
Let ν ≤ µ ≤ κ be infinite cardinal numbers. As usual, every ordinal is considered as the
set of all smaller ordinals, and cardinals are defined to be ordinals which cannot be put
in one-one correspondence with smaller ordinals. We will study the size of families F of
subsets of κ such that F is maximal with respect to the following properties: |A| = µ for
all A ∈ F , and |A ∩ B| < ν for all distinct A,B ∈ F . We consider the most important
cases to be those in which ν = µ = κ, especially for κ regular, the case with ν = µ < κ,
and the case ν < µ = κ.

There has been a considerable amount of work done on this subject. Many of the
main results are found in Baumgartner [76], where results are given on almost disjoint
subsets which have many implications for maximal almost disjoint subsets. Another gen-
eral source of results is Milner–Prikry [87]. Theorems of a more specialized nature can
be found in Blass [93], Erdős–Hechler [75], Wage [79], Kojman–Kubís–Shelah [∞], and
Monk [96b] and [01].

Almost disjoint sets have been studied in many other papers in which the focus is not
on the size of maximal almost disjoint families.

The purpose of these notes is to survey all of the results on this topic, giving proofs for
many of them. In the course of doing this we indicate some generalizations of consistency
results of Baumgartner and of Blass. Some open problems will be mentioned.

The notes are divided into two parts. The first part, entitled ZFC results, is mainly a
survey of known results, with, however, some new facts and proofs; several problems are
mentioned here. The second part, entitled Consistency results, begins with a statement
of what is known and what is proved in these notes, and then in four sections gives some
detailed consistency results. These results are more-or-less straightforward extensions
of theorems of Baumgartner and Blass. Section 6 shows that a complete description of
possibilities is obtained if one assumes GCH (implicitly this is due to Baumgartner).
Sections 7 through 9 give the indicated consistency proofs, described more thoroughly in
the introduction to the second part. These proofs are given in rather full detail.

The concepts studied in this paper

Unless otherwise mentioned, throughout these notes κ, ν, µ are infinite cardinals with ν ≤
µ ≤ κ. For ordinals α < β, we write (α, β)card for the collection of all cardinal numbers κ
such that α < κ < β; similarly for other intervals. Denumerable means countably infinite.
For any infinite cardinal κ, the smallest cardinal greater than κ is denoted by κ+, and if
m ∈ ω is any infinite cardinal, then κ+m is the mth cardinal successor of κ.

[5]



6 J. D. Monk

Sets A and B are ν-almost disjoint (ν-ad) if |A ∩ B| < ν. A family A of sets is
ν-almost disjoint, for brevity ν-ad, if any two distinct members of A are ν-ad. Now let
F be a family of sets each of size at least ν. We say that A is F , ν almost disjoint
(for brevity F , ν-ad) if A ⊆ F and it is ν-ad. Furthermore, A is F , ν maximal almost
disjoint (for brevity F , ν-mad) if in addition it is maximal among subsets of F which
are ν-ad. Equivalently, A is F , ν-maximal almost disjoint if A ⊆ F , it is ν-ad, and for
each X ∈ F there is a Y ∈ A such that |X ∩ Y | ≥ ν. Instead of [κ]κ, κ-mad we say
κ-mad or κ-maximal almost disjoint.

If Γ and ∆ are sets of ordinals, we write Γ � ∆ if every member of Γ is ≤ than some
member of ∆. And we write Γ w ∆ if every member of Γ is ≥ some member of ∆. Note
that this is not quite the same as saying that Γ � ∆.

The basic definitions of the concepts we will be working with are as follows. Assume
that ν ≤ µ ≤ κ. Then:

AD(κ, µ, ν) = {|A | : A is [κ]µ, ν-ad};
AD(κ) = AD(κ, κ, κ);

MAD(κ, µ, ν) = {|A | : A is [κ]µ, ν-mad};
MAD(κ) = MAD(κ, κ, κ);

MAD1(κ, λ, µ, ν) = {|A | : there is a partition D of κ into λ sets of size µ

such that D ∩A = 0 and D ∪A is [κ]µ, ν-mad};
MAD1(κ) = MAD1(κ, κ, κ, κ);

MAD2(κ, µ, ν) = {|A | : A ⊆ [κ× µ]µ and ∀α < κ ({α} × µ 6∈ A )

and A ∪ {{α} × µ : α < κ} is [κ× µ]µ, ν-mad};
aκµν = min(MAD(κ, µ, ν) ∩ [cf κ,∞));

aκ = aκκκ;

aκλµν1 = min(MAD1(κ, λ, µ, ν));

aκ1 = aκκκκ1.

The last definitions, concerning a, are valid iff the minimums apply to non-empty sets.
MAD2 turns out to coincide with a special case of MAD1, so we do not have extensive
notation for it. The intersection in the definition of aκµν is there to make the function
non-trivial, as we shall see.

Baumgartner’s notation A(κ, λ, µ, ν) corresponds to λ ∈ AD(κ, µ, ν), and his notation
A(κ, λ, µ) to λ ∈ AD(κ, µ, µ).

In terms of these definitions, we can briefly state some of the main ZFC results in this
paper; for consistency results, see the second part. Proposition 2.4: AD(κ, µ, ν) ⊆ [1, κν ].
Proposition 3.2: If κ+ < λ and λ ∈ AD(κ+, κ+, ν), then λ ∈ AD(κ, κ, ν). Example
3.9: There is a singular cardinal κ such that cf κ = ω, κ = ℵκ, κω ∈ AD(κ, κ, ω), and
there is no % ∈ (ω, κ)card such that κω ∈ AD(%, %, ω). Theorem 4.7: Let µ be a singular
cardinal. Suppose that ν ∈ MAD(cf µ) and % ∈ MAD(κ, µ, µ). Then % ·ν ∈ MAD(κ, µ, µ).
Proposition 4.10: If µ < κ, then MAD(κ, µ, µ) w MAD(µ) ∩ [µ,∞). Hence aµ ≤ aκµµ.
Proposition 5.5: MAD(κ, µ, µ) = MAD1(κ, κ, µ, µ) if κ is regular and µ < κ. Proposition
5.6: If κ is regular, then MAD(κ) ∩ [κ,∞) ⊆ MAD(κ+, κ, κ).
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ZFC RESULTS

1. Simple facts

In this section we give very elementary facts about the notions.

Proposition 1.1. Assume that ν ≤ µ ≤ κ. Then:

(i) MAD(κ, µ, ν) ∩ [κ,∞) 6= 0. Hence the definition of aκµν always makes sense.
(ii) If µ < κ, then MAD(κ, µ, ν) ⊆ [κ,∞) and so aκµν ≥ κ. Hence the intersection in

the definition of aκµν is superfluous if µ < κ.
(iii) If ν < κ, then [1, κ) ⊆ MAD(κ, κ, ν).
(iv) [1, cf κ) ⊆ MAD(κ).
(v) If ν ≤ % ≤ µ ≤ κ, then MAD(κ, µ, ν) � MAD(κ, µ, %).
(vi) If ν ≤ µ ≤ κ ≤ %, then MAD(κ, µ, ν) � MAD(%, µ, ν).

Proof. For (i), one can take a partition of size κ of κ into sets of size µ and extend it to
a [κ]µ, ν-mad set.

(ii) is clear.
For (iii), for any % ∈ [1, κ), let A be a partition of κ into % parts, each of size κ.

Then A is [κ]κ, ν-mad, as desired. In fact, suppose that B ∈ [κ]κ. If |B ∩ A| < ν for
all A ∈ A , then B =

⋃
A∈A (B ∩ A) would have size at most % · ν < κ, contradic-

tion.
For (iv), let ν ∈ [1, cf κ). Let A be a partition of κ into ν sets, each of size κ. Clearly

if B ∈ [κ]κ then |B ∩A| = κ for some A ∈ A .
For (v), let σ ∈ MAD(κ, µ, ν). Say σ = |A |, where A is [κ]µ, ν-mad. Then A is %-ad,

and so can be extended to a set which is [κ]µ, %-mad, as desired.
Finally, for (vi), suppose that A is [κ]µ, ν-mad. Then A ⊆ [%]µ and it is ν-ad, so it

can be extended to a set B which is [%]µ, ν-mad.

The following is the first part of Theorem 2.2(b) of Baumgartner [76].

Proposition 1.2. Suppose that ν ≤ µ ≤ κ, ν ′ ≤ µ′ ≤ κ′, κ ≤ κ′, ν ≤ ν′, and µ′ ≤ µ.
Then AD(κ, µ, ν) ⊆ AD(κ′, µ′, ν′).

Proof. Suppose that F ⊆ [κ]µ is ν-ad. For every X ∈ F choose YX ∈ [X]µ
′
. Then Y is

one-one, and {YX : X ∈ F} ⊆ [κ′]µ
′

is ν′-ad. So |F | ∈ AD(κ′, µ′, ν′).

This result is similar to the second part of Theorem 2.2(b) of Baumgartner [76],
which says that if µ ≤ κ ≤ λ, µ′ ≤ κ′ ≤ λ′, κ ≤ κ′, λ′ ≤ λ, and µ′ ≤ µ, then
from λ ∈ AD(κ, µ, µ) it follows that λ′ ∈ AD(κ′, µ′, µ′). However, this claim is not
correct, at least under CH. In fact, take κ = κ′ = ω1, λ = λ′ = ω2, µ = ω1, and
µ′ = ω. Assume CH. By Theorem 2.8 of Baumgartner [76], ω2 ∈ AD(ω1, ω1, ω1). By
2.7 of Baumgartner [76], ω2 ∈ AD(ω1, ω, ω) would imply that ω2 ≤ ωω1 , contradicting
CH.

Proposition 1.3. AD(κ, µ, ν) � MAD(κ, µ, ν).
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2. Fundamental results

In this section we give several results which establish some of the fundamental facts about
our notions. This will enable us to describe more coherently the special cases above.

First we give a general “decreasing” theorem of Baumgartner, which depends on the
following interesting combinatorial lemma (Theorem 3.1 of Baumgartner [76]).

Proposition 2.1. Suppose that µ ≤ κ ≤ λ, F ⊆ [κ]µ, |F | = λ, cf µ 6= cf κ 6= cf λ. Then
there is an α < κ such that |{X ∈ F : |X ∩ α| = µ}| = λ.

Proof. Since µ ≤ κ and cf µ 6= cf κ, we have µ < κ. Next, note:

(1) For every X ∈ F there is an αX < κ such that |X ∩ αX | = µ.

For, let 〈βξ : ξ < ν〉 enumerate X in increasing order (ν an ordinal). Thus ν < κ since
µ < κ. If µ < ν, then βµ is as desired. If ν = µ, then note that X is not cofinal in κ, since
cf µ 6= cf κ. Hence supX is as desired.

(2) There is an α < κ such that |{X ∈ F : αX ≤ α}| = λ.

For, suppose not. So for all α < κ, |{X ∈ F : αX ≤ α}| < λ. Note that F =
⋃
α<κ{X∈F :

αX ≤ α}. Let βξ ↑ κ for ξ < cf κ, β continuous, β0 = 0. (If κ is regular, we can simply
take βξ = ξ for all ξ < κ.) Then F =

⋃
ξ<cfκ{X ∈ F : αX ≤ βξ}. Since cf λ 6= cf κ and

|F | = λ, we get

(3) cf λ < cf κ.

Now for all α < κ there is a β ∈ (α, κ) such that {X ∈ F : αX ≤ α} ⊂ {X ∈ F : αX ≤ β}.
Define ξ : cf κ → cf κ by: ξ(0) = 0, ξ(γ + 1) minimum such that {X ∈ F : αX ≤ βξ(γ)}
⊂ {X ∈ F : αX ≤ βξ(γ+1)}, ξ(γ) =

⋃
δ<γ ξ(δ) for γ limit. Then choose Xγ ∈ F such that

βξ(γ) < αXγ ≤ βξ(γ+1). Thus X is a one-one function from cf κ into F , so cf κ ≤ λ. Hence
λ is singular by (3). Let γξ ↑ λ for ξ < cf λ, the γξ’s being cardinals. Then

(4) For every ξ < cf λ there is an ηξ < cf κ such that |{X ∈ F : αX ≤ βηξ}| ≥ γξ.
For, otherwise there is a ξ < cf λ such that for all η < cf κ we have |{X ∈ F : αX ≤ βη|
< γξ. Hence

|F | =
∣∣∣
⋃

η<cfκ

{X ∈ F : αX ≤ βη}
∣∣∣ ≤ cf κ · γξ < λ,

contradiction. So (4) holds.
Since cf λ < cf κ, we have % := supξ<cfλ ηξ < cf κ. Hence |{X ∈ F : αX ≤ β%}| = λ,

contradicting the “suppose not” for (2).
This contradiction shows that (2) holds. Hence |{X ∈ F : |X ∩ α| = µ}| = λ, as

desired.

Corollary 2.2. Suppose that ν ≤ µ < κ ≤ λ, cf λ 6= cf κ 6= cf µ, and λ ∈ AD(κ, µ, ν).
Then there is a cardinal % with µ ≤ % < κ such that λ ∈ AD(%, µ, ν).

Corollary 2.3. Suppose that α is a limit ordinal , m ∈ ω, ω ≤ ν ≤ ℵα < ℵα+m < λ, λ
is regular , and λ ∈ AD(ℵα+m,ℵα, ν). Then λ ∈ AD(ℵα,ℵα, ν).

The following result is due to Tarski; see Baumgartner [76, Theorem 2.7].
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Proposition 2.4. AD(κ, µ, ν) ⊆ [1, κν ].

Proof. Suppose that A ⊆ [κ]µ is ν-ad. For all X ∈ A choose f(X) ∈ [X]ν . Then f is a
one-one function from A into [κ]ν , so |A | ≤ κν .

As a corollary, we mention some trivial cases.

Proposition 2.5. Suppose that ω ≤ % ≤ ν ≤ µ < (2ν)+m, with m ∈ ω. Then:

(i) MAD((2ν)+m, µ, %) = {(2ν)+m}.
(ii) MAD((2ν)+m, (2ν)+m, %) = [1, (2ν)+m].

The following result comes from the proof of 2.8 of Baumgartner [76]:

Proposition 2.6. If κ is regular , A ⊆ [κ]κ, |A | = κ, and A is κ-ad , then it is not
κ-mad. So κ 6∈ MAD(κ). Hence κ+ ∈ AD(κ), MAD(κ) ∩ (κ,∞) 6= 0, and κ < aκ.

Proof. Let A = {Aα : α < κ}. By induction define

xα ∈ Aα \
( ⋃

β<α

Aβ ∪ {xβ : β < α}
)

;

then |{xα : α < κ} ∩Aα| < κ for all α < κ, showing that A is not maximal.

The following is part of 2.2(c) of Baumgartner [76]:

Proposition 2.7. If λα ∈ AD(κ, µ, ν) for all α < %, where % ≤ κ, then
∑
α<% λα ∈

AD(κ, µ, ν).

Proof. Let κ =
⋃
α<% Γα, each Γα of size κ and the Γα’s pairwise disjoint. Let Aα ⊆ [Γα]µ

be of size λα and ν-ad. Then B :=
⋃
α<% Aα is as desired.

The following is Theorem 2.10 of Baumgartner [76]:

Proposition 2.8. Suppose that ν, σ, µ, κ, λ are cardinals, and ν ≤ σ ≤ µ ≤ κ ≤ λ.
Suppose that λ ∈ AD(κ, µ, ν), and for all α < λ, λα ∈ AD(µ, σ, ν). Then

∑
α<λ λα ∈

AD(κ, σ, ν).

Proof. Let A be [κ]µ, ν-ad with |A | = λ. Let 〈Xα : α < λ〉 enumerate A without
repetitions. For each α < λ let Bα be [Xα]σ, ν-ad, with |Bα| = λα. Then

⋃
α<λ Bα is

[κ]σ, ν-ad and has size
∑
α<λ λα.

Corollary 2.9. If κ is an infinite cardinal , λ ∈ AD(κ), and κ ≤ λα ∈ AD(κ) for all
α < λ, then

∑
α<λ λα ∈ AD(κ).

3. Concerning AD(κ, κ, ν)
Proposition 3.1. Suppose that ω ≤ κ < λ, λ singular , and {% < λ : % ∈ AD(κ, κ, ν)} is
unbounded in λ. Then λ ∈ AD(κ, κ, ν).

Proof. Let 〈%α : α < cf λ〉 be a strictly increasing sequence of cardinals with limit λ such
that %α ∈ AD(κ, κ, ν) for all α < cf λ. Let A ⊆ [κ]κ be ν-ad, |A | = cf λ. Let 〈Xα : α < %〉
be a one-one enumeration of A . For all α < %, let Aα ⊆ [Xα]κ be of size %α and be ν-ad.
Then

⋃
α<% Aα is as desired.

Proposition 3.2. If ν ≤ κ, κ+ < λ, and λ ∈ AD(κ+, κ+, ν), then λ ∈ AD(κ, κ, ν).
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Proof. First we prove the special case of the proposition in which κ+ < cf λ.
Let A ⊆ [κ+]κ

+
be ν-ad, with |A | = λ. For every X ∈ A there is an αX < κ+ such

that |X ∩ αX | = κ. In fact, one can enumerate X as 〈xα : α < κ+〉 in increasing order,
and then let αX = xκ. Now

A =
⋃

α<κ+

{X ∈ A : αX = α},

so there exist an α < κ+ and an A ′ ∈ [A ]λ such that αX = α for all X ∈ A ′. Then
{X ∩ α : X ∈ A ′} is as desired (since |α| = κ).

This finishes the proof of the special case.
In the general case, we may assume that cf λ ≤ κ+. If µ is regular and κ+ < µ < λ,

then µ ∈ AD(κ+, κ+, ν). So by the special case, µ ∈ AD(κ, κ, ν). It follows by 3.1 that
λ ∈ AD(κ, κ, ν).

Corollary 3.3. If m ∈ ω, ν ≤ κ, κ+m < λ, and λ ∈ AD(κ+m, κ+m, ν), then λ ∈
AD(κ, κ, ν).

Part of the proof of Theorem 3.7 of Baumgartner [76] can be generalized to give the
following.

Proposition 3.4. Suppose that cf λ > κ > ν, cf κ > ω, κ is a limit cardinal , and
λ ∈ AD(κ, κ, ν). Then {% : % is a cardinal , % ∈ (ν, κ), λ ∈ AD(%, %, ν)} is unbounded in κ.

Proof. Suppose that δ < κ, δ a cardinal; we want to find a % as above in the interval
(δ, κ). Let A ⊆ [κ]κ be ν-ad and of size λ.

(1) For every X ∈ A there is an ordinal αX ∈ (max(ν, δ), κ) such that |X ∩ αX | = |αX |.
For, enumerate X as 〈βξ : ξ < κ〉 in increasing order. Choose α0 < κ such that max(ν, δ)
< α0. Define αi+1 = βαi + 1 for all i < ω, and let αω = supi<ω αi. Thus αω < κ since
cf κ > ω. For all ξ < αω let f(ξ) = βξ. For any such ξ choose i < ω such that ξ < αi.
Then βξ < βαi < αi+1 ≤ αω. Thus f(ξ) ∈ X ∩ αω. Since f is clearly one-one, it follows
that |αω| ≤ |X ∩ αω|, and (1) is established.

By (1), A =
⋃
α∈(max(ν,δ),κ){X ∈ A : αX = α}, so since cf λ > κ, there is a β ∈

(max(ν, δ), κ) such that {X ∈ A : αX = β} has size λ. Hence {X ∩ β : X ∈ A } ⊆ [β]|β|

is ν-ad and of size λ.

Another part of the proof of Theorem 3.7 in Baumgartner [76] generalizes to give the
following.

Proposition 3.5. Suppose that κ, ν, λ are infinite cardinals, cf λ > κ > ν, cf κ = ω,
κ 6= ℵκ, κ is a limit cardinal , and λ ∈ AD(κ, κ, ν). Then {% : % is a cardinal , % ∈ (ν, κ),
λ ∈ AD(%, %, ν)} is unbounded in κ.

Proof. Let an ordinal δ < κ be given. From the assumption κ 6= ℵκ we get:

(1) There is an uncountable regular cardinal % ∈ (max(δ, ν), κ) such that κ < ℵ%.
Thus by 1.2, λ ∈ AD(κ, %, ν). Let σ be minimum such that % ≤ σ and λ ∈ AD(σ, %, ν).
Suppose that σ 6= %. By 2.2, cf σ = cf λ or cf σ = %. Since cf λ > κ ≥ σ, we have
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cf σ 6= cf λ. So cf σ = % > ω. Say σ = ℵβ . Then cf σ = cf β = %, so % ≤ β, and
ℵ% ≤ ℵβ = σ ≤ κ, contradiction.

Proposition 3.6. Suppose that cf λ > κ > ν and λ ∈ AD(κ, κ, ν). Then there is a σ < κ

such that σν ≥ λ.

Proof. Choose % ∈ [ν, κ) such that cf % 6= cf κ. (If κ is regular, let % = ν. If κ is singular,
let % = ν+ if ν+ 6= cf κ, and % = ν++ otherwise.) Then λ ∈ AD(κ, %, ν) by 1.2. Let σ
be minimum such that λ ∈ AD(σ, %, ν). Then by 2.2, cf σ = cf λ or cf σ = cf %. Since
cf λ > κ ≥ σ, we have cf σ 6= cf λ. Hence cf σ = cf %. By the choice of % we then have
σ < κ. And λ ≤ σν by 2.4.

Proposition 3.7. Suppose that λ > κ > ν, κ is a limit cardinal , κ 6= ℵκ, and λ ∈
AD(κ, κ, ν). Then {% : % is a cardinal , % ∈ (ν, κ), λ ∈ AD(%, %, ν)} is unbounded in κ.

Proof. For λ regular the result follows by 3.4 and 3.5. Now suppose that λ is singular.
It suffices to show that λ ∈ AD(%, %, ν) for any regular % ∈ [ν, κ) such that κ < ℵ%. By
3.1 it suffices to take any regular σ ∈ (κ, λ) and show that σ ∈ AD(%, %, ν). We have
σ ∈ AD(κ, %, ν) by 1.2. Let τ be minimum such that σ ∈ AD(τ, %, ν). Suppose that % < τ .
By 2.2, cf τ = cf σ or cf τ = cf %. Now σ > κ ≥ τ and σ is regular, so cf τ 6= cf σ.
Thus cf τ = %. Say τ = ℵα. Then % = cf τ = cf α, so % ≤ α. Hence ℵ% ≤ ℵα = τ ≤ κ,
contradiction.

As an application, if ℵω+1 ∈ AD(ℵω,ℵω, ω), then ℵω+1 ∈ AD(ℵα,ℵα, ω) for some
α < ω, and hence by 3.3, ℵω+1 ∈ AD(ω).

Another useful fact about singular κ is as follows.

Proposition 3.8. Suppose that κ is singular , 〈µξ : ξ < cf κ〉 is an increasing sequence
of infinite cardinals with supremum κ, and λ is some cardinal ≥ κ. Suppose that ν is
regular , ν ≤ µ0, ν ≤ cf κ. Assume that λ ∈ AD(µξ, µξ, ν) for all ξ < cf κ, and also
λ ∈ AD(cf κ, cf κ, ν). Then λ ∈ AD(κ, κ, ν).

Proof. Write κ =
⋃
ξ<cfκ Γξ, the Γξ’s pairwise disjoint, |Γξ| = µξ. For each ξ < cf κ let

Aξ be a one-one function from λ onto a subset of [Γξ]µξ which is ν-ad, and let B be a
one-one function from λ onto a subset of [cf κ]cfκ which is ν-ad. For each α < λ, let

Cα =
⋃

ξ∈Bα
Aξα.

Clearly {Cα : α < λ} is the desired family.

The following result shows that Proposition 3.5 cannot be generalized by merely
dropping the hypothesis “κ 6= ℵκ”.

Example 3.9. There is a singular cardinal κ such that cf κ=ω, κ=ℵκ, κω∈AD(κ, κ, ω),
and there is no % ∈ (ω, κ)card such that κω ∈ AD(%, %, ω).

Proof. We define, by recursion, µ0 = ω and, for any m ∈ ω,

µm+1 = ℵµωm+1.
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Let κ = supm∈ω µm. Clearly κ is singular with cofinality ω. Suppose that κ < ℵκ. Choose
α < κ such that κ < ℵα. Say α < µm. then

κ < ℵα < ℵµm < µm+1 < κ,

contradiction. Thus κ = ℵκ.
Now a standard construction yields a family 〈Aα : α < κω〉 of denumerable subsets

of κ such that any two have a finite intersection. Write κ =
⋃
α<κ Γα, where the Γα’s are

pairwise disjoint and of size κ. For each β < κ let fβ be a bijection from κ onto Γβ . Now
we set, for each α < κω,

Bα =
⋃

β∈Aα
fβ [Aα].

So each Bα is a subset of κ of size κ. If α, γ < κω and α 6= γ, then

Bα ∩Bγ =
( ⋃

β∈Aα
fβ [Aα]

)
∩
( ⋃

β∈Aγ
fβ [Aγ ]

)
=

⋃

β∈Aα∩Aγ
fβ [Aα ∩Aγ ],

and this set is finite, as desired.
Now suppose that % ∈ (ω, κ) and κω ∈ AD(%, %, ω). Then by Proposition 2.4 we have

κω ≤ %ω. Since % < κ, choose m ∈ ω such that % < µm. Then

%ω ≤ µωm ≤ ℵµωm < µm+1 < κ ≤ %ω,
contradiction.

Concerning all these results we mention two problems. 3.7 and 3.9 suggest

Problem 1. If λ > κ > ν, κ is a limit cardinal , κ = ℵκ, λ ≤ %ν for some % < κ, and
λ ∈ AD(κ, κ, ν), is there a % ∈ (ν, κ) such that λ ∈ AD(%, %, ν)?

In turn, 3.1 suggests

Problem 2. Suppose that ω ≤ κ < λ, λ is weakly inaccessible, and {% < λ : % ∈
AD(κ, κ, ν)} is unbounded in λ. Does it follow that λ ∈ AD(κ, κ, ν)?

4. On MAD(κ) and MAD(κ, µ, µ)

Theorem 2.9 of Baumgartner [76] gives:

Proposition 4.1. Suppose that µ is singular , µ ≤ κ, and cf µ ≤ cf κ. Then:

(i) If A ⊆ [κ]cfµ is cf µ-ad and |A | > κ, then there is a B ⊆ [κ]µ of size |A | which
is µ-ad.

(ii) MAD(κ, cf µ, cf µ) ∩ (κ,∞) � MAD(κ, µ, µ).

Proof. Without loss of generality, each member of A has order type cf µ. For all α ≤ κ

let Fα = {X ∈ A : supX = α}. So A =
⋃
α≤κ Fα, and the Fα’s are pairwise disjoint. By

Proposition 2.7, it is enough to show that |Fα| ∈ AD(κ, µ, µ) for all α ≤ κ with Fα 6= 0.
Fix α with Fα 6= 0. Let νξ ↑ µ for ξ < cf µ, and let 〈%ξ : ξ < cf µ〉 be a continuous strictly
increasing sequence of ordinals with supremum α, and with %0 = 0. Let 〈Yη : η < α〉
be pairwise disjoint subsets of κ, with |Yη| = νξ if %ξ ≤ η < %ξ+1. For each X ∈ Fα let
X ′ =

⋃
η∈X Yη. Then {X ′ : X ∈ Fα} is as desired.
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The following theorem generalizes a result of Erdős and Hechler; see Milner–Prikry
[87, Theorem 3.1].

Theorem 4.2. Suppose that % ≤ τ ∈ MAD(κ, µ, µ), f maps τ onto %, and 〈σα : α < %〉 ∈
%MAD(µ). Then

∑
α<τ σf(α) ∈ MAD(κ, µ, µ).

Proof. Let A be [κ]µ, µ-mad with |A | = τ , and let g be a one-one function from A onto τ .
For each A ∈ A let BA be [A]µ, µ-mad with |BA| = σf(g(A)). Let C =

⋃
A∈A BA. Clearly

|C | =
∑
α<τ σf(α). It is also clear that C is µ-ad. Now suppose that X ∈ [κ]µ. Choose

A ∈ A such that |A ∩ X| = µ. Then choose Y ∈ BA such that |A ∩ X ∩ Y | = µ. So
|X ∩ Y | = µ. Hence C is [κ]µ, µ-mad, as desired.

Corollary 4.3. Suppose that % ∈ MAD(κ, µ, µ) and 〈σα : α < %〉 ∈ %MAD(µ). Then∑
α<% σα ∈ MAD(κ, µ, µ).

Corollary 4.4. If % ∈ MAD(κ, µ, µ) and σ ∈ MAD(µ), then % · σ ∈ MAD(κ, µ, µ).

Corollary 4.5. Suppose that δ is singular and is a limit of cardinals in MAD(µ). Fur-
ther , assume that [cf δ, δ) ∩MAD(κ, µ, µ) 6= 0. Then δ ∈ MAD(κ, µ, µ).

Corollary 4.6 (Milner–Prikry [87, Theorem 3.1]). If δ is a singular cardinal which is
a limit of members of MAD(κ), then δ ∈ MAD(κ).

This corollary naturally leads to the following questions.

Problem 3. If δ is a regular limit cardinal which is a limit of members of MAD(κ), is
also δ ∈ MAD(κ)?

Problem 4. If δ is a limit cardinal which is a limit of members of MAD(κ, µ, ν), is also
δ ∈ MAD(κ, µ, ν)?

The following result generalizes Theorem 3.6 in Milner–Prikry [87], also due to Erdős
and Hechler.

Theorem 4.7. Let µ be a singular cardinal. Suppose that ν ∈ MAD(cf µ) and % ∈
MAD(κ, µ, µ). Then % · ν ∈ MAD(κ, µ, µ).

Proof. Let A be [κ]µ, µ-mad, with |A | = %. For each A ∈ A , let 〈SAα : α < cf µ〉 be a
partition of A into sets of size less than µ, with 〈|SAα : α < cf µ〉 strictly increasing. Let
B be cf µ-mad, with |B| = ν. Then we define

C =
{ ⋃

α∈B
SAα : A ∈ A , B ∈ B

}
.

Clearly each member of C has size µ. Suppose that X,Y ∈ C with X 6= Y . Say X =⋃
α∈B0

SA0
α and Y =

⋃
α∈B1

SA1
α , with B0, B1 ∈ B and A0, A1 ∈ A . If A0 6= A1, then

X ∩ Y ⊆ A0 ∩ A1, and the latter has size less than µ. If A0 = A1 and B0 6= B1,
then X ∩ Y =

⋃
α∈B0∩B1

SA0
α , and |B0 ∩ B1| < cf µ, and hence |X ∩ Y | < µ. Thus C

is µ-ad. Now suppose that X ∈ [κ]µ. Choose A ∈ A such that |X ∩ A| = µ. Hence
sup{|X ∩ SAα | : α < cf µ} = µ, so there is a strictly increasing sequence 〈αξ : ξ < cf µ〉 of
ordinals less than cf µ such that the sequence 〈|X ∩ SAαξ | : ξ < cf µ〉 is strictly increasing
with supremum µ. Let Y = {αξ : ξ < cf µ}. Choose B ∈ B such that |Y ∩ B| = cf µ.
Clearly, then, |X ∩⋃α∈B SAα | = µ.
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Theorem 4.8 (Milner–Prikry [87, Theorem 3.6]). MAD(cf κ) ⊆ MAD(κ).

Recall from 1.1(i) that MAD(κ) ∩ [κ,∞) 6= 0. So the other inclusion in 4.8 does not
hold for singular cardinals, at least in ZFC. Also, MAD(cf κ) ⊆ [1, cf κcfκ] by Proposition
2.4. Thus the following problem is the natural “converse” of 4.8:

Problem 5. If κ is singular , does the inclusion MAD(κ) ∩ [1, 2cfκ] ⊆ MAD(cf κ) hold?

In this connection we mention some related results which will not be proved here. In
Kunen [80] it is shown that

(?) MA ` MAD(ω) = {2ω}.
In Kojman–Kubís–Shelah [∞] the following two results are shown:

(??) MA + 2ℵ0 > ℵω ` ℵω 6∈ MAD(ℵω),

(???) (in ZFC) if µ is singular and 2cfµ < µ, then µ ∈ MAD(µ).

Proposition 4.9. If κ is singular and A ⊆ [κ]cfκ is cf κ-ad with |A | = κ, then it is not
mad. Hence κ 6∈ MAD(κ, cf κ, cf κ), 0 6= MAD(κ, cf κ, cf κ) ⊆ (κ,∞), and κ < aκcfκcfκ.

Proof. Say µα ↑ κ for α < cf κ. Let A = {Aα : α < κ}. For each α < cf κ choose

xα ∈ Aα \
( ⋃

β<µα

Aβ ∪ {xβ : β < α}
)
.

Let X = {xα : α < cf κ}.
Proposition 4.10. If µ < κ, then MAD(κ, µ, µ) w MAD(µ) ∩ [µ,∞). Hence aµ ≤ aκµµ.

Proof. Note by Proposition 1.1(ii) that MAD(κ, µ, µ) ⊆ [κ,∞). Fix a family A which
is [κ]µ, µ-mad. Fix A ′ ∈ [A ]µ. Let Γ =

⋃
A∈A ′ A, and let B = {X ∩ Γ : X ∈ A ,

|X ∩ Γ | = µ}. Thus |Γ | = µ, B is µ-ad, and µ ≤ |B| ≤ |A |. Hence it suffices to show
that B is [Γ ]µ, µ-mad. Suppose that Y ∈ [Γ ]µ. Since A is [κ]µ, µ-mad, there is an X ∈ A

such that |X ∩ Y | = µ. Thus there is a Z ∈ B such that |Y ∩ Z| = µ, as desired.

For the next result we need a simple set-theoretic lemma.

Lemma 4.11. Suppose that κ < ν are infinite cardinals, β is an ordinal , and 〈Γα : α < β〉
is a sequence of subsets of ν such that if α < γ < β then Γα ⊆ Γγ . Further , assume that
|ν \⋃α<β Γα| < ν. Then there is an α < β such that |Γα| ≥ κ.

Proof. Suppose not: ∀α < β (|Γα| < κ). Then

(1) ∀α < β ∃γ ∈ (α, β) [Γα ⊂ Γγ ].

For, otherwise we get an α < β such that Γα =
⋃
γ<β Γγ . Hence |⋃γ<β Γγ | = |Γα| < κ

and so |ν \⋃γ<β Γγ | = ν, contradiction. So (1) holds.
Now define α ∈ ββ by setting α0 = 0, αξ+1 minimum such that Γαξ ⊂ Γαξ+1 , α con-

tinuous. For each ξ < β let ηξ be the least element of Γαξ+1 \Γαξ . Now |⋃γ<β Γγ | = ν and
|Γγ | < κ for all γ < β, so β ≥ ν. Hence κ < β. Now η�κ is a one-one function mapping
into Γακ , so |Γακ | ≥ κ, contradiction.

Proposition 4.12. If ω ≤ µ < κ < ν, then MAD(ν, µ, µ) w MAD(κ, µ, µ) ∩ [κ,∞).
Hence aκµµ ≤ aνµµ.
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Proof. Let A be [ν]µ, µ-mad. By 1.1(ii), |A | ≥ ν.

(1) There is a Γ ∈ [ν]κ such that |{A ∈ A : |A ∩ Γ | = µ}| ≥ κ.

To see this, let 〈Aα : α < τ〉 enumerate A without repetitions, and for each α ≤ τ let
Γα =

⋃
β<αAβ . Now since (ν \ Γτ )∩Aα = 0 for all α < τ and A is [ν]µ, µ-mad, we have

|ν \ Γτ | < µ. Hence by Lemma 4.11, there is an α ≤ τ such that |Γα| ≥ κ; choose the
least such α. If α = β+ 1, then Γα = Γβ ∪Aβ , and |Γα| ≤ |Γβ |+ |Aβ | < κ, contradiction.
So α is a limit ordinal. Let ∆ = {ξ < α : Γξ ⊂ Γξ+1}. So Γα =

⋃
ξ∈∆(Γξ+1 \ Γξ), and

|Γξ+1 \ Γξ| ≤ |Aξ| = µ. Hence |∆| ≥ κ. If |∆| > κ, then there is a ξ ∈ ∆ such that
|{η ∈ ∆ : η < ξ}| = κ. Hence Γξ+1 =

⋃
η∈∆, η≤ξ Γη+1 \ Γη, and each Γη+1 \ Γη 6= 0,

so |Γξ+1| ≥ κ, contradicting the minimality of α. So |∆| = κ, and hence |Γα| = κ and
|{A ∈ A : |A ∩ Γα| = µ}| ≥ |{Aξ : ξ ∈ ∆}| ≥ κ. So (1) holds.

Let B = {A ∩ Γ : A ∈ A , |A ∩ Γ | = µ}. So κ ≤ |B| ≤ |A |. We claim that B is
[Γ ]µ, µ-mad. Clearly it is [Γ ]µ, µ-ad. Suppose that X ∈ [Γ ]µ. Then X ∈ [ν]µ, so choose
A ∈ A such that |A∩X| = µ. So A∩Γ ∈ B and |A∩Γ ∩X| = |A∩X| = µ, as desired.

The following is Theorem 3.2 in Milner–Prikry [87].

Theorem 4.13. Suppose that κ and ν are infinite cardinals, κ is singular , and ν < κ.
Then there is a δ ∈ MAD(κ) such that ν ≤ δ ≤ νcfκ.

Proof. Let λα ↑ κ for α < cf κ, with ν, cf κ < λ0. Let 〈Sαβ : α < cf κ, β < ν〉 be a
partition of κ such that |Sαβ | = λα for all α, β. Let

F = {f : f is a function, f ⊆ cf κ× ν, |f | = cf κ}.
Let B be a maximal cf κ-almost disjoint subset of F .

(1) ν ≤ |B| ≤ νcfκ.

In fact, clearly |F | = νcfκ, and so |B| ≤ νcfκ. Now suppose that |B| < ν. For each
α < cf κ let f(α) be the smallest ordinal β such that β 6= g(α) for all g ∈ B. Thus
f(α) < ν by supposition. So f ∈ F , and f ∩ g = 0 for all g ∈ B, contradiction.

For each f ∈ B let

Xf =
⋃

(α,β)∈f
Sαβ ,

and let A = {Xf : f ∈ B}. We claim that A is κ-mad, and X is one-one. Clearly
|Xf | = κ for all f ∈ B. Suppose that f, g ∈ B and f 6= g. Then

Xf ∩Xg =
⋃

(α,β)∈f∩g
Sαβ ,

and this set has fewer than κ elements.
Finally, suppose that Y ∈ [κ]κ. Then

(2) ∀α < cf κ ∃β ∈ [α, cf κ) ∃γ < ν [|Y ∩ Sβγ | ≥ λα].

In fact, otherwise we get α < cf κ such that ∀β ∈ [α, cf κ) ∀γ < ν [|Y ∩ Sβγ | < λα]. So

|Y | =
∣∣∣
⋃

β<cfκ

⋃

γ<ν

(Y ∩ Sβγ)
∣∣∣ =

∣∣∣
⋃

β<α

( ⋃

γ<ν

Y ∩ Sβγ
)∣∣∣+

∣∣∣
⋃

α≤β<cfκ

( ⋃

γ<ν

Y ∩ Sβγ
)∣∣∣ ≤ λα,

contradiction. So (2) holds.
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By (2), let 〈α% : % < cf κ〉 and 〈β% : % < cf κ〉 be such that 〈α% : % < cf κ〉 is strictly
increasing, and |Y ∩ Sα%β% | ≥ λ%. Let f = {(α%, β%) : % < cf κ}. Thus f ∈ F . Choose
g ∈ B such that |f ∩ g| = cf κ. Then |Y ∩Xg| = κ, as desired.

Corollary 4.14. If κ is singular and ∀ν < κ (νcfκ < κ), then κ ∈ MAD(κ).

Proof. By 4.13 and 4.6.

Corollary 4.15. If κ is strong limit singular , then κ ∈ MAD(κ).

In connection with these corollaries, see the results of Kojman–Kubís–Shelah [∞]
mentioned above.

Here is a generalization of Proposition 4.9.

Proposition 4.16. Suppose that κ is singular , µ < κ, and cf κ = cf µ. Suppose that
A ⊆ [κ]µ is µ-ad and |A | = κ. Then it is not mad. So κ 6∈ MAD(κ, µ, µ); hence 0 6=
MAD(κ, µ, µ) ⊆ (κ,∞). Moreover , aκµµ > κ.

Proof. Assume the hypothesis. Say A = {Xα : α < κ}. By Proposition 4.9 we may
assume that µ is singular. Let να ↑ µ for α < cf µ and %α ↑ κ for α < cf κ. We now define
subsets Yα of κ of size at most µ for each α < cf µ. Suppose that we have done this for
all β < α. Then

⋃
β<%α

Xβ ∪
⋃
β<α Yβ has size less than κ, so we can choose

Yα ⊆ κ \
( ⋃

β<%α

Xβ ∪
⋃

β<α

Yβ

)

of size να. Let Z =
⋃
α<cfµ Yα. Then |Z| = µ and |Z ∩Xβ | < µ for all β < κ.

As an special case of Proposition 4.16 we have ℵω+ω 6∈ MAD(ℵω+ω,ℵω,ℵω).

Corollary 4.17. If κ is singular , then MAD(κ) ∩ (κ,∞) 6= 0.

Proof. By Propositions 1.1(i) and 4.9, MAD(κ, cf κ, cf κ) ∩ (κ,∞) 6= 0, so the corollary
follows by 4.1.

The next result is in Milner–Prikry [87, p. 165].

Proposition 4.18. Suppose that κ is singular , A ⊆ [κ]κ is κ-ad , and |A | = cf κ. Then
A is not mad. Hence cf κ 6∈ MAD(κ), and so aκ > cf κ.

Proof. Assume the hypothesis; say A = {Aξ : ξ < cf κ}. Let κξ ↑ κ for ξ < cf κ, with
κ0 = ω. By induction, for each ξ < cf κ choose

Bξ ⊆ Aξ \
( ⋃

η<ξ

Aη ∪
⋃

η<ξ

Bη

)

of size κξ. Clearly
⋃
ξ<cf κBξ has size κ and its intersection with each Aξ is of size less

than κ, for each ξ < cf κ.

The following is due to Tarski; see Baumgartner [76, Theorem 2.3].

Proposition 4.19. Suppose that 1 < ν ≤ κ ≥ ω, and let µ be minimum such that
κ < νµ. Then MAD(κ, µ, µ) and MAD(κ, cf µ, cf µ) both have members ≥ νµ.
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Proof. First statement: Let T =
⋃
α<µ

αν. Thus |T | ≤ κ. It suffices to exhibit a family
F ⊆ [T ]µ which is µ-ad and of size νµ. Let

F = {{f�α : α < µ} : f ∈ µν}.
Second statement: this follows from the first if µ is regular. Suppose that µ is singular,
and let 〈να : α < cf µ〉 be a strictly increasing sequence of cardinals with supremum µ.
Let T ′ =

⋃
α<cf µ

ναν, and let

F = {{f�να : α < cf µ} : f ∈ µν}.
The following is Corollary 2.11 of Baumgartner [76].

Corollary 4.20. If κ is an infinite cardinal and λ is the least cardinal such that λ ≥ κ
and λ 6∈ AD(κ), then λ is regular.

Proof. Obviously κ ∈ AD(κ). So the result follows by Corollary 2.9.

Corollary 4.21. Suppose that κ, λ, λ′, µ are cardinals, with κ, λ′, µ infinite. Also sup-
pose that cf µ ≤ κ, κ = ℵα, λ<µ < ℵα+cfµ, λ<µ < λµ, λ′ ≤ λµ, and cf λ′ > λ<µ. Then
λ′ ∈ AD(κ, cf µ, cf µ).

Proof. Apply 4.19 with ν and κ replaced by λ and λ<µ respectively. Then the µ of 4.19
is our µ as well, and so λµ ∈ AD(λ<µ, cf µ, cf µ). Hence λ′ ∈ AD(λ<µ, cf µ, cf µ). Let %
be minimum such that λ′ ∈ AD(%, cf µ, cf µ). So % ≤ λ<µ. Now cf µ ≤ % ≤ λ′, so by 2.2,
cf λ′ = cf % or cf % = cf µ. Since cf λ′ > λ<µ ≥ %, we have cf λ′ 6= cf %, so cf % = cf µ. But
% ≤ λ<µ < ℵα+cfµ, so % ≤ κ. Hence λ′ ∈ AD(κ, cf µ, cf µ).

5. The notion MAD1

Proposition 5.1.

(i) If ν = 1, then MAD1(κ, λ, µ, ν) ⊆ {0}.
(ii) If κ > µ and κ > λ, then MAD1(κ, λ, µ, ν) = 0.

(iii) If λ < cf κ, then MAD1(κ, λ, κ, ν) = {0}.
(iv) If cf κ ≤ λ < κ and ν < κ, then MAD1(κ, λ, κ, ν) = {0}.
(v) If cf κ ≤ λ < κ, then MAD1(κ, λ, κ, κ) ⊆ [(cf κ)+,∞).
(vi) If cf κ ≤ λ < κ, then MAD1(κ, λ, κ, κ) ∩ [κ,∞) 6= 0.

(vii) If µ < κ and 1 < ν, then MAD1(κ, κ, µ, ν) ⊆ [κ,∞).
(viii) If 1 < ν < κ, then MAD1(κ, κ, κ, ν) ⊆ [κ,∞).

(ix) If κ is regular , then MAD1(κ) ⊆ [κ+,∞).

Proof. (i) is clear.
Under the assumptions of (ii), there is no partition of κ into λ sets, each of power µ.

For (iii), if D is a partition of κ into λ sets each of power κ, then D is [κ]κ, ν-mad. The
same is true under the assumptions of (iv). In fact, suppose that Γ ∈ [κ]κ and |Γ ∩X| < ν

for all X ∈ D . Then Γ =
⋃
X∈D(Γ ∩X), which has size at most λ · ν < κ, contradiction.

We turn to (v). Assume that cf κ ≤ λ < κ. Suppose that % ∈ MAD1(κ, λ, κ, κ). Ac-
cordingly, let D be a partition of κ into λ sets, each of size κ; say that D = {Dα : α < λ},
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without repetitions, and let A be such that |A | = %, D ∩A = 0, D ∪A is κ-mad. Say
A = {Aξ : ξ < %} without repetitions. Say κξ ↑ κ for ξ < cf κ.

First suppose that % < cf κ. Now |A ∩ Dα| < κ for all A ∈ A and α < λ, so
|Dα ∩

⋃
A∈A A| < κ for all α < λ. For each ξ < cf κ choose Cξ ⊆ Dξ \

⋃
A∈A A such that

|Cξ| = κξ. Let B =
⋃
ξ<cfκ Cξ. Then B ∈ [κ]κ, B∩A = 0 for all A ∈ A , and |B∩Dξ| < κ

for all α < λ, contradiction.
Second, suppose that % = cf κ. We claim

(1) ∀ξ, η, θ < cf κ ∃α ∈ λ \max{ξ + 1, η + 1, θ + 1} [|Aξ ∩Dα| ≥ κη].

For, assume otherwise; choose ξ, η, θ < cf κ such that for all α ∈ λ\max{ξ+1, η+1, θ+1}
we have |Aξ ∩Dα| < κη. Hence

∣∣∣
⋃
{Aξ ∩Dα : α ∈ λ \max{ξ + 1, η + 1, θ + 1}}

∣∣∣ ≤ λ · κη < κ.

So ∣∣∣
⋃
{Aξ ∩Dα : α < max{ξ + 1, η + 1, θ + 1)}}

∣∣∣ = κ.

But |Aξ ∩Dα| < κ for all α < max{ξ+1, η+1, θ+1}, and max{ξ+1, η+1, θ+1} < cf κ,
contradiction. So (1) holds.

Now we define Bξ ⊆ κ and αξ < cf κ for ξ < cf κ so that always |Bξ| = κξ. Suppose
defined for all η < ξ. Then

Eξ :=
⋃

η<ξ

(Aξ ∩Aη) ∪
⋃

η<ξ

Bη ∪ κ+
ξ

has size less than κ; say that its size is less than κτ , where ξ < τ < cf κ. By (1), choose
αξ ∈ λ \max{η+ 1, sup{αη : η < ξ}+ 1} so that |Aξ ∩Dαξ | ≥ κτ . Choose Bξ ⊆ Aξ ∩Dαξ

so that |Bξ| = κξ and Bξ ∩ Eξ = 0.
Let B =

⋃
ξ<cfκBξ. Then |B| = κ, |B ∩ Aξ| < κ for all ξ < cf κ (since for η > ξ we

have Bη ∩Aξ = Bη ∩Aξ ∩Aη ⊆ Bη ∩Eη = 0), B ∩Dαξ = Bξ, which has size less than κ,
for each ξ < cf κ, and B ∩ Dβ = 0 for all β ∈ λ \ {αξ : ξ < cf κ}. Thus D ∪ A is not
κ-mad, contradiction. So (v) holds.

Next, we take (vi); assume that cf κ ≤ λ < κ. Let ω ≤ κα ↑ κ for α < cf κ. Let D be
a partition of κ into λ sets each of size κ; say D = {Dα : α < λ}. For each α < cf κ, let
〈Eαβ : β < κ〉 be a partition of Dα into sets of size κ. For all β < κ let Aβ be defined by
requiring that Aβ ∩Dα is a subset of Eαβ of size κα for each α < cf κ, while Aβ ∩Dα = 0
if cf κ ≤ α < λ. Thus |Aβ | = κ, the Aβ ’s are pairwise disjoint, and |Aβ ∩Dα| < κ for all
β < κ and α < cf κ, as desired.

For (vii), assume that D is a partition of κ into κ sets each of size µ < κ, A ⊆ [κ]µ,
D∩A = 0, D∪A is ν-ad, and |A | < κ. For each X ∈ A let MX = {Y ∈ D : X∩Y 6= 0}.
Clearly |MX | ≤ µ for each X ∈ A . Hence

⋃
X∈A MX has fewer than κ elements. So there

is a subset Z of κ \ ⋃⋃X∈A MX of size µ which has at most one element in common
with each member of D , and is disjoint from each member of A . Thus D ∪ A is not
[κ]µ, ν-mad.

For (viii), assume that D is a partition of κ into κ sets each of size κ, A ⊆ [κ]κ,
D ∩A = 0, D ∪A is ν-ad, and |A | < κ. For each D ∈ D the set {D ∩ A : A ∈ A } has
size less than κ, and each set D∩A has size less than ν, so

⋃
A∈A (D∩A) has fewer than
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κ elements; so choose aD ∈ D \
⋃
A∈A (D ∩A). Let E = {aD : D ∈ D}. Now |D | = κ, so

|E| = κ. Since |E ∩X| < ν for all X ∈ D ∪A , this shows that D ∪A is not [κ]κ, ν-mad.
Finally, (ix) holds by Proposition 2.6.

Proposition 5.2. MAD2(κ, µ, ν) = MAD1(κ, κ, µ, ν).

Proof. For ⊆, let f : κ × µ → κ be one-one and onto. Let % ∈ MAD2(κ, µ, ν); say
% = |A |, where ∀α < κ ({α} × µ 6∈ A ), and A ∪ {{α} × µ : α < κ} is [κ × µ]µ, ν-mad.
Let D = {f [{α} × µ] : α < κ} and B = {f [X] : X ∈ A }. Thus B is as in the definition
of MAD1(κ, κ, µ, ν), and |A | = |B|, as desired.

For the other direction, suppose that % ∈ MAD1(κ, κ, µ, ν); say |A | = %, D is a
partition of κ into κ sets of size µ, A ∩D = 0, and A ∪D is [κ]µ, ν-mad. Say D = {Xα :
α < κ} without repetitions. Let g : κ→ κ×µ be such that g[Xα] = {α}×µ for all α < κ.
Then set B = {g[Y ] : Y ∈ A }.

Proposition 5.3. MAD1(κ, κ, µ, λ) ⊆ MAD(κ, µ, ν) if 1 < ν, and (µ < κ, ν < κ, or κ
is regular).

Proof. By Proposition 5.1(vii)–(ix).

Proposition 5.4. If κ is regular , then MAD(κ) ∩ [κ,∞) = MAD1(κ).

Proof. By Propositions 5.1(ix) and 5.3, it only remains to prove ⊆. Suppose that A is
[κ]κ, κ-mad and |A | ≥ κ. By 2.6 we have |A | > κ. Let X ∈ κA be one-one. We define
〈αζ : ζ < κ〉. Let ζ < κ be given. For every ξ < ζ choose βξ < κ such that Xξ ∩Xζ ⊆ βξ.
Let αζ = (supξ<ζ βξ) ∪ (ζ + 1). Thus

(∗) For all ξ, ζ < κ, if ξ < ζ, then Xξ ∩Xζ ⊆ αζ ; moreover, ζ < αζ .

Now define, for any ζ < κ,

Yζ =
{

(Xζ \ αζ) ∪ {ζ} if ζ 6∈ ⋃ξ<ζ Yξ,
Xζ \ αζ otherwise.

If ξ < ζ < κ, there are two possibilities. If ζ ∈ ⋃λ<ζ Yλ, then

Yξ ∩ Yζ ⊆ ((Xξ \ αξ) ∪ {ξ}) ∩ (Xζ \ αζ) = 0.

If ζ 6∈ ⋃λ<ζ Yλ, then

Yξ ∩ Yζ ⊆ ((Xξ \ αξ) ∪ {ξ}) ∩ ((Xζ \ αζ) ∪ {ζ}) = 0.

It follows that 〈Yζ : ζ < κ〉 is a partition. Let A ′ = A \ {Xζ : ζ < κ}. Clearly A ′ ∪ {Yζ :
ζ < κ} is [κ]κ, κ-mad.

Proposition 5.5. MAD(κ, µ, µ) = MAD1(κ, κ, µ, µ) if κ is regular and µ < κ.

Proof. Again, we only need to prove ⊆. Let A be [κ]µ, µ-mad.

(1) We may assume that ∀α < κ ∃X ∈ A (|X ∩ α| < µ).

To prove this, we consider two cases.



20 J. D. Monk

Case 1: ∀α < κ ∃β > α ∃X ∈ A (|X ∩β| = µ and |X \β| = µ). Now we define Xζ ∈ A

and βζ < κ by induction, for each ζ < κ. Suppose defined for all ξ < ζ. Choose

βζ >
⋃

ξ<ζ

βξ ∪
⋃

ξ<ζ

supXξ

and Xζ ∈ A such that |Xζ ∩βζ | = µ and |Xζ \βζ | = µ. The second part of the definition
of βζ ensures that the Xζ ’s are distinct. In A , replace each Xζ by Xζ ∩ βζ and Xζ \ βζ .
The resulting set A ′ is still [κ]µ, µ-mad, and (1) now holds.

Case 2: ∃α < κ ∀β > α ∀X ∈ A (|X ∩ β| < µ or |X \ β| < µ). We show that (1)
holds for A itself. Let γ < κ be given. Choose β > γ, α, and let Y ∈ [κ \ β]µ. Choose
X ∈ A such that |X ∩ Y | ≥ µ. Hence |X \ β| ≥ µ. It follows that |X ∩ β| < µ, and hence
|X ∩ γ| < µ, as desired.

Thus (1) holds, and we make the indicated assumption.
Now we define Xξ ∈ A for all ξ < κ. Suppose that Xξ has been defined for all ξ < ζ.

Let Yζ =
⋃
ξ<ζ(Xξ ∪ ζ). Note that sup(Yζ) < κ, since µ < κ. Choose Xζ ∈ A such that

|Xζ ∩ sup(Yζ)| < µ. This finishes the definition of the Xζ ’s. Clearly they are all distinct.
Next, define

X ′ζ = (Xζ ∪ {ζ}) \ Yζ .
Then

(2) If ξ < ζ < κ, then X ′ξ ∩X ′ζ = 0.

For, suppose that α ∈ X ′ξ ∩ X ′ζ . Then α ∈ Xξ ∪ {ξ} ⊆ Yζ because α ∈ X ′ξ, and this
contradicts α ∈ X ′ζ . So (2) holds.

Now

(3) ζ ∈ ⋃ξ≤ζ X ′ξ for all ζ < κ.

In fact, suppose that ζ 6∈ ⋃ξ≤ζ X ′ξ. Now ζ ∈ Xζ ∪{ζ} but ζ 6∈ X ′ζ , so ζ ∈ Yζ . Hence there
is a ξ < ζ such that ζ ∈ Xξ; take the least such ξ. Then ζ 6∈ Yξ, so ζ ∈ X ′ξ, contradiction.

Now let A ′ = (A \ {Xζ : ζ < κ}) ∪ {X ′ζ : ζ < κ}. Clearly A ′ is still µ-ad. Suppose
that Y ∈ [κ]µ. Choose Z ∈ A such that |Y ∩ Z| = µ. If Z 6∈ {Xζ : ζ < κ}, this is
fine. Suppose that Z = Xζ with ζ < κ. Now Xζ \ Yζ ⊆ X ′ζ , so Xζ \ X ′ζ ⊆ Yζ . Clearly
|Xζ ∩ Yζ | < µ, so |Xζ \X ′ζ | < µ. Since |Y ∩Xζ | = µ, it follows that |Y ∩X ′ζ | = µ.

So A ′ is [κ]µ, µ-mad, and it includes a partition C of κ into κ sets of size µ, as desired
(see also Proposition 5.1(vii)).

Proposition 5.6. If κ is regular , then MAD(κ) ∩ [κ,∞) ⊆ MAD(κ+, κ, κ).

Proof. Let λ ∈ MAD(κ)∩ [κ,∞). Note by Proposition 2.6 that κ < λ. Now we construct
Aα for κ ≤ α < κ+ so that the following conditions hold:

(1) Aα is [α]κ, κ-mad.
(2) If κ ≤ β < α, then Aβ ⊆ Aα.
(3) |Aα| = λ.
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To start with, let Aκ be obtained by the definition of MAD(κ) so that (1) and (3) hold;
(2) does not apply yet. Now suppose that κ < α < κ+ and Aβ has been defined for all
β ∈ [κ, α).

Case 1: α is a successor ordinal β + 1. Let Aα = Aβ . Clearly (1)–(3) continue to hold.

Case 2: α is a limit ordinal, and cf α < κ. Let Aα =
⋃
κ≤β<α Aβ . By (2) it is clear

that Aα is κ-ad. Suppose now that Γ ∈ [α]κ. Let 〈βξ : ξ < cf α〉 be a strictly increasing
sequence of ordinals with supremum α, and with β0 ≥ κ. Then there is a ξ < cf α such
that |Γ ∩ βξ| = κ. It follows that there is an X ∈ Aβξ such that |Γ ∩X| = κ. Thus Aα

is [α]κ, κ-mad. So (1) holds. Clearly (2) holds, as does (3).

Case 3: α is a limit ordinal, cf α = κ, and ∃β < α ∀γ ∈ (β, α) [cf γ < κ]. Then α

must have the form γ + κ for some γ. Note that Aδ = Aγ for all δ ∈ α \ γ. Let A be
[α \ γ]κ, κ-mad and of size λ. Then we set Aα = Aγ ∪A . Clearly (1)–(3) hold.

Case 4: α is a limit ordinal, cf α = κ, and ∀β < α ∃γ ∈ (β, α) [cf γ = κ]. Then there is
a continuous strictly increasing sequence 〈βξ : ξ < κ〉 of ordinals with supremum α, with
κ = β0, and with |βξ+1 \ βξ| = κ for every ξ < κ. By Proposition 5.4, λ ∈ MAD1(κ).
Hence let A and D be as in the definition of MAD1(κ), with |D | = κ and |A | = λ. Let
〈Dξ : ξ < κ〉 be a one-one enumeration of D . Let f be a one-one function mapping κ

onto α such that f [D0] = κ and f [D1+ξ] = βξ+1 \ βξ for every ξ < κ. Then we define

Aα =
⋃

κ≤γ<α
Aγ ∪ {f [a] : a ∈ A }.

(5) Aα is κ-ad.

For, suppose that x and y are distinct elements of Aα. If both are in
⋃
κ≤γ<α Aγ , then

they are both in Aγ for some γ ∈ [κ, α), and so |x ∩ y| < κ. Suppose that x ∈ Aγ with
γ ∈ [κ, α), and y = f [a] with a ∈ A . Choose ξ < κ so that γ < βξ. Then

x ∩ y ⊆
⋃

η<ξ

(βη+1 \ βη) ∩ y ⊆ f
[( ⋃

η<ξ

Dη

)
∩ a
]
,

which has size less than κ. If x = f [a] and y = f [b] with a, b ∈ A , clearly |x∩ y| < κ. By
symmetry, these are all possibilities.

(6) Aα is [α]κ, κ-mad.

For, let x ∈ [α]κ.

Subcase 1: |x∩ (βξ+1 \βξ)| = κ for some ξ < κ. Choose y ∈ Aβξ+1 such that |x∩y| = κ.

Subcase 2: x ∩ (βξ+1 \ βξ) has size less than κ for all ξ < κ. So, |f−1[x] ∩Dξ| < κ for
all ξ < κ. Choose a ∈ A such that |f−1[x] ∩ a| = κ. So |x ∩ f [a]| = κ.

The construction is completed. Clearly
⋃
α<κ+ Aα is [κ+]κ, κ-mad, as desired.

Corollary 5.7. If κ is regular , then aκ = aκ+κκ.

Proof. By Proposition 5.6 we have aκ ≥ aκ+κκ, and by Proposition 4.10, aκ+κκ ≥ δ for
some δ ∈ MAD(κ) ∩ [κ,∞), so also aκ+κκ ≥ aκ.
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CONSISTENCY RESULTS

There are several natural consistency questions and results concerning the existence of
models of ZFC with special MAD properties. These concern:

(1) Models where |MAD(κ, µ, ν)| is small and all members of MAD(κ, µ, ν) are small.
(2) Models with |MAD(κ, µ, ν)| small, but the members of MAD(κ, µ, ν) large.
(3) Models where MAD(κ, µ, ν) has large members.
(4) Models where |MAD(κ, µ, ν)| is large.
(5) Models in which MAD(κ, µ, ν) is specified in advance.

As will be seen, there are several open questions in connection with the known results.
We survey the various consistency results now. Those given with details in the literature
will not be reproved here, but several of the consistency proofs for the countable case can
be easily generalized, and we give the details.

• First, the notions can be completely described under GCH, and we give this de-
scription in Section 6. Models of GCH are of type (1).
• MA gives models of type (2). The following theorem is due to Wage [79].

Theorem. (MA) Assume that ω ≤ µ < 2ω, and 〈Tα : α < µ〉 is a system of countable
almost disjoint subsets of some cardinal κ. Then there is an M ⊆ κ such that |M | = κ

and M ∩ Tα is finite for all α < µ.

Corollary. (MA)
(i) If λ ∈ MAD(κ, ω, ω), then λ ≥ 2ω.

(ii) MAD(ω) = (0, ω) ∪ {2ω}.
Problem 6. Is there a model in which for every infinite cardinal κ, if κω > κ, 2ω then
MAD(κ, ω, ω) = {κω}?
Problem 7. What can one say along these lines for the general notion MAD(κ, µ, ν)?

• Theorem 6.1 of Baumgartner [76] is relevant to (3). That theorem implies that if M
is a model of GCH, and λ ≤ µ ≤ κ ≤ % are cardinals in M such that λ and κ are
regular, then there is a generic extension preserving cofinalities in which aκµλ ≥ %.
• Modifying the argument of this theorem of Baumgartner, we can give a result of

type (4) for MAD(κ, κ, ν); this is done in Section 7.
• Blass [93] gave a result of type (5) for the case of all three cardinals equal to ω. We

generalize this to MAD(κ) for κ regular, and to MAD(κ, µ, µ), in Sections 8 and 9.

6. MAD families under GCH

GCH treats question (1) in the above list. Theorem 3.4 of Baumgartner [76] implies the
following:

Proposition 6.1. (GCH) MAD(κ, µ, ν) ∩ (κ,∞) 6= 0 iff ν = µ and cf µ = cf κ.

Proof. ⇒: Say λ ∈ MAD(κ, µ, ν) ∩ (κ,∞). Then κ+ ∈ AD(κ, µ, ν).
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Suppose that ν < µ. Then there is a µ′ ∈ [ν, µ] with cf µ′ 6= cf κ. In particular,
µ′ < κ. By 1.2, κ+ ∈ AD(κ, µ′, ν). Thus cf κ 6= cf κ+ and cf κ 6= cf µ′, so by 2.2 there is
a % ∈ [µ′, κ) such that κ+ ∈ AD(%, µ′, ν). Now κ+ ≤ %ν by 2.4, %ν ≤ %+ by GCH, and
%+ ≤ κ, contradiction. Thus ν = µ.

Suppose that cf µ 6= cf κ. By 2.2, there is a % ∈ [µ, κ) such that κ+ ∈ AD(%, µ, ν).
Hence κ+ ≤ %ν by 2.4, and %ν ≤ %+ ≤ κ by GCH, contradiction.
⇐: If κ is regular, then µ ≤ κ and cf µ = cf κ imply that µ = κ. We then have

MAD(κ, κ, κ)∩(κ,∞) 6= 0 by 2.6. Suppose that κ is singular. Then the desired conclusion
holds by 4.16 and 4.17.

Together with other results above, this gives a complete description of MAD under
GCH, where the sets are as small as possible:

Proposition 6.2. (GCH)

(i) If κ is regular and µ < κ, then MAD(κ, µ, ν) = {κ}.
(ii) If κ is singular and ν < µ < κ, then MAD(κ, µ, ν) = {κ}.

(iii) If κ is singular , µ < κ, and cf µ 6= cf κ, then MAD(κ, µ, µ) = {κ}.
(iv) If κ is singular , µ < κ, and cf µ = cf κ, then MAD(κ, µ, µ) = {κ+}.
(v) If ν < κ, then MAD(κ, κ, ν) = [1, κ].
(vi) If κ is regular , then MAD(κ) = [1, κ) ∪ {κ+}.

(vii) If κ is singular , then MAD(κ) = [1, cf κ) ∪ (cf κ, κ+].

Proof. (i): By 1.1(ii) and 6.1.
(ii): By 1.1(ii) and 6.1.
(iii): By 1.1(ii) and 6.1.
(iv): By 1.1(ii), 2.4, 4.16, and 6.1.
(v): By 1.1(iii) and 6.1.
(vi): By 1.1(iv), 2.4, and 2.6.
(vii): By 1.1(iv) we have [1, cf κ) ⊆ MAD(κ). By 4.18, cf κ 6∈ MAD(κ). If ν is regular

and cf κ < ν < κ, by 4.13 choose δ ∈ MAD(κ) such that ν ≤ δ ≤ νcfκ. But νcfκ = ν by
GCH, so ν ∈ MAD(κ). By 4.6, all singular cardinals in (cf κ, κ) are in MAD(κ). By 4.15,
also κ ∈ MAD(κ). Finally, κ+ ∈ MAD(κ) by 6.1.

7. Many members of MAD(κ, κ, ν)

For the remainder of the notes we shall refer to Kunen [80] for basic notions and results
concerning forcing.

Theorem 7.1. Suppose that M is a model of GCH , and in M we have infinite cardinals
κ, ν, and λ with ν ≤ κ < λ, where ν and κ are regular. Then there is a generic extension
M [G] of M preserving cofinalities and cardinals such that in M [G], every regular cardinal
in (κ, λ] is a member of MAD(κ, κ, ν).

The proof of this theorem will occupy all of this section. As mentioned above, it is a
generalization of Theorem 6.1 of Baumgartner [76], and the proof also follows the lines of
his proof. He worked with only one cardinal λ and produced a generic extension preserving
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cofinalities such that in the extension λ ∈ AD(κ, κ, ν). This was done by starting with
an extension in which λ ∈ AD(κ, κ, κ) and thinning out the almost disjoint family. So,
we do something similar, except in starting with a whole set of cardinals.

To start with, we work in ZFC. Assume that κ, ν, λ are infinite cardinals with ν and κ
regular, ν ≤ κ < λ. We define

O = {α : α is a limit ordinal and α ≤ λ and κ < cf α}.
This is the set which takes the place of Baumgartner’s λ. Let F := 〈F (α, β) : α ∈ O,
β < α〉 be a sequence of subsets of κ, possibly with repetitions. Now for µ regular and
ν ≤ µ ≤ κ, let Q′(κ, µ, F ) be the set of all functions f such that the following two
conditions hold:

(1) dmn(f) ∈ [O]<µ;
(2) for all α ∈ dmn(f), fα is a function, dmn(fα) ∈ [α]<µ, and for all β ∈ dmn(fα),

fα(β) ∈ [F (α, β)]<µ.

For f, g ∈ Q′(κ, µ, F ) we write f ≤ g iff the following conditions hold:

(3) dmn(g) ⊆ dmn(f);
(4) for every α ∈ dmn(g),

(a) dmn(gα) ⊆ dmn(fα);
(b) gα(β) ⊆ fα(β) for all β ∈ dmn(gα);
(c) gα(β) ∩ gα(γ) = fα(β) ∩ fα(γ) for all distinct β, γ ∈ dmn(gα).

Let K be the set of all regular cardinals µ such that ν ≤ µ ≤ κ. Suppose that µ ∈ K.
Then Q(κ, µ, F ) is the set of all functions f ∈ ∏µ≤%∈K Q

′(κ, %, F ) such that the following
condition holds (where for clarity the value of f at % is written as f %):

(5) If %, %′ ∈ K and µ ≤ % ≤ %′, then dmn(f%) ⊆ dmn(f%
′
), and for all α ∈ dmn(f%),

dmn(f%α) ⊆ dmn(f%
′
α ), and for any β ∈ dmn(f%α), f%α(β) ⊆ f%′α (β).

For f, g ∈ Q(κ, µ, F ) we write f ≤ g iff f% ≤ g% for all % ∈ K such that µ ≤ %. For any
µ ∈ K we let

Qµ(κ, F ) = {f�[ν, µ] ∩K) : f ∈ Q(κ, ν, F )}.
For f, g ∈ Qµ(κ, F ) we define f ≤ g iff f% ≤ g% for all % ∈ [ν, µ] ∩K.

Finally, Q(κ, µ) stands for Q(κ, µ, F ) with F (α, β) = κ for all β < α ∈ O; similarly
for Q′(κ, µ) and Qµ(κ).

Lemma 7.2. If µ ∈ K, µ<µ = µ, and |F (α, β) ∩ F (α, γ)| ≤ µ whenever α ∈ O and
β < λ < α, then Qµ(κ, F ) has the µ+-chain condition. In particular , if κ<κ = κ, then
Q(κ, ν) has the κ+-chain condition.

Proof. Suppose to the contrary that I is a set of pairwise incompatible elements of
Qµ(κ, F ), with |I| = µ+. Now for any f ∈ I we have f = g�([ν, µ] ∩ K) for some
g ∈ Q(κ, ν, F ), and so fµ = gµ ∈ Q′(κ, µ, F ), and hence the function fµ is a member
of Q′(κ, µ, F ), and so its domain has size < µ. By the ∆-system theorem, we may as-
sume that 〈dmn(fµ) : f ∈ I〉 is a ∆-system, say with kernel D. For all f ∈ I we have
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|⋃α∈dmn(fµ) dmn(fµα )| < µ, so we may assume that
〈 ⋃

α∈dmn(fµ)

dmn(fµα ) : f ∈ I
〉

is a ∆-system, say with kernel D′. And for each f ∈I the set
⋃
α∈dmn(fµ)

⋃
β∈dmn(fµα ) f

µ
α (β)

has size less than µ, so we may assume that
〈 ⋃

α∈dmn(fµ)

⋃

β∈dmn(fµα )

fµα (β) : f ∈ I
〉

is a ∆-system, say with kernel R. Let

X =
⋃

α∈D, β,γ∈D′, β 6=γ
F (α, β) ∩ F (α, γ).

Since |D| < µ, |D′| < µ, and each |F (α, β) ∩ F (α, γ)| ≤ µ, we have |X| ≤ µ. Let
Y = X ∪R. So |Y | ≤ µ. Now we claim:

(∗) There exist I ′ ∈ [I]µ
+

and a function f ∈ J :=
∏
%∈[ν,µ]∩K

D(D
′
([Y ]<µ)) such that

∀g ∈ I ′ ∀% ∈ dmn(g) ∀α ∈ D ∩ dmn(g%) ∀β ∈ D′ ∩ dmn(g%α) [g%α(β) ∩ Y = f%α(β)].

To prove this, first suppose that µ = σ+ for some σ. For every g ∈ I define a function gf

as follows: dmn(gf) = K ∩ [ν, µ]. For each % ∈ [ν, µ] ∩K let dmn(gf%) = D, and for any
α ∈ D let dmn(gf%α) = D′. Then for % ∈ [ν, µ] ∩K, α ∈ D, and β ∈ D′ let

gf
%
α(β) =

{
g%α(β) ∩ Y if α ∈ dmn(g%) and β ∈ dmn(g%α),
∅ otherwise.

Note that g ∈ Qµ(κ, F ), and hence there is a k ∈ Q(κ, ν, F ) such that g = k�([ν, µ]∩K).
Hence g% = k% ∈ Q′(κ, %, F ), and g%α(β) ∈ [F (α, β)]<µ. So gf

%
α(β) ∈ [Y ]<µ.

Thus gf ∈ J . Note that J has size at most µ since |[ν, µ]| ≤ σ < µ. Hence (∗) follows
in the case that µ is a successor cardinal.

Now assume that µ is a limit cardinal, and hence is weakly inaccessible. Temporarily
fix g ∈ I. We claim:

(∗∗) There is a τ(g) ∈ [ν, µ) such that gτ(g) = gξ for all ξ ∈ [τ(g), µ).

We can see this step by step as follows. If ν ≤ σ ≤ τ < µ and σ, τ ∈ K, then dmn(gσ) ⊆
dmn(gτ ) ⊆ dmn(gµ) and |dmn(gµ)| < µ. Hence there is a σ(0, g) < µ with σ(0, g) ∈ K
such that dmn(gσ(0,g)) = dmn(gτ ) for all τ ∈ [σ(0, g), µ)∩K. Now for all α ∈ dmn(gσ(0,g))
and any τ ∈ [σ(0, g), µ) ∩K we have dmn(gσ(0,g)

α ) ⊆ dmn(gτα) ⊆ dmn(gµα) and |dmn(gµα)|
< µ, so there is a σ(1, α, g) ∈ [σ(0, g), µ) ∩ K such that dmn(gσ(1,α,g)

α ) = dmn(gτα) for
all τ ∈ [σ(1, α, g), µ). Let σ(2, g) = supα∈dmn(gσ(0,g)) σ(1, α, g). So σ(2, g) < µ, and for

all α ∈ dmn(gσ(2,g)) and all τ ∈ [σ(2, g), µ) we have dmn(gσ(2,g)
α ) = dmn(gτα). For all

α ∈ dmn(gσ(2,g)), τ ∈ [σ(2, g), µ), and β ∈ dmn(gσ(2,g)
α ) we have gσ(2,g)

α (β) ⊆ gτα(β) ⊆
gµα(β), and |gµα(β)| < µ, so there is a σ(3, α, β, g) ∈ [σ(2, g), µ) ∩ K such that gξα(β) =
g
σ(3,α,β,g)
α (β) for all ξ ∈ [σ(3, α, β, g), µ), α ∈ dmn(gσ(3,α,β,g)), and β ∈ dmn(gσ(3,α,β,g)

α ).
Let τ(g) = supα∈dmn(gσ(2,g)) sup

β∈dmn(gσ(2,g)
α ) σ(3, α, β, g). Then τ(g) < µ, and for all

ξ ∈ [τ(g), µ), α ∈ dmn(gτ(g)), and β ∈ dmn(gτ(g)
α ) we have g

τ(g)
α (β) = gξα(β). Hence

gτ(g) = gξ for all ξ ∈ [τ(g), µ), as desired in (∗∗).
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Now we unfix g. Let I ′′′ ∈ [I]µ
+

be a subset of I on which τ(g) has a constant value τ .
Now for any g ∈ I ′′′ define gf ∈ J ′ :=

∏
%∈[ν,τ ]∩K

D(D
′
([Y ]<µ)) as follows. For any

% ∈ [ν, τ ] ∩K, α ∈ D, β ∈ D′, let

gf
%
α(β) =

{
g%α(β) ∩ Y if α ∈ dmn(g%) and β ∈ dmn(g%α),
0 otherwise.

Since |J ′| ≤ µ, let I ′′ ∈ [I ′′′]µ
+

be such that gf is constant, say with value f ′, on I ′′.
For any g ∈ I ′′ define gh ∈ D(D

′
([Y ]<µ)) by setting, for any α ∈ D and β ∈ D′,

ghα(β) =
{
gµα(β) ∩ Y if α ∈ dmn(gµ) and β ∈ dmn(gµα),
0 otherwise.

Now |D(D
′
([Y ]<µ))| ≤ µ, so there is an I ′ ∈ [I ′′]<µ such that gh is constant, say equal

to h, on I ′.
Define f ∈ J by: f% = (f ′)% for % ∈ [ν, τ ], f% = (f ′)τ for % ∈ (τ, µ), and fµ = h. Then

(∗) holds. Namely, if g ∈ I ′, % ∈ dmn(g), α ∈ D ∩ dmn(g%), and β ∈ D′ ∩ dmn(g%α), then

g%α(β) ∩ Y =




gf

%
α(β) = (f ′)%α(β) = f%α(β) if ν ≤ % ≤ τ ,

gτα(β) ∩ Y = gf
τ
α(β) = (f ′)τα(β) = f%α(β) if τ < % < µ,

ghα(β) = hα(β) = fµα (β) if % = µ.

Thus, indeed, (∗) holds also when µ is inaccessible.
Choose I ′ and f as in (∗). Take any two distinct g, h ∈ I ′. We claim that they are

compatible (contradiction!). To see this, for % ∈ [ν, µ] ∩ K let dmn(k%) = dmn(g%) ∪
dmn(h%). For each α ∈ dmn(k%) let

k%α =




g%α if α ∈ dmn(g%) \ dmn(h%),
h%α if α ∈ dmn(h%) \ dmn(g%),
s if α ∈ dmn(g%) ∩ dmn(h%),

where dmn(s) = dmn(g%α) ∪ dmn(h%α), and for every β ∈ dmn(s),

s(β) =




g%α(β) if β ∈ dmn(g%α) \ dmn(h%α),
h%α(β) if β ∈ dmn(h%α) \ dmn(g%α),
g%α(β) ∪ h%α(β) if β ∈ dmn(g%α) ∩ dmn(h%α).

For any % ∈ (µ, κ] ∩ K let k% = kµ. Clearly k ∈ Q(κ, ν, F ). Let l = k�([ν, µ] ∩ K). By
symmetry it suffices to show that l ≤ g. Take any % ∈ [ν, µ]∩K. Only condition (4)(c) is
problematic. Take any α ∈ dmn(g%) and distinct β, γ ∈ dmn(g%α).

Case 1: α 6∈ dmn(h%). Clear.

Case 2: α ∈ dmn(h%). Thus α ∈ D.

Subcase 2.1: β, γ 6∈ h%α. Clear.

Subcase 2.2: β 6∈ dmn(h%α) but γ ∈ dmn(h%α). So γ ∈ D′, and g%α(β) ∩ h%α(γ) ⊆ R ⊆ Y .
Hence

l%α(β) ∩ l%α(γ) = g%α(β) ∩ [g%α(γ) ∪ h%α(γ)] = [g%α(β) ∩ g%α(γ)] ∪ [g%α(β) ∩ h%α(γ)]

= [g%α(β) ∩ g%α(γ)] ∪ [g%α(β) ∩ h%α(γ) ∩ Y ]

= [g%α(β) ∩ g%α(γ)] ∪ [g%α(β) ∩ f%α(γ)] (by (∗) for h)

= [g%α(β) ∩ g%α(γ)] ∪ [g%α(β) ∩ g%α(γ) ∩ Y ] (by (∗) for g)

= g%α(β) ∩ g%α(γ).
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Subcase 2.3: β, γ ∈ dmn(h%α). So β, γ ∈ D′, g%α(β)∩h%α(γ) ⊆ R ⊆ Y , g%α(γ)∩h%α(β) ⊆ Y ,
and h%α(β) ∩ h%α(γ) ⊆ X ⊆ Y . Hence

l%α(β) ∩ l%α(γ) = [g%α(β) ∪ h%α(β)] ∩ [g%α(γ) ∪ h%α(γ)]

= [g%α(β) ∩ g%α(γ)] ∪ [g%α(β) ∩ h%α(γ)] ∪ [h%α(β) ∩ g%α(γ)] ∪ [h%α(β) ∩ h%α(γ)]

= [g%α(β) ∩ g%α(γ)] ∪ [g%α(β) ∩ h%α(γ) ∩ Y ]

∪ [h%α(β) ∩ g%α(γ) ∩ Y ] ∪ [h%α(β) ∩ h%α(γ) ∩ Y ]

= [g%α(β) ∩ g%α(γ)] ∪ [g%α(β) ∩ f%α(γ)] ∪ [f%α(β) ∩ g%α(γ)] ∪ [f%α(β) ∩ f%α(γ)]

= [g%α(β) ∩ g%α(γ)] ∪ [g%α(β) ∩ g%α(γ) ∩ Y ] = g%α(β) ∩ g%α(γ).

Lemma 7.3. If µ ∈ K, then Q(κ, µ) is µ-closed.

Proof. Suppose that ν < µ and 〈ξf : ξ < ν〉 is a sequence of members of Q(κ, µ) such
that ηf ≤ ξf whenever ξ < η < ν. For any % ∈ [µ, κ] ∩K let dmn(g%) =

⋃
ξ<ν dmn(ξf%).

For each α ∈ dmn(g%) let dmn(g%α) =
⋃
ξ<ν, α∈dmn(ξf%) dmn(ξf%α). For each β ∈ dmn(g%α)

let

g%α(β) =
⋃
{ξf%α(β) : ξ < ν, α ∈ dmn(ξf%), β ∈ dmn(ξf%α)}.

Clearly g ∈ Q(κ, µ). We check (4)(c). Suppose that ξ < ν, % ∈ [µ, κ] ∩K, α ∈ dmn(ξf%),
and β and γ are distinct members of dmn(ξf%α). Suppose that δ ∈ g%α(β) ∩ g%α(γ). Then
there is an η ∈ (ξ, ν) such that α ∈ dmn(ηf%), β, γ ∈ dmn(ηf%α), and δ ∈ ηf

%
α(β)∩ ηf%α(γ).

So δ ∈ ξf
%
α(β) ∩ ξf%α(γ) since ηf ≤ ξf .

At a certain point in the proof of the next lemma we will need the following general
fact about forcing. Recall from Kunen [80, VII.2.12] the definition of the standard name
for a generic filter.

Fact 7.4. Let Γ be the standard name for a generic filter. Then s  ∃f ∈ Γ [χ(f)] iff
the set

{r : ∃f [r ≤ f and r  χ(f)]}
is dense below s.

Proof. ⇒: Assume the lhs, and suppose that t ≤ s. Let G be generic with t ∈ G. By
the lhs, choose f ∈ G such that M [G] |= χ(f). Choose k ∈ G such that k  χ(f). Take
r ≤ f, k, t. Clearly r is as desired.
⇐: Assume the rhs. Let s ∈ G, with G generic. By the rhs, choose r in the indicated

set with r ≤ s and r ∈ G. Then choose f as indicated. Then f ∈ G and M [G] |= χ(f),
as desired.

Lemma 7.5. Let G be Q(κ, ν)M -generic over M , and suppose that µ is a regular cardinal
of M such that ν ≤ µ < κ. Let

H = {f�([µ+, κ] ∩K) : f ∈ G}, J = {f�([ν, µ] ∩K) : f ∈ G}.
Then

(6) M [G] = M [H][J ];
(7) H is Q(κ, µ+)M -generic over M ;
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(8) J is Qµ(κ, F )M [H]-generic over M [H], where

F (α, β) =
⋃
{fµ+

α (β) : f ∈ H, α ∈ dmn(fµ
+

), β ∈ dmn(fµ
+

α )}
for all β < α ∈ O.

Proof. First we check (7). Clearly if f, g ∈ H then there is an h ∈ H such that h ≤ f, g.
Now suppose that f ∈ H and f ≤ g ∈ Q(κ, µ+); we want to show that g ∈ H. Say
f = f ′�([µ+, κ] ∩K) with f ′ ∈ G. It suffices to define an h ∈ Q(κ, ν) such that f ′ ≤ h

and h�([µ+, κ] ∩ K) = g. So we let g ⊆ h, and for % ∈ [ν, µ] ∩ K define dmn(h%) =
dmn(gµ

+
) ∩ dmn(f ′%), and for any α ∈ dmn(h%) let dmn(h%α) = dmn(gµ

+

α ) ∩ dmn(f ′%α ),
and for every β ∈ dmn(h%α) let h%α(β) = gµ

+

α (β) ∩ f ′%α (β).
Take any % ∈ K; we check that h% ∈ Q′(κ, ν). For % ∈ [µ+, κ] we have h% = g%,

so this is given. Suppose that % ∈ [ν, µ]. Then (1) and (2) are clear for h%. So always
h% ∈ Q′(κ, ν).

Next, we check (5). Suppose that %, σ ∈ K and % ≤ σ. If µ+ ≤ %, then (5) is OK
since h% = g% and hσ = gσ. If σ ≤ µ, then (5) holds since f ′ ∈ Q(κ, ν). So, suppose that
% ≤ µ < µ+ ≤ σ. Then

dmn(h%) = dmn(gµ
+

) ∩ dmn(f ′%) ⊆ dmn(gµ
+

) ⊆ dmn(gσ) = dmn(hσ).

For α ∈ dmn(h%),

dmn(h%α) = dmn(gµ
+

α ) ∩ dmn(f ′%α ) ⊆ dmn(gµ
+

α ) ⊆ dmn(gσα) = dmn(hσα).

For β ∈ dmn(h%α),

h%α(β) = gµ
+

α (β) ∩ f ′%α (β) ⊆ gµ+

α (β) ⊆ gσα(β) = hσα(β).

So h ∈ Q(κ, ν).
Now we check that f ′ ≤ h. Let % ∈ K. If % ∈ [µ+, κ], then f ′% = f% ≤ g% = h%,

as desired. Suppose that % ∈ [ν, µ] ∩ K. Then dmn(h%) ⊆ dmn(f ′%). Suppose that α ∈
dmn(h%). Then dmn(h%α) ⊆ dmn(f ′%α ). If β ∈ dmn(h%α), then h%α(β) ⊆ f ′%α (β). Finally, to
check (4)(c), suppose that β and γ are distinct members of dmn(h%α). Then

h%α(β) ∩ h%α(γ) = gµ
+

α (β) ∩ f ′%α (β) ∩ gµ+

α (γ) ∩ f ′%α (γ)

= gµ
+

α (β) ∩ gµ+

α (γ) ∩ f ′%α (β) ∩ f ′%α (γ)

= fµ
+

α (β) ∩ fµ+

α (γ) ∩ f ′%α (β) ∩ f ′%α (γ) (using (4)(c), since f ≤ g)

= f ′%α (β) ∩ f ′%α (γ).

So, indeed, f ′ ≤ h. It follows that g ∈ H.
Now suppose that D is a dense subset of Q(κ, µ+) in M . Let

D′ = {f ∈ Q(κ, ν) : f�([µ+, κ] ∩K) ∈ D} (in M)

We claim that D′ is dense in Q(κ, ν). For, let g ∈ Q(κ, ν). Choose f ∈ D so that
f ≤ g�([µ+, κ]∩K). Define f ′ with domain K by: f ⊆ f ′ and for % ∈ [ν, µ]∩K, f ′% = g%.
To show that f ′ ∈ Q(κ, ν), the only questionable point is (5) for ν ≤ % ≤ µ < µ+ ≤ σ ≤ κ.
Then

dmn(f ′%) = dmn(g%) ⊆ dmn(gσ) ⊆ dmn(fσ) = dmn(f ′σ),
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and for any α ∈ dmn(f ′%),

dmn(f ′%α ) = dmn(g%α) ⊆ dmn(gσα) ⊆ dmn(fσα ) = dmn(f ′σα ),

and for any β ∈ dmn(f ′%α ),

f ′%α (β) = g%α(β) ⊆ gσα(β) ⊆ fσα (β) = f ′σα (β).

So f ′ ∈ Q(κ, ν), hence f ′ ∈ D′. Clearly f ′ ≤ g. This shows that D′ is dense in Q(κ, ν).
Hence choose f ∈ D′ ∩G. So f�([µ+, κ] ∩K) ∈ D ∩H. So (7) is proved.
Now we turn to (8). Let θ be a name in M for Qµ(κ, F ). Note

(a) θM [H] ⊆M .

In fact, work in M [H]. Let f ∈ θM [H]. Let

L = {(%, α, β) : % ∈ dmn(f), α ∈ dmn(f%), β ∈ dmn(f%α)}.
Thus L ⊆ K × λ× λ, and |L| ≤ µ. Let g be a mapping of µ onto L.

We no longer work in M [H]. By (7), 7.3 and Kunen [80, VII.6.14], g ∈M , and hence
L ∈M . Now we claim that if (%, α, β) ∈ L, then f %α(β) ∈M . If f%α(β) = 0, this is obvious.
If f%α(β) 6= 0, let h be a mapping of µ onto f%α(β). By (7), 7.3 and Kunen [80, VII.6.14],
h ∈ M and hence f%α(β) ∈ M . This proves our claim. Now define f ′(%, α, β) = f%α(β)
for any (%, α, β) ∈ L. Then f ′ maps L into PM (κ), and so by (7), 7.3 and Kunen [80,
VII.6.14], f ′ ∈M . Hence f ∈M , proving (a).

Now let Γ be the standard name for a generic filter. Then the following formula
ϕ(x, α, β) expresses that x ⊆ F (α, β):

∀y ∈ x ∃f ∈ Γ [α ∈ dmn(fµ
+

) ∧ β ∈ dmn(fµ
+

α ) ∧ y ∈ fµ+

α (β)].

Thus ϕM [H](x, α, β) iff x ⊆ F (α, β).
Now let ψ(z) be the following formula:

dmn(z) = [ν, µ] ∩K ∧ ∃w [w ∈ Q(κ, ν) ∧ ∀% ∈ [ν, µ] ∩K (z% = w%)

∧ ∀α ∈ dmn(wµ) ∀β ∈ dmn(wµα) ϕ(wµα(β), α, β)].

Thus ψM [H](z) iff z ∈ Qµ(κ, F ). Now we claim:

(b) In M , if f ∈ Q(κ, µ+) and g ∈ M , then f  ψ(g) iff g ∈ Qµ(κ) and the set {h ∈
Q(κ, µ+) : g ∪ h ∈ Q(κ, ν)} is dense below f .

For ⇒, suppose that f ∈ Q(κ, µ+), g ∈ M , and f  ψ(g). Take any h ≤ f . Choose w
and k ≤ h so that w ∈ Q(κ, ν), g = w�([ν, µ] ∩ K), and for all α ∈ dmn(wµ), and all
β ∈ dmn(wµα), k  ϕ(w%α(β), α, β). Clearly then g ∈ Qµ(κ). Note that dmn(g) = [ν, µ]∩K,
while for each h ∈ Q(κ, µ+) we have dmn(h) = [µ+, κ]∩K. Now for all α ∈ dmn(gµ) and
all β ∈ dmn(gµα) we have

k  ∀γ ∈ gµα(β) ∃l ∈ Γ [α ∈ dmn(lµ
+

) ∧ β ∈ dmn(lµ
+

α ) ∧ γ ∈ lµ+

α (β)].

Fix α ∈ dmn(gµ), β ∈ dmn(gµα), and γ ∈ gµα(β). Then

k  ∃l ∈ Γ [α ∈ dmn(lµ
+

) ∧ β ∈ dmn(lµ
+

α ) ∧ γ ∈ lµ+

α (β)].

By Fact 7.4,

{r : ∃l [r ≤ l ∧ α ∈ dmn(lµ
+

) ∧ β ∈ dmn(lµ
+

α ) ∧ γ ∈ lµ+

α (β)]}
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is dense below k. Note that if r ≤ l, α ∈ dmn(lµ
+

), β ∈ dmn(lµ
+

α ), and γ ∈ lµ+

α (β), then
α ∈ dmn(rµ

+
), β ∈ dmn(rµ

+

α ), and γ ∈ rµ+

α (β). So

{r : α ∈ dmn(rµ
+

), β ∈ dmn(rµ
+

α ), γ ∈ rµ+

α (β)}
is dense below k. By µ+-closedness, it follows that for each α ∈ dmn(gµ) and β ∈ dmn(gµα)
the set

{r : α ∈ dmn(rµ
+

), β ∈ dmn(rµ
+

α ), gµα(β) ⊆ rµ+

α (β)}
is dense below k. By µ+-closedness two more times,

{r : dmn(gµ) ⊆ dmn(rµ
+

)

and ∀α ∈ dmn(gµ) [dmn(gµα) ⊆ dmn(rµ
+

α ) and ∀β ∈ dmn(gµα) [gµα(β) ⊆ rµ+

α (β)]]}
is dense below k. For l in this set, g ∪ l ∈ Q(κ, ν), as desired in (b).

For the other direction, assume the condition, and suppose that f ∈ L, with L

Q(κ, µ+)-generic. Choose h ≤ f in the indicated set, h ∈ L. So for all α ∈ dmn(gµ)
and all β ∈ dmn(gµα) we have α ∈ dmn(hµ

+
), β ∈ dmn(hµ

+

α ), and gµα(β) ⊆ hµ
+

α (β). Thus
ϕ(gµα(β), α, β) holds. Hence ψ(g) holds, as desired.

Now we start actually proving (8). Clearly if f, g ∈ J , then there is an h ∈ J such
that h ≤ f, g. Now suppose that f ∈ J and f ≤ g ∈ Qµ(κ, F )M [H]. Choose h ∈ H such
that h  ψ(g). So by (b), there is a k ∈ H with k ≤ h such that g ∪ k ∈ Q(κ, ν). Say
k = k′�([µ+, κ] ∩K) with k′ ∈ G, and say f = f ′�([ν, µ] ∩K) with f ′ ∈ G. Choose l ∈ G
with l ≤ k′, f ′. We claim that l ≤ g ∪ k (hence g ∪ k ∈ G and so g ∈ J). In fact, if
% ∈ [ν, µ] ∩K, then l% ≤ f ′% = f% ≤ g%, and for % ∈ [µ+, κ] ∩K, l% ≤ k′% = k%.

Next, suppose that D is Qµ(κ, F )M [H]-dense in M [H]. Let τ be a term such that
τH = D. Now we introduce some notation for an arbitrary f ∈ Q(κ, ν):

f (µ) = f�([µ+, κ] ∩K), f(µ) = f�([ν, µ] ∩K).

Now in M [H] we have: D ⊆ Qµ(κ, F ) ∧ ∀h ∈ Qµ(κ, F ) ∃k ∈ D (k ≤ h). Hence choose
f ∈ H such that

(c) f  ∀k ∈ τ ψ(k) ∧ ∀h [ψ(h)→ ∃k ∈ τ (k ≤ h)].

Say f = g(µ) with g ∈ G. We now claim (in M):

(d) {h ∈ Q(κ, ν) : h(µ)  h(µ) ∈ τ} is dense below g.

To prove this, take any r ≤ g. Now r(µ) ≤ f , so

(e) r(µ)  ∀k ∈ τ ψ(k) ∧ ∀h [ψ(h)→ ∃k ∈ τ (k ≤ h)].

Now

(f) r(µ) ∈ Qµ(κ) and {h ∈ Q(κ, µ+) : r(µ) ∪ h ∈ Q(κ, ν)} is dense below r(µ).

For, the first statement is clear. Now suppose that s ≤ r(µ). Then r(µ) ∪ s ∈ Q(κ, ν). For,

dmn((r(µ))
µ) = dmn(rµ) ⊆ dmn(rµ

+
) ⊆ dmn(sµ

+
)

and for any α ∈ dmn((r(µ))µ),

dmn((r(µ))
µ
α) = dmn(rµα) ⊆ dmn(rµ

+

α ) ⊆ dmn(sµ
+

α ),

and for any β ∈ dmn((r(µ))µα),
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(r(µ))µα(β) = rµα(β) ⊆ rµ+

α (β) ⊆ sµ+

α (β).

So, (f) holds.
By (f) and (b) we have r(µ)  ψ(r(µ)). Hence by (e), r(µ)  ∃k ∈ τ [k ≤ r(µ) ∧ ψ(k)].

Let L be Q(κ, µ+)-generic over M such that r(µ) ∈ L. Choose k ∈ τL such that k ≤ r(µ)

and ψL(k). Note that k ∈ M by the version of (a) for M [L]. Choose s ∈ L such that
s  k ∈ τ ∧ ψ(k) and s ≤ r(µ). By (b), choose l ≤ s such that t := k ∪ l ∈ Q(κ, ν). Thus
t(µ) = l  ψ(k), and k = t(µ), so t(µ)  ψ(t(µ)). Moreover, t ≤ r since if % ∈ [ν, µ] ∩K
then t% = k% ≤ (r(µ))% = r%, while if % ∈ [µ+, κ]∩K then t% = l% ≤ s% ≤ (r(µ))% = r%. So
(d) holds.

By (d), there is a u ∈ G such that u ≤ g and u(µ)  u(µ) ∈ τ . Hence u(µ) ∈ H, so
u(µ) ∈ J ∩D, as desired.

Thus (8) holds.
Finally, we turn to (6), where we apply Kunen [80, VII.2.9]. We have M ⊆M [G] and

H ∈M [G], so M [H] ⊆M [G]. And J ∈M [G], so M [H][J ] ⊆M [G].
For the other inclusion it suffices to show that G ∈M [H][J ]. For any function f ,

f ∈ G iff f�([µ+, κ] ∩K) ∈ H and f�([ν, µ] ∩K) ∈ J and dmn(fµ) ⊆ dmn(fµ
+

)

and ∀α ∈ dmn(fµ) [dmn(fµα ) ⊆ dmn(fµ
+

α )

and ∀β ∈ dmn(fµα ) [fµα (β) ⊆ fµ+

α (β)]].

This finishes the proof of (6) and of Lemma 7.5.

Lemma 7.6. Cofinalities are preserved in M [G], where G is Q(κ, ν)-generic over M .

Proof. By Kunen [80, VII.5.9] it suffices to get a contradiction upon assuming that τ is
regular in M but singular in M [G]. Let µ = cf τ in M [G]. Thus µ is a cardinal in M . If
µ < ν, this contradicts Lemma 7.3 and Kunen [80, VII.6.14]. If κ ≤ µ, then Q(κ, ν) has
the κ+-cc by Lemma 7.2, hence the µ+-cc, so this contradicts Kunen [80, VII.6.9] since
cf(τ)M = τ ≥ µ+. So, assume that ν ≤ µ < κ.

Let H, J , and F be as in Lemma 7.5. By Lemma 7.3, Q(κ, µ+) is µ+-closed. Hence
by Kunen [80, VII.6.14], cf τ ≥ µ+ in M [H]. Also, µ<µ = µ in M [H] by Kunen [80,
VII.6.14]. Next,

(1) |F (α, β) ∩ F (α, γ)| ≤ µ whenever β < γ < α ∈ O.

To prove this, we may assume that F (α, β) ∩ F (α, γ) 6= ∅. Then we claim

(2) There is a k ∈ H such that α ∈ dmn(kµ
+

) and β, γ ∈ dmn(kµ
+

α ).

In fact, take any ε ∈ F (α, β)∩F (α, γ). Then there are s, t ∈ H such that α ∈ dmn(sµ
+

),
β ∈ dmn(sµ

+

α ), and ε ∈ sµ+

α (β); and α ∈ dmn(tµ
+

), γ ∈ dmn(tµ
+

α ), and ε ∈ tµ+

α (γ). Take
k ∈ H such that k ≤ s, t. Clearly (2) holds for this k.

Now take any δ ∈ F (α, β) ∩ F (α, γ). Then there exist f, g ∈ H such that α ∈
dmn(fµ

+
), α ∈ dmn(gµ

+
), β ∈ dmn(fµ

+

α ), γ ∈ dmngµ
+

α , and δ ∈ fµ+

α (β) ∩ gµ+

α (γ). Take
h ∈ H such that h ≤ f, g, k. Then

δ ∈ fµ+

α (β) ∩ gµ+

α (γ) ⊆ hµ+

α (β) ∩ hµ+

α (γ) = kµ
+

α (β) ∩ kµ+

α (γ).

This proves (1).
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By Lemma 7.2, Qµ(κ, F ) has the µ+-cc. So cf τ ≥ µ+ in M [H][J ] by Kunen [80,
VII.6.9], contradiction.

Proof of Theorem 7.1. Preservation of cardinalities and cofinalities follows from Lemma
7.6. Now for α ∈ O and β < α, let

Gαβ =
⋃

f∈G,α∈dmn(fν), β∈dmn(fνα)

fνα(β).

We claim that for each α ∈ O, the system 〈Gαβ : β < α〉 is [κ]κ, ν-mad. (This will finish
the proof.) To prove this, first fix α and β, with β < α ∈ O. Then the following set is
dense:

D := {f ∈ Q(κ, ν) : α ∈ dmn(fν) and β ∈ dmn(fνα)}.
To see this, let g ∈ Q(κ, ν) be arbitrary. For each µ ∈ K let dmn(fµ) = dmn(gµ) ∪ {α}.
Then let

dmn(fµα ) =
{

dmn(gµα) ∪ {β} if α ∈ dmn(gµ),
{β} otherwise.

Finally, define

fµα (β) =
{
gµα(β) if α ∈ dmn(gµ) and β ∈ dmn(gµα),
0 otherwise.

It is clear that f ∈ D and f ≤ g. So D is dense.
Now for each γ < κ the following set is dense:

E := {f ∈ Q(κ, ν) : α ∈ dmn(fν) and β ∈ dmn(fνα) and fνα(β) ∩ (γ, κ) 6= 0}.
For, given g ∈ Q(κ, ν), by the density of D we may assume that α ∈ dmn(gν) and β ∈
dmn(gνα). Choose δ ∈ (γ, κ) \⋃ε∈dmn(gκ)

⋃
rng(gκε ). Now define f by setting dmn(fµ) =

dmn(gµ) for all µ ∈ K, and for any ξ ∈ dmn(fµ), dmn(fµξ ) = dmn(gµξ ), and for any
η ∈ dmn(fνξ ),

fνξ (η) =
{
gνξ (η) if ξ 6= α or η 6= β,
gνα(β) ∪ {δ} if ξ = α and η = β.

Clearly f ∈ Q(κ, ν). To show that f ≤ g, only (4)(c) is a problem. Suppose that η 6= β

and ϕ ∈ fµα (β) ∩ fµα (η). Thus ϕ ∈ gµα(η), so ϕ 6= δ, and hence also ϕ ∈ gµα(β), as desired.
By the density of E we have |Gαβ | = κ.
Next, suppose that β < γ < α ∈ O. We claim that |Gαβ ∩Gαγ | < ν. For, choose f ∈ G

with α ∈ dmn(fν) and β, γ ∈ dmn(fνα). Then |Gαβ ∩Gαγ | ≤ |fνα(β) ∩ fνα(γ)| < ν. In fact,
suppose that δ ∈ Gαβ ∩Gαγ . Then there exist g, h ∈ G such that α ∈ dmn(gν) ∩ dmn(hν),
β ∈ dmn(gνα), γ ∈ dmn(gνβ), δ ∈ gνα(β), and δ ∈ hνα(γ). Choose k ∈ G so that k ≤ f, g, h.
Then

δ ∈ gνα(β) ∩ hνα(γ) ⊆ kνα(β) ∩ kνα(γ) = fνα(β) ∩ fνα(γ).

It only remains to show that for each α ∈ O, 〈Gαβ : β < α〉 is maximal. First, some
notation. We write Θαβ for the term

⋃

f∈Γ, α∈dmn(fν), β∈dmn(fνα)

fνα(β),

where Γ is the standard name for a generic filter. Note that (Θαβ )G = Gαβ .
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(9) If α ∈ dmn(fν), β ∈ dmn(fνα), and γ ∈ fνα(β), then f  γ ∈ Θαβ .

For, suppose that f ∈ H with H generic. Then f ∈ ΓH . So (9) holds.
Now suppose that X ∈ [κ]κ and |X ∩ Gαβ | < ν for all β < α; we want to get a

contradiction. Let τ be a nice name for a subset of κ such that τG = X. Say τ =⋃
γ∈κ{γ}×Bγ , where each Bγ is a collection of pairwise incompatible elements of Q(κ, ν).

So |Bγ | ≤ κ for all γ ∈ κ, by 7.2. Choose

β ∈ α \
⋃

γ∈κ

⋃

f∈Bγ , α∈dmn(fκ)

dmn(fκα).

Now X ∩Gαβ ∈ [κ]<ν , so by Kunen [80, VII.6.14] we have X ∩Gαβ ∈M . Let Ω = X ∩Gαβ .
Choose f ∈ G such that

f  |τ | = κ ∧ ∀γ ∈ τ (γ ∈ Θαβ ↔ γ ∈ Ω).

Let g ≤ f with g ∈ G, α ∈ dmn(gν), and β ∈ dmn(gνα). Define

Ξ = Ω ∪
⋃

γ∈dmn(gκα)

gκα(γ) ∪
⋃

γ∈dmn(gκα)

(X ∩Gαγ ).

Note that |Ξ| < κ. Hence we can choose δ ∈ X \Ξ. Since δ ∈ X, there is an r ∈ Bδ ∩G.
Hence also there is an h ∈ G such that h ≤ g, r.
(10) If α ∈ dmn(rκ), then β 6∈ dmn(rκα).

This holds by the choice of β.

(11) If α ∈ dmn(rκ) and τ ∈ dmn(rκα) ∩ dmn(gκα), then δ 6∈ rκα(τ).

For, otherwise we get r  δ ∈ Θατ by (9); also r  δ ∈ τ . Since r ∈ G, this implies that
δ ∈ X ∩Gατ , contradicting the choice of δ.

Now we define a function l as follows: dmn(l) = K, dmn(lµ) = dmn(gµ) ∪ dmn(rµ)
for all µ ∈ K, and for any ε ∈ dmn(lµ),

lµε =





gµε if ε ∈ dmn(gµ) \ dmn(rµ) and ε 6= α,
tµ if ε ∈ dmn(gµ) \ dmn(rµ) and ε = α,
rµε if ε ∈ dmn(rµ) \ dmn(gµ),
sµ if ε ∈ dmn(gµ) ∩ dmn(rµ),

where dmn(tµ) = dmn(gµα) and for all θ ∈ dmn(tµ),

tµ(θ) =
{
gµα(θ) if θ 6= β,
gµα(β) ∪ {δ} if θ = β,

and dmn(sµ) = dmn(gµε ) ∪ dmn(rµε ), and for any θ ∈ dmn(sµ),

sµ(θ) =





gµε (θ) if θ ∈ dmn(gµε ) \ dmn(rµε ) and (θ 6= β or ε 6= α),
rµε (θ) if θ ∈ dmn(rµε ) \ dmn(gµε ),
gµε (θ) ∪ rµε (θ) if θ ∈ dmn(gµε ) ∩ dmn(rµε ),
gµε (β) ∪ {δ} if ε = α and θ = β.

It is a straightforward but lengthy matter to check that l ∈ Q(κ, ν). We claim that l ≤ g
and l ≤ r. Again the hard part of checking this is condition (4)(c), and we do one of the
harder cases here. Suppose that µ ∈ K, α ∈ dmn(gµ) ∩ dmn(rµ), and θ, β ∈ dmn(gµα),



34 J. D. Monk

θ ∈ dmn(rµα), and θ 6= β; we want to show that lµα(θ) ∩ lµα(β) ⊆ gµα(θ) ∩ gµα(β). We have

lµα(θ) ∩ lµα(β) = (gµα(θ) ∪ rµα(θ)) ∩ (gµα(β) ∪ {δ}).
Since δ 6∈ gµα(θ) ∪ rµα(θ) by construction and (11), we get

lµα(θ) ∩ lµα(β) = (gµα(θ) ∪ rµα(θ)) ∩ gµα(β) = (gµα(θ) ∩ gµα(β)) ∪ (rµα(θ) ∩ gµα(β))

⊆ (gµα(θ) ∩ gµα(β)) ∪ (hµα(θ) ∩ hµα(β)) ⊆ gµα(θ) ∩ gµα(β),

as desired.
Now we can finish the proof. Since l ≤ r and r  δ ∈ τ , we have l  δ ∈ τ . But also

l ≤ g, so l  δ ∈ Θαβ → δ ∈ Ω. By construction, δ ∈ lµα(β), so by (9) we get l  δ ∈ Θαβ .
These facts contradict δ 6∈ Ω.

The proof of Theorem 7.1 is finished.

8. Specifying MAD(κ)

Let κ be a regular cardinal, and let C be a set of cardinals satisfying the following
conditions:

(1) each member of C is greater than κ;
(2) C is closed;
(3) C contains the immediate successor of each of its members of cofinality between ω

and κ inclusive;
(4) C contains all cardinals in [κ+, |C|];
(5) κ+ ∈ C.

The aim of this section is to prove the following theorem, which generalizes a theorem in
Blass [93].

Theorem. Assume the above about κ and C, in a countable transitive model M of GCH.
Then there is a partial ordering P such that if G is P -generic over M , then cofinalities
and cardinalities are preserved in M [G], and in M [G], MAD(κ) = C.

Note that the set C is not quite arbitrary. We do not know to what extent this theorem
can be generalized to other sets.

The proof of the theorem follows Blass [93] as well. We begin by defining the partial
order P .

Let P be the set of all functions p such that

(6) dmn(p) ∈ [C]<κ;
(7) for all λ ∈ dmn(p), pλ is a function, dmn(pλ) ∈ [λ]<κ, and for all β ∈ dmn(pλ),

pλ(β) ∈ [κ]<κ.

For p, q ∈ P we write p ≤ q iff

(8) dmn(q) ⊆ dmn(p);
(9) for all λ ∈ dmn(q),

(a) dmn(qλ) ⊆ dmn(pλ);
(b) for all β ∈ dmn(qλ), qλ(β) ⊆ pλ(β);
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(c) for all distinct β, γ ∈ dmn(qλ),

qλ(β) ∩ qλ(γ) = pλ(β) ∩ pλ(γ).

Lemma 8.1. If κ<κ = κ, then P has the κ+-chain condition.

Proof. Suppose that I ⊆ P is pairwise incompatible and |I| = κ+. Without loss of
generality,

〈dmn(p) : p ∈ I〉
is a ∆-system, say with kernel D, and

〈 ⋃

λ∈dmn(p)

dmn(pλ) : p ∈ I
〉

is a ∆-system, say with kernel E. Then

(10) there is an f ∈ D(E([κ]<κ)) such that

I ′ := {p ∈ I : ∀λ ∈ D ∀β ∈ E [pλ(β) = fλ(β)]}
has size κ+.

We now claim that any two distinct members p, q of I ′ are compatible (contradiction!).
Define r as follows: dmn(r) = dmn(p) ∪ dmn(q). For any λ ∈ dmn(r),

rλ =




pλ if λ ∈ dmn(p) \ dmn(q),
qλ if λ ∈ dmn(q) \ dmn(p),
s if λ ∈ dmn(p) ∩ dmn(q),

where dmn(s) = dmn(pλ) ∪ dmn(qλ), and for any β ∈ dmn(s),

s(β) =




pλ(β) if β ∈ dmn(pλ) \ dmn(qλ),
qλ(β) if β ∈ dmn(qλ) \ dmn(pλ),
pλ(β) ∪ qλ(β) if β ∈ dmn(pλ) ∩ dmn(qλ).

Clearly r ∈ P . By symmetry we show only that r ≤ p. Only (9)(c) is a problem. Suppose
that λ ∈ dmn(p) and β and γ are distinct members of dmn(pλ). If λ 6∈ dmn(q) the
conclusion is clear. Assume that λ ∈ dmn(q). If β, γ 6∈ dmn(qλ) the conclusion is clear.
Suppose that β ∈ dmn(qλ) and γ 6∈ dmn(qλ). Then λ ∈ D and β ∈ E, so qλ(β) = pλ(β)
and the conclusion is clear. The other cases are similar.

Lemma 8.2. P is κ-closed.

Theorem 8.3. Assume the above about κ and C, in a countable transitive model M of
GCH. Let G be P -generic over M . Then cofinalities and cardinalities are preserved in
M [G], and in M [G], MAD(κ) = C.

Proof. By the lemmas, cofinalities and cardinalities are preserved. Now for λ ∈ C and
β < λ, let

Aλβ = {γ < κ : ∃p ∈ G [λ ∈ dmn(p), β ∈ dmn(pλ), γ ∈ pλ(β)]}.
(11) If λ ∈ C and β < λ, then D := {p ∈ P : λ ∈ dmn(p), β ∈ dmn(pλ)} is dense.

In fact, let p ∈ P be given. If λ 6∈ dmn(p), let q = p ∪ {(λ, {(β, 0)})}. Clearly q ∈ D and
q ≤ p. If λ ∈ dmn(p) but β 6∈ dmn(pλ) one proceeds similarly.
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(12) If λ ∈ C, β < λ, and γ < κ, then

{p ∈ P : λ ∈ dmn(p), β ∈ dmn(pλ), pλ(β) ∩ (γ, κ) 6= ∅}
is dense.

For, suppose that q ∈ P . By (11) we may assume that λ ∈ dmn(q) and β ∈ dmn(qλ).
Choose

δ ∈ (γ, κ) \
⋃

ξ∈dmn(qλ)

qλ(ξ).

Let p be like q except that pλ(β) = qλ(ξ) ∪ {δ}. Clearly p ∈ P . To show that p ≤ q, the
only sticky point is to prove that if ε is a member of dmn(qλ) different from β, then

qλ(β) ∩ qλ(ε) = pλ(β) ∩ pλ(ε).

Since δ 6∈ qλ(ε), this is clear.
So (12) holds. Hence |Aλβ | = κ for all λ ∈ C, β < λ.

(13) If λ ∈ C and β and γ are distinct members of λ, then |Aλβ ∩Aλγ | < κ.

For, by (11) choose p ∈ G such that λ ∈ dmn(p) and β, γ ∈ dmn(pλ). We claim that

Aλβ ∩Aλγ = pλ(β) ∩ pλ(γ).

In fact, ⊇ is clear. Now suppose that δ is in the lhs. Then there is a q ∈ G such that
q ≤ p and δ ∈ qλ(β) ∩ qλ(γ). Hence δ ∈ pλ(β) ∩ pλ(γ) by (9)(c). So (13) holds.

Now fix λ ∈ C; we show that {Aλβ : β < λ} is maximal. Suppose that X ∈ [κ]κ and
|X ∩ Aλβ | < κ for all β < λ. Let τ be a nice name for a subset of κ such that τG = X.
Say τ =

⋃
γ∈κ{γ} × Bγ , each Bγ pairwise incompatible. By (11) we may assume for all

γ ∈ κ that λ ∈ dmn(r) for all r ∈ Bγ . Now |B| ≤ κ for all γ ∈ κ, by Lemma 8.1. Choose

β ∈ λ \
⋃

γ∈κ

⋃

p∈Bγ
dmn(pλ).

This is possible by (1). Let Γ be the standard name for a generic filter. For each γ < λ

let

Θγ =
⋃
{pλ(γ) : p ∈ Γ, λ ∈ dmn(p), γ ∈ dmn(pλ)}.

Choose p ∈ G such that

p  |τ | = κ ∧ ∀γ < λ [|τ ∩Θγ | < κ].

So

p  ∃θ < κ ∀γ ∈ τ (γ ∈ Θβ → γ < θ).

Hence choose θ < κ and q ∈ G, q ≤ p, such that

q  ∀γ ∈ τ (γ ∈ Θβ → γ < θ).

By (11) we may assume that λ ∈ dmn(q) and β ∈ dmn(qλ). Let

Ξ = θ ∪
⋃

γ∈dmn(qλ)

qλ(γ).



The size of maximal almost disjoint families 37

So |Ξ| < κ. Now |⋃γ∈dmn(qλ)A
λ
γ ∩X| < κ, hence there is a δ ∈ X such that δ 6∈ Ξ and

δ 6∈ ⋃γ∈dmn(qλ)A
λ
γ . So there is a k ∈ G and an r ∈ Bδ such that k ≤ r, q and for all

γ ∈ dmn(qλ), k  δ 6∈ Θγ . Then

(14) if γ ∈ dmn(qλ) and γ ∈ dmn(rλ), then δ 6∈ rλ(γ).

For, otherwise r  δ ∈ Θγ , contradicting k ≤ r.
Now define l as follows: dmn(l) = dmn(q) ∪ dmn(r). For any µ ∈ dmn(l),

lµ =




qµ if µ ∈ dmn(q) \ dmn(r),
rµ if µ ∈ dmn(r) \ dmn(q),
s if µ ∈ dmn(q) ∩ dmn(r),

where dmn(s) = dmn(qµ) ∪ dmn(rµ), and for any γ ∈ dmn(s),

s(γ) =





qµ(γ) if γ ∈ dmn(qµ) \ dmn(rµ) and (µ, γ) 6= (λ, β),
rµ(γ) if γ ∈ dmn(rµ) \ dmn(qµ),
qµ(γ) ∪ rµ(γ) if γ ∈ dmn(qµ) ∩ dmn(rµ),
qλ(β) ∪ {δ} if (µ, γ) = (λ, β).

Note that β 6∈ dmn(rλ) by the choice of β. Clearly l ∈ P .

(15) l ≤ q.
To prove this, only (9)(c) is problematic. Suppose that µ ∈ dmn(q), and ϕ,ψ are distinct
members of dmn(qµ). To show

qµ(ϕ) ∩ qµ(ψ) = lµ(ϕ) ∩ lµ(ψ)

let ε ∈ lµ(ϕ)∩ lµ(ψ). If (µ, ϕ), (µ, ψ) 6= (λ, β), then ε ∈ qµ(ϕ)∩qµ(ψ), as desired. Suppose
that (µ, ϕ) = (λ, β). Thus ψ 6= β. If ψ ∈ dmn(rλ), by (14), δ 6∈ rλ(ψ). Now δ 6∈ qλ(ψ)
since δ 6∈ Ξ, so ε 6= δ, and the desired conclusion follows as before.

(16) l ≤ r.
Since β 6∈ dmn(rλ), this holds since k ≤ q, r.

Now q  δ ∈ τ ∧ θ ≤ δ → δ 6∈ Θβ . So l forces the same thing. Now θ ≤ δ, r  δ ∈ τ ,
and l ≤ r, so l  δ ∈ τ ∧θ ≤ δ. Hence l  δ 6∈ Θβ . This is a contradiction, since δ ∈ lλ(β).

We have thus shown that {Aλβ : β < λ} is maximal.

Now suppose that λ > κ and λ 6∈ C. Suppose that, in M [G], 〈Xα : α < λ〉 is a mad
family of members of [κ]κ; we want to get a contradiction. Choose p0 ∈ G so that

p0  Ẋ is a MAD λ-sequence of members of [κ]κ.

Let µ = sup(C ∩ λ). This is well defined since κ+ ∈ C, and so κ+ < λ. Since C is closed,
it follows that µ ∈ C, and hence µ < λ. By (3), cf µ > κ. Hence µκ = µ.

Next, for each α < λ and β < κ let Aαβ be such that

(17) for all q ∈ Aαβ , q  β ∈ Ẋα;
(18) Aαβ is pairwise incompatible;
(19) Aαβ is maximal such that (17) and (18) hold.

For each α < λ let τα =
⋃{{β} ×Aαβ : β < κ}. Then

(20) for each α < λ, τα is a nice name for a subset of κ and τGα = Xα.
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For, let α < λ. Clearly τα is a nice name for a subset of κ. Now suppose that β ∈ τGα .
Then there is a q ∈ Aαβ ∩G. So β ∈ Xα. Conversely, suppose that β ∈ Xα. Choose q ∈ G
such that q  β ∈ Ẋα. Then

(21) {s : ∃r ∈ Aαβ (s ≤ r)} is dense below q.

For, if t ≤ q, then t  β ∈ Ẋα, so there is an r ∈ Aαβ such that r and t are compatible.
Say s ≤ r, t. Thus s is as desired. So (21) holds.

Choose s ∈ G, s ≤ q, s ≤ r ∈ Aαβ . So r ∈ G, hence β ∈ τGα . Thus (20) holds.
We define some sets needed below:
L = {(ν, γ) : ν ∈ dmn(p0) and γ ∈ dmn(p0

ν)};
Iν = {(ν, α) : α < ν} for each ν ∈ C;

I =
⋃

ν∈C
Iν ;

Jα = {(ν, γ) : ∃β < κ ∃p ∈ Aαβ [ν ∈ dmn(p) and γ ∈ dmn(pν)]} for each α < λ;

S = L ∪
⋃

α<λ

Jα ∪
⋃
{Iν : ν ≤ µ, ν ∈ C}.

Clearly |Jα| ≤ κ for all α < λ, |Iν | = ν for all ν ∈ C, |L| < κ, S ⊆ I, and |S| ≤ λ.
We say that a subset J of I is a support of an element p ∈ P if ν ∈ dmn(p) and

α ∈ dmn(pν) imply that (ν, α) ∈ J . Thus L supports p0, and Jα supports each member
of
⋃
β<κA

α
β .

Now we will define a sequence 〈Nξ : ξ < κ+〉 of subsets of λ, each of size at most µ.
We define N0 = ∅, and for ξ limit, Nξ =

⋃
τ<ξNτ . Now assume that Nξ has been defined.

Temporarily fix K ⊆ S such that |K| ≤ µ and Iν ⊆ K for all ν ∈ C with ν ≤ µ.
A special set is a subset J ⊆ I such that:

(22) |J | ≤ κ;
(23) for all ν ∈ C, if J ∩ Iν \K 6= 0, then |J ∩ Iν \K| = κ.

If σ =
⋃
β<κ{β} × Bβ is a nice name for a subset of κ, a support for σ is a special set J

which supports each member of
⋃
β<κBβ .

Then we have:

(24) Every nice name for a subset of κ has a support.

In fact, let σ =
⋃
β<κ{β} ×Bβ be a nice name for a subset of κ. We define

R = {(ν, α) : ∃β < κ ∃p ∈ Bβ [ν ∈ dmn(p) and α ∈ dmn(pν)]}.
Clearly |R| ≤ κ. Now if ν ∈ C and R ∩ Iν \ K 6= ∅, then |Iν | = ν > κ, so there is a
Qν ⊆ Iν \K such that |Qν | = κ. We then define

J = R ∪
⋃
{Qν : R ∩ Iν \K 6= ∅}.

Clearly J is a support for σ.
Let Gξ be the group of all permutations of I that map each Iν to itself and fix all

members of K. For each g ∈ Gξ and ν ∈ C define gν : ν → ν by g(ν, α) = (ν, gν(α)). Now
each g ∈ Gξ induces an automorphism ĝ of P . Namely, if p ∈ P , we define dmn(ĝ(p)) =
dmn(p), for any ν ∈ dmn(p), dmn(ĝ(p)ν) = gν [{α : α ∈ dmn(pν)}], and for any α ∈
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dmn(pν), ĝ(p)ν(gν(α)) = pν(α). It is straightforward to check that ĝ is an automorphism
of P . For example, suppose that p, q ∈ P and p ≤ q; we check condition (9)(c) for showing
that ĝ(p) ≤ ĝ(q). So, suppose that ν ∈ dmn(ĝ(q)) (thus ν ∈ dmn(q)) and β and γ are
distinct members of dmn(ĝ(q)ν). Say β = gν(β′) and γ = gν(γ′), with β′ and γ′ distinct
members of dmn(qν). Then

ĝ(p)ν(β) ∩ ĝ(p)ν(γ) = ĝ(p)ν(gν(β′)) ∩ ĝ(p)ν(gν(γ′)) = pν(β′) ∩ pν(γ′) = qν(β′) ∩ qν(γ′)

= ĝ(q)ν(gν(β′)) ∩ ĝ(q)ν(gν(γ′)) = ĝ(q)ν(β) ∩ ĝ(q)ν(γ).

Also ̂ clearly takes inverses to inverses. So ĝ is indeed an automorphism of P .

(25) If J is a special subset of I and g ∈ Gξ, then g[J ] is a special subset of I.

For, |g[J ]| = |J | ≤ κ. Now suppose that g[J ] ∩ Iν \K 6= ∅; choose (ν, α) ∈ g[J ] ∩ Iν \K.
Write (ν, α) = g(ν, β) with (ν, β) ∈ J . Then (ν, β) ∈ J∩Iν\K, since g is the identity on K.
Thus J∩Iν \K 6= ∅. Hence |J∩Iν \K| = κ, and so also |g[J ]∩Iν \K| = |g[J∩IνωK]| = κ.
So (25) holds.

Given J ⊆ I, let

J = {ν ∈ C : J ∩ Iν \K 6= 0}.
If J, J ′ are special sets, J ∩K = J ′ ∩K, and J = J ′, then there is a g ∈ Gξ such that
g[J ] = J ′. Now |J ∩K| ≤ κ and |K| ≤ µ, so there are only µκ = µ possibilities for J ∩K.
Also, J ∈ [C]≤κ and |C| ≤ µ (if |C| > µ, then λ ∈ C by (4), contradiction). So there are
only µκ = µ possibilities for J . So there are at most µ Gξ-orbits of special sets.

(26) For each special set J ′ there is a special set J in the same Gξ-orbit such that J ∩S =
J ∩K.

In fact, we define g ∈ Gξ as follows. Let ν ∈ C. If J ′∩Iν ∩S ⊆ K, let g�Iν be the identity.
Now suppose that J ′ ∩ Iν ∩ S 6⊆ K. Then λ < ν, as otherwise ν ≤ λ, hence ν ≤ µ, and
hence Iν ⊆ K, contradiction. Now |K| ≤ µ < ν and |J ′ ∩ Iν \K| ≤ |J ′| ≤ κ < ν, so we
can take g�ν to be a permutation of Iν that is the identity on Iν ∩K and maps J ′∩Iν \K
out of S. This finishes the definition of g; clearly g ∈ Gξ.

Now set J = g[J ′]. If (ν, α) ∈ J ∩ S, then (ν, α) ∈ J ∩ Iν ∩ S. Choose (ν, β) ∈ J ′

such that g(ν, β) = (ν, α). Thus (ν, β) ∈ J ′ ∩ Iν , and g(ν, β) ∈ S, hence by construction,
(ν, β) ∈ K, hence α = β and (ν, α) ∈ K. So (26) holds.

Let S be the set of all orbits of special sets. By the remark before (26) we have |S| ≤ µ.
For each Q ∈ S let LQ ∈ Q be such that LQ ∩ S = LQ ∩K; it exists by (26). The set of
all LQ is called the set of standard sets; so there are at most µ standard sets.

If σ =
⋃
β<κ{β} ×Bβ is a nice name for a subset of κ, and g ∈ Gξ, we define

g∗(σ) =
⋃

β<κ

{β} × ĝ[Bβ ].

Clearly g∗(σ) is a nice name for a subset of κ.

(27) If J ⊆ I supports a nice name σ for a subset of κ, and g ∈ Gξ, then g[J ] supports
the nice name g∗(σ).
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For, suppose that β < κ, p ∈ ĝ[Bβ ], ν ∈ dmn(p), and α ∈ dmn(pν). Write p = ĝ(q) with
q ∈ Bβ . Thus ν ∈ dmn(q). Choose γ so that α = gν(γ) and γ ∈ dmn(qν). So (ν, γ) ∈ J
since J supports σ, and (ν, α) = (ν, gν(γ)) = g(ν, γ) ∈ g[J ], as desired in (27).

(28) If σ is a nice name for a member of [κ]κ, then there is an A ∈ [λ]≤κ such that

p0  ∃α ∈ A [|σ ∩ Ẋα| = κ].

For, let B be a maximal pairwise incompatible subset of

{q ≤ p0 : ∃α < λ [q  |σ ∩ Ẋα| = κ]}.
Now {r : ∃q ∈ B (r ≤ q)} is dense below p0. For, suppose that s ≤ p0. Then we have
s  ∃α < λ [|σ∩Ẋα| = κ], so there exist a q ≤ s and an α < λ such that q  |σ∩Ẋα| = κ.
Say q, r compatible, r ∈ B. Then say t ≤ q, r. Then t is as desired.

For all q ∈ B choose αq < λ such that q  |σ ∩ Ẋαq | = κ. Let A = {αq : q ∈ B}.
So A ∈ [λ]≤κ. Now let p0 ∈ H, H generic. Choose q ∈ H ∩ B; this is possible by the
indicated denseness. Then q  |σ ∩ Ẋαq | = κ, so |σH ∩ ẊH

αq | = κ. Thus A is as desired
in (28).

Let J be a standard set. Suppose that Q ∈ [J ]<κ. Let

sQ = {p ∈ P : dmn(p) = {ν ∈ C : (ν, α) ∈ Q for some α}
and for all ν ∈ dmn(p),dmn(pν) = {α < ν : (ν, α) ∈ Q}}.

There is a one-one function F from sQ into
∏

(ν,α)∈Q[κ]<κ, namely one can let F (p)να =
pν(α). It follows that |sQ| ≤ κ. Now if p ∈ P and J supports p, let Q = {(ν, α) : ν ∈
dmn(p) and α ∈ dmn(pν)}; then Q ∈ [J ]<κ and p ∈ sQ. It follows that there are at most
µ elements p ∈ P with support contained in J , hence at most µ pairwise incompatible
sets all members of which have support contained in J , hence at most µ nice names for
members of [κ]κ with support contained in J . For each nice name σ for a member of
[κ]κ with standard support, choose Aσ as in (28). Let BK be the union of all such. So
|BK | ≤ µ since there are at most µ standard sets.

We now define Nξ+1: let Nξ+1 = BKξ ∪Nξ, where

Kξ = L ∪
⋃

α∈Nξ
Jα ∪

⋃

µ≥ν∈C
Iν .

(Note that |Kξ| ≤ µ.)
Let Q =

⋃
ξ<κ+ Nξ. Thus also |Q| ≤ µ < λ. Choose β ∈ λ \ Q. Recall that Jβ

is a support for τβ , and |Jβ | ≤ κ. Define K∞ =
⋃
τ<κ+ Kτ . Fix τ < κ+ such that

Jβ ∩K∞ ⊆ Kτ . Now consider the step from Nτ to Nτ+1. Choose g ∈ Gτ such that g[Jβ ]
is standard. Thus g is the identity on Kτ . By Jβ ∩K∞ ⊆ Kτ ,

(29) Jβ ∩ (Kτ+1 \Kτ ) = 0;
(30) g[Jβ ] ∩ (Kτ+1 \Kτ ) = 0.

This is true since g[Jβ ] ∩ S = g[Jβ ] ∩Kτ and Kτ+1 ⊆ S.
Choose h ∈ G such that h�J = g�J and h is the identity on Kτ+1 \ Kτ . So h fixes

Kτ+1 pointwise. Now

p0  ∃α ∈ Ah∗(τβ) [|h∗(τβ) ∩ τ̇α| = κ],
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so

p0  ∃α ∈ Ah∗(τβ) [|τβ ∩ τ̇α| = κ].

This is true since Ah∗(τβ) ⊆ BKτ ⊆ Nτ+1, and hence Jα ⊆ Kτ+1, so h fixes Jα pointwise.
Recall that Jα is a support of τα. Also, Kτ+1 supports p0. Thus p0  ∃α ∈ Q [|τβ ∩ τ̇α|
= κ]. But α 6= β, contradiction.

9. Specifying MAD(κ, µ, µ)

Theorem 9.1. Suppose that M is a countable transitive model of GCH , and in M , µ < κ

are infinite regular cardinals. Suppose that C is a set of cardinals satisfying the following
conditions:

(i) κ+ ∈ C;
(ii) C is closed ;

(iii) C contains the immediate successor of each of its members of cofinality between
ω and κ inclusive;

(iv) [κ+, |C|] ⊆ C.

Then there is a generic extension M [G] preserving cofinalities such that in M [G], we
have MAD(κ, µ, µ) ∩ [κ+,∞) = C.

Proof. The proof is similar to that in the previous section, so some details will be omitted.
We work within M for a while. Let 〈Bα : α < κ〉 enumerate [κ]µ. For all α < κ, let tα

be a one-one function mapping Bα onto µ. Let P consist of all functions f such that

(1) dmn(f) ∈ [C]<µ;
(2) for all ν ∈ dmn(f), fν is a function, dmn(fν) ∈ [κ]<µ, and

(a) for all α ∈ dmn(fν), fνα is a function, dmn(fνα) ∈ [ν]<µ, and
(α) for all β ∈ dmn(fνα), fνα(β) ∈ [Bα]<µ.

For f, g ∈ P , we define f ≤ g iff

(3) dmn(g) ⊆ dmn(f), for all ν ∈ dmn(g), dmn(gν) ⊆ dmn(fν), for all α ∈ dmn(gν),
dmn(gνα) ⊆ dmn(fνα), for all β ∈ dmn(gνα), gνα(β) ⊆ fνα(β), and

(a) for all α,ϕ ∈ dmn(gν) and all β ∈ dmn(gνα) and ψ ∈ dmn(gνϕ), if (α, β) 6= (ϕ,ψ),
then

(4) gνα(β) ∩ gνϕ(ψ) = fνα(β) ∩ fνϕ(ψ).

Clearly

(5) P is µ-closed;
(6) P has the µ+-chain condition.

For, suppose that I is a collection of pairwise incompatible conditions with |I| = µ+. We
may assume:

〈dmn(f) : f ∈ I〉
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is a ∆-system, say with kernel D0, and
〈 ⋃

ν∈dmn(f)

dmn(fν) : f ∈ I
〉

is a ∆-system, say with kernel D1, and
〈 ⋃

ν∈dmnf

( ⋃

α∈dmn(fν)

dmn(fνα)
)

: f ∈ I
〉

is a ∆-system, say with kernel D2. Then we may assume that if g and h are in I, ν ∈ D0,
α ∈ D1, β ∈ D2, then tα[gνα(β)] = tα[hνα(β)], and hence gνα(β) = hνα(β). Then any
two distinct members g and h of I are compatible (contradiction). We omit the proof.

Now let G be P -generic over M . By (5) and (6), M [G] preserves cofinalities and
cardinals. Now if ν ∈ C, α ∈ κ, and β < ν, define

(7) Aναβ =
⋃
{fνα(β) : f ∈ G, ν ∈ dmn(f), α ∈ dmn(fν), β ∈ dmn(fνα)}.

We claim that for each ν ∈ C,

(8) 〈Aναβ : α ∈ κ, β ∈ ν〉
is the desired [κ]µ, µ-mad family.

(9) For any ν ∈ C, {f ∈ P : ν ∈ dmn(f)} is dense.

In fact, if g ∈ P , assume that ν 6∈ dmn(g). Then let f be like g except that ν ∈ dmn(f)
and fν = ∅. Clearly f ∈ P and f ≤ g, proving (9).

(10) For any ν ∈ C and α ∈ κ, the set

{f ∈ P : ν ∈ dmn(f) and α ∈ dmn(fν)}
is dense.

For, let g be given. By (9) we may assume that ν ∈ dmn(g). And we may assume that
α 6∈ dmn(gν). Let f be like g except that α ∈ dmn(fν) and fνα = ∅. Clearly f ∈ P and
f ≤ g.

Similarly,

(11) for any ν ∈ C, α ∈ κ, and β ∈ ν, the set

{f ∈ P : ν ∈ dmn(f) and α ∈ dmn(fν) and β ∈ dmn(fνα)}
is dense;

(12) for any ν ∈ C, α ∈ κ, β ∈ ν, and γ < µ the set

{f ∈ P : ν ∈ dmn(f), α ∈ dmn(fν), β ∈ dmn(fνα), and tα[fνα(β)] ∩ (γ, µ) 6= 0}
is dense.

For, assume the hypotheses of (12), and suppose that g ∈ P . We may assume that
ν ∈ dmn(g), α ∈ dmn(gν), and β ∈ dmn(gνα). Choose

δ ∈ (γ, µ) \ tα
[ ⋃

ϕ∈dmn(gν), ψ∈dmn(gνϕ)

(Bα ∩ gνϕ(ψ))
]
.
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Now let f be like g except that fνα(β) = gνα(β)∪{t−1
α (δ)}. Clearly f ∈ P . To show that

f ≤ g, only (3)(a) is a problem. So suppose that σ ∈ dmng, ϕ,ψ ∈ dmngσ, ξ ∈ dmn(gσϕ),
η ∈ dmn(gσψ), and (ϕ, ξ) 6= (ψ, η); we want to show

gσϕ(ξ) ∩ gσψ(η) = fσϕ(ξ) ∩ fσψ(η).

This is clear unless one of the triples (σ, ϕ, ξ), (σ, ψ, η) is equal to (ν, α, β). Say (σ, ϕ, ξ) =
(ν, α, β). Now t−1

α (δ) 6∈ gνψ(η), so the equality follows. Hence (12) holds. By (12), each
set Aναβ has size µ.

(13) If ν ∈ C, α,ϕ ∈ κ, ξ, η ∈ ν, and (α, ξ) 6= (ϕ, η), then |Aναξ ∩Aνϕη| < µ.

To see this, assume the hypotheses. Clearly there is an f ∈ G such that ν ∈ dmn(f),
α,ϕ ∈ dmn(fν), ξ ∈ dmn(fνα), and η ∈ dmn(fνϕ). We claim that

Aναξ ∩Aνϕη = fνα(ξ) ∩ fνϕ(η),

which will prove (13). To see this, ⊇ is clear. Now take any β ∈ Aναξ ∩Aνϕη. Then there is
a g ∈ G with g ≤ f and β ∈ gνα(ξ)∩gνϕ(η). Clearly then β ∈ fνα(ξ)∩fνϕ(η), as desired.
So (13) holds.

Next, we show maximality. Suppose that ν ∈ C, X ∈ [κ]µ, and |X∩Aναβ | < µ whenever
α ∈ κ and β ∈ ν; we want to get a contradiction. Now by the µ+-chain condition, X
is contained in some subset in M of κ of size µ. One can see this by applying Kunen
[80, VII.6.8], as follows. Let f : µ → κ be one-one. By Kunen [80, VII.6.8] there is an
F : µ → P(κ) such that F ∈ M , f(α) ∈ F (α) for all α < µ, and |F (α)| ≤ µ for all
α < µ. Then

⋃
α<µ F (α) is the desired set in M . Let Bα be such a subset. Let τ be a nice

name for a subset of Bα such that τG = X. Say τ =
⋃
γ∈Bα{γ} × Cγ , each Cγ pairwise

incompatible. So each Cγ has size at most µ. Choose

β ∈ ν \
⋃

γ∈Bα

( ⋃

f∈Cγ , ν∈dmn(f), α∈dmn(fν)

dmn(fνα)
)
.

For any ϕ ∈ κ and γ ∈ ν let Θνϕγ be the term
⋃
{fνϕ(γ) : f ∈ Γ, ν ∈ dmn(f), ϕ ∈ dmn(fν), γ ∈ dmn(fνϕ)}.

Here Γ is the standard name for a generic filter; see Kunen [80, VII.2.12]. Thus (Θνϕγ)G =
Aνϕγ .

Choose f ∈ G such that

f  |τ | = µ ∧ ∀ϕ ∈ κ ∀γ ∈ ν [|τ ∩Θνϕγ | < µ].

Hence

f  ∃θ < µ ∀γ ∈ τ [γ ∈ Θναβ → tα(γ) < θ].

So, choose θ < µ and g ≤ f such that g ∈ G and

g  ∀γ ∈ τ [γ ∈ Θναβ → tα(γ) < θ].

Without loss of generality ν ∈ dmn(g), α ∈ dmn(gν), and β ∈ dmn(gνα). Let

Ξ = θ ∪
⋃

ϕ∈dmn(gν), γ∈dmn(gνϕ)

tα[gνϕ(γ) ∩Bα].
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So |Ξ| < µ. Now ∣∣∣
⋃

ϕ∈dmn(gν), ψ∈dmn(gνϕ)

Aνϕψ ∩X
∣∣∣ < µ,

so there is a δ ∈ X such that tα(δ) 6∈ Ξ and

δ 6∈
⋃

ϕ∈dmn(gν), ψ∈dmn(gνϕ)

Aνϕψ ∩X.

Hence there exist h ≤ g with h ∈ G and

h  δ ∈ τ ∧ ∀ϕ ∈ dmn(gν) ∀ψ ∈ dmn(gνϕ) (δ 6∈ Θνϕψ).

So there exist k ∈ G and r ∈ Cδ such that k ≤ h, r and for all ϕ ∈ dmn(gν) and
ψ ∈ dmn(gνϕ), k  δ 6∈ Θνϕψ. Now

(14) if ϕ ∈ dmn(gν), ψ ∈ dmn(gνϕ), ν ∈ dmn(r), ϕ ∈ dmn(rν), and ψ ∈ dmn(rνϕ), then
δ 6∈ rνϕ(ψ).

For, otherwise r  δ ∈ Θνϕψ, contradicting k ≤ r.
Now we define l. It is “g ∪ r” except that lνα(β) = gνα(β) ∪ {δ}. Note that it is not

the case that (ν ∈ dmn(r) and α ∈ dmn(r) and β ∈ dmn(rνα)), by the choice of β.
l ≤ g: Assume that ϕ ∈ dmn(gν), ψ ∈ dmn(gνϕ), and (α, β) 6= (ϕ,ψ). Now δ 6∈ gνϕ(ψ)

since tα(δ) 6∈ Ξ. And δ 6∈ rνϕ(ψ) by (14). Hence it is clear that lνα(β) ∩ lνϕ(ψ) =
gνα(β) ∩ gνϕ(ψ).

l ≤ r: This is clear by the choice of β.
Now g  δ ∈ τ ∧ θ ≤ tα(δ)→ δ 6∈ Θναβ . So l forces the same thing. Now θ ≤ tα(δ) by

the choice of δ, and l ≤ r, so l  δ ∈ τ ∧ θ ≤ tα(δ). So l  δ 6∈ Θναβ . This contradicts
l ≤ r.

Thus we have shown maximality.
Now suppose that λ > κ and λ 6∈ C. Suppose that, in M [G], 〈Xα : α < λ〉 is a mad

family of members of [κ]µ; we want to get a contradiction. Choose p0 ∈ G so that

p0  Ẋ is a MAD λ-sequence of members of [κ]µ.

Let L = {(ν, γ) : ν ∈ dmn(p0) and γ ∈ dmn(p0
ν)}. Let % = sup(C∩λ). This is well defined

since κ+ ∈ C, and so κ+ < λ. Since C is closed, % < λ, and by (iii), cf % > κ. It follows
that %κ = κ in M .

Now we will define a sequence 〈Nξ : ξ < κ+〉 of subsets of λ, each of size at most %.
We define N0 = 0, and for ξ limit, Nξ =

⋃
τ<ξNτ . Now assume that Nξ has been defined.

(15) There is a function τ ∈ M with domain λ such that for each α < λ, τα is a nice
name for a subset of κ and τGα = Xα.

To see this, for each α < λ and β < κ let Aαβ be such that

(16) for all q ∈ Aαβ , q  β ∈ Ẋα;
(17) Aαβ is pairwise incompatible;
(18) Aαβ is maximal such that (16) and (17) hold.
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Let τα =
⋃{{β} × Aαβ : β < κ}. Suppose that β ∈ τGα . Then there is a q ∈ Aαβ ∩ G. So

β ∈ Xα. Conversely, suppose that β ∈ Xα. Choose q ∈ G such that q  β ∈ Ẋα.Then

{s : ∃r ∈ Aαβ (s ≤ r)}
is dense below q. For, if t ≤ q, then t  β ∈ Ẋα, so there is an r ∈ Aαβ such that r and t

are compatible. Say s ≤ r, t. Thus s is as desired.
Choose s ∈ G, s ≤ q, s ≤ r ∈ Aαβ . So r ∈ G, hence β ∈ τGα . Thus (15) holds.
We take the sets Aαβ as in the proof of (15). Thus |Aαβ | ≤ µ.
Now for each ν ∈ C let Iν = {(ν, α) : α < ν}, and let I =

⋃
ν∈C Iν . For each α < λ

let

Jα = {(ν, γ) : ∃β < κ ∃p ∈ Aαβ [ν ∈ dmn(p) and γ ∈ dmn(pν)]}.
Then we set

S = L ∪
⋃

α<λ

Jα ∪
⋃
{Iν : ν ≤ %, ν ∈ C}.

Thus |S| ≤ λ.
Temporarily fix K ⊆ S such that |K| ≤ % and Iν ⊆ K for all ν ∈ C with ν ≤ %.
A special set is a subset J ⊆ I such that:

(19) |J | ≤ κ;
(20) for all ν ∈ C, if J ∩ Iν \K 6= 0, then |J ∩ Iν \K| = κ.

If σ =
⋃
β<κ{β} × Bβ is a nice name for a subset of κ, a support for σ is a special set J

such that

(21) if β < κ, p ∈ Bβ , ν ∈ dmn(p), and α ∈ dmn(pν), then (ν, α) ∈ J .

Clearly every nice name for a subset of κ has a support. Also, we say that a subset J of I
is a support of an element p ∈ P if ν ∈ dmn(p) and α ∈ dmn(pν) imply that (ν, α) ∈ J .

Let Gξ be the group of all permutations of I that map each Iν to itself and fix all
members of K. For each ν ∈ C define gν : ν → ν by: g(ν, α) = (ν, gν(α)). Clearly each
g ∈ Gξ induces an automorphism of P . Namely, if p ∈ P , we define dmn(g(p)) = dmn(p),
for any ν ∈ dmn(g(p)), dmn(g(p)ν) = dmn(pν), for any α ∈ dmn(g(p)ν), dmn(g(p)να) =
gν [dmn(pνα)], and for any β ∈ dmn(pνα), (g(p)να)(gν(β)) = pνα(β).

Given J ⊆ I, let

J = {ν ∈ C : J ∩ Iν \K 6= 0}.
If J, J ′ are special sets, J ∩K = J ′ ∩K, and J = J ′, then there is a g ∈ Gξ such that
g[J ] = J ′. Now |J ∩ K| ≤ κ and |K| ≤ %, so there are only %κ = % possibilities for
J ∩ K (since cf % > κ). Also, J ∈ [C]≤κ and |C| ≤ % (if |C| > %, then λ ∈ C by (4),
contradiction). So there are only %κ = % possibilities for J . So there are at most % Gξ-
orbits of special sets.

(22) For each special set J ′ there is a special set J in the same Gξ-orbit such that J ∩S =
J ∩K.

For, if ν ∈ C and J ′ ∩ Iν ∩ S \ K 6= 0, then λ < ν (otherwise Iν ⊆ K), so |Iν | > λ,
and hence there is a permutation of Iν fixing Iν ∩K and mapping J ′ ∩ Iν \K out of S.
Let g combine all such, and set J = g[J ′]. If (ν, α) ∈ J ∩ S, then (ν, α) ∈ J ∩ Iν ∩ S.
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Choose (ν, β) ∈ J ′ such that g(ν, β) = (ν, α). Thus (ν, β) ∈ J ′ ∩ Iν , and g(ν, β) ∈ S, so
by construction, (ν, β) ∈ K, hence α = β and (ν, α) ∈ K. So (22) holds.

For each orbit Q of special sets, choose LQ ∈ Q satisfying (24). Each set LQ is called
a standard set. There are at most % standard sets.

If g ∈ Gξ and J is a support for a nice name σ for a subset of κ, then g[J ] is the
support for the nice name g(σ).

(23) If σ is a nice name for a member of [κ]µ, then there is an A ∈ [λ]≤κ such that

p0  ∃α ∈ A [|σ ∩ Ẋα| ≥ µ].

For, let B be a maximal pairwise incompatible subset of

{q ≤ p0 : ∃α < λ [q  |σ ∩ Ẋα| ≥ µ]}.
Now {r : ∃q ∈ B (r ≤ q)} is dense below p0. For, suppose that s ≤ p0. Then we have
s  ∃α < λ [|σ∩Ẋα| ≥ µ], so there exist a q ≤ s and an α < λ such that q  |σ∩Ẋα| ≥ µ.
Say q, r compatible, r ∈ B. Then say t ≤ q, r. Then t is as desired.

For all q ∈ B choose αq < λ such that q  |σ ∩ Ẋα| ≥ µ. Let A = {αq : q ∈ B}. So
A ∈ [λ]≤κ. Now let p0 ∈ H, H generic. Choose q ∈ H ∩ B. Then q  |σ ∩ Ẋαq | ≥ µ, so
|σH ∩ ẊH

αq | ≥ µ. Thus A is as desired in (23).
Let J be a standard set. Suppose that Q ∈ [J ]<µ. Let

sQ = {p ∈ P : dmn(p) = {ν ∈ C : (ν, α) ∈ Q for some α}
and for all ν ∈ dmn(p), dmn(pν) = {α < ν : (ν, α) ∈ Q}}.

There is a one-one function F from sQ into
∏

(ν,α)∈Q[κ]<µ, namely one can let F (p)να =
pν(α). It follows that |sQ| ≤ κ. Hence there are at most % elements p ∈ P with support
contained in J , hence at most % pairwise incompatible sets all members of which have
support contained in J , hence at most % nice names for members of [κ]µ with support
contained in J . For each nice name σ for a member of [κ]µ with standard support, choose
Aσ as in (23). Let B be the union of all such. So |B| ≤ %.

Now we unfix K. So B = BK depends on K. We now define Mσ+1: let Mσ+1 =
BKσ ∪Mσ, where

Kσ = L ∪
⋃

α∈Mσ

Jα ∪
⋃

%≥ν∈C
Iν .

(Note that |Kσ| ≤ %.)
Let M =

⋃
σ<κ+ Mσ. Thus also |M | ≤ %. Now suppose that σ is a nice name for a

member of [κ]µ. Let J be a support for σ. Define K∞ =
⋃
τ<κ+ Kτ . Fix τ < κ+ such

that J ∩K∞ ⊆ Kτ . Now consider the step from Mτ to Mτ+1. Choose g ∈ Gτ such that
g[J ] is standard. By J ∩K∞ ⊆ Kτ ,

(24) J ∩ (Kτ+1 \Kτ ) = 0;
(25) g[J ] ∩ (Kτ+1 \Kτ ) = 0.

This is true since g[J ] ∩ S = g[J ] ∩Kτ and Kτ+1 ⊆ S.
Choose h ∈ Gξ such that h�J = g�J and h is the identity on Kτ+1 \Kτ . So h fixes

Kτ+1 pointwise. Now

p0  ∃α ∈ Ah(σ) [|h(σ) ∩ Ẋα| ≥ µ],
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so

p0  ∃α ∈ Ah(σ) [|σ ∩ Ẋα| ≥ µ].

This is true since Ah(σ) ⊆ BKτ ⊆ Mτ+1, and hence Jα ⊆ Kτ+1 for each α ∈ Ah(σ),
so h fixes Jα pointwise. Thus p0  ∃α ∈ M [|σ ∩ Ẋα| ≥ µ]. Since |M | < λ, this is a
contradiction, as σ is arbitrary.
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