the volume measure dtdSn−1 on Πn); that is, B∗ is the k × k system of differential

operators with entries

(B∗)ij(t, ω,Dt, Dω) = (Bji(t, ω,Dt, Dω))
∗(55)

for i, j = 1, . . . , k. Define m ∈ N0 and vectors of integers µ and ν by

m = max
i
µi and µi = m− νi, νi = m− µi for i = 1, . . . , k.(56)

Therefore mini µi ≥ mini νi = 0 (n.b. if the first inequality were not valid then we would

have an i such that µj − νi < 0 for all j ∈ {1, . . . , k}; the ith row of B would then be 0,

contradicting the assumption that B is elliptic). Furthermore,

ord (B∗)ij = ordBji = µi − νj = µj − νi

whilst it is easily seen that detB∗(x, ξ) = detB(x, ξ) for all (x, ξ) ∈ T
∗Πn. It follows that

B∗ is a uniform elliptic operator on Πn of order (µ, ν).
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Let E be an admissible space and set F = E∗0 . By Lemma 2.45 and Proposition 2.69

we know that F is also an admissible space whilst

(ZµβE0)
∗ =

k∏

i=1

Z−βF
−µi = Zν−βF

−m and (ZνβE0)
∗ =

k∏

i=1

Z−βF
−νi = Zµ−βF

−m

for any β ∈ R. Therefore the adjoint of the map B(E0,β) : ZµβE0 → Z
ν
βE0 is the map

(B(E0,β))∗ = (B∗)(F
−m,−β) : Zµ−βF

−m → Zν−βF
−m where F = E∗0 .

3.3. Operator pencils

Definition 3.6. A model operator on Πn is a differential operator B = B(ω,Dt, Dω)

on Πn whose coefficients are independent of t. If B is also elliptic we shall refer to it as

a model elliptic operator on Πn.

Clearly, any model operator on Πn is a uniform differential operator whilst any model

elliptic operator is also a uniform elliptic operator. Now let B be a model elliptic operator

on Πn of order (µ, ν). For i, j ∈ {1, . . . , k} we can write the ijth entry of B in the form

Bij(ω,Dt, Dω) =

µj−νi∑

l=0

B
µj−νi−l
ij (ω,Dω)D

l
t(57)

where Blij(ω,Dω) is a differential operator on S
n−1 of order at most l.

For each λ ∈ C let B(λ) be the differential operator on Sn−1 defined by B(λ)(ω,Dω)

= B(ω, λ,Dω); that is, B(λ) is the k × k system of differential operators with entries

given by

Bij(ω, λ,Dω) =

µj−νi∑

l=0

B
µj−νi−l
ij (ω,Dω)λ

l.(58)

Given any admissible space E on Rn−1, the operator Blij defines a continuous map

Eµj (Sn−1) → Eνi(Sn−1) for l = 0, . . . , µj − νi. Thus B defines an operator-valued

function (or operator pencil)

B : C→ L (Eµ(Sn−1), Eν(Sn−1)).(59)

The spectrum σ(B) of the operator pencil B is defined to be the set of all λ ∈ C

for which B(λ) : Eµ(Sn−1) → Eν(Sn−1) is not an isomorphism. Suppose λ0 ∈ σ(B).

Any non-zero element in the kernel of B(λ0) is called an eigenfunction of B and the

dimension of the kernel is the geometric multiplicity of λ0. A collection of functions

φ0, . . . , φM−1 ∈ E
µ(Sn−1) is called a Jordan chain corresponding to λ0 ∈ σ(B) iff φ0 is

an eigenfunction corresponding to λ0 and the meromorphic function Φ(λ) defined by

Φ(λ) =

M−1∑

j=0

φj
(λ− λ0)M−j

(60)

satisfies

B(λ)Φ(λ) = O(1) as λ→ λ0.(61)
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It can be seen that this is equivalent to the condition

M ′∑

j=0

1

j!
∂jλB(λ0)φM ′−j = 0(62)

forM ′ = 0, . . . ,M −1. The functions φ1, . . . , φM−1 are called generalised eigenfunctions .

The algebraic multiplicity of λ0 is defined to be the dimension of the space of all functions

of the form (60) which satisfy (61).

Remark 3.7. It is straightforward to check that B(λ) is an elliptic operator of order

(µ, ν) on Sn−1 for any λ ∈ C (n.b. the principal symbol of each entry of B(λ) is indepen-

dent of λ). Standard elliptic regularity results (see Theorem 2.82) then imply that the

spectrum, eigenfunctions and generalised eigenfunctions of the operator pencil (59) are

independent of the admissible space E. Furthermore, the eigenfunctions and generalised

eigenfunctions are all contained in C∞(Sn−1).

Using the a priori estimates for the elliptic operator B on Πn and general results

for Fredholm operator pencils we can obtain general information about the structure of

the spectrum of B. The following result was obtained in [AN] (see Chapter V) and [AV]

for scalar operators, and appears in Section 1.2.1 of [NP] for systems of operators (see

also [GGK] or Appendix A to [KM] for details about the algebraic multiplicities of the

isolated points in σ(B)).

Theorem 3.8. The spectrum of B consists of isolated points of finite algebraic multiplic-

ity. Furthermore, there exist constants C1, C2 > 0 such that

σ(B) ⊂ {λ ∈ C | |Reλ| ≤ C1|Imλ|+ C2}.

Remark 3.9. Theorem 3.8 implies that Imσ(B) (the projection of σ(B) onto the imag-

inary axis) consists of isolated points. Furthermore, for γ ∈ Imσ(B), the total algebraic

multiplicity of all those λ ∈ σ(B) with Imλ = γ is finite.

A system of Jordan chains

{φj,0, . . . , φj,Mj−1 | j = 1, . . . , J}(63)

is called canonical if {φ1,0, . . . , φJ,0} forms a basis for KerB(λ0) (i.e. the geometric

eigenspace of λ0), M1 ≥ . . . ≥ MJ and M1 + . . . +MJ = M , the algebraic multiplicity

of λ0. It follows that J is simply the geometric multiplicity of λ0 whilst M1, . . . ,MJ are

known as the partial algebraic multiplicities of λ0. It is well known (see [GGK] or Ap-

pendix A to [KM], for example) that a canonical system of Jordan chains exists for any

λ0 ∈ σ(B) of finite algebraic multiplicity.

Define functions uj,m ∈ C
∞(Πn)loc by

uj,m(t, ω) = e
iλ0t

m∑

l=0

1

l!
(it)l φj,m−l(ω)(64)

for j = 1, . . . , J , m = 0, . . . ,Mj − 1. This collection of functions forms a basis for the set

of “power-exponential” solutions of the equation B(λ0)u = 0.

Let B∗ denote the operator pencil associated with the model elliptic operator B∗ (the

formal adjoint of B). For any λ ∈ C and i, j ∈ {1, . . . , k} the ijth entry of B∗(λ) is thus
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given by (B∗)ij(ω, λ,Dω), where (B
∗)ij(ω,Dt, Dω) is the operator given by (55). On the

other hand, by taking formal adjoints of (57) and (58) (on Πn and Sn−1 respectively)

we have

(B∗)ij(ω, λ,Dω) = (Bji(ω, λ,Dω))
∗.

Therefore B
∗(λ) = (B(λ))∗, the formal adjoint of the operator B(λ) on Sn−1. It fol-

lows that λ0 ∈ σ(B) iff λ0 ∈ σ(B∗) with full agreement of geometric, algebraic and

partial algebraic multiplicities. In fact, given a canonical system of Jordan chains (63)

corresponding to λ0 ∈ σ(B) we can find a unique canonical system of Jordan chains

{ψj,0, . . . , ψj,Mj−1 | j = 1, . . . , J}(65)

corresponding to λ0 ∈ σ(B
∗) which satisfy the biorthogonality conditions

m∑

l=0

m′∑

l′=0

1

(l + l′ + 1)!
〈∂l+l

′+1
λ B(λ0)φj,m−l, ψj′,m′−l′〉Sn−1 = δj,j′δMj−1−m,m′(66)

for j, j′ = 1, . . . , J , m = 0, . . . ,Mj − 1 and m
′ = 0, . . . ,Mj′ − 1 (see [GGK] or Appendix

A to [KM], for example; n.b. by (62) and a similar expression for the ψj,m’s it is possible

to rewrite the biorthogonality conditions in a number of different ways—in particular, it

is enough to consider (66) for m =Mj − 1, j, j
′ = 1, . . . , J and m′ = 0, . . . ,Mj′ − 1).

As above, the power-exponential solutions of B∗(λ0)v = 0 can be expanded in terms

of a basis given by the functions

vj,m(t, ω) = e
iλ0t

m∑

l=0

1

l!
(it)l ψj,m−l(ω)(67)

for j = 1, . . . , J , m = 0, . . . ,Mj − 1.

3.4. Isomorphisms. The study of Fredholm properties of a certain class of elliptic

operators on Rn (to be introduced in Section 4.1) can be largely reduced to the study of

model elliptic operators onΠn. Theorems 3.10 and 3.11 provide the key results concerning

the latter. These (or closely related) results have been established by a number of authors,

at least for the admissible spaces E = Hp,k with p ∈ (1,∞) and k ∈ Z, and E = Cs0 with

s ∈ R
+ \ N (in particular, see [AN], [AV], [K2] and [MP]; see also [KM] where such

results are obtained as part of a general theory of differential equations with operator

coefficients). Below we give a general argument to derive Theorems 3.10 and 3.11 for an

arbitrary admissible space E from the case E = L2.

Theorem 3.10. Let E be an admissible space, let B be a model elliptic operator on Πn

of order (µ, ν) and define B to be the associated operator pencil. If β ∈ R\ Imσ(B) then

B : ZµβE → Z
ν
βE is an isomorphism.

Theorem 3.11. Let E, B and B be as in Theorem 3.10. Suppose β1, β2 ∈ R satisfy

β1, β2 6∈ Imσ(B) and β1 < β2. Set Σ = {λ ∈ σ(B) | Imλ ∈ [β1, β2]} and , for each

λ ∈ Σ, let {φλj,0, . . . , φ
λ
j,Mλ,j−1

| j = 1, . . . , Jλ} and {ψ
λ
j,0, . . . , ψ

λ
j,Mλ,j−1

| j = 1, . . . , Jλ}

be canonical systems of Jordan chains corresponding to λ ∈ σ(B) and λ ∈ σ(B∗) re-

spectively , which satisfy the biorthogonality condition (66). Define uλj,m and v
λ
j,m to be

the corresponding power-exponential functions given by (64) and (67) respectively. Now
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let f ∈ Zνβ1E ∩ Z
ν
β2
E and let u(i) ∈ ZµβiE be the corresponding solutions of Bu = f for

i = 1, 2. Then we have

u(1)(t, ω)− u(2)(t, ω) =
∑

λ∈Σ

Jλ∑

j=1

Mλ,j−1∑

m=0

cλj,m(f)u
λ
j,Mλ,j−1−m

(t, ω)(68)

where the coefficient functions are given by

cλj,m(f) = 〈f, iv
λ
j,m〉Πn(69)

for λ ∈ Σ, j = 1, . . . , Jλ and m = 0, . . . ,Mλ,j − 1.

We begin by using a straightforward regularity argument to obtain Theorem 3.10 for

the spaces Hs, s ∈ R, from the case s = 0.

Proposition 3.12. Theorem 3.10 holds with E = Hs for any s ∈ R.

Proof. Theorem 3.10 is known to hold for E = L2 = H0; see Theorem 3.1.1 in [NP],

for example. Duality and induction now reduce our task to proving that if Theorem 3.10

holds for E = Hs, s ∈ R, then it also holds for E = Hs+δ where δ ∈ [0, 1].

Denote the maps B : ZµβH
s → ZνβH

s and B : ZµβH
s+δ → ZνβH

s+δ by B0 and Bδ
respectively, and assume B0 is an isomorphism. Since Z

µ
βH

s+δ ⊆ ZµβH
s, Bδ must also be

injective. Now let f ∈ ZµβH
s+δ ⊆ ZµβH

s and set u = (B0)
−1f . Therefore u ∈ ZµβH

s ⊆

Z
µ
βH

s+δ−1 whilst Bu = f ∈ ZνβH
s+δ. Lemma 3.2 then implies u ∈ ZµβH

s+δ, thereby

establishing the surjectivity of Bδ. The Open Mapping Theorem now shows that Bδ is an

isomorphism.

Let O0,1 denote the set of those scalar differential operators on Πn of order 0 or 1

which can be written as the linear combination of a model operator and (multiplication

by) t. In what follows we use the notation [P,Q] = PQ − QP for the commutator of

operators P and Q.

Remark 3.13. (i) If P ∈ O0,1 and χ ∈ C∞(Sn−1) then [P, χ] ∈ C∞(Sn−1); that is,

the operator [P, χ] is given as multiplication by some function in C∞(Πn) which is

independent of t. Furthermore, [P, χ] = 0 if ordP = 0.

(ii) If m ∈ N and P1, . . . , Pm ∈ O0,1 then B′ := [P1, . . . , [Pm,B] . . . ] is a k × k matrix

of differential operators on Πn whose coefficients are independent of t and whose ijth

entry has order at most µj − νi −m
′ where

m′ =
m∑

k=1

(1− ordPk).

It follows that B′ defines a continuous map ZµβE → Z
ν
βE

m′ for any admissible space E

and β ∈ R.

Let β ∈ R \ Imσ(B) and define C to be the continuous map ZβS → ZβS
′ obtained

by taking the restriction of the inverse of the isomorphism B : ZµβL
2 → ZνβL

2. For any

m ∈ N0 let Om
C denote the set of operators obtained by taking finite sums of operators

of the form
χ1CQ1CQ2 . . . CQlCχ2(70)

where χ1, χ2 ∈ C
∞(Sn−1), l ∈ N0 and, for i = 1, . . . , l, we can write

Qi = [Pi1, . . . , [Pimi ,B] . . . ]
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for some mi ∈ N0 and Pi1, . . . , Pimi ∈ O0,1 with
l∑

i=1

mi∑

k=1

(1− ordPik) = m.

Remark 3.14. For any s ∈ R, Lemma 2.34 and Proposition 3.12 imply that C has a

unique extension to a continuous map ZνβH
s → ZµβH

s. This observation can be coupled

with Remark 3.13(ii) to show that the operator given by the formal expression (70)

defines a continuous map ZνβH
s → ZµβH

s+m for any s ∈ R. Taking linear combinations

we deduce that any element of Om
C has similar mapping properties.

Lemma 3.15. Let χ1, χ2 ∈ C
∞(Sn−1), m ∈ N and P1, . . . , Pm ∈ O0,1. Set

m′ =

m∑

k=1

(1− ordPk) ∈ N0.

Then the operator

[P1, . . . , [Pm, χ1Cχ2] . . . ](71)

has a unique extension to a continuous map ZνβH
s → ZµβH

s+m′ for any s ∈ R.

The operator C defines a continuous map ZβS → ZβS
′ whilst any Pi defines con-

tinuous maps ZβS → ZβS and ZβS
′ → ZβS

′. It follows that the operator (71) can be

initially defined as a continuous map ZβS → ZβS
′.

Proof of Lemma 3.15. By Lemma 2.34 and Remark 3.14 it suffices to prove that the

operator (71) is contained in Om′

C . Since we obviously have χ1Cχ2 ∈ O0C the following

Claim completes the result.

Claim: If R ∈ Om
C and P ∈ O0,1 then [P,R] ∈ O

m+1−ordP
C . Clearly, it suffices to prove

the Claim assuming R is given by (70). Then

[P,R] = [P, χ1]CQ1 . . .QlCχ2 +
l+1∑

i=1

χ1CQ1 . . .Qi−1[P, C]Qi . . .QlCχ2(72)

+
l∑

i=1

χ1CQ1 . . . C[P,Qi]C . . .QlCχ2 + χ1CQ1 . . .QlC[P, χ2].

Now, by Remark 3.13(i), we have [P, χ1] = χ′1 and [P, χ2] = χ′2 for some χ
′
1, χ
′
2 ∈

C∞(Sn−1), with χ′1 = χ′2 = 0 if ordP = 0. On the other hand, [P, C] = −C[P,B]C.

Therefore each term in (72) is contained in O
m+1−ordP
C .

Suppose (ψ,U) is a chart for Sn−1 and let (Ψ,R × U) be the corresponding chart

for Πn. Also, choose χ1, χ2 ∈ C
∞
0 (U); we shall use the same letters to denote the ex-

tensions of these functions to Πn which are independent of t. Define a k × k matrix of

operators by D := (Ψ−1)∗eβtχ1Cχ2e
−βtΨ∗.

Remark 3.16. Suppose R is a scalar operator on Πn which is supported on R × U

(in the sense that R = χRχ for some χ ∈ C∞0 (U)). If E and F are admissible spaces

then Lemma 2.10 and (5) show that R defines a continuous map R : ZβE → ZβF iff

(Ψ−1)∗eβtRe−βtΨ∗ defines a continuous map E → F . Clearly, similar statements hold

when E or F is replaced by S or S ′, or when R is replaced by a matrix of operators.
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Lemma 3.17. For each i, j ∈ {1, . . . , n}, the ijth entry of the operator D is contained

in ΨOpνj−µi .

Proof. Since we know that D defines a continuous map S → S ′ (see Remark 3.16) we

can apply a characterisation of pseudo-differential operators given in [Bea]. Let m ∈ N

and suppose, for k = 1, . . . ,m, that Qk is either the operator Di or (multiplication by)

xi for some i ∈ {1, . . . , n}. Let m
′ ∈ N0 be the number of Qk which are of zero order.

Choose χ0 ∈ C
∞(U) with χ0 ≻ χ1, χ2 and define χ̃i ∈ C

∞ by χ̃i = χi ◦ Ψ
−1 (extended

by 0) for i = 0, 1, 2. Now the fact that Q1, . . . , Qm are differential operators implies

[Q1, . . . , [Qm,D] . . .] = [χ̃0Q1χ̃0, . . . [χ̃0Qmχ̃0,D] . . .].

Setting Pk = e
−βtΨ∗χ̃0Qkχ̃0(Ψ

−1)∗eβt for k = 1, . . . ,m allows us to rewrite this as

[Q1, . . . , [Qm,D] . . .] = (Ψ
−1)∗eβt[P1, . . . , [Pm, χ1Cχ2] . . .]e

−βtΨ∗.(73)

If Qk is not given as multiplication by x1 then Pk is a model operator on Π
n of order

ordQk, and thus Pk ∈ O0,1. On the other hand, if Qk = x1 then Pk = χ
2
0t; although this

operator is not contained in O0,1, the fact that P1, . . . , Pm are differential operators whilst

χ0 ≻ χ1, χ2 means that (73) will be unchanged if we replace Pk by the operator t. It

follows that we may assume (73) holds with P1, . . . , Pm ∈ O0,1. By combining (73) with

Lemma 3.15 and Remark 3.16 we then get that the ijth entry of [Q1, . . . , [Qm,D] . . .]

defines a continuous map Hs+νj → Hs+µi+m
′

for any s ∈ R. Theorem 2.9 in [Bea] now

completes the result.

Proof of Theorem 3.10. Let {χi}i∈I be a finite partition of unity for S
n−1 such that

supp(χi) ∪ supp(χj) 6= S
n−1 for any i, j ∈ I. Thus we can write

C =
∑

i,j∈I

χiCχj .(74)

Now let i, j ∈ I and choose a chart (ψ,U) of Sn−1 with supp(χi) ∪ supp(χj) ⊂ U . Let

(Ψ,R × U) be the corresponding chart of Πn. Set D = (Ψ−1)∗eβtχiCχje
−βtΨ∗, initially

defined as a continuous map S → S ′. By Lemma 3.17, Remark 2.60 and Proposi-

tion 2.68, D defines a continuous map S → S which extends to give continuous maps

S ′ → S ′ and Eν → Eµ for any admissible space E. Furthermore, any two of these ex-

tensions agree on functions common to their domains. By (74) and Remark 3.16 it follows

that C defines a continuous map C(S ) : ZβS → ZβS which has continuous extensions

C(S
′) : ZβS

′ → ZβS
′ and C(E) : ZνβE → Z

µ
βE for any admissible space E. Furthermore,

C(E)f = C(S
′)f for any f ∈ ZνβE.(75)

From the definition of C it clearly follows that the compositions C(S )B(S ) and B(S )C(S )

are both equal to the identity on ZβS ; that is, B
(S ) is an isomorphism with inverse C(S ).

On the other hand, B(S
′) and C(S

′) are extensions of B(S ) and C(S ) so the compositions

C(S
′)B(S

′) and B(S
′)C(S

′) must also give the identity map when restricted to ZβS .

Lemma 2.73 then implies that B(S
′) is an isomorphism with inverse C(S

′). Now let E

be any admissible space. Using (75) and the obvious fact that B(E)u = B(S
′)u for any

u ∈ ZµβE, we finally see that B
(E) is an isomorphism with inverse C(E).
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We now turn our attention to Theorem 3.11, firstly establishing that the coefficient

functions cλj,m given by (69) are in fact well defined.

Lemma 3.18. Consider the notation of Theorems 3.10 and 3.11 and let λ ∈ Σ, j ∈

{1, . . . , Jλ} and m ∈ {0, . . . ,Mλ,j − 1}. Then the function c
λ
j,m given by (69) defines a

continuous map Zβ1S
′ ∩ Zβ2S

′ → C. By the continuous inclusions ZνβjE →֒ ZβjS
′ for

j = 1, 2 (see Remark 2.14), it follows that cλj,m also defines a continuous map Z
ν
β1
E ∩

Z
ν
β2
E → C.

The topology on Zνβ1E ∩ Z
ν
β2
E is smallest making the inclusion Zνβ1E ∩ Z

ν
β2
E →֒ ZνβjE

continuous for j = 1, 2. A similar remark applies to Zβ1S
′ ∩ Zβ2S

′.

Proof of Lemma 3.18. Using (67) we can write

vλj,m(t, ω) = e
iλt

m∑

l=0

1

l!
(it)l ψλj,m−l(ω),

where ψλj,0, . . . , ψ
λ
j,m ∈ C

∞(Sn−1) (the fact that these functions are Ck-valued is unim-

portant in what follows and will not be mentioned explicitly). Now, by assumption,

Imλ ∈ (β1, β2) so Re(iλ− β2) < 0 and Re(iλ− β1) > 0. Since supp(φ0) ⊆ (−1,+∞) and

supp(1− φ0) ⊆ (−∞, 0) it follows that

φ0v
λ
j,m ∈ Z−β2S and (1− φ0)v

λ
j,m ∈ Z−β1S .

On the other hand, for any f ∈ Zβ1S
′ ∩ Zβ2S

′, (69) can be rewritten as

cλj,m(f) = 〈f, iφ0v
λ
j,m〉Πn + 〈f, i(1− φ0)v

λ
j,m〉Πn .

The result now follows from the continuity of the dual pairings ZβjS
′ × Z−βjS → C for

j = 1, 2 (see Remark 2.44).

Proof of Theorem 3.11. From the proof of Theorem 3.10 we know that, for i = 1, 2, the

inverse of B(E,βi) is the restriction of the inverse of B(S
′,βi) to ZνβE. It therefore suffices

to prove the result with E replaced by S ′. Now Theorem 3.11 holds with E = L2; see

Theorems 3.1.4 and 3.2.1 in [NP], for example. It follows that (68) is valid for all f ∈

Zβ1S ∩ Zβ2S . Lemma 3.18 together with the following Claim thus completes the proof.

Claim: The set Zβ1S ∩ Zβ2S is dense in Zβ1S
′ ∩ Zβ2S

′. Let f ∈ Zβ1S
′ ∩ Zβ2S

′.

Therefore (1 − φ1)f = φ−∞0f ∈ Zβ1S
′ and φ1f ∈ Zβ2S

′. By Lemma 2.73 we can then

find sequences {fji}i∈N ⊂ ZβjS for j = 1, 2 such that f1i → φ−∞0f in Zβ1S
′ and

f2i → φ1f in Zβ2S
′. Remark 2.25 then gives φ−∞1f1i ∈ Zβ1S ∩ Zβ2S and φ−∞1f1i →

φ−∞1φ−∞0f = φ−∞0f in Zβ1S
′ ∩ Zβ2S

′. Similarly, φ0f2i ∈ Zβ1S ∩ Zβ2S and φ0f2i →

φ1f in Zβ1S
′ ∩ Zβ2S

′. Setting fi = φ−∞1f1i + φ0f2i for each i ∈ N, we deduce that

{fi}i∈N is a sequence in Zβ1S ∩ Zβ2S which converges to f in Zβ1S
′ ∩ Zβ2S

′.

3.5. Model problems on Rn∗

Definition 3.19. A scalar differential operator A(x,Dx) on Rn∗ of order m will be called

uniform if we can write

A(x,Dx) = r
−m(Θ−1)∗B(t, ω,Dt, Dω)Θ

∗ = r−mB(ln r, ω, rDr, Dω)(76)

for some uniform scalar operator B(t, ω,Dt, Dω) on Π
n.



Fredholm properties of elliptic operators on R
n 53

Suppose A(x,Dx) is a k×k system of differential operators on Rn∗ of order (µ, ν). We

will call A a uniform (elliptic) operator on R
n
∗ if we can write

A(x,Dx) = r
ν(Θ−1)∗B(t, ω,Dt, Dω)Θ

∗r−µ = rνB(ln r, ω, rDr, Dω)r
−µ(77)

for some uniform (elliptic) operator B(t, ω,Dt, Dω) on Π
n (where rν and r−µ are the

isomorphisms defined at the end of Section 2.4).

Remark 3.20. If B(t, ω,Dt, Dω) is a differential operator on Π
n and m ∈ R then (7) and

(53) give

r−m(Θ−1)∗B(t, ω,Dt, Dω)Θ
∗ = (Θ−1)∗e−mtB(t, ω,Dt, Dω)Θ

∗(78)

= (Θ−1)∗B(t, ω,Dt − im,Dω)Θ
∗r−m.

Now suppose A is a uniform operator on Rn∗ of order (µ, ν) and let B be the associated

uniform operator on Πn given by (77). Then, for each i, j ∈ {1, . . . , k}, the ijth entries

of A and B satisfy the relationship

Aij(x,Dx)=r
νi(Θ−1)∗Bij(t, ω,Dt, Dω)Θ

∗r−µj =rνi−µj (Θ−1)∗Bij(t, ω,Dt + iµj , Dω)Θ
∗.

Therefore Aij is a uniform scalar operator on Rn∗ of order µj − νi.

Suppose A is a uniform scalar operator on R
n
∗ of order m. By (8), Proposition 2.20

and the mapping properties of uniform scalar operators on Πn (see Section 3.1), it is

clear that A defines a continuous map Yβ−mE
m → YβE for any admissible space E and

β ∈ R. On the other hand, if A is a uniform operator on Rn∗ of order (µ, ν), then (44),

(45) and the mapping properties of uniform operators on Πn imply that A defines a

continuous map A : YµβE → Y
ν
βE for any admissible space E and β ∈ R. We shall denote

this map by A(E,β) or A(β) when we need to make clear the spaces A is acting between.

Proposition 3.21. A scalar differential operator A on Rn∗ of order m is uniform iff

the coefficient of Dα
x is contained in Ym−|α|C

l for all l ∈ N0 and multi-indices α with

|α| ≤ m.

Proof. It is straightforward to check that the set of uniform scalar operators on Πn

can be generated from C∞(Πn) and the set of first order model operators by taking

linear combinations of products. With the help of Lemma 2.31 and the fact that scalar

differential operators commute to leading order, we can thus write any uniform scalar

operator B of order m on Πn in the form

B(t, ω,Dt, Dω) =
∑

|α|≤m

fα(t, ω)(B1(ω,Dt, Dω))
α1 . . . (Bn(ω,Dt, Dω))

αn

=
∑

|α|≤m

gα(t, ω)e
|α|t(e−tB1(ω,Dt, Dω))

α1 . . . (e−tBn(ω,Dt, Dω))
αn

where, for each multi-index α with |α| ≤ m, fα, gα ∈ C
∞(Πn). However, g ∈ C∞(Πn)

iff g ◦ Θ−1 ∈ Y0C
l for all l ∈ N0, whilst Di = (Θ

−1)∗e−tBiΘ
∗ for i = 1, . . . , n. Proposi-

tion 2.20 and (7) thus complete the result.

Proposition 3.22. Suppose A is a k × k system of differential operators on Rn∗ . Then

A is a uniform elliptic operator iff A is a uniform operator which is uniformly elliptic

on R
n
∗ in the sense of Definition 2.78.
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Proof. Suppose A is a uniform operator (on Rn∗ ) and let B be the uniform operator on

Πn given by (77). We thus have to show that

|detA(x, ξ)| ≥ C|ξ|
[µ−ν] for all (x, ξ) ∈ Rn∗ × Rn(79)

is equivalent to

|detB(y, η)| ≥ C|η|
[µ−ν]
Πn for all (y, η) ∈ T ∗Πn(80)

(where |·|Πn denotes the norm on the fibres of the cotangent bundle T
∗Πn given by the

Riemannian metric on Πn).

For each i, j ∈ {1, . . . , k} let aij and bij denote the principal symbols of the ijth

entries of A and B respectively. Using (77) and the transformation properties of principal

symbols under diffeomorphisms (see Section 18.1 in [H2], for example) we have

aij(Θ(y), ξ) = r
νi−µj bij(y, (DΘ(y))

∗ξ)

for all y ∈ Πn and ξ ∈ R
n, where r = |Θ(y)| and (DΘ(y))∗ denotes the adjoint of the

linear map DΘ(y) : TyΠ
n → Rn. By taking determinants of the k × k matrices with

entries aij and bij we now get

detA(Θ(y), ξ) = r
−[µ−ν] detB(y, (DΘ(y))

∗ξ) = detB(y, r
−1(DΘ(y))∗ξ)(81)

for all y ∈ Πn and ξ ∈ Rn, where we have made use of the fact that detB(y, η) is

homogeneous of degree [µ− ν] in η. On the other hand, the definition of Θ gives

r−1|(DΘ(y))∗ξ|Πn = |ξ|

for all y ∈ Πn and ξ ∈ Rn. The equivalence of (79) and (80) follows from this identity

and (81).

The relationship between A and B given by (77), in combination with (44) and (45),

allows us to obtain results for uniform elliptic operators on Rn∗ from results for uniform

elliptic operators on Πn. The next result comes directly from Lemma 3.5 (with j = +∞

and l = 1).

Lemma 3.23. Suppose A is a uniform elliptic operator on R
n
∗ of order (µ, ν), E is an

admissible space, β ∈ R and i ∈ Z ∪ {−∞}. If ζi−1Au ∈ Y
ν
βE and ζi−1u ∈ Y

µ
βE
−1 for

some u ∈ D ′(Rn∗ ) then we also have ζiu ∈ Y
µ
βE. Furthermore,

‖ζiu‖YµβE ≤ C(‖ζi−1Au‖Y
ν
βE
+ ‖πµζi−1u‖YµβE−1)

for all such u, where C is independent of i.

We also need to transfer the results of Section 3.4 from Πn to Rn∗ . With this in mind

we firstly make the following definitions.

Definition 3.24. We say that a uniform scalar operator A on R
n
∗ is a model scalar

operator on R
n
∗ if the operator B given by (76) is a model scalar operator on Π

n (i.e. the

coefficients of B do not depend on t). Likewise, we say that a uniform elliptic operator

A on Rn∗ is a model elliptic operator on Rn∗ if the operator B given by (77) is a model

elliptic operator on Πn (i.e. the coefficients of B do not depend on t). We shall denote

the associated operator pencil by BA and put

Γ (A) = Imσ(BA).(82)
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Theorem 3.10 can be immediately rewritten as follows.

Theorem 3.25. Let E be an admissible space and let A be a model elliptic operator on R
n
∗

of order (µ, ν). If β ∈ R \ Γ (A) then A : YµβE → Y
ν
βE is an isomorphism.

Finally, Theorem 3.11 can be coupled with basic properties of the power-exponential

solutions given by their explicit form (see (64)) and Remark 3.7 to give the following

results.

Theorem 3.26. Let E and A be as in Theorem 3.25 and define BA to be the associated

spectral pencil. Suppose β1, β2 ∈ R \Γ (A) satisfy β1 < β2. Set Σ = {λ ∈ σ(BA) | Imλ ∈

[β1, β2]} and let M denote the sum of the algebraic multiplicities of all the λ ∈ Σ. Then

there exists a vector space XΣ ⊂ C
∞
loc(R

n
∗ ) such that:

(i) For each f ∈ Yνβ1E ∩ Y
ν
β2
E we have (A(β1))−1f − (A(β2))−1f ∈ XΣ.

(ii) dimXΣ =M and Au = 0 for each u ∈ XΣ.

(iii) Given any u ∈ XΣ and ζ ∈ BS01 we have ζu ∈ Y
µ
β1
E and (1− ζ)u ∈ Yµβ2E.

Corollary 3.27. If [β1, β2] ∩ Γ (A) = ∅ then (A
(β1))−1f = (A(β2))−1f for all f ∈

Y
ν
β1
E ∩ Yνβ2E.

4. Main results

4.1. The class of operators

Definition 4.1. Let A(x,Dx) be a scalar differential operator on R
n of order m. We call

A an admissible operator if we can write

A(x,Dx) =
∑

|α|≤m

pα(x)Dα
x ,(83)

where pα ∈ Scm−|α| for each multi-index α with |α| ≤ m.

Suppose A is an admissible operator of order m. By Propositions 2.33 and 2.56 it is

clear that A defines a continuous map Xβ−mE
m → XβE for any admissible space E and

β ∈ R. As in the Introduction, we define the principal part of A to be the operator on R
n
∗

which is given by

A0(x,Dx) =
∑

|α|≤m

r|α|−maα(ω)Dα
x ,

where aα ∈ C∞(Sn−1) is the principal part of pα for each multi-index α. We can rewrite

A0 in the form

A0(x,Dx) = r
−m

m∑

j=0

Am−j0 (ω,Dω)(rDr)
j ,

where, for j = 0, . . . ,m, Aj0(ω,Dω) is a differential operator on S
n−1 of order at most j.

It follows that A0 is a model operator on Rn∗ .

Remark 4.2. Suppose A is a scalar admissible operator with principal part A0. For any

f ∈ BS set Af = fA + (1 − f)A0. If f = 1 on a neighbourhood of 0 then Remark 2.57

implies Af is a scalar admissible operator with the same principal part as A. On the
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other hand, if f = 0 on a neighbourhood of 0 then Remark 2.57 and Proposition 3.21

imply Af is a uniform scalar operator on R
n
∗ .

We now define the class of elliptic differential operators on R
n to which our main

results apply.

Definition 4.3. Let A be a k × k system of differential operators on R
n of order (µ, ν).

We call A an admissible elliptic operator on Rn if it satisfies the following conditions:

(i) For i, j ∈ {1, . . . , k} the ijth entry of A is a scalar admissible operator on R
n (of

order µj − νi).

(ii) A is a uniformly elliptic operator on Rn (in the sense of Definition 2.78).

For i, j ∈ {1, . . . , k} let (A0)ij denote the principal part of the ijth entry of A. By the

principal part of A we mean the k× k system of differential operators on Rn∗ with entries

(A0)ij ; this operator will be denoted by A0. By the operator pencil associated with A we

mean BA0 ; this will also be denoted by BA. Finally, define Γ (A) ⊂ R by

Γ (A) = Γ (A0) = Imσ(BA).

Suppose A satisfies condition (i) of Definition 4.3 and, for i, j ∈ {1, . . . , k}, let Aij
denote the ijth entry of A. From the discussion after Definition 4.1 we know that Aij
defines a continuous map Xβ−µjE

µj → Xβ−νiE
νi for any admissible space E and β ∈ R.

It follows that A defines a continuous map XµβE → X
ν
βE. We shall denote this map by

A(E,β) or A(β) when we need to make clear the spaces A is acting between.

Remark 4.4. Suppose A satisfies condition (i) of Definition 4.3. For any f ∈ BS set

Af = fA+(1− f)A0. By Remark 4.2 it is straightforward to check that Af is a uniform

operator on Rn∗ if f = 0 on neighbourhood of 0 whilst Af satisfies condition (i) of

Definition 4.3 provided f = 1 on a neighbourhood of 0; in the latter case, the principal

part of Af is simply A0.

Remark 4.5. Suppose A satisfies condition (i) of Definition 4.3. Using condition (ii) of

Definition 1.1 we can find a bounded non-negative function b on R
n with b(x) → 0 as

|x| → ∞ such that the coefficients of all the entries of the operator A−A0 are bounded

by b(x) when |x| ≥ 1. If f, g ∈ BS then Af −Ag = (f − g)(A−A0) so Remark 2.80 now

leads to the estimate

|detAf (x, ξ)− detAg(x, ξ)| ≤ Cb(x)|(f − g)(x)| · |ξ|
[µ−ν]

for all |x| ≥ 1 and ξ ∈ Rn, where C may depend on A and A0 but not on (x, ξ).

Remark 4.6. If an operator A satisfies condition (i) of Definition 4.3 then condition (ii)

is equivalent to the following:

(ii)′ A is an elliptic operator on R
n whilst A0 is a model elliptic operator on R

n
∗ .

In order to see this first observe that condition (ii) means

|detA(x, ξ)| ≥ C|ξ|
[µ−ν] for all (x, ξ) ∈ Rn × Rn.

On the other hand, A0 is a model operator (by condition (i) and the discussion preceding

Remark 4.2) so Proposition 3.22 implies A0 is a model elliptic operator on R
n
∗ iff A0
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is uniformly elliptic on Rn∗ in the sense of Definition 2.78. Thus condition (ii)
′ means

detA(x, ξ) 6= 0 for any (x, ξ) ∈ R
n × R

n
∗ and

|detA0(x, ξ)| ≥ C|ξ|
[µ−ν] for all (x, ξ) ∈ Rn∗ × Rn.

The equivalence of conditions (ii) and (ii)′ now follows from Remark 4.5 (with f = 1 and

g = 0) and the fact that detA0(x, ξ) is homogeneous of degree 0 in x.

Remark 4.7. If A is an admissible elliptic operator, then the associated operator pencil

BA can be equivalently defined using the expression

BA(λ)φ(ω) = r
−iλr−νA0(r

iλrµφ(ω))(84)

for any λ∈C and function (or distribution) φ on Sn−1. In order to see this let B(ω,Dt, Dω)

denote the model elliptic operator on Πn associated with A0 by (77) (see also Re-

mark 4.6). Thus

A0(x,Dx) = r
νB(ω, rDr, Dω)r

−µ

and so

r−iλr−νA0(r
iλrµφ(ω)) = r−iλB(ω, rDr, Dω)(r

iλφ(ω)) = B(ω, λ,Dω)φ(ω).

However, BA(λ)(ω,Dω) = B(ω, λ,Dω) by definition.

For the remainder of this section we suppose that A is an admissible elliptic operator

on R
n with principal part A0.

Remark 4.8. By Remark 4.4 we know that Aζi is a uniform operator on Rn∗ for all i ∈ N.

On the other hand, condition (ii)′ for A0 and Remark 4.5 (with f = 0 and g = ζi)

imply that Aζi is uniformly elliptic on Rn∗ for all sufficiently large i ∈ N. Coupled with

Proposition 3.22 this shows that Aζi is a uniform elliptic operator on Rn∗ for all sufficiently

large i ∈ N.

Remark 4.9. By Remark 4.4 we know that Aηi satisfies condition (i) of Definition 4.3

for all i ∈ N. On the other hand, condition (ii) for A and Remark 4.5 (with f = 1 and

g = ηi = 1 − ζi) imply that Aηi is uniformly elliptic on R
n for all sufficiently large

i ∈ N. Thus Aηi is an admissible elliptic operator on Rn for all sufficiently large i ∈ N.

Furthermore, the coefficients of Aηi and A0 agree on a neighbourhood of ∞. It follows

that the principal part of Aηi is simply A0, the principal part of A.

Suppose E is an admissible space and β ∈ R. Then, for any i ∈ N, the operator

Aζi −A0 defines a continuous map Y
µ
βE → Y

ν
βE (see Remark 4.8) whilst Aηi −A defines

a continuous map XµβE → X
ν
βE (see Remark 4.9).

Lemma 4.10. We have ‖Aζi −A0‖L (YµβE,YνβE), ‖Aηi −A‖L (X
µ
βE,X

ν
βE)
→ 0 as i→∞.

Proof. If A is a scalar admissible operator of order m on R
n then (16), Propositions 2.33

and 2.50, and Lemma 2.58 give

(85) lim
i→∞
‖ζi(A−A0)‖L (Yβ−m1Em1 ,Yβ−m2Em2 )

= 0 = lim
i→∞
‖ζi(A−A0)‖L (Xβ−m1Em1 ,Xβ−m2Em2 )

for any m1,m2 ∈ Z with m = m1−m2 (n.b. the operator ζi(A−A0) can be interpreted

as acting on either Yβ−m1E
m1 or Xβ−m1E

m1 , by using Lemma 2.16 and the expression
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ζi(A−A0) = ζi(A−A0)ζi−1). On the other hand, we have

Aζi −A0 = ζi(A−A0) = A−Aηi .

The result follows by applying (85) to the individual entries of ζi(A−A0).

4.2. General estimates and some regularity. In this section we give some general

estimates and regularity results for the admissible elliptic operator A; here “general”

refers to the fact that these results hold without restriction on β (the index appearing in

the weighted spaces XβE).

Proposition 4.11. Suppose E is an admissible space, l ∈ N and β ∈ R. If we have

Au ∈ XνβE for some u ∈ X
µ
βE
−l then we also have u ∈ XµβE. Furthermore,

‖u‖XµβE ≤ C(‖Au‖X
ν
βE
+ ‖πµu‖XµβE−l)(86)

for all such u.

Proof. By induction it clearly suffices to prove the result in the case l = 1. Now, by

Remark 4.8, we can choose I ∈ N sufficiently large so that the operator AζI−2 is a

uniform elliptic operator on R
n
∗ . However, ζI−1AζI−2u = ζI−1Au whilst Lemma 2.16

gives us ζI−1Au ∈ Y
ν
βE and ζI−1u ∈ Y

µ
βE
−1. Lemma 3.23 then implies ζIu ∈ Y

µ
βE and

‖ζIu‖YµβE ≤ C(‖ζI−1Au‖Y
ν
βE
+ ‖πµζI−1u‖YµβE−1).

On the other hand, A is an elliptic operator (on Rn) whilst Lemma 2.16 gives us ηI+1Au

∈ Eν and ηI+1u ∈ (E
−1)µ. Theorem 2.81 then implies ηIu ∈ E

µ and

‖ηIu‖Eµ ≤ C(‖ηI+1Au‖Eν + ‖πµηI+1u‖(E−1)µ)

(n.b. ηI ≺ ηI+1). The result now follows from Lemma 2.16.

The next result gives the strongest form of the elliptic regularity which can be achieved

for an arbitrary β ∈ R.

Theorem 4.12. Let E and F be admissible spaces and β, γ ∈ R. Suppose that either

β < γ or β ≤ γ and there exists a continuous inclusion F l →֒ E for some l ∈ N0. If we

have Au ∈ XνβE ∩ X
ν
γF for some u ∈ X

µ
γF then we also have u ∈ X

µ
βE. Furthermore,

‖u‖XµβE ≤ C(‖Au‖X
ν
βE
+ ‖πµu‖XµγF )(87)

for all such u.

Proof. Using the hypothesis, Corollary 2.30 and Proposition 2.69, we can choose l ∈ N

sufficiently large so that we either have β < γ and a local inclusion Floc →֒ E−lloc or β = γ

and a continuous inclusion F →֒ E−l. Proposition 2.26 or Remark 2.21 then gives us a

continuous inclusion XµγF →֒ X
µ
βE
−l. The result now follows from Proposition 4.11.

4.3. A semi-Fredholm property, further regularity and stability of the index.

Throughout this sectionA is an admissible elliptic operator on Rn. LetA0 andBA denote

the principal part of A and the associated operator pencil respectively. We start with a

result which provides a key step for both Fredholm properties and further regularity

results for A.
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Proposition 4.13. Suppose E is an admissible space and β1, β2 ∈ R satisfy β1 ≤ β2
and [β1, β2] ∩ Γ (A) = ∅. If Au ∈ X

ν
β1
E ∩ Xνβ2E for some u ∈ X

µ
β1
E then we also have

u ∈ Xµβ2E. Furthermore,

‖u‖Xµβ2E
≤ C(‖Au‖Xνβ2E

+ ‖u‖Xµβ1E
)

for all such u.

For the proof of this result we make use of the operators Aζi = ζiA+ (1− ζi)A0 for

i ∈ N. In particular, Lemma 4.10 implies Aζi → A0 in L (YµβE,Y
ν
βE) as i→∞. Since the

set of invertible elements in L (YµβE,Y
ν
βE) is open, Theorem 3.25 immediately implies

the following result.

Lemma 4.14. If β ∈ R \ Γ (A) then Aζi : Y
µ
βE → Y

ν
βE is an isomorphism for all suffi-

ciently large i ∈ N.

Using Neumann series we can also obtain the following extension to Corollary 3.27.

Lemma 4.15. If β1, β2 are as in Proposition 4.13 then (A
(β1)
ζi
)−1f = (A

(β2)
ζi
)−1f for all

f ∈ Yνβ1E ∩ Y
ν
β2
E and sufficiently large i ∈ N.

Proof. From Lemma 4.10 we know that for all sufficiently large i ∈ N we have

‖Aζi −A0‖L (YµβjE,Y
ν
βj
E) ≤

1
2‖A0‖L (YµβjE,Y

ν
βj
E)

for j = 1, 2. Choose i ∈ N for which this is true and set P = A0 −Aζi . It follows that we

have a Neumann series expansion

(A
(βj)
ζi
)−1 =

∞∑

l=0

((A
(βj)
0 )

−1P)l(A
(βj)
0 )

−1,(88)

which is convergent in L (YνβjE,Y
µ
βj
E) for j = 1, 2.

Let f ∈ Yνβ1E ∩ Y
ν
β2
E and set u = (A

(β1)
0 )

−1f . Then

u = (A
(β1)
0 )

−1f = (A
(β2)
0 )

−1f ∈ Yµβ1E ∩ Y
µ
β2
E

by Corollary 3.27. Now let l ∈ N0 and suppose

((A
(β1)
0 )

−1P)lu = ((A
(β2)
0 )

−1P)lu ∈ Yµβ1E ∩ Y
µ
β2
E.(89)

Therefore

P((A
(β1)
0 )

−1P)lu = P((A
(β2)
0 )

−1P)lu ∈ Yνβ1E ∩ Y
ν
β2E,

so Corollary 3.27 implies that (89) also holds with l replaced by l + 1. The result now

follows from induction and (88).

Proof of Proposition 4.13. Choose I ∈ N so that the conclusion of Lemma 4.15 holds with

i = I. Now suppose Au ∈ Xνβ1E∩X
ν
β2
E for some u ∈ Xµβ1E. Set v = ζIu and g = AζIv. By

Lemma 2.16 we have v ∈ Yµβ1E and thus g ∈ Y
ν
β1
E (by the mapping properties of uniform

operators on Rn∗ ; see also Remark 4.4). On the other hand, g = 0 on a neighbourhood

of 0 whilst

ζI+1g = ζI+1(ζIA+ (1− ζI)A0)ζIu = ζI+1Au ∈ Y
ν
β1E ∩ Y

ν
β2E(90)
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by the hypothesis on Au and Lemma 2.16. Remark 2.18 thus gives g ∈ Yνβ1E ∩ Y
ν
β2
E

and so ζIu = v = (A
(β1)
ζI
)−1g = (A

(β2)
ζI
)−1g by Lemma 4.15. From (9), Lemma 2.24 and

Remark 2.17 we obtain

‖g‖Yνβ2E
≤ C(‖ζI+1g‖Yνβ2E

+ ‖ηI+1g‖Yνβ1E
) ≤ C(‖ζI+1g‖Yνβ2E

+ ‖g‖Yνβ1E
).

Using (90) and the fact that A
(βj)
ζI
is an isomorphism for j = 1, 2 we thus get a norm

estimate of the form

‖ζIu‖Yµβ2E
≤ C(‖ζI+1Au‖Yνβ2E

+ ‖ζIu‖Yµβ1E
).

Lemma 2.16 now completes the result.

The next result establishes a slightly weaker form of the Fredholm property for A

in which “Fredholm” is replaced with “semi-Fredholm”; by the latter we mean an oper-

ator which has a closed range and for which either the kernel or the cokernel is finite-

dimensional. The key steps in establishing this semi-Fredholm property are provided by

Corollary 2.77 and Propositions 4.11 and 4.13.

Theorem 4.16. Suppose E is an admissible space and let β ∈ R \ Γ (A). Then the map

A : XµβE → X
ν
βE is semi-Fredholm with a finite-dimensional kernel.

Proof. Choose I ∈ N so that the conclusion to Lemma 4.14 holds for i = I. Now suppose

we have a sequence satisfying

{ui}i∈N ⊂ X
µ
βE, ‖ui‖XµβE = 1, Aui → 0 in X

ν
βE.(91)

Let i ∈ N. Lemma 2.16 gives us ζIAui ∈ Y
ν
βE so A

−1
ζI
(ζIAui) ∈ Y

µ
βE. Setting vi =

ζIA
−1
ζI
(ζIAui) we then have vi ∈ X

µ
βE. Furthermore, by combining norm estimates given

by Lemma 2.16 and the fact that AζI : Y
µ
βE → Y

ν
βE is an isomorphism, we get

‖vi‖XµβE ≤ C‖Aui‖X
ν
βE
≤ C‖ui‖XµβE .(92)

Also, ζI+1 ≺ ζI so ζI+1AζI = ζI+1AζI and hence

ζI+1Avi = ζI+1A(ζI A
−1
ζI
(ζIAui)) = ζI+1AζI (A

−1
ζI
(ζIAui)) = ζI+1Aui.(93)

Now define wi by wi = ui − vi for all i ∈ N. By the second inequality in (92), {wi}i∈N

is a bounded sequence in XµβE whilst (93) gives us ζI+1Awi = 0 for all i ∈ N. Choose

γ > β so that [β, γ]∩ Γ (A) = ∅. From Lemma 2.16 we have that {Awi}i∈N is a bounded

sequence in XνγE, so Proposition 4.13 now implies that {wi}i∈N is a bounded sequence in

X
µ
γE. However, X

µ
γE →֒ X

µ
βE
−1 is a compact map by Corollary 2.77, so we can choose a

subsequence {wi(j)}j∈N which is convergent in X
µ
βE
−1. On the other hand, the last part

of (91) and the first inequality in (92) imply ui − wi = vi → 0 in X
µ
βE. Since X

µ
βE →֒

X
µ
βE
−1 continuously we then get the convergence of {ui(j)}j∈N in X

µ
βE
−1. By combining

Proposition 4.11 and the last part of (91) it follows that {ui(j)}j∈N is convergent in X
µ
βE.

Summarising, we have shown that any sequence satisfying (91) has a subsequence

which is convergent in XµβE. A standard argument (see Proposition 19.1.3 in [H2] or

Theorems IV.5.9, IV.5.10 and IV.5.11 in [Ka]) can now be used to show that A : XµβE →

X
ν
βE has a finite-dimensional kernel and a closed range.



Fredholm properties of elliptic operators on R
n 61

If we are only interested in the kernel of the map A(E,β) then the restriction on β in

Theorem 4.16 can be dropped.

Theorem 4.17. For any admissible space E and β ∈ R the map A : XµβE → X
ν
βE has

a finite-dimensional kernel.

Proof. Choose γ ∈ R \Γ (A) with γ ≤ β. By (11) we have a continuous inclusion XµβE →֒

X
µ
γE so KerA

(β) ⊆ KerA(γ). On the other hand, γ ∈ R \ Γ (A) so KerA(γ) must be

finite-dimensional by Theorem 4.16.

We complete this section with two further consequences of Proposition 4.13, the first

of which gives a stronger form of elliptic regularity than Theorem 4.12 but under some

restrictions on β.

Theorem 4.18. Suppose E and F are admissible spaces and let β, γ ∈ R belong to the

same component of R \Γ (A). If Au ∈ XνβE ∩X
ν
γF for some u ∈ X

µ
γF then we also have

u ∈ XµβE. Furthermore,

‖u‖XµβE ≤ C(‖Au‖X
ν
βE
+ ‖πµu‖XµγF )

for all such u.

Proof. Choose any λ ∈ R which lies in the same component of R \Γ (A) as β and γ, and

satisfies λ < β, γ. Now u ∈ XµγF and Au ∈ X
ν
βE ∩ X

ν
γF so we also have Au ∈ X

ν
λE and

‖Au‖XνλE ≤ C‖Au‖XνβE by (11). Theorem 4.12 then gives u ∈ X
µ
λE and

‖u‖XµλE ≤ C(‖Au‖X
ν
λE
+ ‖πµu‖XµγF ) ≤ C(‖Au‖XνβE + ‖πµu‖XµγF ).

Applying Proposition 4.13 (with β1 = λ and β2 = β) now gives u ∈ X
µ
βE and ‖u‖XµβE ≤

C(‖Au‖XνβE + ‖u‖XµλE), completing the result.

For semi-Fredholm maps we can define a Z ∪ {±∞}-valued index; in particular, a

semi-Fredholm map is Fredholm iff its index is finite (this will be established for A in

Theorem 4.22). The next result establishes the stability of this index over particular

ranges of the weighted spaces on which A is acting; in fact, Theorem 4.23 (below) shows

these ranges to be maximal.

Theorem 4.19. Suppose E and F are admissible spaces and let β, γ ∈ R belong to the

same component of R \ Γ (A). Then the semi-Fredholm maps A : XµβE → X
ν
βE and

A : XµγF → X
ν
γF have the same index.

Proof. We get KerA(E,β) = KerA(F,γ) as a direct consequence of Theorem 4.18. It there-

fore remains to show codim(RanA(E,β),XνβE) = codim(RanA
(F,γ),XνγF ). By symmetry,

Corollary 2.30, Proposition 2.69 and the obvious inclusion El →֒ E for any l ≥ 0, it suf-

fices to prove this equality under the assumption that either β > γ and we have a local

inclusion Eloc →֒ Floc, or β ≥ γ and we have a continuous inclusion E →֒ F . Combining

this assumption with Remark 2.21 and Proposition 2.26, we get a continuous inclusion

XβE →֒ XγF .

Suppose V is a subspace of XνβE with V ∩ RanA
(E,β) = 0.
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Claim (i): We have V ∩RanA(F,γ) = 0. If f ∈ V ∩RanA(F,γ) ⊆ XνβE∩X
ν
γF then f = Au

for some u ∈ XµγF . Theorem 4.18 then gives u ∈ X
µ
βE and so f=Au ∈ V ∩ RanA

(E,β)=0,

completing the claim.

If codim(RanA(E,β),XνβE) = ∞ then codim(RanA
(F,γ),XνγF ) = ∞ by an easy ap-

plication of Claim (i). Now suppose codim(RanA(E,β),XνβE) < ∞ and choose a finite-

dimensional space V ⊂ XνβE which satisfies

V +RanA(E,β) = XνβE and V ∩ RanA(E,β) = 0.(94)

Claim (i), (94) and the inclusions V ⊂ XνβE ⊆ X
ν
γF give

V +RanA(F,γ) ⊆ XνγF and V ∩ RanA(F,γ) = 0.(95)

The following claim thus completes the proof.

Claim (ii): We have XνγF ⊆ V + RanA
(F,γ). Let f ∈ XνγF and choose λ < γ so that λ

and γ lie in the same component of R \ Γ (A). By Lemma 2.71 we can find a sequence

{fi}i∈N ⊂ C∞0 such that fi → f in XνλF
−1. Now (94) and the inclusions XµβE ⊆ X

µ
γF

⊆ XµλF
−1 give

fi ∈ C
∞
0 ⊂ X

ν
βE = V +RanA

(E,β) ⊆ V +RanA(F
−1,λ).(96)

However, Theorem 4.16 implies that RanA(F
−1,λ) is a closed subspace of XνλF

−1 whilst

V ⊂ XνβE ⊆ X
ν
λF
−1. Hence V + RanA(F

−1,λ) is also a closed subspace of XνλF
−1. It

follows from (96) that f ∈ V +RanA(F
−1,λ), which in turn means we can find g ∈ V and

u ∈ XµλF
−1 satisfying f = Au+ g. Since f − g ∈ XνγF , Theorem 4.18 then gives u ∈ X

µ
γF .

Therefore f ∈ V +RanA(F,γ), completing the claim.

4.4. Adjoint operators and the Fredholm property. Suppose A is an admissible

elliptic operator on Rn of order (µ, ν) and let A∗ denote the formal adjoint of A (with

respect to the Lebesgue measure on Rn). Also, let m, µ and ν be defined as in (56). It

follows easily from the definition of an admissible operator that A∗ is a k × k system of

differential operators on Rn of order (µ, ν) which satisfies condition (i) of Definition 4.3.

Furthermore, detA∗(x, ξ) = detA(x, ξ) for all (x, ξ) ∈ Rn × Rn, from which it is clear

that A∗ also satisfies condition (ii) of Definition 4.3. Hence A∗ is an admissible elliptic

operator on R
n of order (µ, ν).

Let A0 denote the principal part of A and let B(ω,Dt, Dω) denote the corresponding

model elliptic operator on Πn given by (77); that is,

A0(x,Dx) = r
νB(ω, rDr, Dω)r

−µ(97)

whilst BA, the operator pencil associated with A, is defined by

BA(λ)(ω,Dω) = B(ω, λ,Dω).(98)

Now it is straightforward to check that the principal part of A∗ is simply A∗0, the formal

adjoint of A0 (with respect to the Lebesgue measure on Rn∗ ). Let B
∗ denote the formal

adjoint of B (with respect to the measure dtdSn−1 on Πn). Since the Lebesgue measure

on Rn∗ can be written as d
nx = rn−1drdSn−1, we have

(rDr)
∗ = (rn−1)−1Dr(rr

n−1 · ) = rDr − in
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with respect to this measure. Combined with (78) and (97) this gives

A∗0(x,Dx) = r
−µB∗(ω, rDr − in,Dω)r

ν = rmr−µB∗(ω, rDr − i(n+m), Dω)r
−mrν

= rνB∗(ω, rDr − i(n+m), Dω)r
−µ.

Thus the model operator on Πn associated with A∗0 by (77) is B
∗(ω,Dt− i(n+m), Dω),

and so the operator pencil associated with A∗ is given by

BA∗(λ)(ω,Dω) = B
∗(ω, λ− i(n+m), Dω).(99)

Taken together (98) and (99) complete the proof of the following result.

Proposition 4.20. The operator pencils BA and BA∗ associated with A and A
∗ respec-

tively satisfy the relationship

BA∗(λ) = (BA(λ+ i(n+m)))
∗

for all λ ∈ C, where the right hand side denotes the formal adjoint of the operator

BA(λ+ i(n+m)) on S
n−1. It follows that λ ∈ σ(BA∗) iff λ+ i(n+m) ∈ σ(BA) with

full agreement of geometric, algebraic and partial algebraic multiplicities. In particular ,

Γ (A∗) = (n+m)− Γ (A).

Let E be an admissible space and set F = E∗0 . By Propositions 2.46 and 2.69 we

know that F is also an admissible space whilst

(XµβE0)
∗ =

k∏

i=1

Xn−β+µiF
−µi = Xνn+m−βF

−m,

(XνβE0)
∗ =

k∏

i=1

Xn−β+νiF
−νi = Xµn+m−βF

−m

for any β ∈ R. Therefore the adjoint of the map A(E0,β) : XµβE0 → X
ν
βE0 is the map

(A(E0,β))∗ = (A∗)(F
−m,n+m−β) : Xµn+m−βF

−m → Xνn+m−βF
−m, F = E∗0 .(100)

Remark 4.21. Let β ∈ R. By Theorem 4.16 we see that A(E0,β) is semi-Fredholm pro-

vided β 6∈ Γ (A) and (A∗)(F
−m,n+m−β) is semi-Fredholm provided n +m − β 6∈ Γ (A∗).

These conditions can be seen to be equivalent by Proposition 4.20, which is expected

since the maps A(E0,β) and (A∗)(F
−m,n+m−β) are each other’s adjoints.

Theorem 4.22. Suppose A is an admissible elliptic operator on Rn of order (µ, ν), let

E be an admissible space and choose β ∈ R \ Γ (A). Then the map A : XµβE → X
ν
βE is

Fredholm.

Proof. Since Theorem 4.16 shows that the map A(E,β) is semi-Fredholm we simply have

to establish that IndexA(E,β) is finite. Furthermore, Theorem 4.19 shows this index to be

stable under changes in E. It thus suffices to prove the result for a particular admissible

space E; we take this to be E = L2 so E = E0 = E
∗
0 .

By (100) we have (A(E,β))∗ = (A∗)(E
−m,n+m−β). Furthermore, Proposition 4.20 im-

plies n+m− β 6∈ Γ (A∗). Theorem 4.16 then shows that the maps A(E,β) and (A(E,β))∗

are both semi-Fredholm with finite-dimensional kernels. However, we have the general

identity
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codim(RanA(E,β),XνβE) = dimKer(A
(E,β))∗

for semi-Fredholm operators (see Theorem IV.5.13 in [Ka], for example). Therefore

IndexA(E,β) = dimKerA(E,β) − codim(RanA(E,β),XνβE),

= dimKerA(E,β) − dimKer(A∗)(E
−m,n+m−β),

which is finite.

4.5. The change in index formula. This section is devoted to establishing the fol-

lowing result, which shows how the index of the Fredholm map A : XµβE → X
ν
βE varies

when we change β and E over a greater range than is permitted in Theorem 4.19.

Theorem 4.23. Suppose E is an admissible space and β1, β2 ∈ R \ Γ (A) with β1 ≤ β2.

Set Σ = {λ ∈ σ(BA) | Imλ ∈ [β1, β2]} and , for each λ ∈ Σ, let mλ denote the algebraic

multiplicity of λ. Then we have

IndexA(β1) = IndexA(β2) +
∑

λ∈Σ

mλ.

By Remark 4.9 and Lemma 4.10, A can be approximated arbitrarily closely (simulta-

neously in L (XµβjE,X
ν
βj
E) for j = 1, 2) by another admissible elliptic operator A′ whose

coefficients agree with those of A0 on a neighbourhood of ∞. Since the set of Fredholm

operators of a given index is open (in operator norm) and BA0 is the operator pencil

associated with both A and A′, it suffices to prove the result assuming the coefficients of

A and A0 agree on a neighbourhood of ∞. Choose I ∈ N so that

ζI(A−A0) = 0.(101)

Set M =
∑

λ∈Σmλ and let {w1, . . . , wM} denote any basis of the vector space XΣ

given by Theorem 3.26 for the operator A0.

Lemma 4.24. Let f ∈ Xνβ2E and suppose Au = f for some u ∈ X
µ
β1
E. Then

u = v + ζI

M∑

j=1

zjwj(102)

for some v ∈ Xµβ2E and z1, . . . , zM ∈ C.

Proof. By Lemma 2.16, ζI−1u ∈ Y
µ
β1
E. By setting g = A0(ζI−1u) it follows that g ∈ Y

ν
β1
E

and g = 0 on a neighbourhood of 0. On the other hand, (101) gives

ζIg = ζIA0(ζI−1u) = ζIAu = ζIf.

Thus Lemma 2.16 and Remark 2.18 imply g ∈ Yνβ2E.

For i = 1, 2 set ui = (A
(βi)
0 )

−1g ∈ YµβiE. By Theorem 3.26 it follows that

u1 − u2 =
M∑

j=1

zjwj(103)

for some z1, . . . , zM ∈ C. Now u2 ∈ Y
µ
β2
E so, setting v = ηIu + ζIu2, we get v ∈ X

µ
β2
E

by Lemma 2.16. On the other hand, u1 = ζI−1u (this follows from the definition of g) so

ζIu1 = ζIζI−1u = ζIu. Combining this with the definition of v and (103) we get (102).
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We have β1 ≤ β2 so X
µ
β2
E ⊆ Xµβ1E (see (11)) and hence KerA

(β2) ⊆ KerA(β1). Since

both kernels are finite-dimensional we can therefore choose d ∈ N0 and u1, . . . , ud ∈

KerA(β1) ⊂ Xµβ1E such that u1, . . . , ud are linearly independent over X
µ
β2
E and

KerA(β1) = KerA(β2) + Sp{u1, . . . , ud}.(104)

In particular,

dimKerA(β1) = dimKerA(β2) + d.(105)

By Lemma 4.24 we can find zij ∈ C for i ∈ {1, . . . , d} and j ∈ {1, . . . ,M} such that

ui ≡ ζI

M∑

j=1

zijwj (modX
µ
β2
E)

for i = 1, . . . , d. Furthermore, by the linear independence of u1, . . . , ud over X
µ
β2
E, the

d×M matrix with entries zij must have rank d. Therefore d ≤M and we can choose the

basis {w1, . . . , wM} of XΣ so that

ui ≡ ζIwi (modX
µ
β2
E)(106)

for i = 1, . . . , d. We will stick to such a choice of {w1, . . . , wM} for the remainder of this

section.

Let Y = RanA(β1) ∩ Xνβ2E.

Lemma 4.25. The space Y is closed in Xνβ2E and satisfies

codim(Y, Xνβ2E) = codim(RanA
(β1), Xνβ1E).

Proof. Since Xµβ2E ⊆ X
µ
β1
E we get RanA(β2) ⊆ Y ⊆ Xνβ2E. However, RanA

(β2) is closed

in Xνβ2E with finite codimension (by Theorem 4.22) so the same must be true for Y . Now

choose a finite-dimensional space V ⊂ Xνβ2E so that X
ν
β2
E = V + Y and V ∩ Y = 0.

Claim: Xνβ1E = V +RanA
(β1). The inclusion V ⊂ Xνβ2E ⊆ X

ν
β1
E immediately gives the

⊇ inclusion. Now let f ∈ Xνβ1E. Put v = ζI−1(A
(β1)
0 )

−1(ζIf) ∈ X
µ
β1
E and g = f − Av ∈

X
ν
β1
E (n.b. Lemma 2.16 and Theorem 3.25 ensure that v is well defined). With the help

of (101) we thus have

ζI+1g = ζI+1f − ζI+1A0(ζI−1(A
(β1)
0 )

−1(ζIf)) = 0.

Hence g ∈ Xνβ2E by Remark 2.18. On the other hand, by the definition of V , we have

g = Aw + h for some w ∈ Xµβ1E and h ∈ V . Setting u = v + w ∈ X
µ
β1
E we then get

f = g +Av = h+Av +Aw = h+Au ∈ V +RanA(β1).

Therefore Xνβ1E ⊆ V +RanA
(β1), completing the Claim.

Now V ⊂ Xνβ2E so

V ∩ RanA(β1) = V ∩ Xνβ2E ∩RanA
(β1) = V ∩ Y = 0.

Combined with the above Claim this now completes the result.

From Lemma 4.25 and the observation that RanA(β2) ⊆ Y ⊆ Xνβ2E we get

codim(RanA(β1), Xνβ1E) = codim(Y,X
ν
β2E)(107)

= codim(RanA(β2),Xνβ2E)− codim(RanA
(β2), Y ).
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Proof of Theorem 4.23. For i = 1, . . . ,M − d set fi = A(ζIwi+d) ∈ RanA
(β1) ⊆ Xνβ1E.

As ζI+1A(ζIwi+d)=ζI+1A0wi+d=0 (by (101) and Theorem 3.26; recall that wi+d∈XΣ)

we immediately get fi ∈ X
ν
β2
E using Remark 2.18. Now let W = Sp{f1, . . . , fM−d} ⊂ Y .

Claim (i): f1, . . . , fM−d are linearly independent over RanA
(β2). Suppose

M−d∑

i=1

zi+dfi = Au

for some u ∈ Xµβ2E and zd+1, . . . , zM ∈ C. Thus

ζI

M−d∑

i=1

zi+dwi+d − u ∈ KerA
(β1)

and so, by (104), there exists v ∈ KerA(β2) and z1, . . . , zd such that

d∑

i=1

ziui + ζI

M−d∑

i=1

zi+dwi+d = u+ v.

Now u+ v ∈ Xµβ2E so (106) implies ζIw ∈ X
µ
β2
E where w =

∑M
i=1 ziwi. Lemma 2.16 then

implies ζIw ∈ Y
µ
β2
E. On the other hand, w ∈ XΣ so (1 − ζI)w ∈ Y

µ
β2
E and A0w = 0

by Theorem 3.26. However, A0 : Y
µ
β2
E → Yνβ2E is an isomorphism by Theorem 3.25.

Thus w =
∑M
i=1 ziwi = 0. The fact that {w1, . . . , wM} is a basis for XΣ now completes

Claim (i).

Claim (ii): Y = W + RanA(β2). The inclusion W + RanA(β2) ⊆ Y is trivial. Now let

f ∈ Y so f ∈ Xνβ2E and f = Au for some u ∈ X
µ
β1
E. By Lemma 4.24 and (106) we can

thus find v ∈ Xµβ2E and z1, . . . , zM ∈ C such that

u = v +
d∑

i=1

ziui +
M−d∑

i=1

zi+dζIwi+d.

Using the fact that u1, . . . , ud ∈ KerA
(β1) we then get

f = Au = Av +
M−d∑

i=1

zi+dA(ζIwi+d) = Av +
M−d∑

i=1

zi+dfi ∈ RanA
(β2) +W.

Hence Y ⊆W +RanA(β2), completing Claim (ii).

By Claim (i) we have dimW = M − d and W ∩ RanA(β2) = 0. Combined with

Claim (ii) this implies that

codim(RanA(β2), Y ) =M − d.(108)

By combining (105), (107) and (108) we finally get

IndexA(β1) = dimKerA(β1) − codim(RanA(β1), Xνβ1E)

= dimKerA(β2) + d− codim(RanA(β2), Xνβ2E) +M − d

= IndexA(β2) +M,

completing the result.
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4.6. Self-adjoint operators. Let A be an admissible elliptic operator on Rn of or-

der (µ, ν). If we can determine the set σ(BA) together with the algebraic multiplici-

ties of each point λ ∈ σ(BA), then Theorems 4.19 and 4.23 allow us to compute the

change in the index of the map A : XµβE → X
ν
βE whenever we change the admissible

space E or the parameter β within the set R \ Γ (A). In turn, this allows us to com-

pute the actual index for any such pair (E, β) provided we know the index for one pair.

In general, this requires further computation; however, if A is formally self-adjoint we

can use symmetry to compute the index of A(E,β) from knowledge of the spectrum of

BA alone.

Theorem 4.26. Suppose A is a formally self-adjoint admissible elliptic operator of order

(µ, ν) and let m = maxi µi. Then Γ (A) is symmetric about (n+m)/2. Furthermore, if

E is an admissible space and β ∈ R \ Γ (A), then

IndexA(n+m−β) = − IndexA(β).(109)

In particular , we either have (n + m)/2 6∈ Γ (A), in which case IndexA(n/2+m/2) = 0,

or (n + m)/2 ∈ Γ (A), in which case the sum of the algebraic multiplicities of those

λ ∈ σ(BA) with Imλ = (n+m)/2 is even (say 2d for some d ∈ N) and

IndexA(n/2+m/2−ε) = d = − IndexA(n/2+m/2+ε)

for all sufficiently small ε > 0.

Proof. For the sake of convenience we set l = (n+m)/2. The symmetry of Γ (A) about l

follows directly from Proposition 4.20. Now let E be an admissible space and β ∈ R\Γ (A).

Using (100) and the assumption A∗ = A, we deduce that the adjoint of the map A(E0,β)

is A(F
−m,2l−β) where F = E∗0 . Using Theorem 4.19 together with the fact that the index

of a Fredholm map changes sign when we take its adjoint (see Corollary IV.5.14 in [Ka],

for example) we now get

IndexA(E,2l−β) = IndexA(F
−m,2l−β) = − IndexA(E0,β) = − IndexA(E,β),

which establishes (109).

If l 6∈ Γ (A) then we get IndexA(l) = 0 by setting β = l in (109). Now suppose

l ∈ Γ (A). Since Γ (A) consists of isolated points (see Remark 3.9) it follows that we can

find some δ > 0 such that (l, l+δ) ∩ Γ (A) = ∅. Theorems 4.19 and 4.22 together with

(109) then imply the existence of d ∈ Z such that

IndexA(l−ε) = d = − IndexA(l+ε)

for all 0 < ε < δ. By Theorem 4.23 we also know that

2d = IndexA(l−ε) − IndexA(l+ε) =
∑

λ∈Σ

mλ,

where Σ = {λ ∈ σ(BA) | Imλ = l} and mλ is the algebraic multiplicity of a given

λ ∈ Σ.
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4.7. Homogeneous operators with constant coefficients. Let A be a k×k system

of differential operators on R
n of order (µ, ν). We say that A is a homogeneous constant

coefficient operator if, for each i, j ∈ {1, . . . , k}, the ijth entry of A is a constant coeffi-

cient scalar differential operator which is homogeneous of order µj − νi (or equal to 0 if

µj − νi < 0).

Remark 4.27. Suppose A is an elliptic homogeneous constant coefficient operator on R
n

of order (µ, ν). It follows immediately that A is uniformly elliptic on R
n. On the other

hand, Aij(x,Dx), the ijth entry of A, is a constant coefficient scalar differential operator

which is homogeneous of order µj − νi. Thus Aij(x,Dx) is an admissible scalar operator

with principal part Aij(x,Dx) (see Definition 4.1). It follows that A is an admissible

elliptic operator on Rn with principal part A0 = A.

Let A be an admissible elliptic operator on Rn of order (µ, ν) whose principal part

A0 is a homogeneous constant coefficient operator. Set Q = A − A0 and let Qij denote

the entries of Q for i, j ∈ {1, . . . , k}. Then Qij is a scalar admissible operator on Rn of

order µj−νi whose principal part is equal to 0. We say that A has constant leading order

coefficients if, for each i, j ∈ {1, . . . , k}, ordQij < µj − νi (or Qij = 0 if µj − νi ≤ 0). The

next result indicates the importance of such operators.

Proposition 4.28. Let A be an admissible elliptic operator on Rn of order (µ, ν) whose

principal part A0 is a homogeneous constant coefficient operator. Furthermore, suppose

A has constant leading order coefficients. Then, for any admissible space E and β ∈ R,

the operator Q := A−A0 defines a compact map X
µ
βE → X

ν
βE.

Proof. Consider the notation introduced before the statement of the result and let i, j ∈

{1, . . . , k}. Therefore we can write

Qij(x,Dx) =
∑

|α|<µj−νi

qα(x)Dα
x(110)

where, for each multi-index α with |α| < µj−νi, q
α ∈ Scµj−νi−|α| has principal part equal

to 0. By (37), Proposition 2.54 and the definition of the principal part (see Definition 1.1)

it follows that qα ∈ Xµj−νi−|α|C
l
0 for any l ∈ N0. Lemma 2.49, Proposition 2.76 and the

fact that µj − |α| > νi can now be combined to show that multiplication by q
α defines a

compact map Xβ−µj+|α|E
µj−|α| → Xβ−νiE

νi . Together with Proposition 2.33 and (110)

this finally implies that Qij defines a compact map Xβ−µjE
µj → Xβ−νiE

νi . The result

now follows.

A straightforward application of Theorems 4.19 and 4.23 allows us to generalise an

index formula given in [LM1] to cover arbitrary admissible spaces. Before giving the

result we need to introduce the following notation. For any β ∈ R let Pn(β) denote the

dimension of the set of polynomials in n variables whose degree does not exceed β (with

Pn(β) = 0 when β < 0). Thus

Pn(β) =

{
Pn(l) if β ∈ [l, l + 1) for some l ∈ N0,

0 if β < 0.
(111)
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For any µ, ν ∈ Nk0 and β ∈ R we set

Pµ,νn (β) =

k∑

i=1

(Pn(−β + µi)− Pn(−β + νi)− Pn(β − νi − n) + Pn(β − µi − n)).

It is clear from (111) that the function Pµ,νn is constant on the components of R \ Z.

Theorem 4.29. Suppose A is an admissible elliptic operator on R
n of order (µ, ν) whose

principal part is a homogeneous constant coefficient operator. Then Γ (A) = {β ∈ R |

Pµ,νn (β
−) 6= Pµ,νn (β

+)} ⊆ Z and there exists d ∈ Z such that IndexA(E,β) = Pµ,νn (β) + d

for any admissible space E and β ∈ R \ Γ (A). In particular , Γ (A) ∩ (m,n) = ∅ and

IndexA(E,β) = d for any β ∈ (m,n), where m = maxi µi.

Proof. With the help of Remark 4.27 we see that A and its principal part A0 are two

admissible elliptic operators with the same principal part. It follows that these operators

have the same associated operator pencil. Theorem 4.19 then implies that IndexA(E,β)

and IndexA
(E,β)
0 are both constant (with possibly different values) when β remains within

a single component of R \ Γ (A) = R \ Γ (A0). On the other hand, Theorem 4.23 implies

that IndexA(E,β) and IndexA
(E,β)
0 change by the same amount as β changes between

the components of R \ Γ (A). It follows that there exists d ∈ Z such that IndexA(E,β) =

IndexA
(E,β)
0 + d for all β ∈ R \ Γ (A). Furthermore, Theorem 4.19 implies that d cannot

depend on the admissible space E.

The preceding argument means it suffices to prove the result for A0; that is, we

can assume the admissible elliptic operator A to be a homogeneous constant coefficient

operator. In this case Theorem 3 of [LM1] shows that A(L
2,β) is a Fredholm map with

index Pµ,νn (β) whenever β 6∈ Z. On the other hand, Γ (A) is a discrete subset of R (see

Remark 3.9) whilst Theorems 4.19 and 4.23 imply that the function β 7→ IndexA
(E,β)
0 is

independent of the admissible space E, is constant on the components of R \ Γ (A), and

satisfies

IndexA(E,β
−) 6= IndexA(E,β

+)

for all β ∈ Γ (A). It follows that Γ (A) is precisely the set of points at which Pµ,νn is

discontinuous, whilst IndexA(E,β) = Pµ,νn (β) for any admissible space E and β ∈ R\Γ (A).

If νi > m for some i then the ith row of the matrix operator A would be 0. As this

contradicts the assumption that A is elliptic we get maxi νi ≤ m. Coupled with (111)

and the fact that µ and ν are vectors of non-negative integers, this clearly shows that all

the terms in the sum defining Pµ,νn (β) are equal to 0 when β ∈ (m,n).

In general, the constant d appearing in Theorem 4.29 may be non-zero—see [LM2]

for an example of an operator for which this is the case. On the other hand, the next

result gives two useful special cases in which we can show d = 0.

Theorem 4.30. Let A and d be as in Theorem 4.29. Then we have d = 0 if A is either

formally self-adjoint or has constant leading order coefficients.

Proof. Let (µ, ν) be the order of A and define m, µ and ν as in (56). It is then straight-

forward to check that Pµ,νn (m + n − β) = −P
µ,ν
n (β) for all β ∈ R \ Z. If A is formally
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self-adjoint then µ = µ and ν = ν so Theorems 4.26 and 4.29 now give

Pµ,νn (β) + d = IndexA
(β) = − IndexA(n+m−β) = −Pµ,νn (n+m− β)− d = P

µ,ν
n (β)− d

for all β ∈ R \ Z. From this it clearly follows that d = 0.

On the other hand, if A has constant leading order coefficients then Proposition 4.28

implies that A is a compact perturbation of its principal part A0. However, Theorem 4.29

holds with d = 0 for the homogeneous constant coefficient operator A0 (this is clear from

the proof of that theorem). The result is now completed by the fact that a compact

perturbation does not affect the index of a Fredholm operator (see Theorem IV.5.26

in [Ka], for example).

Theorem 4.29 can be made more explicit for several special classes of operators; these

classes include Dirac type operators and the Laplacian.

Theorem 4.31. Suppose A is an admissible elliptic operator on Rn of order (µ, ν) whose

principal part is a homogeneous constant coefficient operator. Also suppose n ≥ 2, ν1 =

. . . = νk = 0, µ1 = . . . = µk = m for some m ∈ {1, 2}, and that A is either formally self-

adjoint or has constant leading order coefficients. Then Γ (A) = Z\{m+1, . . . , n−1} (with

Γ (A) = Z if n < m+ 2). Furthermore, for any admissible space E and β ∈ R \ Γ (A),

IndexA(E,β) = −
k

(n− 1)!
(l − 1)

n−1∏

j=2

|l − j|(112)

if m = 1 and

IndexA(E,β) = −
k

(n− 1)!
(2l − n− 1)

n−1∏

j=2

|l − j|(113)

if m = 2, where l ∈ Z is chosen so that β ∈ [l, l + 1) and the product terms are defined

to be equal to 1 if n = 2. In particular , IndexA(E,β) = 0 for any β ∈ (m,n).

Remark 4.32. The special form of µ and ν means that the domain and codomain of the

map A(E,β) are given as

X
µ
βE =

k∏

i=1

Xβ−mE
m and XνβE =

k∏

i=1

XβE

respectively.

Proof of Theorem 4.31. We have P1(l) = l+1 for any l ∈ N0 and Pn(0) = 1 for any n ∈ N.

On the other hand, the set of polynomials in n + 1 variables which are homogeneous of

degree l can be seen to have dimension Pn(l). Hence Pn+1(l) = Pn+1(l − 1) + Pn(l) for

all n, l ∈ N. The resulting recurrence relations have the unique solution

Pn(l) =
(l + n)!

n! l!
(114)

for all n ∈ N and l ∈ N0. A straightforward calculation using (111) and (114) now shows

that if β ∈ (l, l+1) for some l ∈ Z then Pµ,νn (β) is given explicitly by the right hand side of

(112) or (113) when m = 1 or 2 respectively. The result then follows from Theorems 4.29

and 4.30, and the fact that the right hand sides of (112) and (113) are non-increasing

functions of l ∈ Z which are strictly decreasing outside {m+ 1, . . . , n− 1}.
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[T2] —, Theory of Function Spaces II , Monogr. Math. 84, Birkhäuser, Basel, 1992.
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