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Abstract

We consider elliptic curves defined over Q. It is known that for a prime p > 3 quadratic twists
permute the Kodaira classes, and curves belonging to a given class have the same conductor
exponent. It is not the case for p = 2 and 3. We establish a refinement of the Kodaira classifica-
tion, ensuring that the permutation property is recovered by refined classes in the cases p = 2
and 3. We also investigate the nonquadratic twists. In the last part of the paper we discuss the
number of isogeny classes of curves for given conductors of some special forms. Representative
numerical data are given in the tables.
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I. Twists

1. Introduction

1.1. Preliminaries. We consider elliptic curves E defined over Q and their quadratic
twists E ∗ d, where d is a squarefree integer. If curves E ′ and E ′′ have the same Kodaira
symbols for a prime p, it may occur that the Kodaira symbols of their twists E ′ ∗ d and
E ′′ ∗ d are different. For this anomaly to occur it is necessary, but not sufficient, that
p = 2 or 3.

In the present paper we establish a refinement of the local Kodaira classification of
elliptic curves. Twist action on the (finite) set of refined classes is well-defined, indeed it
defines a permutation in the sense that if curves belong to a common subclass, then their
images, under a given twist, will also belong to one, and only one, subclass. Moreover,
all the curves in a given subclass have the same local conductor. As a consequence, the
behaviour of conductors under a twist is described in subsequent theorems.

Similar topics have been investigated by several authors.
I. Papadopoulos [Pa] considered elliptic curves defined over a discrete valuation ring.

Denote by v the valuation, and by N the conductor of an elliptic curve. The most inter-
esting case is when the residue characteristic of v is 2 or 3.

Papadopoulos divided Kodaira classes of elliptic curves into subclasses with the prop-
erty that v(N) has a fixed value for all curves in a subclass. The subclasses are defined by
triples (v(c4), v(c6), v(∆)), where c4, c6 and the discriminant ∆ correspond to a minimal
model of a curve, and sometimes by some additional conditions.

Papadopoulos did not investigate twists of elliptic curves.
In the present paper we give a further refinement of the classification of Papadopoulos.

Our additional conditions are simplified versions of the original ones, since we consider
the curves defined over Q, i.e. the classification is achieved locally over the rings Zp of
p-adic integers.

S. Comalada [Co] divided the Kodaira classes into subclasses using some conditions
on the coefficients b2, b4, b6, b8 of a minimal model of an elliptic curve. The subclasses
are preserved by twists, in the sense that twists of all curves belonging to a subclass also
belong to one subclass.

Thus it would appear that Comalada has already done all the work for this paper!
It is not exactly so. The coefficients b2, b4, b6, b8 used by him correspond to a minimal
model of a curve, called a v-normal model. The definition of a v-normal model is given
by complicated conditions of Lemma 2 in [Co]. In general a v-normal model is not the
reduced minimal model (usually used, see Cremona’s tables [Cr2]). A v-normal model is

[5]



6 J. Browkin and D. Davies

not unique, and what is given is an explicit algorithm for determining a v-normal model
from the reduced minimal one (and vice versa). Thus to apply the results of Comalada
to an elliptic curve given by means of the reduced minimal model, some additional effort
is necessary.

Moreover, Comalada did not determine the value of v(N) for curves belonging to his
subclass. He only gives the difference v(Nχ) − v(N), where Nχ is the conductor of the
twisted curve. We, however, determine, for each subclass, both the numbers v(Nχ) and
v(N), and not just their difference.

Therefore the results of the present paper are not a simple translation of the results of
Comalada (stated in the language of v-normal models) to the reduced minimal models.

Every squarefree integer d can be written uniquely in the form

d = εηp∗1 · · · p∗n,

where ε = ±1, η = 1 or 2, n ≥ 0, p∗ := (−1)(p−1)/2 · p, and p1, . . . , pn are different odd
primes. Then the twist by d is the product of the twists by ε, η, p∗1, . . . , p

∗
n.

For a curve E its local Kodaira symbol for a prime p does not change under the twist
by d, provided gcd(D, p) = 1, where D is the discriminant of the field Q (

√
d). Therefore

it is sufficient to consider the following cases: p = 2, d = −1 or 2, and p > 2, d = p∗. We
investigate these cases separately in what follows. Next we describe in a similar way the
action of nonquadratic twists on the Kodaira classes.

Our considerations are in fact local, and they can be generalized mutatis mutandis

to elliptic curves defined over an arbitrary discrete valuation ring with a finite residue
field.

In the second part of the paper we discuss some questions concerning conductors, and
the number of curves with a given conductor. In the tables (based on the Cremona tables
[Cr2]) we illustrate these questions giving related numerical data.

1.2. Notation. Let

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, aj ∈ Z,

be a Weierstrass model of an elliptic curve E . We shall also use the notation E =
[a1, a2, a3, a4, a6]. Let ∆(E) be the discriminant of this model, and let the letters b2, b4, b6,
b8, c4, c6, j have the standard meaning (see the formulas below).

We have

∆(E) = −b22b8 − 8b34 − 27b26 + 9b2b4b6 = (c34 − c26)/123, (1.1)

where

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4

and

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6.

Finally, j = c34/∆(E).
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In particular, if a1 = a3 = 0, i.e. if E = [0, a2, 0, a4, a6], then the above formulas
simplify to

b2 = 4a2, b4 = 2a4, b6 = 4a6, b8 = 4a2a6 − a2
4,

c4 = 24(a2
2 − 3a4), c6 = −25(2a3

2 − 9a2a4 + 27a6).

Hence in this case

∆(E) = 24(a2a4 + a6)2 − 26(a3
4 + a3

2a6 + 7a2
6) + 28a2a4a6. (1.2)

Denote by vp(r) the p-adic valuation of the rational number r. We use the simpler notation
v(r) when the prime number p is fixed.

If pk | aj , then we use the convenient notation of Tate aj,k := aj/p
k. We define bj,k

and cj,k similarly.
By N = N(E) we denote the conductor of the elliptic curve E .

1.3. The reduced minimal model of a curve. Applying to the model E = [a1, a2, a3,

a4, a6] the substitution

X = X ′ + r, Y = Y ′ + sX ′ + t,

where r, s, t ∈ Z, we get the model E′ = [a′1, a
′
2, a
′
3, a
′
4, a
′
6], where

a′1 = a1 + 2s, a′2 = a2 − sa1 + 3r − s2, a′3 = a3 − ra1 + 2t,

and c′4 = c4, c
′
6 = c6, hence ∆(E′) = ∆(E).

It follows that there are unique r, s, t ∈ Z such that a′1, a
′
3 ∈ {0, 1}, a′2 ∈ {−1, 0, 1}.

We call such a model reduced.
Thus for every model E there is a unique reduced model E′ with the same discrimi-

nant.
We call a model E of an elliptic curve E minimal if |∆(E)| ≤ |∆(E′)| for every model

E′ of E . Since ∆(E′) = u12∆(E) for some positive integer u, the discriminant of a minimal
model of E depends only on the curve E . We call it the discriminant of the elliptic curve
E , and denote it by ∆(E).

It follows from the above that for every elliptic curve E there is a unique reduced
minimal model.

Every model E′ = [a′1, a
′
2, a
′
3, a
′
4, a
′
6] of E can be obtained from a minimal one E =

[a1, a2, a3, a4, a6] by a linear substitution of the form

X = u2X ′ + r, Y = u3Y ′ + u2sX ′ + t,

where r, s, t, u ∈ Z, u 6= 0. Then

c′4 = u4c4, c′6 = u6c6, ∆(E′) = u12∆(E) = u12∆(E).

Thus the model E′ is minimal iff the scaling factor u satisfies |u| = 1.

1.4. Some important lemmas. The following well known lemmas will be frequently
used in this paper. We include them for the convenience of the reader.

Lemma 1.1.

(i) If E = [a1, a2, a3, a4, a6] is a minimal model of E , then

4 |N(E) iff a1 ≡ a3 ≡ 0 (mod 2).
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(ii) If E = [a1, a2, a3, a4, a6] is the reduced minimal model of E , then

4 |N(E) iff a1 = a3 = 0.

Proof (J. E. Cremona [Cr1]). (i) It is known [Si1] that 4 |N(E) iff the reduced curve E
(mod 2) has a cusp iff

∆(E) ≡ c4 ≡ 0 (mod 2). (1.3)

Since c4 = b22 − 24b4 ≡ b2 ≡ a1 (mod 2) and b6 ≡ a3 (mod 2), we get, by (1.1),

∆(E) ≡ a1b8 + a3 + a1b4b6 (mod 2).

Consequently, (1.3) holds iff ∆(E) ≡ a1 ≡ 0 (mod 2) iff a3 ≡ a1 ≡ 0 (mod 2).
(ii) The claim follows from (i), since in the reduced minimal model we have a1, a3 ∈

{0, 1}.

Lemma 1.2. Let E = [0, a2, 0, a4, a6]. Then 24 |∆(E), and moreover

24 ‖ ∆(E) iff a2a4 + a6 ≡ 1 (mod 2),

and 26 |∆(E) otherwise.

Proof. The lemma follows directly from (1.2).

Lemma 1.3 (A. Kraus). Let integers m,n satisfy m3 − n2 6= 0 and 123 |m3 − n2. There
exists a model E = [a1, a2, a3, a4, a6] such that c4 = m and c6 = n iff

(i) v3(n) 6= 2, and
(ii) either n ≡ −1 (mod 4) or m ≡ 0 (mod 16), n ≡ 0, 8 (mod 32).

Proof. See [Kr, Proposition 2].

Lemma 1.4 (J. E. Cremona). Let c4 and c6 correspond to the model E = [a1, a2, a3,

a4, a6]. Then the reduced model E′ = [a′1, a
′
2, a
′
3, a
′
4, a
′
6] of E is uniquely determined by c4

and c6.

Proof (see [Cr2, p. 46]). It is sufficient to determine consecutively the following integers,
taking into account that c′4 = c4 and c′6 = c6:

b′2 ≡ −c4 (mod 12), b′2 ∈ {−4,−3, 0, 1, 4, 5},
b′4 = (b′22 − c4)/24,

b′6 = (−b′32 + 36b′2b
′
4 − c6)/216,

a′1 ≡ b′2 (mod 2), a′1 ∈ {0, 1},
a′3 ≡ b′6 (mod 2), a′3 ∈ {0, 1},
a′2 = (b′2 − a′1)/4,

a′4 = (b′4 − a′1a′3)/2,

a′6 = (b′6 − a′3)/4.

Lemma 1.5. Let E′ = [a′1, a
′
2, a
′
3, a
′
4, a
′
6] and E′′ = [a′′1 , a

′′
2 , a
′′
3 , a
′′
4 , a
′′
6 ] be models of curves

E ′ and E ′′, respectively. Then E ′ = E ′′ iff

u′ 4c4(E′) = u′′ 4c4(E′′), u′ 6c6(E′) = u′′ 6c6(E′′) for some u′, u′′ ∈ N.
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Proof. ⇒ Assume that E ′ = E ′′ and let E = [a1, a2, a3, a4, a6] be a minimal model of the
curve. Then

c′4 = u4
1c4, c′6 = u6

1c6 for some u1 ∈ N,
c′′4 = u4

2c4, c′′6 = u6
2c6 for some u2 ∈ N.

It is sufficient to take u′ = u2 and u′′ = u1.

⇐ Let E′1 and E′′1 be the models obtained from E′ and E′′, respectively, by linear
substitutions with the scaling factors u′ and u′′, respectively. Then, by the assumption,

c4(E′1) = u′ 4c4(E′) = u′′ 4c4(E′′) = c4(E′′1 ),

and similarly c6(E′1) = c6(E′′1 ).
Consequently, by Lemma 1.4, the reduced models of E′1 and E′′1 are the same. Hence

E′1 and E′′1 are models of the same curve, thus also E′ and E′′ are models of the same
curve.

Lemma 1.6. Let E = [a1, a2, a3, a4, a6] be a model of an elliptic curve E . This model is
minimal iff for every u > 1 satisfying

u4 | c4, u6 | c6, u12 |∆(E) (1.4)

the numbers m = c4/u
4 and n = c6/u

6 do not satisfy at least one of the conditions (i),
(ii) of Lemma 1.3.

Proof. ⇒ Assume that there is u > 1 such that (1.4) holds and the numbers m,n defined
in the lemma satisfy conditions (i), (ii) of Lemma 1.3.

Then, by Lemma 1.3, there is a model E′ = [a′1, a
′
2, a
′
3, a
′
4, a
′
6] of some elliptic curve

E ′ such that c′4 = m, c′6 = n, i.e. c4 = u4c′4, c6 = u6c′6 and ∆(E) = u12∆(E′).
From Lemma 1.5 we get E = E ′, which contradicts the minimality of E, since u > 1.
⇐ If the model E is not minimal, then there is a linear substitution with the scal-

ing factor u, |u| > 1, such that (1.4) holds, which maps E on a model E′ with c′4 =
c4/u

4, c′6 = c6/u
6. Hence, by Lemma 1.3, the numbers m = c′4, n = c′6 satisfy the

conditions (i), (ii) of this lemma.

2. The case p = 2 and d = −1

2.1. Table 2.1. We give a refinement of the Kodaira classification of elliptic curves
defined over Q based on Table IV in [Pa], which we slightly change and adapt to our
situation. The set of all curves E with a fixed Kodaira symbol for p = 2 is partitioned
into specific classes corresponding to the triples V (E) = (v(c4), v(c6), v(∆)), where E is
a minimal model of E . We know that ∆ 6= 0, but for some curves it may happen that
c4 = 0 or c6 = 0. Since v(0) = ∞, the first or the second term in the triple V (E) can
be ∞.

We denote e.g. by III(5, 7, 8) the class of all curves E with Kodaira symbol III for
p = 2 satisfying v(c4) = 5, v(c6) = 7, v(∆) = 8, where c4, c6,∆ correspond to a minimal
model of E .

There is an exception: for curves with Kodaira symbol Iν , ν ≥ 0, we use the nonmin-
imal models given by Lemma 2.1 below.
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It turns out that in general there are several classes with the same triple V (E) and
with different Kodaira symbols. The additional conditions indicated in the third column
of Table 2.1 determine to which class a curve belongs. The notation of the form (3)&(4)′

means that Condition 3 holds, and Condition 4 does not.
For example, the triple V (E) = (5, 7, 8) appears in Table 2.1 only once, so no addi-

tional condition is given in the third column and in the corresponding line. On the other
hand, the triple V (E) = (5, 5, 4) appears twice in the classes with Kodaira symbols II
and III. Condition 1 decides to which class the curve in question belongs. The valuation
of the conductor v(N) is the same for all curves in a refined Kodaira class. It is known
that 0 ≤ v(N) ≤ 8 (see [Ser] and [LRS]).

2.2. Additional conditions. Below we give a more precise description of the contents
of Table 2.1. First we state and discuss the additional conditions. In particular, we show
which conditions are preserved under the twist by −1, and which are not.

From the Tate classification of elliptic curves [Ta] it follows that 4 - N(E) iff the
Kodaira symbol of E is Iν for some ν ≥ 0. Therefore, by Lemma 1.1, we have a1 = a3 = 0
for the reduced minimal model of E iff the Kodaira symbol of E is not Iν , ν ≥ 0.

To get a1 = a3 = 0 also for curves with Kodaira symbol Iν , ν ≥ 0, we consider the
nonminimal models of these curves given by the following lemma.

Lemma 2.1. If the reduced minimal model E = [a1, a2, a3, a4, a6] of a curve E satisfies
(a1, a3) 6= (0, 0), then the linear substitution

X ′ = 4X, Y ′ = 8Y + 4a1X + 4a3

with the scaling factor u = 2 leads to the nonminimal model

E′ = [a′1, a
′
2, a
′
3, a
′
4, a
′
6] = [0, a2

1 + 4a2, 0, 8(a1a3 + 2a4), 16(a2
3 + 4a6)]

with a′1 = a′3 = 0. Then c′4 = 24c4, c
′
6 = 26c6, ∆(E′) = 212∆(E).

Proof. Direct verification.

In view of Lemma 2.1, the classes of curves with Kodaira symbols Iν , ν ≥ 0, will also
be denoted using the nonminimal models:

I0(0, 0, 0) = I0(4, 6, 12)′,

I0(ν, 3, 0) = I0(4 + ν, 9, 12)′, ν ≥ 4,

Iν(0, 0, ν) = Iν(4, 6, 12 + ν)′, ν ≥ 1,

where the prime ′ indicates that the triple V (E) corresponds to the nonminimal model
given in Lemma 2.1.

The models with a1 = a3 = 0 are very convenient for the investigation of quadratic
twists. Namely, if E = [0, a2, 0, a4, a6], then twisting of E by a squarefree integer d gives
the model

E′ := E ∗ d = [0, da2, 0, d2a4, d
3a6],

which is not minimal in general. Hence c′4 = d2c4, c
′
6 = d3c6, ∆(E′) = d6∆(E). Conse-

quently, if V (E) = (v1, v2, v3), then V (E′) = (v1 +2δ, v2 +3δ, v3 +6δ), where δ = vp(d) =
0 or 1, since d is squarefree. In particular, V (E ∗ (−1)) = V (E), since vp(−1) = 0.
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Lemma 2.2. A model E satisfying

(i) V (E) = (4, 6,≥ 12), respectively, (ii) V (E) = (≥ 8, 9, 12)

is minimal iff

(i) c6,6 ≡ 1 (mod 4), respectively, (ii) c6,9 ≡ −1 (mod 4).

Proof. By Lemma 1.6, the model E is minimal iff there is no model E′ with c′4 =
c4/24, c′6 = c6/26, ∆(E′) = ∆(E)/212.

Obviously v3(c6) = v3(c6/26), hence it is sufficient to consider only the condition (ii)
of Lemma 1.3.

(i) From v(c6) = 6 it follows that c6,6 is odd. Then, by Lemma 1.3, there is no model
E′ with c′6 = c6,6 iff c6,6 ≡ 1 (mod 4).

(ii) From v(c4) ≥ 8 we get c4,4 ≡ 0 (mod 16). From v(c6) = 9 we deduce that c6,9 ≡ ±1
(mod 4). Then, by Lemma 1.3, there is no model E′ with c′4 ≡ 0 (mod 16) and c6,9 ≡ −1
(mod 4).

In view of Lemma 2.2, we state

Condition 0. Assume that V (E) = (4, 6,≥ 12) or (≥ 8, 9, 12). The condition is:

c6,6 ≡ 1 (mod 4) if V (E) = (4, 6,≥ 12),

c6,9 ≡ −1 (mod 4) if V (E) = (≥ 8, 9, 12).

Condition 0 makes it possible to distinguish the curves in the class:

• I0(4, 6, 12)′ from those in I∗4(4, 6, 12);
• I0(ν, 9, 12)′ from those in II∗(ν, 9, 12), where ν ≥ 8;
• Iν(4, 6, 12 + ν)′ from those in I∗4+ν(4, 6, 12 + ν), where ν ≥ 1.

Thus a curve with a model E satisfying the assumptions of Condition 0 belongs to Case
1 or 2 if it satisfies Condition 0, and to Case > 2 otherwise. See Table 2.1.

Lemma 2.3. A model E satisfies Condition 0 iff the twisted model E′ := E ∗ (−1) does
not satisfy this condition.

Proof. We have V (E) = V (E′) and c6 = −c′6. Obviously, c6 satisfies Condition 0 iff −c6
does not satisfy it.

This lemma explains the first three lines in Table 2.2.
To state the next additional conditions we need the following notation. For a model

E = [0, a2, 0, a4, a6] let

F (X) := X3 + a2X
2 + a4X + a6,

G(X) := 3X4 + b2X
3 + 3b4X2 + 3b6X + b8

= 3X4 + 4a2X
3 + 6a4X

2 + 12a6X + (4a2a6 − a2
4).

Let us observe that G′(X) = 12F (X) ≡ 0 (mod 4).
From the definition of the polynomials F (X) and G(X) for a model E with a1 =

a3 = 0 it follows that if the substitution X 7→ X + r leads to the model E(r) with the



12 J. Browkin and D. Davies

corresponding polynomials F (r)(X) and G(r)(X), then

F (r)(X) := F (X + r) and G(r)(X) := G(X + r).

Consequently, the additional conditions stated below, using the polynomials F (X) and
G(X), do not depend on the minimal model chosen. Therefore we can apply the conditions
to a minimal model chosen arbitrarily.

For the twisted model Ed := E∗d = [0, da2, 0, d2a4, d
3a6] denote by Fd(X) and Gd(X)

the corresponding polynomials. Then

Fd(dX) = d3F (X) and Gd(dX) = d4G(X).

In particular,
F−1(X) = −F (−X) and G−1(X) = G(−X).

Choose w satisfying w ≡ a4 (mod 2). It is easy to verify that F (w) (mod 4) does not
depend on the w chosen.

Condition 1. F (w) ≡ 2 or 3 (mod 4) for w ≡ a4 (mod 2).

Let us observe that

F (a4) = a3
4 + a2a

2
4 + a2

4 + a6 ≡ a2a4 + a6 (mod 2).

Then, by Lemma 1.2, F (a4) is odd iff v(∆) = 4.
Hence Condition 1 can be stated in the following equivalent form:

F (a4) ≡

{
3 (mod 4) if v(∆) = 4,

2 (mod 4) if v(∆) > 4.
(2.1)

Let E satisfy V (E) = (≥ 4, 5, 4) or (4,≥ 7, 6). Then E belongs to Case 3 iff Condition 1
is satisfied, and to Case > 3 otherwise. For the proof, see [Pa, Proposition 1].

Lemma 2.4. For a model E let E′ := E ∗ (−1) be its twist by −1.

(i) If v(∆) = 4, then exactly one of the models E and E′ satisfies Condition 1.
(ii) If v(∆) > 4, then E and E′ satisfy or do not satisfy Condition 1 simultaneously.

Proof. For both models E and E′, a4 is the same, and a4 ≡ −a4 (mod 2). Moreover,
∆(E) = ∆(E′). Then F−1(a4) ≡ F−1(−a4) = −F (a4) (mod 4). Hence F (a4) ≡ F−1(a4)
(mod 4) iff F (a4) is even iff v(∆) > 4. The lemma follows from (2.1).

Condition 1 makes it possible to distinguish curves in the class:

• II(4, 5, 4) from those in III(4, 5, 4) ∪ IV(4, 5, 4);
• II(5, 5, 4) from those in III(5, 5, 4);
• II(ν, 5, 4) from those in IV(ν, 5, 4), where ν ≥ 6;
• II(4, ν, 6) from those in III(4, ν, 6), where ν ≥ 7.

See Table 2.1.
To distinguish curves in the class III(4, 5, 4) from those in IV(4, 5, 4) the next condition

will be applied.
Choose w satisfying w ≡ a4 (mod 2). It is easy to verify, using G′(X) ≡ 0 (mod 4),

that G(w) (mod 8) does not depend on the w chosen, and that G(w) ≡ 0 (mod 4).
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Condition 2. G(w) ≡ 4 (mod 8) for w ≡ a4 (mod 2).

Assume that V (E) = (4, 5, 4) and that E belongs to Case ≥ 4. Then E belongs to
Case 4 iff Condition 2 is satisfied. See [Pa, Proposition 2].

Lemma 2.5. Assume that V (E) = (4, 5, 4). Condition 2 is satisfied by a model E iff it is
satisfied by the twisted model E ∗ (−1).

Proof. Since w ≡ −w ≡ a4 (mod 2), we have G(w) ≡ G(−w) (mod 8). The lemma follows
from the equality G−1(w) = G(−w).

Condition 2 makes it possible to distinguish curves belonging to the class III(4, 5, 4)
from those in IV(4, 5, 4). The twist by −1 maps both these classes into II(4, 5, 4). See
Table 2.1. This lemma explains lines 4 and 5 in Table 2.2.

To state the next conditions we need the following lemma.

Lemma 2.6. Let V (E) = (4, 6, 8) or V (E) = (ν, 7, 8) with ν ≥ 6. Then

(i) The congruence G(X) ≡ 0 (mod 32) has a solution w ≡ a4 (mod 2). Moreover,
G(w′) ≡ 0 (mod 32) iff w′ ≡ w (mod 4).

(ii) Choose w satisfying G(w) ≡ 0 (mod 32). Then F (w) ≡ 4 (mod 8), and F (w)
(mod 16) does not depend on the w chosen.

Proof. Without loss of generality we can assume that E = [0, a2, 0, a4, a6] is the reduced
minimal model, thus a2 = 0 or ±1.

(i) We consider several cases and subcases. We collect the information on a2, a4, a6,

and then determine all solutions of G(X) ≡ 0 (mod 32).
From the definition of G(X) it follows that if G(w) ≡ 0 (mod 2), then w ≡ a4 (mod 2).

I. Let V (E) = (4, 6, 8).
(a) Assume that a2 = 0. Then G(X) = 3X4 + 6a4X

2 + 12a6X − a2
4. From v(c4) = 4

and c4 = −24 ·3 a4 it follows that a4 is odd. From v(c6) = 6 and c6 = −25 ·33 a6 it follows
that a6 = 2a6,1, a6,1 odd. Then

∆ = (c34 − c26)/123 = −26(a3
4 + 27a2

6,1)

and v(∆) = 8 implies that a3
4 + 27a2

6,1 ≡ 4 (mod 8), i.e. a4 ≡ 1 (mod 8).
Consequently, if G(w) ≡ 0 (mod 2) then w is odd.
For every odd w we have a4 +w2 ≡ 2 (mod 8), hence (a4 +w2)2 ≡ 4 (mod 32). Now

G(w) = 3(w2 + a4)2 − 4a2
4 + 24a6,1w ≡ 3 · 4− 4 + 24a6,1w ≡ 8(1 + 3a6,1w) (mod 32).

Hence G(w) ≡ 0 (mod 32) iff 1 + 3a6,1w ≡ 0 (mod 4), iff w ≡ a6,1 (mod 4). Thus all
solutions of the congruence G(w) ≡ 0 (mod 32) are given by w ≡ a6,1 (mod 4).

(b) Assume that a2 = ±1. From c4 = 24(1 − 3a4) and v(c4) = 4 it follows that
c4,4 = 1−3a4 is odd, i.e. a4 is even, hence a6 is even, by Lemma 1.2. From c6 = −26(a2−
9a2a4,1 + 27a6,1) and v(c6) = 6 it follows that c6,6 = c6/26 = −(a2 − 9a2a4,1 + 27a6,1) is
odd, i.e. a4,1 ≡ a6,1 (mod 2).

We have

∆ =
26

33
(c34,4 − c26,6).
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From v(∆) = 8 it follows that c34,4 − c26,6 ≡ 4 (mod 8), hence c4,4 ≡ 5 (mod 8). Then
c4,4 = 1− 3a4 implies that a4 ≡ 4 (mod 8), i.e. a4,1 ≡ 2 (mod 4), hence a6,1 ≡ 0 (mod 2).
Therefore a4,1 = 2a4,2, a4,2 odd, and a6,1 = 2a6,2.

Consequently, if G(w) ≡ 0 (mod 2), then w is even, w = 2w1.

In view of a4 ≡ a6 ≡ 0 (mod 4), we have

G(w) = G(2w1) ≡ 16w4
1 + 16(a6,2 + a4,2) ≡ 16(w1 + a6,2 + 1) (mod 32).

Consequently, G(2w1) ≡ 0 (mod 32) iff w1 ≡ a6,2 + 1 (mod 2) iff w = 2w1 ≡ a6,1 + 2
(mod 4).

Thus all solutions of the congruence G(w) ≡ 0 (mod 32) are given by w ≡ a6,1 + 2
(mod 4).

II. Let V (E) = (ν, 7, 8), ν ≥ 6.
(a) Assume that a2 = 0. From v(c4) = ν ≥ 6 and c4 = −24 · 3 a4 it follows that

4 | a4, a4 = 4a4,2. From v(c6) = 7 and c6 = −25 · 33 a6 it follows that 22 ‖ a6, i.e.
a6 = 4a6,2, a6,2 odd.

Hence if G(w) ≡ 0 (mod 2), then w is even, w = 2w1.

In view of a4 ≡ a6 ≡ 0 (mod 4), we have

G(w) = G(2w1) ≡ 16w4
1 − 16a2

4,2 ≡ 16(w1 − a4,2) (mod 32).

Consequently, G(2w1) ≡ 0 (mod 32) iff w1 ≡ a4,2 (mod 2), i.e. w ≡ a4,1 (mod 4).
Thus all solutions of the congruence G(w) ≡ 0 (mod 32) are given by w ≡ a4,1

(mod 4).

(b) Assume that a2 = ±1. From c4 = 24(1 − 3a4) we get 1 − 3a4 ≡ 4 (mod 8) if
v(c4) = 6, and 1− 3a4 ≡ 0 (mod 8) if v(c4) > 6. Hence

a4 ≡

{
−1 (mod 8) if v(c4) = 6,

3 (mod 8) if v(c4) > 6.
(2.2)

From c6 = −25(2a3
2 − 9a2a4 + 27a6) and v(c6) = 7 it follows that 2a3

2 − a2a4 + 3a6 ≡ 4
(mod 8). Hence, by (6),

a6 ≡

{
3a2 (mod 8) if v(c4) = 6,

−a2 (mod 8) if v(c4) > 6.
(2.3)

From (2.2) it follows that a4 is odd. Hence if G(w) ≡ 0 (mod 2), then w is odd.
For every odd w we have w2 − a4 ≡ 2 (mod 4), hence (w2 − a4)2 ≡ 4 (mod 32).
Moreover, from (2.2) and (2.3) it follows that 3a4 + a2a6 ≡ 0 (mod 8) and a2 + 3a6 ≡

±2a2 (mod 8). Consequently, in view of w2 ≡ 1 (mod 8), we get

G(w) = 3(w2 − a4)2 − 4a2
4 + 4a2w

3 + 12a4w
2 + 12a6w + 4a2a6

≡ 3 · 4 + 4w(a2 + 3a6)− 4 + 4(3a4 + a2a6) ≡ 8(1± a2w) (mod 32).

It follows that G(w) ≡ 0 (mod 32) iff

w ≡

{
−a2 (mod 4)

a2 (mod 4)
≡

{
a6 (mod 4) if v(c4) = 6,

−a6 (mod 4) if v(c4) > 6.
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For convenience we collect the solutions w of the congruence G(w) ≡ 0 (mod 32) obtained
above. They always satisfy w ≡ a4 (mod 2), and w (mod 4) is unique.

Case a2 a4 (mod 8) a6 (mod 8) w (mod 4) c4

I(a) 0 1 ±2 a6,1

I(b) ±1 4 0 or 4 a6,1 + 2
II(a) 0 0 or 4 4 a4,1

II(b) ±1
−1

3
3a2

−a2

−a2

a2

v(c4) = 6
v(c4) > 6

(ii) We prove that F (w) ≡ 4 (mod 8) considering the table above case by case.
In the case I(a) we have w ≡ a6,1 ≡ ±1 (mod 4). Hence

F (w) = w3 + a4w + a6 ≡ w + w + 2a6,1 ≡ 2(w + a6,1) ≡ 4 (mod 8).

In the case I(b) we have a4 ≡ a6 ≡ 0 (mod 4) and w ≡ a6,1 + 2 = 2(a6,2 + 1) (mod 4) is
even. Hence

F (w) = w3 + a2w
2 + a4w + a6 ≡ a2w

2 + a6 ≡ 4(1 + a6,2)2 + 4a6,2 ≡ 4 (mod 8).

In the case II(a), we have a4 ≡ 0 (mod 4), a6 ≡ 4 (mod 8) and w ≡ a4,1 = 2a4,2 (mod 4)
is even. Hence

F (w) = w3 + a4w + a6 ≡ a6 ≡ 4 (mod 8).

In the case II(b) w is odd. Hence

F (w) = w3 + a2w
2 + a4w + a6 ≡ w(1 + a4) + (a2 + a6) (mod 8).

If v(c4) = 6, then we get

F (w) ≡ −a2(1 + a4) + (a2 + 3a2) ≡ 4a2 ≡ 4 (mod 8).

If v(c4) > 6, then we get

F (w) ≡ a2(1 + a4) + (a2 − a2) ≡ 4a2 ≡ 4 (mod 8).

Thus F (w) ≡ 4 (mod 8) in every case.
Since the solution w of the congruence G(X) ≡ 0 (mod 32) is unique modulo 4, to

prove the uniqueness of F (w) (mod 16) it is sufficient to prove that F (w + 4) ≡ F (w)
(mod 16).

We have
F (w + 4) = F (w) + 4(3w2 + 2a2w + a4).

Consequently, to prove the claim it is sufficient to show that

3w2 + 2a2w + a4 ≡ 0 (mod 4).

This can be easily verified considering the above table case by case.

Condition 3. Assume that V (E) = (4, 6, 8) or V (E) = (ν, 7, 8), where ν ≥ 6, and let
G(w) ≡ 0 (mod 32). The condition is: F (w) ≡ 12 (mod 16).

Assume that E satisfies the assumptions of Condition 3. Then E belongs to Case 6
iff Condition 3 is satisfied, and belongs to Case > 6 otherwise. See [Pa, Proposition 3].
See Table 2.1.
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Let us remark that our Condition 3 is simpler than that in [Pa]. In our case the
congruence G(X) ≡ 0 (mod 32) always has a solution. Moreover, we need this condition
only for some particular triples V (E). It leads to some simplifications in our case. In
general it is also possible that sometimes F (w) ≡ 8 (mod 16).

Lemma 2.7. Assume that V (E) = (4, 6, 8) or (ν, 7, 8) with ν ≥ 6, and let E′ := E ∗ (−1).
Then exactly one of the models E and E′ satisfies Condition 3.

Proof. Let G(w) ≡ 0 (mod 32), where w ≡ a4 (mod 2). Then for the twisted model E′

the value of a4 is the same, and F−1(−w) = −F (w).
Therefore F−1(−w) = −F (w) ≡ 4 (mod 8), by Lemma 2.6. Consequently, exactly one

of the numbers F (w) and F−1(−w) is ≡ 12 (mod 16). Hence exactly one of the models
E and E′ satisfies Condition 3.

Condition 3 makes it possible to distinguish curves belonging to the class:

• I∗0(6, 7, 8) from those in I∗1(6, 7, 8);
• I∗0(ν, 7, 8) from those in IV∗(ν, 7, 8), where ν ≥ 7;
• I∗0(4, 6, 8) from those in I∗1(4, 6, 8)∪ IV∗(4, 6, 8).

See Table 2.1.
The following condition makes it possible to distinguish curves belonging to the class

I∗1(4, 6, 8) from those in IV∗(4, 6, 8).

Condition 4. Assume that V (E) = (4, 6, ν), where ν ≥ 8. By Lemma 2.6, and Lemma
3.9, below, there is w ≡ a4 (mod 2) such that G(w) ≡ 0 (mod 32) and w (mod 4) is
unique. The condition is: a2 − w ≡ 1 (mod 4).

Assume that E belongs to Case ≥ 7, and satisfies the assumptions of Lemma 2.6.
Then E belongs to Case 7 iff Condition 4 is satisfied. See [Pa, Proposition 4].

Lemma 2.8. If E satisfies the assumptions of Condition 4 and E′ := E ∗ (−1), then
exactly one of the models E and E′ satisfies Condition 4.

Proof. From v(c4) = 4 it follows that a2
2 − 3a4 is odd, i.e. a2 − a4 is odd.

By Lemma 2.6 there is w ≡ a4 (mod 2) such that G(w) ≡ 0 (mod 32). Hence a2 − w
is odd. Then −w ≡ a4 ≡ a′4 (mod 2) and G−1(−w) = G(w) ≡ 0 (mod 32).

Thus Condition 4 for E says that a2 − w ≡ 1 (mod 4), and for E′ that a′2 − (−w) =
−a2 +w ≡ 1 (mod 4), i.e. a2−w ≡ −1 (mod 4). Since a2−w is odd, exactly one of these
congruences holds, and the lemma follows.

Condition 4 makes it possible to distinguish curves in the class:

• I∗1(4, 6, 8) from those in IV∗(4, 6, 8);
• I∗2(4, 6, 10) from those in III∗(4, 6, 10);
• I∗3(4, 6, 11) from those in II∗(4, 6, 11).

See Tables 2.1 and 2.2.
Applying Conditions 0–4, as described above, we can determine to which class a curve

belongs, with one exception. Namely, there are classes I∗2(6, ν, 12) and I∗3(6, ν, 12), where
ν ≥ 10, which belong to the same Case 7.
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To distinguish curves in these classes we apply the next condition. It is not stated
explicitly in [Pa].

Condition 5. Assume that V (E) = (6, ν, 12), where ν ≥ 10. The condition is: c4,6 ≡ −1
(mod 4).

Lemma 2.9. Let V (E) = (6, ν, 12), where ν ≥ 10. Then E belongs to the class I∗2(6, ν, 12)
iff Condition 5 is satisfied, and to I∗3(6, ν, 12) iff c4,6 ≡ 1 (mod 4).

Proof. We are going to apply Step 7 of the algorithm of Tate (see [Ta]). Thus we have to
replace the model E by a model E′ = [0, a′2, 0, a

′
4, a
′
6] satisfying 2 ‖ a′2. We consider two

cases.

1) Let a2 = ±1. We make the substitution X 7→ X − a2, which does not change the
values of c4, c6 and ∆. We get the model

E′ = [0, a′2, 0, a
′
4, a
′
6] = [0,−2a2, 0, 1 + a4,−a2a4 + a6].

Since c4 = c′4 = 24(4− 3a′4) and v(c4) = 6, we have 8 | a′4, hence a′4 = 8a′4,3.
Similarly from

c6 = c′6 = −25(2a′ 32 − 9a′2a
′
4 + 27a′6) = −25(16a′2,1(1− 9a′2,1 a

′
4,3) + 27a′6)

and v(c6) ≥ 10 we deduce that 24 | a′6.
The polynomial

P (T ) = T 3 + a′2,1T
2 + a′4,2T + a′6,3 (mod 2),

appearing in the Tate algorithm, in our case takes the form P (T ) = T 3 + T 2 (mod 2). It
has a double root T = 0, and a single root T = −1.

Then, according to Step 7 of the algorithm, we have to consider the polynomial

Y 2 + a′3,2Y − a′6,4 (mod 2),

i.e. the polynomial Y 2 − a′6,4 (mod 2) in our case. It has a double root, and we can
translate Y, if necessary, so that the root is Y = 0.

Namely, if a′6,4 ≡ 1 (mod 2), i.e. if a′6 ≡ 16 (mod 32), we make the substitution
Y 7→ Y + 4, and get the model E′′ = [0, a′2, 8, a

′
4, a
′
6 − 16]. Here a′′6 = a′6 − 16 ≡ 0

(mod 32), i.e. a′′6,4 ≡ 0 (mod 2). In other words, we can assume that 25 | a′6.
Now the algorithm says that the Kodaira symbol of E′ (hence also of E) is I∗2 if the

polynomial
a′2,1X

2 + a′4,3X + a′6,5 (mod 2),

i.e. X2 + a′4,3X + a′6,5 (mod 2), has distinct roots, and is not I∗2 (hence I∗3 in our case) if
it has a double root.

This polynomial has distinct roots iff a′4,3 ≡ 1 (mod 2), and has a double root iff
a′4,3 ≡ 0 (mod 2).

Since c4 = c′4 = 24(4− 3a′4), it follows that c4,6 = 1− 6a′4,3. Hence

c4,6 ≡

{
−1 (mod 4)

1 (mod 4)
iff a′4,3 ≡

{
1 (mod 2),

0 (mod 2),

and the lemma follows in this case.
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2) Let a2 = 0. We proceed similarly. Making the substitution X 7→ X + 2, which does
not change c4, c6 and ∆, we get the model

E′ = [0, a′2, 0, a
′
4, a
′
6] = [0, 6, 0, 12 + a4, 8 + 2a4 + a6].

Since
c4 = c′4 = 24(a′ 22 − 3a′4) = 24(36− 3a′4),

from v(c4) = 6 we deduce that 8 | a′4, hence a′4 = 8a′4,3.
Similarly from

c6 = c′6 = −25(2a′ 32 − 9a′2a
′
4 + 27a′6) = −25 33(24(1− a′4,3) + a′6)

and from v(c4) ≥ 10 we conclude that 24 | a′6. We can assume that 25 | a′6, making the
substitution Y 7→ Y + 4 if necessary.

Proceeding as in the first case we deduce that the Kodaira symbol of E is I∗2 if a′4,3 is
odd, i.e. if a′4 ≡ 8 (mod 16), and is I∗3 if a′4 ≡ 0 (mod 16).

Since c4 = 26(9− 6a′4,3), we get

c4,6 ≡

{
−1 (mod 4)

1 (mod 4)
iff a′4 ≡

{
8 (mod 16),

0 (mod 16),

which proves the lemma in the second case.

This lemma explains the last two lines in Table 2.2.

2.3. Table 2.2. In Table 2.2 we describe the action of the twist by −1 on the refined
Kodaira classes with v(N) ≤ 4. In the consecutive columns of the table there are classes
with v(N) = 0, 1, 2, 3 and 4, respectively. In every line there is a class and its image under
the twist by −1.

It turns out that the class II(4, 5, 4) is the (disjoint!) union of the twists of the classes
III(4, 5, 4) and IV(4, 5, 4). We denote these subsets of II(4, 6, 8) by II(4, 6, 8)a and II(4, 6, 8)b,
respectively.

By Lemma 2.5, the curves in the subset II(4,5,4)a satisfy Condition 2, and those in
II(4, 5, 4)b do not.

The same remark concerns the class I∗0(4, 6, 8), which is the disjoint union of the
images under the twist by −1 of the classes I∗1(4, 6, 8) and IV∗(4, 6, 8). We denote these
subsets by I∗0(4, 6, 8)a and I∗0(4, 6, 8)b, respectively.

By Lemma 2.8 the curves belonging to the first subset satisfy Condition 4, and those
belonging to the second one do not.

2.4. Main Theorem. The above considerations lead to the following theorem.

Theorem 2.1. Let E−1 := E ∗ (−1).

(i) If v(N(E)) > 4, then both curves E and E−1 belong to the same refined Kodaira class.
Hence v(N(E)) = v(N(E−1)).

(ii) If v(N(E)) ≤ 4, then E and E−1 belong to distinct refined Kodaira classes. More
precisely, v(N(E)) = 4 iff v(N(E−1)) < 4.

Proof. The result follows immediately from Table 2.1 and Lemmas 2.3, 2.4, 2.5, 2.7
and 2.8.
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For example, if E belongs to II(4, 6, 7) then in the corresponding line in Table 2.1
there is no additional condition. Therefore E−1 belongs to the same class. Moreover, in
the fourth column of Table 2.1 we have v(N) = 7. Thus Theorem 2.1 holds for the curves
in the class II(4, 6, 7).

On the other hand, if E belongs to IV∗(4, 6, 8), then from Table 2.1 we see that
v(N) = 2 and the corresponding model satisfies neither Condition 3 nor Condition 4.

By Lemmas 2.7 and 2.8, the twisted model E′ := E ∗ (−1) satisfies both these con-
ditions. Therefore from Table 2.1 we see that E−1 does not belong to I∗1(4, 6, 8), hence it
belongs to I∗0(4, 6, 8). Consequently, v(N(E−1)) = 4. This proves Theorem 2.1 for curves
in IV∗(4, 6, 8).

The proof for the remaining classes is similar.
The action of twist by −1 on refined Kodaira classes with v(N) ≤ 4 is described in

Table 2.2.

3. The case p = 2 and d = 2

3.1. Table 3.1. If V (E) = (v1, v2, v3), then V (E ∗ 2) = (v1 + 2, v2 + 3, v3 + 6), thus the
triples corresponding to the models E and E ∗ 2 are distinct. Therefore a curve E and its
twist E ′ := E ∗ 2 belong to distinct refined Kodaira classes.

In Table 3.1 we describe the twists by 2 of all curves given in Table 2.1. There are
small differences between these tables made to get a better presentation.

The action of the twist by 2 on classes still requires further clarification, which mo-
tivates the lemmas given below. The corresponding reference is given in the last column
of Table 3.1.

3.2. Lemmas

Lemma 3.1. Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E . Assume
that V (E) = (4, ν, 6) with ν ≥ 7. Then E satisfies Condition 1 iff E′ := E ∗ 2 does not
satisfy Condition 5. Hence

E ∈ II(4, ν, 6) iff E ∗ 2 ∈ I∗3(6, ν + 3, 12),

E ∈ III(4, ν, 6) iff E ∗ 2 ∈ I∗2(6, ν + 3, 12).

Proof. We have

E′ := E ∗ 2 = [0, 2a2, 0, 4a4, 8a6] =: [0, a′2, 0, a
′
4, a
′
6],

and hence V (E′) = (6, ν + 3, 12) with ν + 3 ≥ 10.
From c4 = 24(a2

2 − 3a4) and v(c4) = 4 we get

a2 6≡ a4 (mod 2). (3.1)

Since v(∆(E)) = 6 > 4, Condition 1 for E takes the form

F (a4) = a3
4 + a2a

2
4 + a2

4 + a6 ≡ 2 (mod 4). (3.2)

Since c′4 = 24(a′22 − 3a′4) = 26(a2
2 − 3a4), Condition 5 for E′ says that c′4,6 ≡ −1 (mod 4),

i.e. a2
2 + a4 ≡ −1 (mod 4). Consequently, in view of (3.1), Condition 5′ for E′ is

a2
2 + a4 ≡ 1 (mod 4). (3.3)
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Since a2a4 is even, by (3.1), from v(c6) ≥ 7 we get 2a3
2 − 9a2a4 + 27a6 ≡ 0 (mod 4), i.e.

2a2 + a2a4 − a6 ≡ 0 (mod 4).
Hence

F (a4) ≡ a3
4 + a2a

2
4 + a2

4 + a2a4 + 2a2

≡ a4(a4 + 1)(a2 + a4) + 2a2 (mod 4).

Since a2 + a4 is odd and a4(a4 + 1) is even we get

F (a4) ≡ a4(a4 + 1) + 2a2 (mod 4).

Now 2a2 ≡ 2a2
2 (mod 4) and a2

4 + a2
2 ≡ 1 (mod 4), by (3.1). Consequently,

F (a4) ≡ a2
4 + a4 + 2a2

2 ≡ (a2
4 + a2

2) + (a4 + a2
2) ≡ a2

2 + a4 + 1 (mod 4).

Therefore F (a4) ≡ 2 (mod 4) iff a2
2 + a4 ≡ 1 (mod 4), i.e. (3.2) is equivalent to (3.3).

In other words, E satisfies Condition 1 iff E′ does not satisfy Condition 5.

Lemma 3.2.

(i) The class II(ν, 6, 6) with ν ≥ 6 is the disjoint union of the classes I0(ν+2, 9, 12)′ and
II∗(ν + 2, 9, 12), both twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ II(ν, 6, 6), ν ≥ 6.
Then

E ∈ I0(ν + 2, 9, 12)′ ∗ 2 iff c6,6 ≡ 1 (mod 4),

E ∈ II∗(ν + 2, 9, 12) ∗ 2 iff c6,6 ≡ −1 (mod 4).

Proof. (i) From E ∈ II(ν, 6, 6) we get V (E ∗ 2) = (ν + 2, 9, 12). The triple (ν + 2, 9, 12)
appears in Table 3.1 twice with the Kodaira symbols I0 and II∗. Therefore

E ∗ 2 ∈ I0(ν + 2, 9, 12)′ ∪ II∗(ν + 2, 9, 12).

From E = (E ∗ 2) ∗ 2 we get the first part of the lemma.
(ii) To prove the second one we describe how Condition 0 (which is used to distinguish

curves in the classes I0(ν + 2, 9, 12)′ and II∗(ν + 2, 9, 12)) changes under the twist by 2.
Let E′ := E ∗ 2 = [0, 2a2, 0, 4a4, 8a6]. Then E′ is a model of E ′ satisfying V (E′) =

(ν + 2, 9, 12). Moreover, this model is not minimal if E ′ ∈ I0(ν + 2, 9, 12)′, and is minimal
if E ′ ∈ II∗(ν + 2, 9, 12).

In view of Lemma 1.6, the model E′ is minimal iff the numbers m = c′4,4 and n = c′6,6
do not satisfy the condition (ii) of Lemma 1.3:

n ≡ −1 (mod 4) or m ≡ 0 (mod 16), n ≡ 0, 8 (mod 32),

i.e.
c′6,6 ≡ −1 (mod 4) or c′4,4 ≡ 0 (mod 16), c′6,6 ≡ 0, 8 (mod 32). (3.4)

In our case we have v(c′4) = ν + 2 ≥ 8, hence v(c′4,4) = v(c′4) − 4 ≥ 4. Thus c′4,4 ≡ 0
(mod 16).

From v(c′6) = 9 we get v(c′6,6) = v(c′6)− 6 = 3. Then c′6,6 ≡ ±8 (mod 32).
Consequently, (3.4) is not satisfied iff c′6,6 ≡ −8 (mod 32), equivalently iff c6,6 ≡ −1

(mod 4), since c′6 = 8c6, i.e. c′6,6 = 8c6,6.
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Thus the model E′ is minimal iff c6,6 ≡ −1 (mod 4), and it is not minimal iff c6,6 ≡ 1
(mod 4). This proves the lemma.

Lemma 3.3. Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈
I∗0(ν, 8, 10), ν ≥ 6. Let the polynomials F (X), G(X) correspond to this model. Define
a := (a4 + a2

2)/2− a2. Then the minimal model E′ = [0, a′2, 0, a
′
4, a
′
6] of the twisted curve

E ′ := E ∗ 2 satisfies

(i) Condition 1 iff F (a) ≡ −8 (mod 25) (and F (a) ≡ 8 (mod 25) otherwise).
(ii) Condition 2 iff G(a) ≡ 26 (mod 27) (and G(a) ≡ 0 (mod 27) otherwise).

Proof. From E = E ′∗2 we get V (E′) = (ν−2, 5, 4), ν ≥ 6. Then E′∗2 = [0, 2a′2, 0, 4a
′
4, 8a

′
6]

is a minimal model of E , which is not reduced in general. To get the reduced one, we
make the substitution X 7→ X − a′2, which leads to the reduced minimal model

Ẽ = [0,−a′2, 0, 4a′4 − a′ 22 , a′ 32 − 4a′2a
′
4 + 8a′6].

Since the reduced minimal model is unique, we get Ẽ = E, hence

a2 = −a′2, a4 = 4a′4 − a′ 22 , a6 = a′ 32 − 4a′2a
′
4 + 8a′6,

It follows in particular that a′4 = (a4 + a2
2)/4.

Let F1(X), G1(X) be polynomials corresponding to the model E′, and F2(X), G2(X)
to the model E′ ∗2. Since the shift X 7→ X−a′2 leads from the model E′ ∗2 to the model
Ẽ = E, we obtain the equalities

F2(X − a′2) = F (X), G2(X − a′2) = G(X).

Moreover,
F2(2X) = 8F1(X), G2(2X) = 16G1(X).

Consequently,

F (a) = F

(
a4 + a2

2

2
− a2

)
= F (2a′4 + a′2) = F2(2a′4) = 8F1(a′4),

and similarly G(a) = 16G1(a′4).
Condition 1 for the model E′ says that F1(a′4) ≡ −1 (mod 4) (and F1(a′4) ≡ 1 (mod 4)

otherwise), hence it is equivalent to F (a) ≡ −8 (mod 32) (and F (a) ≡ 8 (mod 32)
otherwise).

Condition 2 for the model E′ says that G1(a′4) ≡ 4 (mod 8) (and G1(a′4) ≡ 0 (mod 8)
otherwise), hence it is equivalent to G(a) ≡ 26 (mod 27) (and G(a) ≡ 0 (mod 27)
otherwise).

Let us remind ourselves that Conditions 1 and 2 do not depend on a minimal model
chosen. Therefore we can use the minimal model E′ of E ′ even in the case where it is not
reduced.

Lemma 3.4.

(i) The class I∗0(6, 8, 10) is the disjoint union of the classes II(4, 5, 4), III(4, 5, 4) and
IV(4, 5, 4), all twisted by 2.
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(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ I∗0(6, 8, 10).
Then

E ∈ II(4, 5, 4) ∗ 2 iff F (a) ≡ −8 (mod 32),

E ∈ III(4, 5, 4) ∗ 2 iff F (a) ≡ 8 (mod 32) and G(a) ≡ 26 (mod 27),

E ∈ IV(4, 5, 4) ∗ 2 iff F (a) ≡ 8 (mod 32) and G(a) ≡ 0 (mod 27),

where a = (a4 + a2
2)/2− a2.

Proof. (i) For the minimal model E′ of E ′ := E ∗ 2 we have V (E′) = (4, 5, 4). The triple
(4, 5, 4) appears in Table 3.1 three times, with Kodaira symbols II, III and IV. Therefore

E ∗ 2 ∈ II(4, 5, 4) ∪ III(4, 5, 4) ∪ IV(4, 5, 4).

This proves the first part of the lemma.
(ii) To prove the second part, let us observe that Conditions 1 and 2 make it possible

to decide to which of the three classes the curve E ′ belongs.
Applying Lemma 3.3 we get the result.

Proofs of the next two lemmas are quite analogous to the proof of Lemma 3.4, therefore
we omit them.

Lemma 3.5.

(i) The class I∗0(7, 8, 10) is the disjoint union of the classes II(5, 5, 4) and III(5, 5, 4),
both twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ I∗0(7, 8, 10).
Then

E ∈ II(5, 5, 4) ∗ 2 iff F (a) ≡ −8 (mod 32),

E ∈ III(5, 5, 4) ∗ 2 iff F (a) ≡ 8 (mod 32),

where a = (a4 + a2
2)/2− a2.

Lemma 3.6.

(i) The class I∗0(ν, 8, 10), ν ≥ 8, is the disjoint union of the classes II(ν − 2, 5, 4) and
IV(ν − 2, 5, 4) both twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ I∗0(ν, 8, 10).
Then

E ∈ II(ν − 2, 5, 4) ∗ 2 iff F (a) ≡ −8 (mod 32),

E ∈ IV(ν − 2, 5, 4) ∗ 2 iff F (a) ≡ 8 (mod 32),

where a = (a4 + a2
2)/2− a2.

Lemma 3.7. Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈
I∗4(6, 9, 14). Let the polynomials F (X), G(X) correspond to this model. Define â :=
(a6 − a2a4)/8 − 5a2. Then the minimal model E′ = [0, a′2, 0, a

′
4, a
′
6] of the twisted curve

E ′ := E ∗ 2 satisfies

(i) Condition 3 iff F (â) ≡ −25 (mod 27) (and F (â) ≡ 25 (mod 27) otherwise).
(ii) Condition 4 iff â ≡ −(2 + 3a2) (mod 8).
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Proof. We proceed similarly to the proof of Lemma 3.3.
From E = E ′∗2 we get V (E′) = (4, 6, 8). Then E′∗2 = [0, 2a′2, 0, 4a

′
4, 8a

′
6] is a minimal

model of E , which is not reduced in general. The substitution X 7→ X − a′2 leads to the
reduced minimal model

Ẽ = [0,−a′2, 0, 4a′4 − a′ 22 , a′ 32 − 4a′2a
′
4 + 8a′6].

By the uniqueness of the reduced minimal model, we get Ẽ = E. Hence

a′2 = −a2, a′4 = (a4 + a2
2)/4, a′6 = (a6 − a2a4)/8.

Let F1(X), G1(X) be polynomials corresponding to the model E′, and F2(X), G2(X)
to the model E′ ∗ 2. Then

F2(X − a′2) = F (X), G2(X − a′2) = G(X),

F2(2X) = 8F1(X), G2(2X) = 16G1(X).

(i) To state Condition 3 for E′ we have to find a solution w′ of the congruence
G1(w′) ≡ 0 (mod 32). By Lemma 2.6, we can take w′ = a′6,1 + 2a′2. Then Condition 3 for
E′ says that F1(w′) ≡ −4 (mod 16), and we have F1(w′) ≡ 4 (mod 16) otherwise. Now,

2w′ = a′6 + 4a′2 = â+ 5a2 − 4a2 = â+ a2.

Therefore
F1(w′) = 1

8F2(2w′) = 1
8F2(â+ a2) = 1

8F (â).

Consequently, Condition 3 is equivalent to

F (â) ≡ −25 (mod 27),

and otherwise we have F (â) ≡ 25 (mod 27).
(ii) Condition 4 for E′ says that a′2 − w′ ≡ 1 (mod 4), where w′ satisfies G1(w′) ≡ 0

(mod 32). By the first part of the proof, we can take

w′ = a′6,1 + 2a′2 = (â+ a2)/2.

Consequently, Condition 4 is equivalent to

−a2 − (â+ a2)/2 ≡ 1 (mod 4), i.e. â ≡ −(2 + 3a2) (mod 8).

Lemma 3.8.

(i) The class I∗4(6, 9, 14) is the disjoint union of the classes I∗0(4, 6, 8), I∗1(4, 6, 8) and
IV∗(4, 6, 8), all twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ I∗4(6, 9, 14).
Then

E ∈ I∗0(4, 6, 8) ∗ 2 iff F (â) ≡ −25 (mod 27),

E ∈ I∗1(4, 6, 8) ∗ 2 iff F (â) ≡ 25 (mod 27) and â ≡ −(2 + 3a2) (mod 8),

E ∈ IV∗(4, 6, 8) ∗ 2 iff F (â) ≡ 25 (mod 27) and â 6≡ −(2 + 3a2) (mod 8),

where â := (a6 − a2a4)/8− 5a2.
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Proof. (i) The minimal model E′ of E ′ := E ∗ 2 satisfies V (E′) = (4, 6, 8). The triple
(4, 6, 8) appears in Table 3.1 three times, with Kodaira symbols I∗0, I∗1 and IV∗. Therefore

E ∗ 2 ∈ I∗0(4, 5, 4) ∪ I∗1(4, 5, 4) ∪ IV∗(4, 5, 4).

This proves the first part of the lemma.
(ii) To prove the second part, let us observe that Conditions 3 and 4 make it possible

to decide to which of the three classes the curve E ′ does belong.
Applying Lemma 3.7 we get the result.

Now we extend Lemma 2.6 to the triples (4, 6, ν), with ν ≥ 9.

Lemma 3.9. Let V (E) = (4, 6, ν), where ν ≥ 9. Then

(i) The congruence G(X) ≡ 0 (mod 32) has a solution w ≡ a4 (mod 2). Moreover,
G(w′) ≡ 0 (mod 32) iff w′ ≡ w (mod 4).

(ii) Choose w satisfying G(w) ≡ 0 (mod 32). Then F (w) ≡ 0 (mod 8), and F (w)
(mod 16) does not depend on the w chosen.

Proof. We adapt the proof of Lemma 2.6 to the present situation.
(i) (a) Assume that a2 = 0. From c4 = −24 · 3 a4 and v(c4) = 4 it follows that a4 is

odd. From c6 = −25 · 33 a6 and v(c6) = 6 it follows that a6 = 2a6,1, a6,1 odd.
From ∆ = (c34−c26)/123 = −26(a3

4+27a2
6,1) and v(∆) ≥ 9 it follows that a3

4+27a2
6,1 ≡ 0

(mod 8), i.e. a4 ≡ 5 (mod 8).
If G(w) ≡ 0 (mod 2) then 3w4 − a2

4 ≡ 0 (mod 2), i.e. w is odd. Hence a4 + w2 ≡ 6
(mod 8), and so (a4 + w2)2 ≡ 4 (mod 32).

Consequently,

G(w) = 3(w2 + a4)2 − 4a2
4 + 24a6,1w ≡ 8(1 + 3a6,1w) (mod 32).

It follows that G(w) ≡ 0 (mod 32) iff 1 + 3a6,1w ≡ 0 (mod 4) iff w ≡ a6,1 (mod 4).
(b) Assume that a2 = ±1. From c4 = 24(1 − 3a4) and v(c4) = 4 it follows that

c4,4 = 1−3a4 is odd. Then a4 is even, and a6 is even, by Lemma 1.2. From c6 = −26(a2−
9a2a4,1 + 27a6,1) and v(c6) = 6 it follows that c6,6 = c6/26 = −(a2 − 9a2a4,1 + 27a6,1) is
odd, i.e. a4,1 ≡ a6,1 (mod 2).

From ∆ = 26

33 (c34,4 − c26,6) and v(∆) ≥ 9 it follows that c34,4 − c26,6 ≡ 0 (mod 8). Hence
c4,4 = 1 − 3a4 ≡ 1 (mod 8), so a4 ≡ 0 (mod 8), and a4,1 ≡ a6,1 (mod 2) implies that
a6 ≡ 0 (mod 4).

Consequently, if G(w) ≡ 0 (mod 2), then w is even, w = 2w1.

In view of a4 ≡ 0 (mod 8) and a6 ≡ 0 (mod 4), we have

G(w) = G(2w1) ≡ 48w4
1 + 4a2a6 ≡ 16(w1 + a6,2) (mod 32).

Therefore G(w) ≡ 0 (mod 32) iff w1 ≡ a6,2 (mod 2) iff w =≡ a6,1 (mod 4).
Thus we have proved that in both cases

G(w) ≡ 0 (mod 32) iff w ≡ a6,1 (mod 4).

For convenience we collect in the following table the information obtained.
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a2 a4 (mod 8) a6,1 (mod 2) w (mod 4)

0 5 1 a6,1

±1 0 0 a6,1

(ii) If a2 = 0 then

F (w) = w3 + a4w + a6 ≡ 6w + a6 = 2(3w + a6,1) ≡ 0 (mod 8),

since w ≡ a6,1 (mod 4) and a6,1 is odd.
Let a2 = ±1. Then a6,1 is even, a6,1 = 2a6,2. From w ≡ a6,1 (mod 4) we get w2 ≡ a2

6,1

(mod 8). Consequently,

F (w) ≡ a2w
2 + a6 ≡ a2a

2
6,1 + 2a6,1 ≡ 4(a2

6,2 + a6,2) ≡ 0 (mod 8).

To prove the last part of the lemma it is sufficient to prove that F (w + 4) ≡ F (w)
(mod 16). Since

F (w + 4)− F (w) = 4(3w2 + 2a2w + a4),
it is sufficient to verify that

3w2 + 2a2w + a4 ≡ 0 (mod 4).
This follows immediately from the table above.

Lemma 3.10. Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈
I∗6(6, 9, ν), ν = 16 or 17. Then the minimal model E′ = [0, a′2, 0, a

′
4, a
′
6] of the twisted

curve E ′ := E ∗ 2 satisfies Condition 4 iff (a6 − a2a4)/16 ≡ −(1 + a2) (mod 4).

Proof. It is sufficient in the proof of Lemma 3.7 to use Lemma 3.9 in place of Lemma 2.6,
and w′ = a′6,1 in place of w′ = a′6,1 = 2a′2. Then Condition 4 for E′ says that a′2−w′ ≡ 1
(mod 4), which is equivalent to (a6 − a2a4)/16 ≡ −(1 + a2) (mod 4).

The next two lemmas follow immediately from Lemma 3.10.

Lemma 3.11.

(i) The class I∗6(6, 9, 16) is the disjoint union of the classes I∗2(4, 6, 10) and III∗(4, 6, 10),
both twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ I∗6(6, 9, 16).
Then

E ∈ I∗2(4, 6, 10) ∗ 2 iff (a6 − a2a4)/16 ≡ −(1 + a2) (mod 4),

E ∈ III∗(4, 6, 10) ∗ 2 iff (a6 − a2a4)/16 6≡ −(1 + a2) (mod 4),

where a = (a4 + a2
2)/2− a2.

Lemma 3.12.

(i) The class I∗7(6, 9, 17) is the disjoint union of the classes I∗3(4, 6, 11) and II∗(4, 6, 11),
both twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ I∗7(6, 9, 17).
Then

E ∈ I∗3(4, 6, 11) ∗ 2 iff (a6 − a2a4)/16 ≡ −(1 + a2) (mod 4),

E ∈ II∗(4, 6, 11) ∗ 2 iff (a6 − a2a4)/16 6≡ −(1 + a2) (mod 4),

where a = (a4 + a2
2)/2− a2.
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Lemma 3.13.

(i) The class I∗4+ν(6, 9, 14+ν), where ν ≥ 4, is the disjoint union of the classes Iν−4(4, 6,
8 + ν)′ and I∗ν(4, 6, 8 + ν), both twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ I∗4+ν(6, 9,
14 + ν), ν ≥ 4. Then

E ∈ Iν−4(4, 6, 8 + ν)′ ∗ 2 iff c6,9 ≡ 1 (mod 4),

E ∈ I∗ν(4, 6, 8 + ν) ∗ 2 iff c6,9 ≡ −1 (mod 4).

Proof. (i) Let E = E ′ ∗2 and let E′ be a minimal model of E ′. Then V (E′) = (4, 6, 8 +ν).
The triple (4, 6, 8 + ν), ν ≥ 4, appears in Table 3.1 twice with Kodaira symbols Iν−4

and I∗ν . This proves the first part of the lemma.
(ii) We have E ∈ Iν−4(4, 6, 8 +ν)′ ∗2 iff E ′ ∈ Iν−4(4, 6, 8 +ν)′ iff the model E′ satisfies

Condition 0, i.e. c′6,6 ≡ 1 (mod 4). Since c6 = 8c′6, Condition 0 for E′ is equivalent to
c6,6 ≡ 8 (mod 32), i.e. to c6,9 ≡ 1 (mod 4). This proves the lemma, because in every case
c6,9 is odd.

Lemma 3.14.

(i) The class II∗(8, 10, 14) is the disjoint union of the classes I∗0(6, 7, 8) and I∗1(6, 7, 8),
both twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ II∗(8, 10, 14).
Then

E ∈ I∗0(6, 7, 8) ∗ 2 iff

{
F (a4,2) ≡ −25 (mod 27) if a2 = 0,

F (a2) ≡ −25 (mod 27) if a2 = ±1.

E ∈ I∗1(6, 7, 8) ∗ 2 iff

{
F (a4,2) ≡ 25 (mod 27) if a2 = 0,

F (a2) ≡ 25 (mod 27) if a2 = ±1.

Proof. (i) Let E = E ′ ∗2 and let E′ = [0, a′1, 0, a
′
4, a
′
6] be the reduced minimal model of E ′.

Then V (E′) = (6, 7, 8), and the triple (6, 7, 8) appears in Table 3.1 twice with Kodaira
symbols I∗0 and I∗1. This proves the first part of the lemma.

(ii) We have E ∈ I∗0(6, 7, 8) ∗ 2 iff E ′ ∈ I0(6, 7, 8) iff E′ satisfies Condition 3, where E′

is a minimal model of E ′.
Let F (X), G(X) be the polynomials corresponding to the model E, and F1(X), G1(X)

to the model E′. By Lemma 2.6 we have G1(w′) ≡ 0 (mod 32), where

w′ =

{
a′4,1 if a′2 = 0,

−a′2 if a′2 = ±1.
(3.5)

Condition 3 for E′ says that F1(w′) ≡ −4 (mod 16).
We have F1(X) = 1

8F (2X + a′2), and a′2 = −a2, a
′
4 = (a4 + a2

2)/4 (see the proof of
Lemma 3.7). Consequently, Condition 3 for E′ is equivalent to

F (a4,2) ≡− 25 (mod 27) if a2 = 0,

F (a2) ≡− 25 (mod 27) if a2 = ±1.
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Lemma 3.15.

(i) The class II∗(ν, 10, 14), where ν ≥ 9, is the disjoint union of the classes I∗0(ν−2, 7, 8)
and IV∗(ν − 2, 7, 8), both twisted by 2.

(ii) Let E = [0, a2, 0, a4, a6] be the reduced minimal model of a curve E ∈ II∗(ν, 10, 14).
Then

E ∈ I∗0(ν − 2, 7, 8) ∗ 2 iff

{
F (a4,2) ≡ −25 (mod 27) if a2 = 0,

F (−3a2) ≡ −25 (mod 27) if a2 = ±1.

E ∈ IV∗(ν − 2, 7, 8) ∗ 2 iff

{
F (a4,2) ≡ 25 (mod 27) if a2 = 0,

F (−3a2) ≡ 25 (mod 27) if a2 = ±1.

Proof. The proof goes along the lines of the proof of Lemma 3.14, with one exception:
In the case a′2 = ±1 we now have w′ = a′2, by Lemma 2.6. Consequently,

F1(w′) = 1
8F (2a′2 + a′2) = 1

8F (3a′2) = 1
8F (−3a2).

3.3. Main Theorem. The above considerations lead to the following theorem.

Theorem 3.1. Let E2 := E ∗ 2.

(i) If v(N(E)) > 6, then v(N(E2)) = v(N(E)). Moreover, the corresponding Kodaira
classes are:

E II III I∗2 III∗

E2 I∗2 III∗ II III

(ii) If v(N(E)) ≤ 6, then v(N(E2)) ≤ 6. More precisely, v(N(E)) = 6 iff v(N(E2)) < 6.

Proof. The theorem follows imediately from Table 3.1 and Lemmas 3.1–3.15.
For example, if E belongs to the class I∗0(6, 8, 10), then v(N(E)) = 6. By Lemma 3.4,

E2 belongs to one of the classes II(4, 5, 4), III(4, 5, 4) or IV(4, 5, 4), hence v(N(E2)) = 4, 3
or 2, by the corresponding lines of Table 3.1.

If E belongs to the class I∗2(6, 9, 13), then E2 ∈ II(4,6,7), by Table 3.1. Moreover,
v(N(E)) = 7 and v(N(E2)) = 7.

The proof in the remaining cases is similar.

4. The case p = 3 and d = −3

4.1. Table 4.1. Table 4.1 shows the Kodaira classes (for p = 3) of curves E , refined in
such a way that every subclass is mapped by the twist by −3 onto some other subclass.
Moreover, all curves in a subclass have conductors divisible by the same power of 3.
We define f3 := v(N(E)) and f ′3 := v(N(E′)), where E′ := E ∗ (−3). It is known that
0 ≤ v(N(E)) ≤ 5 (see [Ser] and [LRS]).

4.2. Additional conditions and comments. We now deal with reduction modulo 3,
so we may assume a1 = a3 = 0 in the Weierstrass model (minimal locally at p = 3). As
noted earlier, this simplifies computations considerably.

Only two valuation triples are problematic, namely V (E) = (ν, 3, 3) with ν ≥ 2 (corre-
sponding to Kodaira symbols II and III), and V (E) = (ν, 6, 9) with ν ≥ 4 (corresponding
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to Kodaira symbols III∗ and IV∗). All other valuation triples uniquely define the Kodaira
symbol (see [Pa, Table II]).

Lemma 4.1. For every ν ≥ 2 the twist by −3 gives a one-to-one correspondence between
the set of curves E1 with a minimal model E1 satisfying V (E1) = (ν, 3, 3), and the set of
curves E2 with a minimal model E2 satisfying V (E2) = (ν + 2, 6, 9).

Proof. Let E1 be as stated. Then V (E1 ∗ (−3)) = (ν + 2, 3 + 3, 3 + 6) = (ν + 2, 6, 9).
Conversely, given E2 as above, we have V (E2 ∗ (−3)) = ((ν + 2) + 2, 6 + 3, 9 + 6) =

(ν + 4, 9, 15). This triple does not correspond to any minimal model, by [Pa, Table II].
Therefore V (E2 ∗ (−3)) = ((ν + 4)− 4, 9− 6, 15− 12) = (ν, 3, 3) = V (E1).

The correspondence is one-to-one, since (Ej ∗ (−3)) ∗ (−3) = Ej for j = 1, 2.

Let us recall Conditions P2 and P5 used by Papadopoulos [Pa]:

P2 : c26,3 + 2 ≡ 3c4,2 (mod 9), provided V (E) = (ν, 3, 3), ν ≥ 2.
P5 : c26,6 + 2 ≡ 3c4,4 (mod 9), provided V (E) = (ν, 6, 9), ν ≥ 4.

Lemma 4.2. Let E be a minimal model such that V (E) = (ν, 3, 3) with ν ≥ 2. Then E

satisfies Condition P2 iff E′ := E ∗ (−3) satisfies Condition P5.

Proof. By Lemma 4.1, we have V (E′) = (ν+2, 6, 9). Moreover, c′4 = 9c4 and c′6 = −27c6.
Hence c′4,4 = c4,2 and c′6,6 = −c6,3. Consequently, c26,3 + 2− 3c4,2 = c′ 26,6 + 2− 3c′4,4. Thus
Condition P2 holds for E iff Condition P5 holds for E′.

4.3. Main Theorem. The above considerations lead to the following theorem.

Theorem 4.1. Let E−3 := E ∗ (−3).

(i) If v(N(E)) > 2, then v(N(E−3)) = v(N(E)).
(ii) If v(N(E)) < 2, then v(N(E−3)) = 2, and E−3 has Kodaira symbol I∗ν for some ν ≥ 0.
(iii) v(N(E)) = v(N(E−3)) = 2 iff E has Kodaira symbol III or III∗.

Proof. The theorem follows immediately from Table 4.1.

Corollary 4.1.

(i) If the curve E has Kodaira symbol III or III∗ for p = 3, and E ′ is isogenous with E ,
then the Kodaira symbol of E ′ belongs to the set {III, III∗}.

(ii) Also the set {II, IV, II∗, IV∗} of Kodaira symbols is preserved under isogenies.

Proof. (i) From Table 4.1 it follows that v(N(E)) = 2, hence v(N(E ′)) = 2, since con-
ductors do not change under isogenies.

Assume that the Kodaira symbol of E ′ is neither III nor III∗. Then from Table 4.1 it
must be I∗ν for some ν ≥ 0. Therefore the twist E ′ ∗ (−3) must have Kodaira symbol Iν ,
and hence v(N(E ′ ∗ (−3))) = 0 or 1.

On the other hand, from Theorem 4.1(iii) we know that v(N(E ∗ (−3))) = 2. This
constitutes a contradiction, since twists commute with isogenies: by the assumption on E
and E ′, the twists E ∗ (−3) and E ′ ∗ (−3) must be isogenous, so they must have the same
conductor.

(ii) The claim follows from the observation that v(N(E)) ≥ 3 iff the Kodaira symbol
of E belongs to the set {II, IV, II∗, IV∗} (see Table 4.1).
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5. The case p > 3. Table 5.1 shows the classes of curves E and their twists by p∗.

The present situation is easiest of all. One can assume a1 = a3 = 0 in the Weierstrass
equations, thereby making twist data easy to compute. Most pertinent, however, is the
fact that for p > 3 valuation triples uniquely determine the Kodaira symbol—without
exception. Consequently, all the necessary information can be determined easily, if not
directly, from the data in Table I of Papadopoulos [Pa]. Despite the trivial nature of
the computations (which amount to nothing more than looking at valuation triples in
Table I of [Pa] and noting that each twist satisfies V (E ∗ p) = V (E) + (2, 3, 6)) we would
nonetheless wish the paper to be as self-contained as possible. For the convenience of the
reader we present the relevant data in Table 5.1.

6. Nonquadratic twists

6.1. General remarks. Let E , E ′ be elliptic curves defined over Q. Every isomorphism
σ : E → E ′ defined over the algebraic closure of Q is called a twist. Then we say that the
curve E ′ is a twist of E .

We considered above only quadratic twists E → E ∗ d, i.e. isomorphisms defined
over quadratic fields Q (

√
d), where d 6= 0 is taken modulo squares. For every E and

every d ∈ Z, d 6= 0 there is a uniquely defined quadratic twist E ∗ d. Namely, if E =
[0, a2, 0, a4, a6] is a model of E , then E ∗ d := [0, da2, 0, d2a4, d

3a6] is a model of the
twisted curve E ∗ d.

It is known that for some curves there are also twists defined over fields of degrees
greater than 2 (see [Si1, Proposition 5.4]).

More precisely, for curves E satisfying c6 = 0 (or equivalently, j = 1728) there are quar-
tic twists E ∗4 d, where d is a nonzero integer taken modulo fourth powers. Namely, such
a curve has a model E = [0, 0, 0, a4, 0]. Then E ∗4 d := [0, 0, 0, da4, 0] is a model of E ∗4 d.

For curves E satisfying c4 = 0 (or equivalently, j = 0) there are sextic twists E ∗6 d,
where d is a nonzero integer taken modulo sixth powers. Namely, such a curve has a
model E = [0, 0, 0, 0, a6]. Then E ∗6 d := [0, 0, 0, 0, da6] is a model of E ∗6 d.

From the definitions it follows that if E = [0, a2, 0, a4, a6] is a model of E , then the
corresponding twists by d give the following mappings:

The quadratic twist: (X,Y ) 7→ (dX, d3/2Y ).

The quartic twist: (X,Y ) 7→ (d1/2X, d3/4Y ).

The sextic twist: (X,Y ) 7→ (d1/3X, d1/2Y ).

These twists are defined over the fields Q(
√
d), Q( 4

√
d) and Q( 6

√
d), respectively.

There are the following obvious relations between twists:

(E ∗ d1) ∗ d2 = E ∗ (d1d2)

(and similar formulas for quartic and sextic twists),

E ∗ d2 = E , E ∗4 d4 = E , E ∗6 d6 = E , E ∗4 d2 = E ∗ d, E ∗6 d3 = E ∗ d.
We can also define the cubic twist E ∗3 d := E ∗6 d2 for curves satisfying c4 = 0, but we
shall not use it. The cubic twist by d corresponds to the mapping (X,Y ) 7→ (d2/3X, dY )
defined over the cubic field Q ( 3

√
d).



30 J. Browkin and D. Davies

We shall describe the action of nonquadratic twists on Kodaira classes in the cases
p = 2, p = 3 and p > 3 separately.

6.2. Quartic twists in the case p = 2. For convenience we use the following notation.
For a nonzero integer a let odd(a) := a/2v2(a), i.e. odd(a) is the maximal odd divisor of
a with the same sign as a.

Let E = [0, 0, 0, a4, 0]. Then c4 = −24 · 3a4 and ∆(E) = −26a3
4. Consequently,

odd(c4) = −3 · odd(a4) ≡ odd(a4) ≡ ±1 (mod 4).
Let E′ := E ∗4 (−1) = [0, 0, 0, a′4, 0], where a′4 = −a4. Then odd(c′4) = −odd(c4).
Condition 1 for E says that F (a4) ≡ 2 (mod 4), i.e. a3

4 +a2
4 ≡ 2 (mod 4). Equivalently

a4 ≡ 1 (mod 4).
Condition 5 for E says that c4,6 ≡ −1 (mod 4), equivalently, a4,2 ≡ −1 (mod 4).
From Table 2.1 we find that there are six Kodaira classes with c6 = 0, i.e. with

ν = v(c6) =∞:

Kodaira class Additional condition f

II(4,∞, 6) a4 ≡ 1 (mod 4) 6

III(4,∞, 6) a4 ≡ −1 (mod 4) 5

III(5,∞, 9) a4,1 ≡ ±1 (mod 4) 8

I∗2(6,∞, 12) a4,2 ≡ 1 (mod 4) 6

I∗3(6,∞, 12) a4,2 ≡ 1 (mod 4) 5

III∗(7,∞, 15) a4,3 ≡ ±1 (mod 4) 8

The classes III(5,∞, 9) and III∗(7,∞, 15) can each be divided into two subclasses,
according to the residue of odd(a4) modulo 4:

III(5,∞, 9)− := {E ∈ III(5,∞, 9) : a4,1 ≡ −1 (mod 4)},
III(5,∞, 9)+ := {E ∈ III(5,∞, 9) : a4,1 ≡ 1 (mod 4)},

III∗(7,∞, 15)− := {E ∈ III∗(7,∞, 15) : a4,3 ≡ −1 (mod 4)},
III∗(7,∞, 15)+ := {E ∈ III∗(7,∞, 15) : a4,3 ≡ 1 (mod 4)}

Now it is easy to describe the action of quartic twists by −1 on these Kodaira classes:

E E ∗4 (−1) E ∗ (−1) Conductor exponents

II(4,∞, 6) III(4,∞, 6) II(4,∞, 6) 6 5 6

III(5,∞, 9)− III(5,∞, 9)+ III(5,∞, 9)− 8 8 8

I∗2(6,∞, 12) I∗3(6,∞, 12) I∗2(6,∞, 12) 6 5 6

III∗(7,∞, 15)− III∗(7,∞, 15)+ III∗(7,∞, 15)− 8 8 8

It is also easy to describe the action of quartic twists by 2 on the Kodaira classes,
taking into account that a′4 = 2a4, hence odd(a′4) = odd(a4):

E E ∗4 2 E ∗ 2 E ∗4 8 Cond. exp.

II(4,∞, 6) III(5,∞, 9)+ I∗3(6,∞, 12) III∗(7,∞, 15)+ 6 8 5 8

III(4,∞, 6) III(5,∞, 9)− I∗2(6,∞, 12)− III∗(7,∞, 15)− 5 8 6 8
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From these tables we immediately get the following result.

Theorem 6.1. Let E satisfy j = 1728, and let p = 2. Then v(N(E)) ∈ {5, 6, 8}. Moreover:

(i) v(N(E)) = 5 iff v(N(E ∗4 (−1))) = 6.
(ii) v(N(E)) = 8 iff v(N(E ∗4 (−1))) = 8.
(iii) v(N(E)) = 8 iff v(N(E ∗4 2)) < 8.

6.3. Sextic twists in the case p = 2. For E satisfying j = 0 there is a model E =
[0, 0, 0, 0, a6]. Then c6 = −25 · 33a6 and ∆(E) = −24 · 33a2

6. Consequently, odd(c6) =
−33 · odd(a6) ≡ odd(a6) ≡ ±1 (mod 4).

Let E′ := E ∗6 d = [0, 0, 0, 0, a′6]. Then a′6 = da6. Hence odd(a′6) = odd(d) · odd(a6).
Condition 0 for E says that c6,9 ≡ −1 (mod 4), equivalently a6,4 ≡ −1 (mod 4).
In the case v(∆) = 4, i.e. for a6 odd, Condition 1 for E says that F (a4) ≡ 3 (mod 4).

Equivalently, a6 ≡ −1 (mod 4).
Condition 3 for E says that if G(w) ≡ 0 (mod 32), then F (w) ≡ 12 (mod 16). In our

case G(X) = 3X4 +12a6X, so we can choose w = 0, and then Condition 3 takes the form
a6 ≡ 12 (mod 16), i.e. a6,2 ≡ −1 (mod 4).

From Table 2.1 we find that there are nine Kodaira classes with c4 = 0, i.e. with
ν = v(c4) =∞:

Kodaira class Additional condition f

I0(∞, 9, 12)′ a6,4 ≡ −1 (mod 4) 0

II(∞, 5, 4) a6 ≡ −1 (mod 4) 4

II(∞, 6, 6) a6,1 ≡ ±1 (mod 4) 6

IV(∞, 5, 4) a6 ≡ 1 (mod 4) 2

I∗0(∞, 7, 8) a6,2 ≡ −1 (mod 4) 4

I∗0(∞, 8, 10) a6,3 ≡ ±1 (mod 4) 6

IV∗(∞, 7, 8) a6,2 ≡ 1 (mod 4) 2

II∗(∞, 9, 12) a6,4 ≡ 1 (mod 4) 4

II∗(∞, 10, 14) a6,5 ≡ ±1 (mod 4) 6

As above, we divide the classes II(∞, 6, 6), I∗0(∞, 8, 10) and II∗(∞, 10, 14) into two
subclasses each, according to the residue modulo 4 of odd(a6). We denote the subclasses
using superscripts + and −, as above.

From (−1)3 = −1 it follows that

E ∗6 (−1) = E ∗6 (−1)3 = E ∗ (−1),

i.e. the sextic twists by −1 coincide with the quadratic twists by −1. These last twists
have been described above in Tables 2.1 and 2.2.

Namely, if E = [0, 0, 0, 0, a6] and E′ := E ∗ (−1) = [0, 0, 0, 0, a′6], a′6 = −a6, then
odd(a′6) = −odd(a6), and consequently the quadratic twist by −1 acts on Kodaira classes
as follows:
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E E ′ := E ∗ (−1) f f ′

I0(∞, 9, 12)′ II∗(∞, 9, 12) 0 4

II(∞, 5, 4) IV(∞, 5, 4 4 2

II(∞, 6, 6)− II(∞, 6, 6)+ 6 6

I∗0(∞, 7, 8) IV∗(∞, 7, 8) 4 2

I∗0(∞, 8, 10)− I∗0(∞, 8, 10)+ 6 6

II∗(∞, 10, 14)− II∗(∞, 10, 14)+ 6 6

It is easy to describe the action of sextic twists by 2 on Kodaira classes taking into
account that a′6 = 2a6, hence odd(a′6) = odd(a6):

E II(∞, 5, 4) IV(∞, 5, 4) 4 2

E ∗6 2 II(∞, 6, 6)− II(∞, 6, 6)+ 6 6

E ∗6 4 I∗0(∞, 7, 8) IV∗(∞, 7, 8) 4 2

E ∗6 8 I∗0(∞, 8, 10)− I∗0(∞, 8, 10)+ 6 6

E ∗6 16 I0(∞, 9, 12)′ II(∞, 9, 12) 0 4

E ∗6 32 II∗(∞, 10, 14)− II∗(∞, 10, 14)+ 6 6

In the last column of the table, the corresponding conductor exponents are given.
From these tables we immediately get the following result.

Theorem 6.2. Let E satisfy j = 0, and let p = 2. Then v(N(E)) ∈ {0, 2, 4, 6}. Moreover:

(i) v(N(E)) < 4 iff v(N(E ∗6 (−1))) = 4.
(ii) v(N(E)) = 6 iff v(N(E ∗6 (−1))) = 6.
(iii) v(N(E)) < 6 iff v(N(E ∗6 2)) = 6.

If q > 2 is a prime, then q∗ = (−1)(q−1)/2q ≡ 1 (mod 4). Hence q∗ ·odd(a6) ≡ odd(a6)
(mod 4). Consequently, sextic twists by q∗ do not change Kodaira classes.

6.4. Quartic twists in the case p = 3. For E satisfying j = 1728 there is a model
E = [0, 0, 0, a4, 0]. Then c4 = −24 · 3 · a4. Hence v(c4) = v(a4) + 1.

From Table 4.1 we see that there are four Kodaira classes satisfying c6 = 0, i.e.
ν = v(c6) =∞:

I0(1,∞, 0), III(2,∞, 3), I∗0(3,∞, 6), III∗(4,∞, 9),

with the conductor exponents equal to 0, 2, 2, 2, respectively.
For d not divisible by 3 we have E′ := E ∗4 d = [0, 0, 0, da4, 0] and v(da4) = v(a4).

Then v(c′4) = v(c4), and consequently these four Kodaira classes are invariant under
quartic twists by d.

Now let d = 3. Then v(da4) = 1 + v(a4). Hence v(c′4) = 1 + v(c4). Consequently, the
quartic twists by 3 map the four Kodaira classes as follows:

I0(1,∞, 0) 7→ III(2,∞, 3) 7→ I∗0(3,∞, 6) 7→ III∗(4,∞, 9) 7→ I0(1,∞, 0).

From this we immediately get

Theorem 6.3. Let E satisfy j = 1728 and let p = 3. Then v(N(E)) ∈ {0, 2}. Moreover,
v(N(E)) = 0 implies v(N(E ∗4 3)) = 2.
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6.5. Sextic twists in the case p = 3. For E satisfying j = 0 there is a model E =
[0, 0, 0, 0, a6]. Then c6 = −25 · 33a6 and ∆(E) = −24 · 33a2

6. Hence v(∆) = 2v(c6)− 3 and
v(c6) = 3 + v(a6).

From Table 4.1 we see that there are eight Kodaira classes satisfying c4 = 0, i.e.
ν = v(c4) =∞:

II(∞, 3, 3), II(∞, 4, 5), III(∞, 3, 3), IV(∞, 5, 7),

IV∗(∞, 6, 9), IV∗(∞, 7, 11), III∗(∞, 6, 9), II∗(∞, 8, 13).

Since c4 = 0, Condition P2 for E says that c26,3 + 2 ≡ 0 (mod 9), provided V (E) =
(∞, 3, 3). Equivalently, a6 ≡ ±1 (mod 9).

Similarly, Condition P5 for E says that c26,6 + 2 ≡ 0 (mod 9), provided V (E) =
(∞, 6, 9). Equivalently, a6,3 ≡ ±1 (mod 9).

It turns out that the sextic twist by 3, and also by d not divisible by 3, can change the
Kodaira class, in general. To describe the situation, we divide the eight Kodaira classes
given above into subclasses as follows.

We use the following notation. For a nonzero integer a let

3-free(a) := a/3v3(a).

Thus 3-free(a) is the maximal divisor of a not divisible by 3 and with the same sign as a.
Every integer d not divisible by 3 satisfies exactly one of the following six congruences:

d ≡ ±1, ±2, ±4 (mod 9).

For every Kodaira class K = K(∞, v(c6), v(∆)) as above we define the subclasses

K(∞, v(c6), v(∆))k := {E ∈ K : 3-free(a6) ≡ ±2k (mod 9)},

where k is taken modulo 3.
Let us observe that the subclass II(∞, 3, 3)0 is empty, because no curve belonging to

II(∞, 3, 3) satisfies Condition P2, i.e. 3-free(a6) = a6 6≡ ±1 (mod 9).
Similarly, the subclass IV∗(∞, 6, 9)0 is empty.
On the other hand, since every curve in III(∞, 3, 3) satisfies Condition P2, we have

III(∞, 3, 3) = III(∞, 3, 3)0. Similarly, III∗(∞, 3, 3) = III∗(∞, 3, 3)0, etc.
For simplicity we denote a subclass of the form K(∞, v(c6), v(∆))k by K(v(c6))k, since

v(∆) is uniquely determined by v(c6).
If E ∈ K(m)k, then E ∗6 3 ∈ K′(m + 1)k, where m − 3 is taken modulo 6, and

E ∗6 2 ∈ K′′(m)k+1, where k + 1 is taken modulo 3, and K′, K′′ are appropriate Kodaira
symbols. It turns out that these symbols are uniquely determined by K, k and m. We
collect the results in the following table:

E E ∗6 3 E ∗6 32 E ∗6 33 E ∗6 34 E ∗6 35

E III(3)0 II(4)0 IV(5)0 III∗(6)0 IV∗(7)0 II∗(8)0

E ∗6 2 II(3)1 II(4)1 IV(5)1 IV∗(6)1 IV∗(7)1 II∗(8)1

E ∗6 4 II(3)2 II(4)2 IV(5)2 IV∗(6)2 IV∗(7)2 II∗(8)2
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The corresponding conductor exponents are

2 5 5 2 5 5

3 5 5 3 5 5

3 5 5 3 5 5

From this table it follows that

E II(3) II(4) IV∗(6) IV∗(7)

E ∗6 3 II(4) IV(5) IV∗(7) II∗(8)

For other Kodaira classes K(m) the sextic twists by 3 of curves in a given class can
belong to distinct classes.

Similarly, the Kodaira classes II(4), IV(5), IV∗(7) and II∗(8) are invariant under the
sextic twist by 2. Moreover, the classes III(3) and III∗(6) are mapped by the sextic twist
by 2 into the classes II(3) and IV∗(6), respectively.

From the above tables we get the following result.

Theorem 6.4. Let E satisfy j = 0, and let p = 3. Then v(N(E)) ∈ {2, 3, 5}. Moreover,

(i) If v(N(E)) = 2 then v(N(E ∗6 2)) = 3.
(ii) If v(N(E)) = 3 then v(N(E ∗6 2)) ≤ 3.
(iii) v(N(E)) = 5 iff v(N(E ∗6 2)) = 5.
(iv) If v(N(E)) < 5 then v(N(E ∗6 3)) = 5.

Now we discuss the sextic twists by an arbitrary nonzero integer d. We have d = 3md1,

where 3 - d1 and d1 ≡ ±2k (mod 9), 0 ≤ k ≤ 2.
Therefore

E ∗6 d = (E ∗6 3m) ∗6 2k,

and we can here replace m by its residue modulo 6. Hence the Kodaira subclass containing
E ∗6 d can be determined from the table above, if we know to which subclass the curve E
belongs.

It follows that for a curve belonging to a subclass K(m)k we can obtain a curve
belonging to any other subclass by applying the sextic twist by a number of the form
2k3m, where 0 ≤ k ≤ 2, 0 ≤ m ≤ 5.

6.6. Quartic and sextic twists in the case p > 3. For p > 3 and j = 0 or 1728 the
Kodaira class of a curve is uniquely determined by vp(∆). For d not divisible by p the
quartic and sextic twists by d do not change vp(∆). Therefore such twists do not change
Kodaira classes.

Thus it is sufficient to consider quartic and sextic twists by p. Let ∆4 and ∆6 be the
discriminants of E ∗4 p and E ∗6 p, respectively. Then ∆4 = p3∆ and ∆6 = p2∆, where
∆ is the discriminant of E. Consequently, these twists determine the following cyclic
permutations of the Kodaira classes:

• The quartic twists by p:
I0 7→ III 7→ I∗0 7→ III∗.



Twisted elliptic curves 35

• The sextic twists by p:

I0 7→ II 7→ IV 7→ I∗0 7→ IV∗ 7→ II∗.

In both cases we have

vp(N(E)) =

{
0 if E ∈ I0,

2 otherwise.

II. Conductors

We now discuss some questions concerning conductors of elliptic curves defined over Q.
We also supply some numerical data, based on the tables of Cremona [Cr2], which may
give some suggestions how to answer these questions.

7. Observations concerning conductors

7.1. Which numbers are conductors? The tables of elliptic curves are ordered ac-
cording to the values of conductors N of the curves. Looking at the tables one observes
immediately that not every positive integer is a conductor. More precisely, the following
necessary condition for N to be a conductor is known:

If N is a conductor, then 29 - N, 36 - N, p3 - N for p > 3. (7.1)

It is natural to ask the following more precise questions:

1) Does the set of conductors contain a subset of positive density?
2) Does the set of conductors which are prime numbers contain a subset of positive

relative density, with respect to the set of all prime numbers?

More precisely, the issue is whether the number

lim sup
X→∞

#{N ≤ X : N is a prime conductor}
π(X)

is positive, where π(X) is the number of prime numbers not exceeding X.
We do not know the answers to any of these questions. Nevertheless, we can deduce

from (7.1) that the density of the set of conductors (if it exists) is less than 1. Define

Cond(X) := {N ≤ X : N is a conductor}.

We have

Theorem 7.1. For the set Cond(X) of conductors not greater than X the following
estimate from above holds:

# Cond(X) ≤ 0.984039X + o(X).

Proof. By (7.1), we have

# Cond(X) ≤ #{N ≤ X : 29 - N, 36 - N, p3 - N for p > 3}

=
(

1− 1
29

)(
1− 1

36

)∏
p>3

(
1− 1

p3

)
X + o(X).
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Now (
1− 1

29

)(
1− 1

36

)∏
p>3

(
1− 1

p3

)
=
(

1 +
1
23

+
1
26

)(
1 +

1
33

)∏
p≥2

(
1− 1

p3

)
=

511
432

ζ(3)−1 ≈ 0.984039,

and the theorem follows.

Consequently, the set of numbers which are not conductors contains a subset of pos-
itive density:

#{N ≤ X : N is not a conductor} ≥ 0.015961X + o(X).

Only partial results are known concerning the prime numbers which are conductors (see
[Ha], [Set]).

We do not even know whether there are infinitely many prime numbers which are
conductors (respectively, which are not conductors).

Table 7.1 collects numerical data on the numbers of conductors belonging to some
intervals. They show that the proportion of conductors in consecutive intervals of one
thousand numbers each, is decreasing very slowly. On the other hand, the number of
prime conductors is decreasing much faster.

Basing on these data one may expect that more than 2/3 of primes are not conductors,
and more than 1/2 of all positive integers are conductors.

7.2. Curves with conductors differing by a prime power. We shall investigate the
sets E(N) of elliptic curves with conductors of the form N = pkm, where a prime p and
a positive integer m not divisible by p are fixed, and

0 ≤ k ≤ 8 if p = 2,

0 ≤ k ≤ 5 if p = 3,

0 ≤ k ≤ 2 if p > 3.

We shall rather count the classes of the isogenous curves, than the curves themselves.
Kenku [Ke] has proved that in an isogeny class there are at most eight elliptic curves.
From his proof it even follows that in an isogeny class there can only be 1, 2, 3, 4, 6 or
8 curves. Consequently, the number of elliptic curves with a given conductor does not
exceed eight times the number of isogeny classes.

We shall use the following shorthand notation:

E(N) = 1r12r23r34r46r68r8 ,

which means that in E(N) there are rj isogeny classes of cardinality j for j ∈ J :=
{1, 2, 3, 4, 6, 8}.

Hence
#E(N) = r1 + 2r2 + 3r3 + 4r4 + 6r6 + 8r8 =

∑
j∈J

jrj .

First, we consider the case p = 2. From Theorem 2.1 we get
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Theorem 7.2. For every odd m we have

E(24m) ∗ (−1) =
3⋃
k=0

E(2km), (7.2)

and on the r.h.s. there is a union of pairwise disjoint sets.

Proof. From Theorem 2.1 it follows that the twist by −1 maps the set on the l.h.s. of
(7.2) onto the set on the r.h.s.

Similarly, from Theorem 3.1 we get

Theorem 7.3. For every odd m we have

E(26m) ∗ 2 =
5⋃
k=0

E(2km) (disjoint union). (7.3)

Proof. From Theorem 3.1 it follows that the twist by 2 maps the set on the l.h.s. of (7.3)
onto the set on the r.h.s.

From Theorems 7.2 and 7.3 it follows that for every odd m,

#E(24m) =
3∑
k=0

#E(2km), (7.4)

#E(26m) =
5∑
k=0

#E(2km). (7.5)

Let rk,m(j) be the number of isogeny classes of cardinality j in the set E(2km) of elliptic
curves of conductor 2km, where m is odd. Then from (7.4) and (7.5) we get, for j ∈ J,

r4,m(j) =
3∑
k=0

rk,m(j), (7.6)

r6,m(j) =
5∑
k=0

rk,m(j) = 2
3∑
k=0

rk,m(j) + r5,m(j). (7.7)

It follows that for fixed odd m, there are in general much more elliptic curves with
conductors 24m and 26m than those with conductors 2km for k = 0, 1, 2, 3, 5.

The corresponding data for 1 ≤ m ≤ 51 and 451 ≤ m ≤ 501 are given in Tables 7.2
and 7.3. To distinguish the prime values of m we use the bold font.

To save space, the columns corresponding to the conductors 24m and 26m are omitted,
since, in view of (7.4) and (7.5), these columns are sums of all earlier ones. The empty
set symbol Ø signifies that there are no curves belonging to the specified set.

Let us observe that for some values of m there are no elliptic curves with conductors
2km for all 0 ≤ k ≤ 8. For example, it is the case for m = 191, 317 and 479. Moreover, we
have verified that for every prime m < 659 at least one of the classes E(2km), 0 ≤ k ≤ 8,
is empty, with two exceptions m = 19 and m = 101.

Looking at the tables we can make the following observation concerning the cardinal-
ities j of isogeny classes appearing in the columns E(2km):
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j k

1 all

2 all

3 0, 1, 4, 6

4 all 6= 7

6 0, 1, 3, 4, 6

8 0, 1, 4, 6

Moreover, if m is a prime number, then the cardinalities of isogeny classes are very small.
They do not exceed 2, with some exceptions.

These observations make us suspect that the following statements may be true:

(i) For N = 27m, where m is odd, every isogeny class contains at most two curves.
(ii) For N = 2km, where k ∈ {2, 5, 8} and m is odd, every isogeny class contains 1, 2 or

4 curves.
(iii) If m > 37 is a prime number, then every isogeny class of curves with conductor

N = 2km, 0 ≤ k ≤ 8, contains at most two curves.

Moreover, it can be observed that in general for m prime there are very few elliptic
curves with conductor m.

Now let p = 3. Denote by E(N)III the set of elliptic curves of conductor N with
Kodaira symbols III or III∗. Then from Theorem 4.1 we get immediately

Theorem 7.4. For every m not divisible by 3 we have

E(32m) ∗ (−3) = E(m) ∪ E(3m) ∪ E(32m)III (disjoint union). (7.6)

Hence
#E(32m) = #E(m) + #E(3m) + #E(32m)III. (7.9)

Let rk,m(j) be the number of isogeny classes of cardinality j in the set E(3km), where
3 - m.We define rk,m(j)III analogously, replacing E(3km) by E(3km)III. Then (7.9) implies
that

r2,m(j) = r0,m(j) + r1,m(j) + r2,m(j)III.

It follows that for a fixed m not divisible by 3, there are, in general, more elliptic curves
with conductor 32m than those with conductors m and 3m. This is confirmed by the
numerical data in Table 7.4.

Similarly, for p > 3 we can easily deduce from Table 5.1 that for fixed m not divisible
by p there are, in general, more elliptic curves with conductor p2m than those with
conductors m and pm.

8. Estimates of #E(N) and # Cond(X). We have the following obvious estimate from
below:

Theorem 7.5. There is an absolute constant c1 > 0 such that

# Cond(X) ≥ c1X1/2.
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Proof. There is a curve E of conductor N = 11. Let a positive integer d satisfy:

(d, 22) = 1, d is squarefree. (7.10)

Define d∗ := (−1)(d−1)/2 · d. Then the twisted curve E ∗ d∗ has conductor 11d2. Thus
every number of the form 11d2, where d satisfies (7.10), is a conductor.

Now, 11d2 ≤ X iff d ≤
√

11X1/2, and the number of numbers d ≤ X1 satisfying
(7.10) is ≥ c2X1, where c2 > 0 is an effective constant. Consequently, # Cond(X) ≥√

11c2X1/2.

One can improve Theorem 7.5 as follows. E. Fouvry, M. Nair and G. Tenenbaum
[FNT] proved the following estimate from below:∑

N≤X

#E(N) ≥ c3X5/6, (7.11)

with an absolute constant c3 > 0.
On the other hand, H. A. Helfgott and A. Venkatesh [HV] recently proved an estimate

from above: #E(N) ≤ c4N0.22377, which has been improved to

#E(N) ≤ c5N0.169 (7.12)

by J. S. Ellenberg and A. Venkatesh [EV]. Here c4 and c5 are absolute constants. This con-
siderably improves earlier estimates proved by L. B. Pierce [P], A. Brumer and J. H. Sil-
verman [BS], and S. Wong [W].

The estimates (7.11) and (7.12) give:

Theorem 7.6. There is an absolute constant c6 > 0 such that

# Cond(X) ≥ c6X0.664.

Proof. In view of (7.11) and (7.12) we have

c3X
5/6 ≤

∑
N≤X

#E(N) ≤ c5
∑

N∈Cond(X)

N0.169 ≤ c5X0.169 ·# Cond(X).

Since 5/6 = 0.833 = 0.169 + 0.664, the result follows.

All the recent upper bound estimates of #E(N) follow directly from improved es-
timates of the 3-part h3(D) of class numbers corresponding to quadratic fields with
discriminant D. Conjecturally, h3(D) � |D|ε, where ε > 0, from which it would follow
that # Cond(X) is bounded from below by cX5/6−ε, where c > 0 is a constant depending
on ε.

Of course, even such a conjecturally optimal estimate would still not lead to a density
result for # Cond(X), assuming that such density approaches are meaningful in the first
place.
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résiduelle 2 et 3, J. Number Theory 44 (1993), 119–152.

[P] L. B. Pierce, The 3-part of class numbers of quadratic fields, J. London Math. Soc. 71

(2005), 579–598.

[Ser] J.-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J.
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Table 2.1
(p = 2)

No. Kodaira class Add.
cond.

v(N) v(j) ν Tate
case

1 I0(4, 6, 12)′ (0) 0 0 1

2 I0(ν, 9, 12)′ (0) 0 3ν − 12 ν ≥ 8

3 Iν(4, 6, 12 + ν)′ (0) 1 −ν ν ≥ 1 2

4 II(4, 5, 4) (1) 4 8 3

5 II(5, 5, 4) (1) 4 11

6 II(ν, 5, 4) (1) 4 3ν − 4 ν ≥ 6

7 II(4, ν, 6) (1) 6 6 ν ≥ 7

8 II(ν, 6, 6) − 6 3ν − 6 ν ≥ 5

9 II(4, 6, 7) − 7 5

10 III(4, 5, 4) (1)′&(2) 3 8 4

11 III(5, 5, 4) (1)′ 3 11

12 III(4, ν, 6) (1)′ 5 6 ν ≥ 7

13 III(5, 7, 8) − 7 7

14 III(5, ν, 9) − 8 6 ν ≥ 8

15 IV(4, 5, 4) (1)′&(2)′ 2 8 5

16 IV(ν, 5, 4) (1)′ 2 3ν − 4 ν ≥ 6

17 I∗0(4, 6, 8) (3) 4 4 6

18 I∗0(6, 7, 8) (3) 4 10

19 I∗0(ν, 7, 8) (3) 4 3ν − 8 ν ≥ 7

20 I∗0(4, 6, 9) − 5 3

21 I∗0(ν, 8, 10) − 6 3ν − 10 ν ≥ 6

22 I∗1(4, 6, 8) (3)′&(4) 3 4 7

23 I∗1(6, 7, 8) (3)′ 3 10

24 I∗2(4, 6, 10) (4) 4 2

25 I∗2(6, ν, 12) (5) 6 6 ν ≥ 10

26 I∗2(6, 9, 13) − 7 5

27 I∗3(4, 6, 11) (4) 4 1

28 I∗3(6, ν, 12) (5)′ 5 6 ν ≥ 10

29 I∗4+ν(4, 6, 12 + ν) (0)′ 4 −ν ν ≥ 0

30 I∗4+ν(6, 9, 14 + ν) − 6 4− ν ν ≥ 0

31 IV∗(4, 6, 8) (3)′&(4)′ 2 4 8

32 IV∗(ν, 7, 8) (3)′ 2 3ν − 8 ν ≥ 7

33 III∗(4, 6, 10) (4)′ 3 2 9

34 III∗(7, 9, 12) − 5 9

35 III∗(7, 10, 14) − 7 7

36 III∗(7, ν, 15) − 8 6 ν ≥ 11

37 II∗(4, 6, 11) (4)′ 3 1 10

38 II∗(ν, 9, 12) (0)′ 4 3ν − 12 ν ≥ 8

39 II∗(ν, 10, 14) − 6 3ν − 14 ν ≥ 8
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Table 2.2
(p = 2, d = −1)

v(N) = 0 v(N) = 1 v(N) = 2 v(N) = 3 v(N) = 4 ν Add.
cond.

I0(4, 6, 12)′ I∗4(4, 6, 12)
I∗ν(4, 6, 12 + ν)′ I∗4+ν(4, 6, 12 + ν) ν ≥ 1

I0(ν, 9, 12)′ II∗(ν, 9, 12) ν ≥ 8
III(4, 5, 4) II(4, 5, 4)a (2)

IV(4, 5, 4) II(4, 5, 4)b (2)′

III(5, 5, 4) II(5, 5, 4)
IV(ν, 5, 4) II(ν, 5, 4) ν ≥ 6

I∗1(4, 6, 8) I∗0(4, 6, 8)a (4)
IV∗(4, 6, 8) I∗0(4, 6, 8) b (4)′

I∗1(6, 7, 8) I∗0(6, 7, 8)
IV∗(ν, 7, 8) I∗0(ν, 7, 8) ν ≥ 7

III∗(4, 6, 10) I∗2(4, 6, 10)
II∗(4, 6, 11) I∗3(4, 6, 11)

Table 3.1
(p = 2, d = 2)

No. E Add.
cond.

f E′ := E ∗ 2 Add.
cond.

f ′ ν See

1 I0(4, 6, 12)′ (0) 0 I∗8(6, 9, 18) − 6
2 I0(ν, 9, 12)′ (0) 0 II(ν − 2, 6, 6) − 6 ν ≥ 8

3 Iν(4, 6, 12 + ν)′ (0) 1 I∗ν+8(6, 9, ν + 18) − 6 ν ≥ 1

4 II(ν, 5, 4) (1) 4 I∗0(ν + 2, 8, 10) − 6 ν ≥ 4
5 II(4, ν, 6) (1) 6 I∗3(6, ν + 3, 12) (5)′ 5 ν ≥ 7 Lem. 3.1
6 II(5, 6, 6) − 6 III∗(7, 9, 12) − 5
7 II(ν, 6, 6) − 6 I0 or II∗ ν ≥ 6 Lem. 3.2
8 II(4, 6, 7) − 7 I∗2(6, 9, 13) − 7

9 III(4, 5, 4) (1)′&(2) 3 I∗0(6, 8, 10) − 6
10 III(5, 5, 4) (1)′ 3 I∗0(7, 8, 10) − 6
11 III(4, ν, 6) (1)′ 5 I∗2(6, ν + 3, 12) (5) 6 ν ≥ 7 Lem. 3.1
12 III(5, 7, 8) − 7 III∗(7, 10, 14) − 7
13 III(5, ν, 8) − 8 III∗(7, ν + 3, 15) − 8 ν ≥ 8

14 IV(4, 5, 4) (1)′&(2)′ 2 I∗0(6, 8, 10) − 6
15 IV(ν, 5, 4) (1)′ 2 I∗0(ν + 2, 8, 10) − 6 ν ≥ 6

16 I∗0(4, 6, 8) (3) 4 I∗4(6, 9, 14) − 6
17 I∗0(ν, 7, 8) (3) 4 II∗(ν + 2, 10, 14) − 6 ν ≥ 6
18 I∗0(4, 6, 9) − 5 I∗5(6, 9, 15) − 6
19 I∗0(6, 8, 10) − 6 II, III or IV Lem. 3.4
20 I∗0(7, 8, 10) − 6 II or III Lem. 3.5
21 I∗0(ν, 8, 10) − 6 II or IV ν ≥ 8 Lem. 3.6

22 I∗1(4, 6, 8) (3)′&(4) 3 I∗4(6, 9, 14) − 6
23 I∗1(6, 7, 8) (3)′ 3 II∗(8, 10, 14) − 6

24 I∗2(4, 6, 10) (4) 4 I∗6(6, 9, 16) − 6
25 I∗2(6, ν, 12) (5) 6 I∗6(4, ν − 3, 6) (1)′ 5 ν ≥ 10 Lem. 3.1
26 I∗2(6, 9, 13) − 7 II(4, 6, 7) − 7

27 I∗3(4, 6, 11) (4) 4 I∗7(6, 9, 17) − 6
28 I∗3(6, ν, 12) (5)′ 5 II(4, ν − 3, 6) (1) 6 ν ≥ 10 Lem. 3.1

29 I∗4(6, 9, 14) − 6 I∗0, I∗1 or IV∗ Lem. 3.8
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Table 3.1
(continued)

No. E Add.
cond.

f E′ := E ∗ 2 Add.
cond.

f ′ ν See

30 I∗4+ν(4, 6, 12 + ν) (0)′ 4 I∗8+ν(6, 9, 18 + ν) − 6 ν ≥ 0

31 I∗5(6, 9, 15) − 6 I∗0(4, 6, 9) − 5

32 I∗6(6, 9, 16) − 6 I∗2 or III∗ Lem. 3.11

33 I∗7(6, 9, 17) − 6 I∗3 or II∗ Lem. 3.12

34 I∗4+ν(6, 9, 14 + ν) − 6 Iν−4 or I∗ν ν ≥ 4 Lem. 3.13

35 IV∗(4, 6, 8) (3)′&(4)′ 2 I∗4(6, 9, 14) − 6

36 IV∗(ν, 7, 8) (3)′ 2 II∗(ν + 2, 10, 14) − 6 ν ≥ 7

37 III∗(4, 6, 10) (4)′ 3 I∗6(6, 9, 16) − 6

38 III∗(7, 9, 12) − 5 II(5, 6, 6) − 6

39 III∗(7, 10, 14) − 7 III(5, 7, 8) − 7

40 III∗(7, ν, 15) − 8 III(5, ν − 3, 9) − 8 ν ≥ 11

41 II∗(4, 6, 11) (4)′ 3 I∗7(6, 9, 17) − 6

42 II∗(ν, 9, 12) (0)′ 4 II(ν − 2, 6, 6) − 6 ν ≥ 8

43 II∗(8, 10, 14) − 6 I∗0 or I∗1 Lem. 3.14

44 II∗(ν, 10, 14) − 6 I∗0 or IV∗ ν ≥ 9 Lem. 3.15

Table 4.1
(p = 3, d = −3)

No. E Add.
cond.

f3 E′ := E ∗ (−3) Add.
cond.

f ′3 ν

1 I0(0, 0, 0) 0 I∗0(2, 3, 6) 2
2 I0(1, ν, 0) 0 I∗0(3, 3 + ν, 6) 2 ν ≥ 3

3 Iν(0, 0, ν) 1 I∗ν(2, 3, 6 + ν) 2 ν ≥ 1

4 II(ν, 3, 3) P′2 3 IV∗(ν + 2, 6, 9) P′5 3 ν ≥ 2
5 II(2, 4, 3) 3 IV∗(4, 7, 9) 3
6 II(2, 3, 4) 4 IV∗(4, 6, 10) 4
7 II(ν, 4, 5) 5 IV∗(ν + 2, 7, 11) 5 ν ≥ 3

8 III(ν, 3, 3) P2 2 III∗(ν + 2, 6, 9) P5 2 ν ≥ 2
9 III(2, ν, 3) 2 III∗(4, ν + 3, 9) 2 ν ≥ 5

10 IV(2, 3, 5) 3 II∗(4, 6, 11) 3
11 IV(3, 5, 6) 4 II∗(5, 8, 12) 4
12 IV(ν, 5, 7) 5 II∗(ν + 2, 8, 13) 5 ν ≥ 4

Table 5.1
(p > 3, d = p)

No. E fp E′ := E ∗ p f ′p ν

1 I0(0, ν, 0) 0 I∗0(2, ν + 3, 6) 2 ν ≥ 0
2 I0(ν, 0, 0) 0 I∗0(ν + 2, 3, 6) 2 ν ≥ 1

3 Iν(0, 0, ν) 1 I∗ν(2, 3, 6 + ν) 2 ν ≥ 1

4 II(ν, 1, 2) 2 IV∗(ν + 2, 4, 8) 2 ν ≥ 1

5 III(1, ν, 3) 2 III∗(3, 3 + ν, 9) 2 ν ≥ 2

6 IV(ν, 2, 4) 2 II∗(ν + 2, 5, 10) 2 ν ≥ 2
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Table 7.1

Interval # of
conductors

# of prime
conductors

# of
primes

# prime cond.
# all primes

# prime cond.
# all cond.

0–1000 707 52 168 0.309 0.0735

1001–2000 689 32 135 0.237 0.0464

2001–3000 689 28 127 0.220 0.0406

3001–4000 690 29 120 0.241 0.0420

4001–5000 662 20 119 0.168 0.0302

125001–126000 608 9 84 0.107 0.0148

126001–127000 593 10 83 0.120 0.0168

127001–128000 614 9 86 0.104 0.0146

128001–129000 608 8 89 0.089 0.0131

129001–130000 620 14 83 0.168 0.0225

Table 7.2

m E(m) E(2m) E(22m) E(23m) E(25m) E(27m) E(28m)

1 Ø Ø Ø Ø 41 24 24

3 Ø Ø Ø 61 42 28 2444

5 Ø Ø 41 41 22 28 Ø

7 Ø 61 Ø 2141 22 24 28

9 Ø Ø 41 61 2243 220 21244

11 31 Ø 21 11 16 24 Ø

13 Ø 2131 21 11 12 11228 1824

15 81 81 Ø 4161 48 224 228

17 41 41 Ø 22 26 Ø 28

19 31 2131 11 12 16 18 11224

21 61 61 2141 42 2444 224 212

23 Ø 21 1121 1321 Ø 24 24

25 Ø 42 41 122241 142241 116212 18216

27 41 32 21 14 112 116 124

29 Ø 1121 1122 12 12 11224 Ø

31 Ø 41 1121 1221 Ø Ø 24

33 41 43 22 2242 2644 220 224

35 31 41 1121 12 11244 212 220

37 1131 Ø 11 12 1622 Ø Ø

39 41 41 2141 2442 2842 28 Ø

41 Ø 21 Ø 22 22 24 24

43 11 Ø 21 11 Ø Ø Ø

45 81 4281 41 224261 2648 248 244

47 Ø 21 Ø Ø Ø 24 Ø

49 41 61 22 142141 2841 28 216

51 21 214161 12 122141 182242 216 216



Twisted elliptic curves 45

Table 7.3

m E(m) E(2m) E(22m) E(23m) E(25m) E(27m) E(28m)

451 11 1121 1122 14 16 27 28

453 Ø 162131 1121 12 16 13224 1824

455 42 1225314261 Ø 122741 1421442 112228 120236

457 Ø 1121 Ø 1121 Ø 14 14

459 1622 1626 12 116 148 Ø 132

461 Ø 11 11 Ø 12 Ø 14

463 Ø 21 Ø Ø Ø Ø Ø
465 2141 14274361 23 122343 162846 120256 120240

467 11 1221 Ø 11 14 14 1824

469 12 122131 1121 11122 11222 24 24

471 11 14 22 1322 1422 120 14

473 11 112141 1322 152141 14 112 28

475 2231 122231 1122 132541 1826 11624 132212

477 11 1825 1121 12 11442 156212 128212

479 Ø Ø Ø Ø Ø Ø Ø
481 21 21 11 12 16 28 24

483 12 13254261 1121 132241 1102448 116226 128232

485 1131 12 11 12 11222 24 1828

487 Ø 1721 Ø Ø 110 14 124

489 Ø 1622 1121 13 182242 12028 12424

491 Ø 11 11 12 Ø Ø Ø
493 12 1422 Ø 12 12 116 Ø
495 41 254562 2343 112114662 16216412 116280 124260

497 11 112442 11 21 1424 11228 24

499 Ø Ø 11 12 12 Ø Ø
501 21 1322 Ø 1222 1222 24 1824

Table 7.4

m E(m) E(3m) E(32m) E(33m) E(34m) E(35m)

1 Ø Ø Ø 41 Ø 22

2 Ø Ø Ø 32 2242 26

4 Ø Ø 41 21 24 24

5 Ø 81 81 12 1224 1822

7 Ø 61 61 1232 12 110

8 Ø 61 61 14 14 110

10 Ø 81 4281 24 28 216

11 31 41 223141 14 1424 Ø
13 Ø 41 41 Ø 14 16

14 61 61 62 1434 1424 110210

16 Ø 61 4161 14213241 142642 110212

17 41 21 122141 1622 Ø Ø
19 31 112141 11213141 12 16 18

20 41 Ø 41 26 26 22

22 Ø 43 45 1622 1626 11226

23 Ø 21 21 12 Ø 1422

25 Ø 2281 2481 162241 1224 130212

26 2131 41 233141 1102234 1422 1626

28 Ø 2141 2141 1224 1222 1424

29 Ø Ø Ø Ø Ø Ø
31 Ø Ø Ø Ø Ø Ø
32 41 42 2243 112 18 116

34 41 214161 214261 1626 16 11024

35 31 41 3141 Ø 1424 1624

37 1131 Ø 112231 12 Ø Ø
38 2131 2142 243142 182632 16 1422


