
To Jerzy Browkinon his 70th birthday

IntrodutionThe present paper deals with the irle of problems onsidered by several mathemati-ians, beginning with F. Klein in 1876 and ending with L. Summerer in 2004. Evenbefore Klein's fundamental paper [15℄, A. Clebsh and P. Gordan [6℄ in 1867 and A. Cleb-sh [5℄ in 1872 made important ontributions to one of the problems in question withoutformulating it expliitly.Let K be a �eld of harateristi π ≥ 0, T ∈ GL2(K) and f ∈ K[x, y] be a form suhthat
f(T (x, y)) = rf(x, y), where r ∈ K∗.Segre [22℄ alls T a weak automorph of f (�automor�smo in senso lato�), as opposed toa strit automorph (�automor�smo in senso stritto�), for whih r = 1, and onsiders for

K = Q the quotient group Aut(f,K) (notation mine, some authors denote similarly thegroup of strit automorphs) of the group of all weak automorphs of f de�ned over Kdivided by the group of trivial weak automorphs, given by T (x, y) = (̺x, ̺y) for ̺ ∈ K∗(this de�nition extends immediately to forms de�ned over any �eld L ontaining K; then
r ∈ L∗).Segre determines the forms f ∈ Q[x, y] suh that Aut(f,Q) ontains a given non-trivial group G of one of the possible eight types: yli of order 2, 3, 4, 6 and dihedralof order 4, 6, 8, 12. For every group G Segre takes a onvenient onjugate in the group
PGL2(Q), whih simpli�es alulation. Earlier for C instead of Q a similar result wasobtained by Klein [16, Chapter 2℄: here all yli and dihedral groups are possible and,in addition, three polyhedral groups. Dikson [9℄, [10℄ obtained analogous results for Kbeing a �nite �eld. For a modern treatment of the ase K = C, see Hu�man [14℄.The haraterization of forms in question given by Klein and Segre is the following(K = C or Q, K is an algebrai losure of K).For a given �nite subgroup G of PGL2(K) of order |G| = ν all forms f ∈ K[x, y] forwhih G ⊂ Aut(f,K) and only those are expressible as

f(x, y) =

h
∏

i=1

χi(x, y)
ciψ(p(x, y), q(x, y)),where p, q ∈ K[x, y], χi ∈ K[x, y] are forms determined by G; p, q are of degree ν, χiare of degree ν/mi, ci are integers satisfying 0 ≤ ci < mi and if χi, χj are onjugateover K, then ci = cj ; ψ is a binary form over K. Klein's proof is not rigorous and inSegre's proof given in Subsetion 19 of [22℄ several details are missing. In partiular,[5℄



6 A. Shinzelno onnetion is indiated between p, q and χi. On the other hand, in Subsetions 20and 24, 29 of [22℄ Segre expliitly determines p, q and χi for every G up to onjuga-tion.Having proved in �1 of the present paper several lemmas about PGL2(K) we deter-mine in �2 the forms p, q and χi for every yli subgroup of PGL2(K) with a givengenerator (Theorem 1). Then we prove an analogue of the above result of Klein, Dik-son and Segre for an arbitrary �eld K (Theorems 2 and 3). Consideration of �elds Kthat are not perfet is the only novel feature of this proof. As an appliation we provein �3 an upper bound for the order of Aut(f,K) (Theorems 4 and 5). The boundis sharp for every π and for π = 0 it is better for deg f > 12 than Olver's bound[19℄, [1℄.In Subsetions 22�23 of [22℄ Segre gives a method to deide whether a given ubior quadrati binary form f over Q has a strit non-trivial automorph de�ned over Q,the only trivial automorph being here the identity. The method involves invariants andovariants of f . In �4 we onsider an analogous question for weak automorphs de�ned over
K and give an answer in terms of the Galois group Gal(f,K) of the polynomial f(x, 1)over K (Theorem 6). For ubi forms and K = Q a neessary and su�ient ondition(if f is irreduible, the disriminant of f has to be a square in Q) has been given in areent unpublished manusript of A. Choudhry [4℄. For forms of odd degree with non-zero disriminant (in what follows alled non-singular), existene of a weak non-trivialautomorph is equivalent to existene of a strit non-trivial automorph (see [22, p. 40℄ and[20, Theorem 3.5℄), but it is not obvious that Choudhry's ondition and Segre's ondition([22, p. 48℄) are equivalent. For non-singular ubi forms with f(1, 0) 6= 0 the strutureof Gal(f,K) determines the isomorphism lass of Aut(f,K), for quarti forms it does notin general. On the other hand, for K algebraially losed and f a non-singular quarti,the isomorphism lass of Aut(f,K) is determined by invariants of f (�5, Theorem 7). For
K = C this is well known ([1, Example 3.6℄, f. also [24, Proposition 3.2℄), but at leastfor charK = 2, 3 it seems new.For forms f of degree 5 a haraterization of the isomorphism lass of Aut(f,C) byinvariants and ovariants of f an be dedued from the work of Clebsh and Gordan [6℄and of Clebsh [5℄ on the so alled typial representations of binary forms. For f non-singular of degree 6 a haraterization of the isomorphism lass of Aut(f,C) by ovariantsof f was obtained by Maiasano [17℄ and one by invariants of f by Bolza [2℄. Reentlya pratial way of �nding Aut(f,C) by means of ovariants of f has been proposed byBerhenko and Olver [1℄. However, it is not lear from it whether for non-singular forms fof degree greater than 6 the ondition |Aut(f,K)| > 1 an be haraterized by invariantsof f . We shall show (Theorem 8) that the set of forms f ∈ C[x, y] with |Aut(f,C)| > 1is Zariski losed only for n ≤ 5.I onlude this introdution by expressing my thanks to A. Choudhry for sendingme his unpublished manusript [4℄ as well as a opy of [2℄, to A. Pokrzywa for fatoringseveral multivariate polynomials that appeared in an earlier version of the paper and toA. Sªadek who suggested many orretions and a simpli�ation.



Weak automorphs of binary forms 71. Lemmas on PGL2(K)Definition 1. Let K be a �eld of harateristi π. If T0(x, y) = (αx + βy, γx + δy) ∈
GL2(K), the image of T0 in PGL2(K) will be denoted by T =

( α β

γ δ

)

K∗, or if PGL2(K)is represented as the group of frational linear transformations, by T ∗. The order of Tin PGL2(K) will be denoted by o(T ), the unit element by E. Moreover, ζν is a primitiveroot of unity of order ν in K, if it exists.Lemma 1. PGL2(K) ontains an element of order ν > 1 if and only if either ν = π, or
ν 6≡ 0 mod π and ζν + ζ−1

ν ∈ K. If this ondition is satis�ed , then PGL2(K) ontains adihedral group of order 2ν exept for K = F2, ν = 2.Proof. Let ( α β

γ δ

)

K∗ be an element of order ν > 1 in PGL2(K). By the Jordan normalform theorem (see [26, �88℄) there exist a, b, c, d in K suh that ad− bc 6= 0 and
(

α β

γ δ

)

=

(

a b

c d

)−1(
λ1 µ

0 λ2

)(

a b

c d

)

,where λ1λ2 6= 0 and either µ = 0, or λ1 = λ2 = λ and µ = 1. In the former ase λ1/λ2is a primitive root of unity ζ of order ν, hene ν 6≡ 0 mod π and
λ2(1 + ζ) = λ1 + λ2 = Tr

(

λ1 µ

0 λ2

)

= Tr

(

α β

γ δ

)

= α+ δ ∈ K,

λ2
2ζ = λ1λ2 =

∣

∣

∣

∣

λ1 µ

0 λ2

∣

∣

∣

∣

=

∣

∣

∣

∣

α β

γ δ

∣

∣

∣

∣

= αδ − βγ ∈ K.Hene ζ + ζ−1 = (λ2(1 + ζ))2/λ2
2ζ − 2 ∈ K. In the latter ase

(

λ1 µ

0 λ2

)ν

=

(

λν νλν−1

0 λν

)

,hene ν = π.If the asserted ondition is satis�ed, then PGL2(K) ontains a dihedral group of order
2ν generated by

(

1 + ζ + ζ−1 −1

1 1

)

K∗ and (

0 1

1 0

)

K∗ if ν 6≡ 0 mod π,

(

1 1

0 1

)

K∗ and (

−1 0

0 1

)

K∗ if ν = π 6= 2,

(

1 1

0 1

)

K∗ and (

1 a

0 1

)

K∗ if ν = π = 2, a ∈ K r F2.Remark. For K = Q Lemma 1 has been proved by Segre in Subsetion 9 of [22℄.Lemma 2. PGL2(K) ontains a subgroup isomorphi to A4 if and only if either π 6= 2and levelK ≤ 2, or π = 2 and F4 ⊂ K. If and only if the former ondition is satis�ed ,
PGL2(K) ontains a subgroup isomorphi to S4.

PGL2(K) ontains a subgroup isomorphi to A5 if and only if either π 6= 2, levelK ≤ 2and √
5 ∈ K, or π = 2 and F4 ⊂ K.



8 A. ShinzelRemark. The level of a �eld K is the minimal number k suh that x2
1 + · · · + x2

k = −1for some xi ∈ K.Proof. If π = 3 the ondition on the level is trivially satis�ed, so assume π 6= 3 and let
M be a matrix over K suh that MK∗ is of order 3 in PGL2(K). Then M is equivalentover K to a matrix ( λ1 0

0 λ2

), where λ1/λ2 is a primitive root of unity ζ of order 3 and
M 1+ζ−1

λ2
is equivalent over K to
(

1 + ζ 0

0 1 + ζ−1

)

=

(

1 −ζ2

1 −ζ

)(

0 −1

1 1

)(

1 −ζ2

1 −ζ

)−1

.But (see the proof of Lemma 1) λ2(1 + ζ) ∈ K and (1 + ζ2)/ζ ∈ K, hene, on division,
λ2/(1 + ζ−1) ∈ K and M 1+ζ−1

λ2
is de�ned over K. It follows that

M
1 + ζ−1

λ2
is equivalent to ( 0 −1

1 1

) over K.Hene a subgroup of PGL2(K) isomorphi to A4 is onjugate to a subgroup G on-taining ( 0 −1

1 1

)

K∗ = T . Thus there exists S ∈ G suh that
S2 = E and TST = ST−1S.Taking S =

( α β

γ δ

)

K∗ we obtain by alulation δ = −α, (2α+ γ − β)2 + β2 + γ2 = 0 andif π = 2, then β2 − βγ + γ2 = 0. Thus levelK ≤ 2 and if π = 2, then β/γ is a primitiveroot of unity of order 3, hene F4 ⊂ K.In the opposite diretion, if π = 2 and ζ is a primitive root of unity of order 3, thenthe group
〈(

0 ζ

1 0

)

K∗,

(

0 −1

1 1

)

K∗

〉

is isomorphi to A4. If π 6= 2, then the assumption that levelK ≤ 2 implies existene of
x1, x2 in K suh that x2

1 + x2
2 + 1 = 0. Then the group generated by

S =

(

1 −1

1 1

)

K∗, T =

(

x1 x2 + 1

x2 − 1 −x1

)

K∗is isomorphi to S4. Indeed, S4 = E, T 2 = E and (ST )3 = E, whih gives the requiredproperty (see [7, Table 1℄). If π = 2, then PGL2(K) does not ontain a subgroupisomorphi to S4 sine, by Lemma 1, it ontains no element of order 4.Assume now that PGL2(K) ontains a subgroup isomorphi to A5. Sine A5 ontains
A4 and C5, it follows from the already proved part of the lemma and from Lemma 1 thateither π 6= 2 and levelK ≤ 2, or π = 2 and F4 ⊂ K; moreover, either ζ + ζ−1 ∈ K,where ζ is a primitive root of unity of order 5, or π = 5. If π = 2 and F4 ⊂ K, then
PGL2(K) ontains an isomorphi image of PGL2(F4) ∼= A5; if π 6= 2, then the ondition
ζ + ζ−1 ∈ K implies ̺ = (

√
5 − 1)/2 ∈ K, whih also holds for π = 5. Conversely, if√

5 ∈ K and levelK ≤ 2, we have x2
1 + x2

2 + 1 = 0 for some x1, x2 in K, hene the group
〈R,S〉, where

R =

(

−1 + x2̺ x1 + x2̺− ̺− 1

2 1 − x2̺

)

K∗, S =

(

0 −1

1 1

)

K∗,



Weak automorphs of binary forms 9is isomorphi to A5, provided
∣

∣

∣

∣

−1 + x2̺ x1 + x2̺− ̺− 1

2 1 − x2̺

∣

∣

∣

∣

= −x2
2̺

2 − 2x1 + 2̺+ 2 6= 0,and this follows from π 6= 2 if x1 = 0, while it an be ahieved by hanging the sign of x1if x1 6= 0. Indeed, we have R2 = E, S3 = E and (RS)5 = E, whih implies 〈R,S〉 ∼= A5(see [7, Table 5℄).Remark. Lemma 2 in an equivalent formulation is given without proof by Serre [23℄.Segre only proves ([22, Subsetion 12℄) that if K is real, then PGL2(K) does not ontaina opy of A4.Lemma 3. Let G be a non-trivial subgroup of PGL2(K). If for all elements S of Gr{E}the equation S∗ξ = ξ has exatly one solution in K∪{∞}, then π > 0 and G is a π-group.Every suh �nite group is generated by elements
(

a b

c d

)−1(
λi 1

0 λi

)(

a b

c d

)

K∗ (1 ≤ i ≤ g)where ad − bc 6= 0, the λ−1
i are linearly independent over Fπ and either a, b, c, d, λi ∈ K,or π = 2, a = 0, b = 1, c ∈ K, K(d) is a quadrati inseparable extension of K and

λi + d ∈ K. Every in�nite π-group ontained in PGL2(K) ontains the above �nitegroups for all g.Proof. Let S1 =
( α β

γ δ

)

K∗ ∈ G r {E}, hene αδ − βγ 6= 0. By the Jordan normal formtheorem there exists a non-singular matrix ( a b

c d

) over K suh that
(

α β

γ δ

)

=

(

a b

c d

)−1(
λ µ

0 ν

)(

a b

c d

)

,where λν 6= 0 and either µ = 0, or λ = ν and µ = 1. In the former ase the equation
S∗

1ξ = ξ has two solutions in K ∪ {∞}, namely −b/a and −d/c. Sine the ase λ = ν,
µ = 0 is exluded by the assumption S1 6= E, we obtain µ = 1 and

4λ2 = (α+ δ)2 = 4(αδ − βγ).(1)The seond equality of (1) holds for all elements S of G. Let
S =

(

a b

c d

)−1(
ε ζ

η ϑ

)(

a b

c d

)

K∗ ∈ G r {E}.Sine Si1S ∈ G and
(

λ i

0 λ

)(

ε ζ

η ϑ

)

=

(

λε+ iη λζ + iϑ

λη λϑ

)

we obtain from (1)
(λε+ λϑ+ iη)2 = 4λ2(εϑ− ηζ) (i = 0, 1, 2),hene

η = 0, ε = ϑ, ζ 6= 0,hene S is of in�nite order in PGL2(K) unless π > 0, in whih ase Sπ = E and G is a
π-group. This proves the �rst part of the lemma.



10 A. ShinzelIn order to prove the seond part let us again onsider S1. The ondition Sπ1 = E 6= S1implies in the above notation
λπ = νπ, µ 6= 0,hene λ = ν =: λ1 and µ = 1. It follows that we have again equation (1) and for every Sin G,

S =

(

a b

c d

)−1(
ε ζ

0 ε

)(

a b

c d

)

K∗.If λ1 ∈ K, then a, b, c, d an be hosen in K and hene ε, ζ ∈ K and
S =

(

a b

c d

)−1(
1 ζ/ε

0 1

)(

a b

c d

)

K∗.For S running through G, ζ/ε runs through a linear spae L over Fπ and letting λ−1
1 , . . .

. . . , λ−1
g be a basis of this spae we obtain the assertion of the lemma.If λ1 6∈ K, then the polynomial z2 − (α + δ)z + (αδ − βγ) is irreduible inseparableover K, hene π = 2, γ 6= 0 and we an hoose a = 0, b = 1, c = γ, d = λ1 −α. Then theondition S ∈ PGL2(K) gives ε+ dζ ∈ K, d2ζ ∈ K, hene ζ ∈ K and

S =

(

a b

c d

)−1(
ε/ζ 1

0 ε/ζ

)(

a b

c d

)

K∗.Taking again a basis λ−1
1 , . . . , λ−1

g of L we obtain λi + d ∈ K, whih ompletes the prooffor �nite groups G. If G is in�nite, so is L and for every g it ontains λ−1
1 , . . . , λ−1

g linearlyindependent.Lemma 4. Let G be a non-trivial �nite subgroup of PGL2(K) and let
O(G) =

⋃

S∈Gr{E}

{

ξ ∈ K ∪ {∞} : S∗ξ = ξ
}

.If G is not a π-group, then the number h of orbits of O(G) under the ation of G is eithertwo or three.Proof. Let the orbits in question be O1, . . . , Oh. For eah ξ ∈ Oi the number |{S ∈ G :

S∗ξ = ξ}| is the same, say νi. Clearly |G| = νiµi, where µi = |Oi| and
h
∑

i=1

(νi − 1)µi =
∑

ξ∈K∪{∞}

∑

S∈Gr{E}
S∗ξ=ξ

1 =
∑

S∈Gr{E}

∑

ξ∈K∪{∞}
S∗ξ=ξ

1.

But for eah S ∈ Gr{E} the equation S∗ξ = ξ has in K∪{∞} either one or two solutionsand, by Lemma 3, the latter possibility ours at least one. It follows that
2|G| − 2 ≥

h
∑

i=1

(νi − 1)µi > |G| − 1.Sine
h
∑

i=1

(νi − 1)µi = h|G| −
h
∑

i=1

µi ∈
[

h

2
|G|, h|G| − h

]

,we obtain 2 ≤ h ≤ 3.



Weak automorphs of binary forms 11Remark. For K = C and K = Fπ, |G| 6≡ 0 mod π, Lemma 4 and the above proof arewell known (see [27, Vol. II, �68 and �87℄.Lemma 5. In the notation of the proof of Lemma 4, if T ∈ G, ξ∈Oj and T ∗ξ = ξ, then
o(T ) | |G|/|Oj |.Proof. The group 〈T 〉 of order o(T ) is a subgroup of the stabilizer of ξ in G of order
|G|/|Oj |.Lemma 6. Under the assumptions of Lemma 4, let Kj = K(Oj r {∞}). Then [Kj : K]

≤ 2 for all j ≤ h. We have the following possibilities :(2) for all j ≤ h either [Kj : K]s = 1 or [Kj : K]s = 2, ∞ 6∈ Oj ,
Gal(Kj/K) = 〈σj〉, and σj(Oj) = Oj ;(3) for a suitable numbering of Oj ,
[K1 : K]s = 2,Gal(K1/K) = 〈σ1〉, ∞ 6∈ O1, σ1(O1) = O2and either h = 2, or h = 3, [K3 : K]s = 1,or h = 3, [K3 : K]s = 2, Gal(K3/K) = 〈σ3〉,∞ 6∈ O3, σ3(O3) = O3.Proof. If ξ ∈ O(G) r {∞}, then S∗ξ = ξ for an S ∈ G, hene [K(ξ) : K] ≤ 2 and if

ξ ∈ Oj , then [Kj : K] ≤ 2. If [Kj : K] = 2, then ∞ 6∈ Oj sine S∗(∞) ∈ K ∪ {∞} for all
S ∈ G. If (2) does not hold, then for some j we have [Kj : K]s = 2, Gal(Kj/K) = 〈σj〉and σj(Oj) 6= Oj . Therefore, there exists ξ0 ∈ Oj suh that σj(ξ0) 6∈ Oj . But S∗

0ξ0 = ξ0for some S0 ∈ G r {E}; then also S∗
0σj(ξ0) = σj(ξ0), hene σj(ξ0) ∈ Ok for some k 6= jand renumbering the Oi we may assume that j = 1, k = 2, σ1(O1) = O2. If h = 3the situation annot repeat itself with j = 3 sine there exists no suitable k, thus either

[K3 : K]s = 1, or [K3 : K]s = 2, Gal(K3/K) = 〈σ3〉 and σ3(O3) = O3. This gives (3).Lemma 7. For every �nite subgroup G of PGL2(K) of order not divisible by π thesequene |O1|, . . . , |Oh| in the notation of the proof of Lemma 4 is a permutation ofone of the sequenes : 〈1, 1〉 (G ∼= Cν), 〈|G|/2, |G|/2, 2〉 (G ∼= Dν), 〈4, 4, 6〉 (G ∼= A4),
〈6, 8, 12〉 (G ∼= S4), 〈12, 20, 30〉 (G ≃ A5).Proof. If |G| 6≡ 0 mod π, then by Lemma 3 for every S ∈ Gr{E} the number of solutionsof S∗ξ = ξ is 2, hene following the proof of Lemma 4 we obtain

2|G| − 2 =

h
∑

i=1

(νi − 1)µi = h|G| −
h
∑

i=1

|G|/νifor h = 2 or 3. This equation is well known (see [27, Vol. II, �68℄) and gives for de-reasing νi either h = 2, ν1 = ν2 = |G|, or h = 3, 〈ν1, ν2, ν3〉 = 〈|G|/2, 2, 2〉, or h = 3,
〈|G|; ν1, ν2, ν3〉 = 〈12; 3, 3, 2〉, 〈24; 4, 3, 2〉, 〈60; 5, 3, 2〉. Sine µi = |G|/νi we obtain thelemma.Lemma 8. Let G = PSL2(Fq). In the notation of Lemma 4 we have

O(G) = Fq2 ∪ {∞}(4)and , up to a permutation, O1 = Fq ∪ {∞}, O2 = Fq2 r Fq.Proof. The formulae
S ∈ G r {E}, ξ ∈ Fq ∪ {∞}, S∗ξ = ξ(5)



12 A. Shinzelimply ξ ∈ Fq2 ∪ {∞}. On the other hand, if ξ ∈ Fq or ξ ∈ Fq2 , ξ2 + aξ + b = 0, a, b ∈ Fq,or ξ = {∞}, then (5) holds for
S =

(

1 + ξ −ξ2
1 1 − ξ

)

F∗
q or (

αε−1 −bε−1

ε−1 αε−1 + aε−1

)

F∗
q or (

1 1

0 1

)

F∗
q ,respetively, where α and ε are hosen in Fq so that α2 + aα + b = ε2; ε 6= 0 sine

x2 + ax+ b is irreduible over Fq. This proves (4).Moreover, if ξ = 0, S =
( 0 1

−1 0

)

F∗
q or ξ ∈ F∗

q , S =
( ξ 0

1 ξ−1

)

F∗
q we have

S ∈ G, S∗∞ = ξ.Finally, if ξ, η ∈ Fq2 r Fq and ξ′, η′ are onjugates of ξ, η with respet to Fq we have
(η − η′)/(ξ − ξ′) ∈ Fq. There exist δ, ε in Fq suh that

η − η′

ξ − ξ′
(δ + ξ)(δ + ξ′) = ε2 6= 0.Then taking

S =







δ(η − η′) + (ηξ − η′ξ′)

ε(ξ − ξ′)

δ(η′ξ − ηξ′) + ξξ′(η′ − η)

ε(ξ − ξ′)

ε−1 δε−1






F∗
qwe �nd S ∈ G suh that S∗ξ = η, whih ompletes the proof.Lemma 9. The statement of Lemma 8 is also true for G = PGL2(Fq).Proof. If H1 = PGL2(Fq), H2 = PSL2(Fq) we have, in the notation of Lemma 4,

O(H2) ⊂ O(H1);but, learly, O(H1) ⊂ Fq2 ∪ {∞}, hene by Lemma 8,
O(H1) = Fq2 ∪ {∞}.Sine H2 ⊂ H1 the orbits of Fq2 ∪ {∞} under the ation of H1 are unions of orbitsunder the ation of H2; Lemma 8 shows that they are either Fq ∪ {∞} and Fq2 r Fq, or

Fq2 ∪ {∞}. As the image of Fq ∪ {∞} under the ation of H1 is again Fq ∪ {∞}, theformer ase holds.Definition 2. If K,L are �elds, K ⊂ L and G is a subgroup of PGL2(K), then GL∗/L∗is the subgroup of PGL2(L) de�ned as
{ML∗ : M ∈ GL2(K), MK∗ ∈ G}.Lemma 10. For π > 0 every �nite subgroup of PGL2(K) is isomorphi to a subgroup of

PSL2(Fs), where s is a power of π.Proof. Let G =
{( αi βi

γi δi

)

K∗ : 1 ≤ i ≤ k
}. The isomorphism lass of G is determined by�nitely many equalities Fi(α1, . . . , δk) = 0 and inequalities Gj(α1, . . . , δk) 6= 0, where Fiand Gj are polynomials over Fπ. By the theorem on elimination of existential quanti�ersin algebraially losed �elds, if this system of equalities and inequalities is solvable in K,it is also solvable in the algebrai losure of Fπ, hene also in a �eld Fq, where q is a powerof π. Thus G is isomorphi to a subgroup of PGL2(Fq). Sine for s = q2, PGL2(Fq)F

∗
s/F

∗
sis ontained in PSL2(Fs), it follows that s satis�es the assertion of the lemma.



Weak automorphs of binary forms 13Lemma 11. For π > 0 and a �nite subgroup G of PGL2(K) of order divisible exatlyby πg (g > 0) let σ be the number of π-Sylow subgroups in G. We have the followingpossibilities :
σ = 1;

σ = πg + 1, G ∼= PGL2(Fπg ) or PSL2 (Fπg ) ;

πg = 2, σ = 2̺+ 1 (̺ ≥ 1), G ∼= D2̺+1;

πg = 3, σ = 10, G ∼= A5.Proof. In view of Lemma 10 this follows from an analogous property of subgroups of
PSL2(Fs) (see [12, Chapter XII, Setions 249�253℄, with m replaed by g and f by ̺).Lemma 12. Let H1 = PGL2(Fq) and H2 = PSL2(Fq), where q = πg. Every subgroup of
PGL2(K) isomorphi to Hi is onjugate to HiK

∗/K∗.Proof. The existene of a subgroup of PGL2(K) isomorphi to Hi, but not onjugate to
HiK

∗/K∗ is a statement involving �nitely many existential and universal quanti�ers andequalities and inequalities onerning polynomials with oe�ients in Fq. By the theoremon elimination of existential quanti�ers in algebraially losed �elds, if this statement istrue, it is also true in Fq. Therefore, there exists a subgroup G of PGL2(Fq) isomorphi to
Hi, but not onjugate to HiF

∗
q/F

∗
q . For A running through GL2(Fq) suh that AF∗

q ∈ G,
A/

√
detA runs through �nitely many matries, whih all lie in SL2(Fs) for some s whihis a power of q. If

G0 =

{

M√
detM

F∗
s : MF∗

q ∈ G
}

,(6)then G0 is isomorphi to G, hene to Hi. By the known property of PSL2(Fs) (see [12,Chapter XII, italiized statements on pp. 274 and 278 and the normalization of GΩ onp. 273℄), G0 is onjugate in PGL2(Fs) to HiF
∗
s/F

∗
s . Hene there exists A0 ∈ GL2(Fs) suhthat

G0 = A0HiA
−1
0 .By (6) this gives

G0 = A0HiA
−1
0 F∗

q/F
∗
q ,thus G is onjugate in PGL2(Fq) to HiF

∗
q/F

∗
q , a ontradition.Lemma 13. If Fq ⊂ K, then every subgroup G of PGL2(K) isomorphi to Hi (notationof Lemma 12) is onjugate to HiK

∗/K∗.Proof. By Lemma 12 there exists A ∈ GL2(K) suh that for i = 1 or 2,
GK∗/K∗ = AHiA

−1K∗/K∗.(7)It follows that for all M ∈ SL2(Fq)F
∗2
q there exists t ∈ K∗ suh that

tAMA−1 ∈ GL2(K).(8)Now, if
A =

(

a b

c d

)

, M =

(

α β

γ δ

)

,



14 A. Shinzelthen
AMA−1 =

1

ad− bc

(

adα− acβ + bdγ − bcδ −abα+ a2β − b2γ + abδ

cdα− c2β + d2γ − cdδ −bcα+ acβ − bdγ + adδ

)

.Applying (8) with
M =

(

1 0

0 1

)

,

(

1 1

0 1

)

,

(

0 1

−1 0

)

,

(

1 1

−1 0

)

,we obtain(91) t
ad

ad− bc
∈ K, (92) t

ac

ad− bc
∈ K, (93) t

bc

ad− bc
∈ K;(101) t

ab

ad− bc
∈ K, (102) t

a2

ad− bc
∈ K;(111) t

c2

ad− bc
∈ K, (112) t

cd

ad− bc
∈ K.Sine ad−bc 6= 0 we have a 6= 0 or c 6= 0. If a 6= 0, then (91) and (102) imply d/a ∈ K, (92)and (102) imply c/a ∈ K, and (101) and (102) imply b/a ∈ K, hene a−1A ∈ GL2(K).If c 6= 0 the same onlusion follows from (92), (93), (112) and (111). By (7),

GK∗/K∗ = a−1AHiA
−1aK∗/K∗,hene

G = a−1AHiA
−1aK∗/K∗,whih gives the assertion.

2. Determination of all binary forms with a given group of weakautomorphsDefinition 3. If
〈α, β, γ, δ〉 ∈ K4, αδ − βγ 6= 0, 〈α, β, γ, δ〉 6= 〈α, 0, 0, α〉(12)and

z2 − (α+ δ)z + (αδ − βγ) = (z − λ1)(z − λ2), λ1, λ2 ∈ K, λ1 6= λ2,(13)we put
χi = γx+ (λi − α)y (i = 1, 2) if γ 6= 0,

χ1 = (α− δ)x+ βy, χ2 = y otherwise.Definition 4. If (12) holds and
z2 − (α+ δ)z + (αδ − βγ) = (z − λ)2, λ ∈ K,(14)we put
χ1 = γx+ (λ− α)y, χ2 = y if γ 6= 0,

χ1 = βy, χ2 = x otherwise.Theorem 1. Let 〈α, β, γ, δ〉 satisfy (12) and T =
( α β

γ δ

)

K∗ be of order ν in PGL2(K).A form f ∈ K[x, y] r {0} satis�es the onditions
f ∈ K[x, y](15)



Weak automorphs of binary forms 15and
T ∈ Aut(f,K)(16)if and only if either (13) holds and

f = χc11 χ
c2
2 ψ(χν1 + χν2 , λ1χ

ν
1 + λ2χ

ν
2),(17)where χ1, χ2 are given in De�nition 3, ψ is a binary form over K, while ci are integerssatisfying 0 ≤ ci < ν and c1 = c2 if χ1, χ2 are onjugate over K, or (14) holds and

f = χc11 ψ(χπ1 , λ
π−1χπ2 − χ2χ

π−1
1 ),(18)where χ1, χ2 are given in De�nition 4, ψ is a binary form over K, while c1 is a non-negative integer satisfying c1 < π = ν unless either π = 0, in whih ase ψ ∈ K∗, c1arbitrary , or π = 2 = ν, λ 6∈ K, in whih ase c1 = 0.Corollary 1. If a form f ∈ K[x, y] of degree n 6≡ 0 mod π has a weak automorph oforder ν in PGL2(K), then either ν |n and ζν +ζ−1

ν ∈ K, or f is the produt of two formswith suh automorphs , one of whih, say g, is linear or quadrati.Corollary 2. If a form f ∈ K[x, y] of degree n 6≡ 1 mod π, n > 2, has a weak auto-morph of order ν in PGL2(K) and f is the produt of a linear fator and another fatorde�ned and irreduible over K, then ν |n− 1 and ζν ∈ K.Corollary 3. If a quarti form f ∈ K[x, y] has in PGL2(K) a weak automorph oforder 3, then either √
−3 ∈ K or f is a square in K[x, y].Corollary 4. If T0 ∈ GL2(K) and T = T0K

∗ is of �nite order in PGL2(K), then thereexists c(T0) ∈ K suh that if T ∈ Aut(f,K), then
f(T0)

o(T ) = c(T0)
deg ffand if , moreover , f(ξ, 1) = 0 implies T ∗ξ 6= ξ, then o(T ) | deg f and

f(T0) = c(T0)
deg f/o(T )f.Here f(∞, 1) = 0 means f(1, 0) = 0.Corollary 5. Under the assumption of Theorem 1 about T , a form f ∈K[x, y] r {0}satis�es (16) if and only if either (13) and (17) hold , where χ1, χ2 are given in De�ni-tion 3, ψ is a binary form over K, while ci are integers satisfying 0 ≤ ci < ν, or (14)and (18) hold , where χ1, χ2 are given in De�nition 4, while c1 is a non-negative integersatisfying c1 < π = ν unless π = 0, in whih ase ψ ∈ K∗, c1 arbitrary.The proof of Theorem 1 is based on three lemmas.Lemma 14. The linear forms χ1, χ2 given in De�nition 3 are linearly independent andsatisfy χi(αx+βy, γx+δy) = λiχi (i = 1, 2), provided for γ = 0 we have λ1 = α, λ2 = δ.Moreover , either χi ∈ K[x, y] (i = 1, 2), or χ1, χ2 are onjugate over K.If ( α β

γ δ

)

K∗ is of order ν > 2 in PGL2(K), then χi ∈ K[x, y] if and only if K ontainsa primitive root of unity of order ν.Proof. The �rst two assertions are proved by alulation and inspetion. To prove thethird assertion notie that χi ∈ K[x, y] if and only if λi ∈ K. If ( α β

γ δ

)

K∗ is of order
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ν > 2 in PGL2(K) we know from the proof of Lemma 1 that λ1/λ2 is a primitive root ofunity of order ν and that

λ2(1 + λ1/λ2) = α+ δ ∈ K,hene λi ∈ K (i = 1, 2) is equivalent to existene in K of a primitive root of unity oforder ν.Lemma 15. The linear forms χ1, χ2 given in De�nition 4 are linearly independent andsatisfy
χ1(αx+ βy, γx+ δy) = λχ1, χ2(αx+ βy, γx+ δy) = λχ2 + χ1.Moreover χ1 ∈ K[x, y] unless π = 2 and λ 6∈ K.Proof. By alulation and inspetion.Lemma 16. If G ∈ K[x] rK, λ ∈ K∗ and

G(x+ λ−1) = rG(x), r ∈ K(λ)∗,(19)then π 6= 0 and
G(x) = H(λπ−1xπ − x), where H ∈ K(λ)[x].(20)Remark. For K being a �nite �eld and λ ∈ K the lemma is due to Dikson.Proof. By omparing the leading oe�ients on both sides of (19) we obtain r = 1. Now(19) implies that

G
(

lλ−1
)

= G(0) for all l ∈ Z,hene π 6= 0. We shall prove (20) by indution on the degree of G, say n. If n = 0, then(20) holds with H = G. Assume that (20) is true for all G satisfying (19) of degree lessthan n and that degG = n. From (19) we obtain
π−1
∏

l=0

(x− lλ−1)
∣

∣

∣
G(x) −G(0).But

π−1
∏

l=0

(x− lλ−1) = λ1−π(λπ−1xπ − x)and
λπ−1(x+ λ−1)π − (x+ λ−1) = λπ−1xπ − x.Taking

G1(x) =
G(x) −G(0)

λπ−1xπ − xwe dedue from (19) that G1(x+ λ−1) = G1(x), hene by the indutive assumption
G1(x) = H1(λ

π−1xπ − x), H1 ∈ K(λ)[x],and (20) holds with H = xH1(x) +G(0).Proof of Theorem 1. Neessity. First assume (13). Sine by Lemma 14, χ1, χ2 are linearlyindependent over K we an write
f(x, y) =

n
∑

i=0

aiχ
n−i
1 χi2, where ai ∈ K(λ1, λ2),(21)



Weak automorphs of binary forms 17and we set
I = {i : ai 6= 0}.It follows from (16) and Lemma 14 that

f(αx+ βy, γx+ δy) =
∑

i∈I

aiλ
n−i
1 λi2χ

n−i
1 χi2(22)

= λn1
∑

i∈I

ai(λ2/λ1)
iχn−i1 χi2 = r

∑

i∈I

aiχ
n−i
1 χi2.Sine T is in PGL2(K) of order ν, λ2/λ1 is a primitive root of unity of order ν in K.If I = {j}, then we have (17) with ψ = aj . If |I| > 1, then the ondition (22) impliesthat there exist integers c1, c2 suh that 0 ≤ cj < ν and i ≡ c2, n− i ≡ c1 mod ν for all

i ∈ I. Sine
p = χν1 +χν2 , q = λ1χ

ν
1 +λ2χ

ν
2 is equivalent to χν1 =

q − λ2p

λ1 − λ2
, χν2 =

λ1p− q

λ1 − λ2
,(23)if λ1, λ2 are in K we obtain (17) with

ψ(p, q) =
∑

i∈I

ai(λ1 − λ2)
(c1+c2−n)/ν(q − λ2p)

(n−i−c1)/ν(λ1p− q)(i−c2)/ν .(24)If λ1 6∈ K, then χ1, χ2 are onjugate over K by Lemma 14, and denoting onjugation byprime, from (14) and (21) we obtain
0 = f ′(x, y) − f(x, y) =

n
∑

i=0

a′iχ
n−i
2 χi1 −

n
∑

i=0

aiχ
n−i
1 χi2 =

n
∑

i=0

(a′i − an−i)χ
n−i
1 χi2,hene a′i = an−i for all i ≤ n. It follows that i and n− i belong simultaneously to I, thus

c1 = c2. Now, the form ψ(p, q) given by (24) satis�es
ψ′(p, q) − ψ(p, q) =

∑

i∈I

a′i(λ2 − λ1)
(2c1−n)/ν(q − λ1p)

(n−i−c1)/ν(λ2p− q)(i−c1)/ν

−
∑

i∈I

ai(λ1 − λ2)
(2c1−n)/ν(q − λ2p)

(n−i−c1)/ν(λ1p− q)(i−c1)/ν

=
∑

i∈I

an−i(λ2 − λ1)
(2c1−n)/ν(q − λ1p)

(n−i−c1)/ν(λ2p− q)(i−c1)/ν

−
∑

i∈I

an−i(λ1 − λ2)
(2c1−n)/ν(q − λ2p)

(i−c1)/ν(λ1p− q)(n−i−c1)/ν = 0and sine the extension K(λ1, λ2)/K is separable, we get ψ ∈ K[x, y] and from (21) and(23) we again obtain (17).Assume now that (14) holds. Sine, by Lemma 15, χ1, χ2 are linearly independentover K, we have
f(x, y) = g(χ1, χ2), g ∈ K(λ)[x, y].By (16) and Lemma 15,

(λχ1, λχ2 + χ1) = g(χ1(αx+ βy, γx+ δy), χ2(αx+ βy, γx+ δy))

= f(αx+ βy, γx+ δy) = rf(x, y) = rg(χ1, χ2),hene G(x) = g(1, x) satis�es
G(x+ λ−1) = rG(x)



18 A. Shinzeland, by Lemma 16, we have either G ∈ K, or π 6= 0 and
G(x) = H(λπ−1xπ − x), H ∈ K(λ)[x].In the former ase we have (18) with

ψ(p, q) = 1, c1 = n if π = 0,

ψ(p, q) = p⌊n/π⌋, c1 = n− π

⌊

n

π

⌋ if π > 0, λ ∈ K,

ψ(p, q) = pn/2, c1 = 0 if π = 2, λ 6∈ K.In the latter ase we have for n ≡ c1 mod π, 0 ≤ c1 < π,
g(χ1, χ2) = χn1G

(

χ2

χ1

)

= χn1H

(

λπ−1

(

χ2

χ1

)π

− χ2

χ1

)

,thus (18) holds with
ψ(p, q) = p(n−c1)/πH(q/p).If λ ∈ K, then learly ψ ∈ K[p, q].It remains to onsider the ase π = 2, λ 6∈ K. Let

ψ(p, q) = pmψ1(p, q), where ψ1(0, 1) 6= 0(25)
(m = (n− c1 − deg g)/2), so that

(ψ1(χ
2
1, λχ

2
2 − χ2χ1), χ1) = 1.(26)By (18) we have χ2m+c1

1 | f , (χ2
1)

2m+c1 | f2 , and sine χ2
1 is irreduible over K, also

(χ2
1)
m+⌈c1/2⌉ | f . By (18), (25) and (26) this gives

2m+ 2⌈c1/2⌉ = 2m+ c1,hene c1 = 0, ψ(χ2
1, λχ

2
2 − χ2χ1) = f ∈ K[x, y] and sine

χ2
1 = γ2x2 + βγy2 ∈ K[x, y], λχ2

2 − χ1χ2 = γxy + αy2 ∈ K[x, y](27)and χ2
1, λχ

2
2 − χ1χ2 are algebraially independent over K, it follows that ψ ∈ K[p, q].Su�ieny. If (13) holds and T is of order ν in PGL2(K), then we have λν1 = λν2 , hene

χi(αx+ βy, γx+ δy)ν = λν1χ
ν
i and, by (17),

f(αx+ βy, γx+ δy) = λc11 λ
c2
2 λ

ν degψ
1 f,thus (16) holds. Also, if λ1, λ2 ∈ K, then (15) holds. If λ1, λ2 are onjugate over K,then (15) holds again by the ondition c1 = c2, sine χ1χ2, χν1 +χν2 and λ1χ

ν
1 +λ2χ

ν
2 areinvariant under onjugation.If (14) holds and π = 0, then, by (18), f(αx+ βy, γx+ δy) = λc1f , thus (16) holds.Also (15) holds, sine in this ase λ ∈ K. If π > 0, then by (18) and Lemma 15,

f(αx+ βy, γx+ δy)

= λc1χc11 ψ(λπχπ1 , λ
π−1(λπχπ2 + χπ1 ) − (λχ2 + χ1)λ

π−1χπ−1
1 ) = λc1+degψf,thus (16) holds. Also if λ ∈ K, then (15) holds. If λ 6∈ K, then π = 2, c1 = 0 and (15)follows from (27).



Weak automorphs of binary forms 19Proof of Corollary 1. If T =
( α β

γ δ

)

K∗ ∈ Aut(f,K) of order ν > 1 in PGL2(K) satis�es(13), then, by Lemma 1, ζ + ζ−1 ∈ K, where ζ = λ2/λ1 is a primitive root of unity oforder ν in K. If n ≡ 0 mod ν the �rst term of the alternative holds. By Theorem 1 wehave n ≡ c1 + c2 mod ν, thus n 6≡ 0 mod ν implies ci := max{c1, c2} > 0. If χi ∈ K[x, y]we take g = χi, and if χ1, χ2 are onjugate over K, we take g = χ1χ2.If T satis�es (14), then either π = 0 and f = χc11 , in whih ase we take g = χ1, or
π > 0, in whih ase we have n ≡ c1 mod π. By assumption, n 6≡ 0 mod π, thus c1 > 0,
π 6= 2 and we take g = χ1.Proof of Corollary 2. Let T0(x, y) = (αx+βy, γx+ δy), T =

( α β

γ δ

)

K∗ ∈ Aut(f,K) be oforder ν > 1 in PGL2(K), and L be a linear fator of f in K[x] suh that f/L is irreduibleover K. Sine L(T0) | f(T0) | f and f/L is of degree n − 1 > 1 we have L(T0)/L ∈ K∗,hene (f. Lemmas 14 and 15)
L = aχi, a ∈ K∗, where i = 1 or 2 in ase (13), i = 1 in ase (14).(28)In ase (13) it follows that λ1, λ2 ∈ K, thus a primitive root of unity ζν = λ2/λ1is in K. Now (17) implies that either ci = 1 and c3−i = 0, in whih ase ν |n − 1, or

ci = c3−i = 0 and
χi |ψ(χν1 + χν2 , λ1χ

ν
1 + λ2χ

ν
2).This gives

χi |ψ(χν3−i, λ3−iχ
ν
3−i) = χν degψ

3−i ψ(1, λ3−i),hene ψ(1, λ3−i) = 0,
ψ = (λ3−ip− q)ψ1, ψ1 ∈ K[p, q],and

f/χi = (λ3−i − λi)χ
ν−1
i ψ1(χ

ν
1 + χν2 , λ1χ

ν
1 + λ2χ

ν
2)is reduible for n > 2, ontrary to assumption.In ase (14) it follows from (28) that λ ∈ K and, by (18), we have π > 0. If c1 = 1we have n ≡ 1 mod π, ontrary to assumption, while if c1 = 0,

χ1 |ψ(χπ1 , λ
π−1χπ2 − χ2χ

π−1
1 ).This gives

χ1 |ψ(0, λπ−1χπ2 ) = (λπ−1χπ2 )degψψ(0, 1),hene ψ(0, 1) = 0, ψ = pψ1, ψ1 ∈ K[p, q] and
f/χ1 = χπ−1

1 ψ1(χ
π
1 , λ

π−1χπ2 − χ2χ
π−1
1 )is reduible for n > 2, ontrary to assumption.Proof of Corollary 3. If π = 3 the onlusion holds trivially. If π 6= 3 then by Theorem 1,

f = χc11 χ
c2
2 ψ(χ3

1 + χ3
2, λ1χ

3
1 + λ2χ

3
2),where χ1, χ2 are given in De�nition 3, c1, c2 are non-negative integers and ψ is a binaryform over K. If √−3 6∈ K, then χi 6∈ K[x, y], by Lemma 14; hene, by Theorem 1,

c1 = c2 and the above equation for f gives 4 ≡ 2c1 mod 3. It follows that c1 = c2 = 2,
ψ ∈ K∗ and f is a square in K[x, y].



20 A. ShinzelProof of Corollary 4. For T0 = (αx+ βy, γx+ δy) we take
c(T0) =

{

λ
o(T )
1 = λ

o(T )
2 if (13) holds,

λo(T ) if (14) holds.If T0K
∗ ∈ Aut(f,K) we have, by Theorem 1, for the ase (13),

f(T0)
o(T ) = λ

c1o(T )
1 λ

c2o(T )
2 c(T0)

degψ·o(T )f = c(T0)
c1+c2+degψ·o(T )f = c(T0)

deg ff ;and for the ase (14),
f(T0)

o(T ) = λc1o(T )c(T0)
degψ·o(T )f = c(T0)

c1+degψ·o(T )f = c(T0)
deg ff.If, moreover, f(ξ, 1) = 0 implies T ∗ξ 6= ξ, then c1 = c2 = 0 if (13) holds, and c1 = 0 if(14) holds, hene

deg f = degψ · o(T ) and f(T0) = c(T0)
degψf = c(T0)

deg f/o(T )f.Proof of Corollary 5. It su�es to apply Theorem 1 withK replaed byK and T replaedby ( α β

γ δ

)

K∗.Definition 5. Let G be a �nite subgroup of PGL2(K) whih is not a π-group, and let,in the notation of Lemma 6,
χj0 =

∏

η∈Ojr{∞}

(x− ηy)
∏

η∈Oj∩{∞}

y, χj = χ
[Kj :K]i
j0 (1 ≤ j ≤ h).Further, if (2) holds, set

p = χ
|G|/deg χ1

1 , q = χ
|G|/deg χ2

2 ;and if (3) holds and K1 = K(ϑ), set
p = χ

|G|/degχ1

1 + χ
|G|/deg χ2

2 , q = ϑχ
|G|/deg χ1

1 + σ1(ϑ)χ
|G|/degχ2

2 .Corollary 6. Either χj ∈ K[x, y] for all j ≤ h, or χ1, χ2 are onjugate over K and for
h = 3, χ3 ∈ K[x, y]. Moreover G ⊂ Aut(χj ,K) for all j ≤ h.Proof. This is an immediate onsequene of Lemma 6.Corollary 7. We have p, q ∈ K[x, y] and (p, q) = 1.Proof. First, p and q are forms over K. If (3) holds, or (2) holds and [K1 : K]i =

[K2 : K]i = 1, this is lear, sine degχj = |Oj | divides |G| for all j ≤ h. If (2) holdsand [Kj : K]i = 2, then for eah S ∈ G r {E} and ξ ∈ Oj with S∗ξ = ξ we have
o(S) ≡ 0 mod 2, hene 2|Oj | | |G| by Lemma 5.Now, if (2) holds we have χj ∈ K[x, y] (1 ≤ j ≤ h), hene p, q ∈ K[x, y]. If (3) holds,then χ2 = σ1(χ1), hene σ1(p) = p, σ1(q) = q, thus p, q ∈ K[x, y]. Sine (χ1, χ2) = 1 wehave (p, q) = 1.Theorem 2. Let G be a �nite subgroup of PGL2(K) whih is not a π-group. A form
f ∈ K[x, y] r {0} satis�es

f ∈ K[x, y](29)and
G ⊂ Aut(f,K)(30)



Weak automorphs of binary forms 21if and only if
f =

h
∏

j=1

χ
cj

j ψ(p, q),(31)where χj and p, q are given in De�nition 5, ψ is a binary form over K and cj are integerssatisfying 0 ≤ cj < |G|/degχj and c1 = c2 if χ1, χ2 are onjugate over K.Corollary 8. Under the assumption of Theorem 2 about G, a form f ∈ K[x, y] satis�es(30) if and only if (31) holds , where χj are given in De�nition 5,
p = χ

|G|/degχ1

1 , q = χ
|G|/degχ2

2 ,

ψ is a binary form over K and cj are integers satisfying 0 ≤ cj < |G|/degχj.The proof of Theorem 2 is based on �ve lemmas.Lemma 17. Let f ∈ K[x, y] r {0} be a form and , for ξ ∈ K, ef (ξ) be the multipliity of
ξ as a zero of f(x, 1), and ef (∞) be the multipliity of 0 as a zero of f(1, y). We have

S ∈ Aut(f,K)(32)if and only if for all ξ ∈ K ∪ {∞},
ef (S

∗ξ) = ef (ξ).(33)Proof. By making a preliminary linear transformation we may assume that
f =

n
∏

i=1

(x− ξiy) and S =

(

α β

γ δ

)

K∗,where
αδ − βγ 6= 0.(34)Neessity. If (32) holds and for some ξi we have γξi + δ = 0, then with an r ∈ K∗,

(αξi + β)n = f(αξi + β, γξi + δ) = rf(ξi, 1) = 0,hene αξi+β = 0 and αδ−βγ = 0, ontrary to (34). Thus γξi+ δ 6= 0 (i = 1, . . . , n) and
n
∏

i=1

(

αx+ βy − αξi + β

γξi + δ
(γx+ δy)

)

=
(αδ − βγ)n

(−1)nf(−δ, γ)

n
∏

i=1

(x− ξiy)

=
(βγ − αδ)n

f(−δ, γ) f(x, y) =
(βγ − αδ)n

rf(−δ, γ) f(αx+ βy, γx+ δy)

=
(βγ − αδ)n

rf(−δ, γ)

n
∏

i=1

(αx+ βy − ξi(γx+ δy)),hene (33) holds.Su�ieny. If (33) holds, there is a permutation σ of {1, . . . , n} suh that
αξi + β

γξi + δ
= ξσ(i).



22 A. ShinzelThen by (34) we have γξi + δ 6= 0 for all i ≤ n and it follows that
f(αx+ βy, γx+ δy) =

n
∏

i=1

(αx+ βy − ξσ(i)(γx+ δy))

=
∏

(

αx+ βy − αξi + β

γξi − δ
(γx+ δy)

)

=
(αδ − βγ)n

(−1)nf(−δ, γ)

n
∏

i=1

(x− ξ1y) =
(βγ − αδ)n

f(−δ, γ) f(x, y),hene (32) holds.Lemma 18. If ef (η) = 0 for all η ∈ O(G) and G ⊂ Aut(f,K), then
deg f ≡ 0 mod |G|.Proof. Let us divide all ξ ∈ K ∪ {∞} with ef (ξ) > 0 into lasses by assigning ξ1 and ξ2to the same lass C if ξ1 = S∗ξ2 for some S ∈ G. Sine ef (η) = 0 for all η ∈ O(G), wehave ξ 6= S∗ξ for all ξ with ef (ξ) > 0, hene by Lemma 17, the number of elements ineah lass is |G|. On the other hand, by Lemma 17, for eah C in the set Γ of all lasses,there is e(C) ∈ N suh that ef (ξ) = e(C) for all ξ ∈ C. We obtain

deg f =
∑

ξ∈K∪{∞}

ef (ξ) =
∑

C∈Γ

e(C)|G| ≡ 0 mod |G|.Lemma 19. If f ∈ K[x, y] r {0}, G ⊂ Aut(f,K) and (χj , f) 6= 1 then χj | f .Proof. Assume that ef (η) > 0 for some η ∈ Oj . By Lemma 17 we have ef (S∗η) > 0 forall S ∈ G, hene χj0 | f . Therefore,
χj | f [Kj :K]i .(35)If [Kj : K]i = 1 the assertion is proved. If [Kj : K]i = 2, then Oj ⊂ Kj rK. Therefore,for all η ∈ Oj , (x− ηy)2 is irreduible over K and (35) implies
(x− η)2 | f,whih gives χj | f , as asserted.Remark. For K = C the lemma is well known (see [27, Vol. II, �70℄) and for π 6= 2 theproof given there needs no modi�ation.Lemma 20. The �eld L = {ϕ ∈ K(t) : ϕ(S∗) = ϕ for all S ∈ G} is generated by

p(t, 1)/q(t, 1), where p, q are given in De�nition 5.Proof. By De�nition 5, G ⊂ Aut(χj0,K), hene, by Corollary 3, for every S0 ∈ GL2(K)with S = S0K
∗ ∈ G we have

χj0(S0)
o(S) = c(S0)

degχj0χj0.If S∗ξ = ξ for some ξ ∈ Oj , we have, by Lemma 5,
o(S) | |G|/|Oj| = |G|/degχj0,and so

χj(S0)
|G|/degχj = χj0(S0)

|G|/degχj0 = c(S0)
|G|/o(S)χ

|G|/deg χj

j .(36)



Weak automorphs of binary forms 23If S∗
0ξ 6= ξ for all ξ = Oj the same onlusion holds by the seond part of Corollary 4.Therefore,

p(S0) = c(S0)
|G|/o(S)p, q(S0) = c(S0)

|G|/o(S)q(37)and
p(S∗

0t, 1)

q(S∗
0 t, 1)

=
p(t, 1)

q(t, 1)
, thus p(t, 1)

q(t, 1)
∈ L.Sine (χ1, χ2) = 1 we have p(t, 1)/q(t, 1) 6∈ K and, by Lüroth's theorem, L = K(r), where

r ∈ K(t) rK. Without loss of generality we may assume that r = p1/q1, where p1 and
q1 are oprime polynomials of the same degree d. Let

p2 = p1(x/y)y
d, q2 = q1(x/y)y

d.Sine r(S∗t) = r(t) for all S ∈ G we have, for all S0 ∈ GL2(K) with S0K
∗ ∈ G,

p2(S0) = c1(S0)p2, q2(S0) = c1(S0)q2,where c1(S0) ∈ K∗. It follows that
λp2(S0) + µq2(S0) = c1(S0)(λp2 + µq2)(38)for all λ, µ in K. Now, hoose λ0 and µ0 in K suh that

(39)
λ0p2(η, 1) + µ0q2(η, 1) 6= 0 for all η ∈ O(G) r {∞},

λ0p2(1, 0) + µ0q2(1, 0) 6= 0 if ∞ ∈ O(G).This is possible, sine 〈p2(η, 1), q2(η, 1)〉 6= 〈0, 0〉 and p(1, 0) 6= 0. By Lemma 18 we have
d ≡ 0 mod |G|.On the other hand, sine p(t, 1)/q(t, 1) ∈ K(r) we have

|G| = deg p(t, 1)/q(t, 1) ≡ 0 mod d.It follows that d = deg p(t, 1)/q(t, 1) and K(p(t, 1)/q(t, 1)) = K(r) = L.Lemma 21. If f1 is a binary form over K of degree divisible by |G| and for every S0 ∈
GL2(K) with S = S0K

∗ ∈ G we have
f1(S0) = c(S0)

deg f1/o(S)f1,then f1 = ψ1(p, q), where p, q are given in De�nition 5 and ψ1 is a binary form over K.Proof. By (37) for every S0 in question
q(S0)

deg f1/|G| = c(S0)
deg f1/|G|qdeg f1/|G|,hene

f1(S
∗t, 1)

q(S∗t, 1)deg f1/|G|
=

f1(t, 1)

q(t, 1)deg f1/|G|
,and sine this holds for every S ∈ G,

f1(t, 1)

q(t, 1)deg f1/|G|
∈ L.By Lemma 20 we have

f1(t, 1)

q(t, 1)deg f1/|G|
= u

(

p(t, 1)

q(t, 1)

)

.



24 A. ShinzelLet u = v/w, where v, w are oprime polynomials over K. Putting v(x, y) = v(x/y)ydeg vand w(x, y) = w(x/y)ydegw, we obtain
f1(t, 1)

q(t, 1)deg f1/|G|
=
v(p(t, 1), q(t, 1))q(t, 1)degw

w(p(t, 1), q(t, 1))q(t, 1)deg v
.Sine (p(t, 1), q(t, 1)) = 1 by Corollary 7, we have

(w(p(t, 1), q(t, 1)), v(p(t, 1), q(t, 1))) = 1and
(v(p(t, 1), q(t, 1))w(p(t, 1), q(t, 1)), q(t, 1)) = 1,hene w ∈ K∗ and deg f1/|G| ≥ deg v, and
f1(t, 1) = w−1v(p(t, 1), q(t, 1))qdeg f1/|G|−deg v.Substituting t = x/y and anelling the denominators we obtain

f1 = w−1v(p, q)qdeg f1/|G|−deg v.Proof of Theorem 2. Neessity. By Lemma 19 we may write
f =

h
∏

j=1

χ
cj

j f0, where f0 ∈ K[x, y],
(

f0,
h
∏

j=1

χj

)

= 1.(40)If χ1 6∈ K[x, y], then by Corollary 6, χ1, χ2 are onjugate and χc11 | f implies χc12 | f , hene
c1 ≤ c2. Similarly c2 ≤ c1, hene c1 = c2 as asserted and f0 ∈ K[x, y]. Now,

ef0(η) = 0 for all η ∈ O(G)and by Lemma 18,
deg f0 ≡ 0 mod |G|.Moreover, by Corollary 4, for every S0 ∈ GL2(K) with S = S0K

∗ ∈ G we have
f0(S0) = c(S0)

deg f0/o(S)f0.By Lemma 21 with f1 = f0,
f0 = ψ(p, q),where ψ is a binary form over K, thus (31) follows from (40).Now, by (36) for eah j ≤ k and every S0 ∈ GL2(K) with S0K

∗ ∈ G,
χ
|G|/degχj

j (S0) = c(S0)
|G|/o(S)χ

|G|/degχj

j ,hene, applying Lemma 21 with f1 = χ
|G|/degχj

j if χj ∈ K[x, y], or with f1 =

(χ1χ2)
n|G|/degχj if χ1, χ2 are onjugate, we obtain

χ
|G|/degχj

j = ψj(p, q) or (χ1χ2)
|G|/degχj = ψ1(p, q),respetively, where ψj are binary forms over K. This gives the required upper boundfor cj .



Weak automorphs of binary forms 25Su�ieny. Assuming (31) we obtain (29) by Corollary 6 and the ondition c1 = c2if χ1, χ2 are onjugate over K. On the other hand, for every S0 ∈ GL2(K) suh that
S = S0K

∗ ∈ G we have, by (31),
ψ(p(S0), q(S0)) = c(S0)

|G|/o(S)ψ(p, q),thus G ⊂ Aut(ψ(p, q),K) and (30) follows from (31) by Corollary 6.Proof of Corollary 8. It su�es to apply Theorem 2 withK replaed byK and G replaedby GK∗/K∗.Example. We give without proof formulae for χ1, χ2, χ3 for dihedral subgroups of
PGL2(K). For the dihedral subgroup of order 4 generated by

(

a b

c −a

)

K∗,

(

d e

f −d

)

K∗, where a, . . . , f ∈ K, (a2 + bc)(d2 + ef) 6= 0,

2ad+ bf + ce = 0(the last ondition ensures ommutativity) we have
χ1 = cx2 − 2axy − by2, χ2 = fx2 − 2dxy − ey2,

χ3 = (cd− af)x2 − 2(ad+ bf)xy − (bd− ae)y2.For the dihedral group of order 2ν > 4 generated by
(

a b

a(ζ + ζ−1) + b −a

)

K∗ and (

1 + ζ + ζ−1 −1

1 1

)

K∗,where ζ is a primitive root of unity of order ν 6≡ 0 mod π, a, b ∈ K, (aζ+b)(aζ−1+b) 6= 0,the polynomials χi (1 ≤ i ≤ 3) are given by the formulae
χ3 = x2 − (ζ + ζ−1)xy + y2,

χ(3−ε)/2 =
B −A

ζ−1 − ζ
(ζ−1(x− ζy)ν + ζ(x− ζ−1y)ν)

+

(

ε
√
AB − ζB − ζ−1A

ζ−1 − ζ

)

((x− ζy)ν + (x− ζ−1)ν) (ε = ±1)if
A = (−aζ2 − bζ)ν 6= B = (−aζ−2 − bζ−1)ν ,and

χ1 = (ζ − ζ−1)(x− ζy)ν + (ζ−1 − ζ)(x− ζ−1y)ν ,

χ2 = (x− ζy)ν + (x− ζ−1y)ν ,otherwise. We shall use the fat, easy to hek diretly, that for a = 1, b = 0 the twogenerators of the group are weak automorphs of χi, hene Aut(χi,K) ontains the groupfor i = 2 or 3.For the dihedral group generated by
(

−1 b

0 1

)

K∗ and (

λ 1

0 λ

)

K∗,where π > 0, λ ∈ K∗, b ∈ K, the polynomials χi (1 ≤ i ≤ 2) are given by the formulae
χ1 = y, χ2 = −2λπ−1xπ + 2xyπ−1 + (λπ−1bπ − b)yπ.



26 A. ShinzelDefinition 6. Let G be a π-subgroup of PGL2(K) generated by elements SiK∗, where
Si =

(

a b

c d

)−1(
λi 1

0 λi

)(

a b

c d

)

(1 ≤ i ≤ g),(41)
ad− bc 6=0, λ−1

1 , . . . , λ−1
g are linearly independent over Fπ and either a, b, c, d, λj are in K,or a = 0, b = 1, c ∈ K, K(d) is a quadrati inseparable extension of K and d+ λj ∈ K.Then we put

χ1 = cx+ dy, χ2 = ax+ by,

p = χπ
g

1 , q = χ2

∏

〈a1,...,ag〉∈F
g
πr{0}

(

χ1 + χ2

(

g
∑

j=1

ajλ
−1
j

)−1)

.

Corollary 9. We have p ∈ K[x, y], q ∈ K[x, y], (p, q) = 1 and p, q are algebraiallyindependent.Proof. The assertion is lear unless π = 2, λ1 6∈ K. In the exeptional ase c ∈ K,
λ2

1 ∈ K, hene p ∈ K[x, y]. Also for eah j ≤ g,
dλ−2

j + λ−1
j ∈ K,hene for all 〈a1, . . . , ag〉 ∈ Fg2 r {0},

d
(

g
∑

j=1

ajλ
−1
j

)2

+

g
∑

j=1

ajλ
−1
j ∈ K,whih gives χ1+χ2(

∑g
j=1 ajλ

−1
j )−1 ∈ K[x, y] and q ∈ K[x, y]. Moreover, (p, q) = 1, sine

(χ1, χ2) = 1, and sine p, q are forms, it follows that they are algebraially independent.Theorem 3. Let G, χ1, p, q be as in De�nition 6. A form f ∈ K[x, y]r{0} satis�es (29)and (30) if and only if
f = χc11 ψ(p, q),(42)where ψ is a binary form over K, c1 is an integer , 0 ≤ c1 < |G| and if χ1 6∈ K[x, y] then

c1 is even.Corollary 10. Under the assumption of Theorem 3 about G, χ1, p, q a form f ∈ K[x, y]satis�es (30) if and only if (42) holds , where ψ is a binary form over K and c1, c2 areintegers with 0 ≤ c1 < |G|.Corollary 11. If a binary form f has at least two oprime linear fators over K and
G is a π-group ontained in Aut(f,K), then |G| ≤ deg f.The proof of Theorem 3 is based on the following lemma.Lemma 22. If π > 0, G ∈ K[x], λi ∈ K(λ1)

∗ (1 ≤ i ≤ g), λ−1
1 , . . . , λ−1

g are linearlyindependent over Fπ and
G(x+ λ−1

i ) = riG(x), ri ∈ K∗ (1 ≤ i ≤ g),(43)then
G(x) = H(P (x)), H ∈ K(λ1)[x],(44)



Weak automorphs of binary forms 27where
P (x) =

∏

〈a1,...,ag〉∈F
g
π

(

x+

g
∑

j=1

ajλ
−1
j

)

.

Remark. For K being a �nite �eld of harateristi π and λi ∈ K the lemma is due toDikson.Proof. On omparing the leading oe�ients on both sides of (43) we obtain ri = 1

(1 ≤ i ≤ g). We shall prove (44) by indution on the degree of G, say n. If n = 0 then(44) holds with H = G. Assume that (44) is true for all G satisfying (43) of degree lessthan n, and that degG = n. From (43) we obtain, for all 〈a1, . . . , ag〉 ∈ Fgπ,
G
(

−
g
∑

j=1

ajλ
−1
j

)

= G(0),hene by the linear independene of λ−1
1 , . . . , λ−1

g over Fπ,
P (x) |G(x)−G(0).Taking
G1(x) =

G(x) −G(0)

P (x)we dedue from (43) that G1(x + λ−1
i ) = G1(x) (1 ≤ i ≤ g), hene by the indutiveassumption

G1(x) = H1

(

P (x)
)

, H1 ∈ K(λ1)[x],and (44) holds with H(x) = xH1(x) +G(0).Proof of Theorem 3. Neessity. Sine ad − bc 6= 0 and χ1, χ2 are linearly independentover K, we have
f(x, y) = g(χ1, χ2), g ∈ K(λ1)[x, y].By (41),
χ1(Si) = λiχ1, χ2(Si) = λiχ2 + χ1,(45)hene, by (30), for some ri ∈ K,

g(λiχ1, λiχ2 + χ1) = g(χ1(Si), χ2(Si)) = f(Si) = rif = rig(χ1, χ2),thus G(x) = g(1, x) satis�es
G(x+ λ−1

i ) = riG(x).By Lemma 22 we have
G(x) = H

(

P (x)
)

, H ∈ K(λ1)[x].Hene
g(χ1, χ2) = χn1G

(

χ2

χ1

)

= χn1H

(

χ2

χ1

)

and for n ≡ c1 mod πg with 0 ≤ c1 < πg, (42) holds with
ψ(p, q) = p(n−c1)/π

g

H

(

q

p

∏

〈a1,...,ag〉∈F
g
πr{0}

g
∑

j=1

ajλ
−1
j

)

.If λ1 ∈ K we have ψ ∈ K[p, q].



28 A. ShinzelIt remains to onsider the ase π = 2, K(λ1) a quadrati inseparable extension of K.In this ase χ1 6∈ K[x, y] and χ2
1 is irreduible over K. Let ψ(p, q) = pmψ1, where

ψ1 ∈ K[p, q] and ψ1(0, 1) 6= 0. Sine, by Corollary 9, (p, q) = 1 we have (ψ1(p, q), χ1) = 1and it follows from (42) that
χ2gm+c1

1 | f, χ2gm+c1+1
1 ∤ f.Further

χ2g+1m+2c1
1 | f2and sine χ2

1 is irreduible,
χ

2gm+2⌈c1/2⌉
1 | f, 2gm+ 2⌈c1/2⌉ = 2gm+ c1,

c1 ≡ 0 mod 2, and χc11 ∈ K[x, y]. It now follows from (42) that
ψ(p, q) ∈ K[x, y].By Corollary 9, p, q ∈ K[x, y] and p, q are algebraially independent. Hene ψ ∈ K[p, q].Su�ieny. Sine χ1 or χ2

1 in the exeptional ase and p, q are de�ned over K, (29) islear. On the other hand, by (45),
p(Si) = λπ

g

i p,

q(Si) = (λiχ2 + χ1)
∏

〈a1,...,ag〉∈F
g
πr{0}

(

λiχ1 + (λiχ2 + χ1)
(

g
∑

j=1

ajλ
−1
j

)−1)

= (λiχ2 + χ1)λ
πg−1
i

×
∏

〈a1,...,ag〉∈F
g
πr{0}

(

g
∑

j=1

ajλ
−1
j

)−1 ∏

〈a1,...,ag〉∈F
g
πr{0}

(

χ1

g
∑

j=1

ajλ
−1
j + χ2 + χ1λ

−1
i

)

= λπ
g

i

∏

〈a1,...,ag〉∈F
g
πr{0}

(

g
∑

j=1

ajλ
−1
j

)−1 ∏

〈a1,...,ag〉∈F
g
π

(

χ1

g
∑

j=1

ajλ
−1
j + χ2

)

= λπ
g

i q,hene
f(Si) = χ1(Si)

c1ψ(p(Si), q(Si)) = λc1+π
g degψ

i χc11 ψ(p, q) = λc1+π
g degψ

i fand (30) holds.Proof of Corollary 10. It su�es to apply Theorem 3 with K replaed by K and Greplaed by GK∗/K∗.Proof of Corollary 11. Sine Aut(f,K) ⊂ Aut(f,K) we may assume that K = K. ByLemma 3 every π-group ontained in PGL2(K) must ontain a π-group onsidered inTheorem 3. Sine f has at least two oprime linear fators, the ase ψ ∈ K in (42) isexluded. Hene
|G| ≤ degψ(p, q) ≤ n.



Weak automorphs of binary forms 293. Upper bounds for |Aut(f,K)|We shall proveTheorem 4. If a form f ∈ K[x, y] r {0} of degree n has at least three oprime linearfators over K, then Aut(f,K) is �nite. Moreover , if
f = cf0(αx+ βy, γx+ δy)k, where c ∈ K∗, α, β, γ, δ∈K, αδ − βγ 6= 0,(46)

f0 = xqy − xyq, Fq ⊂ K, k ∈ N, then Aut(f,K) ∼= PGL2(Fq); otherwise either
(47) π = 2, n = 2̺+ 1, Aut(f,K) ∼= D2̺+1,or
(48) π = 3, n = 10, Aut(f,K) ∼= A5,or
(49) |Aut(f,K)| = lm,where l 6≡ 0 mod π, ζl + ζ−1

l ∈ K, l < n, m ≤ n.Remark. It is not lear whether there exist f and K satisfying (48).Corollary 12. Assume that f ∈ K[x, y] and all fators of f(x, 1) irreduible over Kare separable. Then Aut(f,K) is �nite if and only if either K is �nite, or f has at leastthree oprime linear fators over K.Definition 7. For π = 0 or π > n we put
Un(K) =

{

ν ∈ N : ν ≤ n and ζν + ζ−1
ν ∈ K

}

,

Vn(K) = {ν ∈ N : ν ≤ n and ζν ∈ K} ,
a1(n,K) = supUn(K), a2(n,K) = sup{ν ∈ Un(K) : ν ≡ n mod 2},
b(n,K) = supVn(K),

M = {6, 10, 15, 21, 22} ∪ {25, . . .} r {29, 32, 44},where the dots represent onseutive integers greater than 25.Corollary 13. We have a2(n,K) ≤ a1(n,K) ≤ n for every n and a2(n,K) = a1(n,K)

= n for n ≤ 4, a1(n,K) ≥ 6 for n ≥ 6, a2(n,K) ≥ 6 for even n ≥ 6, 2 ≤ b(n,K) ≤
a1(n,K) for n ≥ 2.Definition 8. Let A(n,K) and B(n,K) for n≥3 be the maximum of |Aut(f,K)| overall forms f of degree n in K[x, y] or K[x, y] respetively with at least three oprime linearfators over K and whih are not perfet powers in K[x, y].Theorem 5. We have

A(n,K) = B(n,K) = π3g − πg if n = πg + 1, Fπg ⊂ K,and
A(n,K) ≤ n(n− 1) otherwise.



30 A. ShinzelMoreover , if π = 0 or π > n then
A(n,K) =











































12 if levelK ≤ 2, n = 4,

max{a1(n,K), 2a2(n,K), 24} if levelK ≤ 2 and either
n = 6, 8, 14 or n = 12,

√
5 6∈ K or

n = 2m, m ≥ 9 and √
5 6∈ K if m ∈ M,

max{a1(n,K), 2a2(n,K), 60} if levelK ≤ 2,
√

5 ∈ Kand n/2 ∈ M,

max{a1(n,K), 2a2(n,K)} otherwise;
B(n,K) =











































12 if n = 4,
√
−3 ∈ K,

max{b(n− 1,K), 2a2(n,K), 24} if level K ≤ 2 and either
n = 6, 8, 14 or n = 12,

√
5 6∈ K or

n = 2m, m ≥ 9 and √
5 6∈ K if m ∈ M,

max{b(n− 1,K), 2a2(n,K), 60} if level K ≤ 2,
√

5 ∈ Kand n/2 ∈ M,

max{b(n− 1,K), 2a2(n,K)} otherwise.Corollary 14. We have A(n,C) = 2n unless n = 4, 6, 8, 12, 20, when A(n,C) =

12, 24, 24, 60, 60, respetively.Remark 1. P. Olver [19℄ and then I. Berhenko and P. Olver [1℄ gave a bound for
|Aut(f,C)| assumed �nite, whih asserts that

A(n,C) ≤ 6n− 12and apart from an exeptional ase
A(n,C) ≤ 4n− 8.The bound given in Corollary 14 is better for all n > 4, n 6= 6, 8, 12. This bound for

n > 30 has been antiipated by Summerer in an unpublished paper [25℄, dealing onlywith non-singular forms.Remark 2. Let A0(n, π) = maxA(n,K), where K runs through all �elds of harater-isti π. By an analysis of subgroups of PSL2(Fq) listed in [12, Chapter 12℄ one an guessexpliit values for A0(n, π) also for 0 < π ≤ n. Namely, if n > 20 and πg ≤ n < πg+1,then onjeturally A0(π
g + 1, π) = π3g − πg, otherwise A0(n, π) = π2g − πg unless g = 1,

(π2 − π)/2 < n, n 6≡ mod π or n = π2 − π or g = 3, n = π4 − π2, when A0(n, π) = 2n or
π3 − π or π6 − π2, respetively. For n ≤ 20 there are apparently three exeptions to thisrule: A0(8, 5) = 24, A0(12, 7) = A0(20, 7) = 60.For the proof of Theorem 4 we need the followingDefinition 9. For ξ ∈ K ∪ {∞}, we set

Aut(f,K, ξ) = {S ∈ Aut(f,K) : S∗ξ = ξ},

Autπ(f,K, ξ) =

{

{S ∈ Aut(f,K, ξ) : S∗π = E} if π > 0,
{E} otherwise.



Weak automorphs of binary forms 31Lemma 23. Let f ∈ K[x, y]r{0} be a form of degree n, let Z = {ξ ∈ K∪{∞} : ef (ξ) > 0}and suppose |Z| ≥ 3. For every ξ ∈ Z the set Autπ(f,K, ξ) is a �nite normal subgroupof Aut(f,K, ξ) and the quotient group is yli of order l < n with l 6≡ 0 mod π suh that
ζl ∈ K(ξ), where K(∞) = K.Proof. Assume �rst ξ = ∞. Then S∗ξ = ξ is equivalent to S =

(

α β

0 1

)

K∗, where α ∈ K∗,
β ∈ K. Let

H =

{

α ∈ K∗ : there exists β ∈ K suh that ( α β

0 1

)

K∗ ∈ Aut(f,K)

}

.Then H is a subgroup of the multipliative group K∗ and if α∈H and S =
( α β

0 1

)

K∗ ∈
Aut(f,K), then the order of α inK∗ is �nite. Indeed, otherwise, taking ξ1, ξ2 in Zr{∞},
ξ1 6= ξ2, we should obtain, by Lemma 17,

S∗iξj ∈ Z for all i ∈ N and j = 1, 2,hene for some i′j < i′′j = i′j + ij ,
S∗i′jξj = S∗i′′j ξj (j = 1, 2);

αijξj + β(αij − 1)/(α− 1) = S∗ijξj = ξj ;

(α− 1)ξj + β = 0 (j = 1, 2), ξ1 = ξ2, a ontradition.The above alulation also shows that if α ∈ H r {1} and S =
(

α β

0 1

)

K∗ ∈ Aut(f,K),then the order of α in K∗ is equal to the order ν of S in PGL2(K) and is not divisibleby π. Sine |Z| ≥ 3, in Theorem 1 applied to f , K and S the ase ψ ∈ K is exludedand we have ν ≤ n with equality possible only if
f = a((α− 1)x+ βy)n + byn, a, b in K.It now follows from ef (∞) > 0 that f(1, 0) = 0, hene a = 0, f = byn, |Z| = 1, aontradition. Hene ν < n. Sine there are only �nitely many α ∈ K∗ with αν = 1 forsome ν < n, H is �nite and yli by the well known lemma (see [3, Algebrai Supplement,�3℄). Its order l equal to the order of a generator satis�es
|H| = l < n, l 6≡ 0 mod π, ζl ∈ K.(50)Let
G =

{(

1 β

0 1

)

K∗ ∈ Aut(f,K)

}

.Then G is a normal subgroup of Aut(f,K,∞), whih in turn is a subgroup of Aut(f,K).If π = 0, then G = {E}, for otherwise taking ξ1 ∈ Z r {∞} and β ∈ K∗ suh that
S =

(

1 β

0 1

)

K∗ ∈ G we should obtain, by Lemma 17, ξ1 + iβ = S∗iξ1 ∈ Z, a ontradition,sine ξ1 + iβ (i = 0, . . . , n) are distint. If π > 0 then
G = Autπ(f,K,∞)is a π-group and, by Corollary 11,

|G| = πg ≤ n.The quotient group Aut(f,K,∞)/G is isomorphi to H, hene the assertion followsfrom (50).



32 A. ShinzelAssume now ξ 6= ∞ and put f1 = f(ξx+ y, x). We have f1(1, 0) = f(ξ, 1) = 0, hene
ef1(∞) > 0 and, by the already proved ase of the lemma, Autπ(f1,K(ξ),∞) is a �nitenormal subgroup of Aut(f1,K(ξ),∞) and the quotient group is yli of order l < n with
l 6≡ 0 mod π suh that ζl ∈ K(ξ).Now

Aut(f,K, ξ) ⊂
(

ξ 1

1 0

)

Aut(f1,K(ξ),∞)

(

ξ 1

1 0

)−1

,

Autπ(f,K, ξ) ⊂
(

ξ 1

1 0

)

Autπ(f1,K(ξ),∞)

(

ξ 1

1 0

)−1

,and the assertion of the lemma follows from simple fats from group theory.Lemma 24. For ξ ∈ Z (notation of Lemma 23), let m be the length of the orbit of ξunder the ation of Aut(f,K). If |Aut(f,K, ξ)| ≡ 0 mod π, then m ≡ 1 mod π, alsoeither ξ ∈ K or
π = 2, Aut(f,K, ξ) = Autπ(f,K, ξ).(51)Proof. By Lemma 17, Aut(f,K), hene also Autπ(f,K, ξ), ats on Z. Let O(ξ) be theorbit of ξ under the ation of Aut(f,K). Sine for η ∈Z and S ∈Autπ(f,K, ξ) r {E},

S∗η = η implies η = ξ, Autπ(f,K, ξ) ats on O(ξ) r {ξ} and all orbits are of length
|Autπ(f,K, ξ)|. Hene m = |O(ξ)| ≡ 1 mod π. By Lemma 3, Autπ(f,K, ξ) has anelement

S0 =

(

a b

c d

)−1(
λ 1

0 λ

)(

a b

c d

)

K∗,where ad − bc 6= 0, λ 6= 0 and either a, b, c, d, λ ∈ K, or π = 2, c ∈ K∗, and K(d) isa quadrati inseparable extension of K. The ondition S∗
0ξ = ξ gives ξ = −d/c. Inthe former ase it follows that ξ ∈ K, in the latter ase K(ξ) is a quadrati inseparableextension of K and for S =

( α β

γ δ

)

K∗ ∈ Aut(f,K, ξ) the equation S∗ξ = ξ gives α = δ,
Sπ = e, hene (51) holds.Proof of Theorem 4. Suppose |Aut(f,K)| is divisible exatly by πg = q, and for ξ ∈ Z,let m(ξ) be the length of the orbit of ξ under the ation of Aut(f,K). For all ξ ∈ Z wehave

|Aut(f,K)| = |Aut(f,K, ξ)|m(ξ)(52)and, by Lemma 17,
m(ξ) ≤ |Z| ≤ n.(53)If |Aut(f,K, ξ)| 6≡ 0 mod π for at least one ξ ∈ Z then, by Lemma 23, Aut(f,K, ξ) isyli of order l < n with l 6≡ 0 mod π. By Lemma 1 we have ζl + ζ−1

l ∈ K. Moreover,by (52),
|Aut(f,K)| = lm(ξ),whih together with (53) gives (49).If |Aut(f,K, ξ)| ≡ 0 mod π for all ξ ∈ Z, then, by Lemma 24, m(ξ) 6≡ 0 mod π, heneby (52),

|Aut(f,K, ξ)| ≡ 0 mod q



Weak automorphs of binary forms 33and Autπ(f,K, ξ) is a π-Sylow subgroup of Aut(f,K). Sine all π-Sylow subgroups areonjugate and the only onjugates of Autπ(f,K, ξ) in Aut(f,K) are, by Lemma 17, thegroups Autπ(f,K, η), where ef (η) = ef (ξ), it follows that for all ξ ∈ Z, m(ξ) = |Z|, ef (ξ)has the same value, say k, and the number σ of π-Sylow subgroups is |Z| ≥ 3. It follows,by Lemma 11, that either
(54) π = 2, |Z| = 2̺+ 1, Aut(f,K) ∼= D2̺+1,or
(55) π = 3, |Z| = 10, Aut(f,K) ∼= A5,or
(56) |Z| = q + 1, Aut(f,K) ∼= Hi,where H1 = PGL2(Fq) and H2 = PSL2(Fq).For k = 1 the ase (54) gives (47), while (55) gives (48). For k > 1, (54) and (55)give (49) with l = 2̺+ 1, m = 2 or l = 10, m = 6, respetively. The ase (56) for q = 2gives (47) with ̺ = 1. For q > 2, (56) gives

|Aut(f,K, ξ)| = q2 − q or (q2 − q)/(π + 1, 2).In the notation of Lemma 23, l = q − 1 or (q − 1)/(π + 1, 2), hene q > 1 and, byLemma 24, ξ ∈ K. The ondition ζl ∈ K(ξ) of Lemma 23 now gives Fq ⊂ K.By Lemma 13, Aut(f,K) is onjugate in PGL2(K) to HiK
∗/K∗, hene there exist

α, β, γ, δ in K suh that αδ − βγ 6= 0 and
Aut(f,K) =

(

α β

γ δ

)−1

Hi

(

α β

γ δ

)

K∗/K∗.(57)Sine ef (ξ) = k for all ξ ∈ Z, we have
f = fk1 , where f1 ∈ K[x, y], deg f1 = |Z|.(58)Put

f2 = f1(δx− βy,−γx+ αy), a0 = (αδ − βγ)−n.It follows from (58) that
f = a0f2(αx+ βy, γx+ δy)k, deg f2 = q + 1,(59)and

Aut(f,K) =

(

α β

γ δ

)−1

Aut(f2,K)

(

α β

γ δ

)

.(60)Hene, by (57),
Aut(f2,K) = HiK

∗/K∗.(61)By Corollary 8, applied with G = Aut(f2,K)K∗/K∗, by De�nition 5 and Lemmas 8 and9 we obtain
f2 = χc11 χ

c2
2 ψ(p, q),



34 A. Shinzelwhere
χ1 = y

∏

ξ∈Fq

(x− ξy), χ2 =
∏

ξ∈F
q2rFq

(x− ξy), p = χ
|Hi|/(q+1)
1 , q = χ

|Hi|/(q
2−q)

2

and ψ is a form over K. The ondition deg f2 = q+1 implies c1 = 1, c2 = 0, ψ ∈ K, f2 =

(xqy−xyq)ψ, hene (46) follows from (59). Sine Aut(xqy−xyq,K) ⊃ PGL2(Fq)K
∗/K∗we have i = 1 in (61) and Aut(f,K) ∼= PGL2(Fq) by (60). This has been dedued fromthe assumption that |Aut(f,K, ξ)| ≡ 0 mod π for all ξ, while in the opposite ase oneof the formulae (47)�(49) holds. Sine f2 does not satisfy (47)�(49), we have, indeed,

Aut(f,K) ∼= Aut(f2,K) ∼= PGL2(Fq).Proof of Corollary 12. By Theorem 4 the ondition given in the orollary is su�ient.In order to prove that it is neessary assume that K is in�nite and f has at most twooprime linear fators over K. We distinguish three ases: the zeros of f(x, 1) are in K;the zeros of f(x, 1) are onjugate quadrati irrationalities over K and π 6= 2; and thezeros of f(x, 1) are onjugate quadrati irrationalities over K and π = 2.In the �rst ase f is equivalent over K to a form f1 = axmyn, where a ∈ K,m, n arenon-negative integers and f has in�nitely many pairwise inequivalent weak automorphs
( α 0

0 1

)

K∗, α ∈ K∗.In the seond ase f is equivalent overK to a form f2 = a(x2−cy2)m, where a, c ∈ K∗,
m ∈ N and f1 has in�nitely many pairwise inequivalent weak automorphs ( α cγ

γ α

)

K∗,where 〈α, γ〉 runs through in�nitely many solutions in K of the equation α2 − cγ2 = 1,and from eah pair 〈α, γ〉, 〈−α,−γ〉 we use only one solution.In the third ase f is equivalent over K to a form f3 = a(x2 + bxy + cy2)m, where
a, b, c ∈ K∗ and m ∈ N. Now we distinguish two subases.If c/b2 is algebrai over F2 then (c/b2)2k−1 = 1 for a ertain k ∈ N, hene c = d2,where d = b(c/b2)k ∈ K∗. It follows that f3 has in�nitely many pairwise inequivalentweak automorphs ( dα bdα+d2

1 dα

)

K∗, where α runs over K∗. On the other hand, f3 has aweak automorph ( c bc

b b2+c

)

K∗.If c/b2 is transendental over F2, then this automorph is of in�nite order in PGL2(K).Indeed, otherwise we should have (see proof of Lemma 1) for a ertain λ ∈ K and a rootof unity ζ, λ(1 + ζ) = b2, λ2ζ = c2, hene ζ + ζ−1 = b4/c2, a ontradition.Proof of Corollary 13. We have ζν ∈ K for ν ≤ 2, and ζν + ζ−1
ν ∈ K for ν ≤ 4 or ν = 6.For the proof of Theorem 5 we need six lemmas.Lemma 25. Assume n ≥ 3 and either π = 0 or π > n. If f of degree n has at least threeoprime linear fators over K and Aut(f,K) is yli, then

|Aut(f,K)| ≤
{

a1(n,K) if f ∈ K[x, y],

max{a2(n,K), b(n− 1,K)} if f ∈ K[x, y].There exist forms f1 ∈ K[x, y], f2, f3 ∈ K[x, y] of degree n, eah with at least three



Weak automorphs of binary forms 35oprime linear fators over K and not a perfet power in K[x, y], suh that
∣

∣Aut(f1,K)
∣

∣ ≥ a1(n,K),
∣

∣Aut(f2,K)
∣

∣ ≥ a2(n,K),
∣

∣Aut(f3,K)
∣

∣ ≥ b(n− 1,K).Proof. If G = Aut(f,K) is yli, then by Theorem 1 and Corollary 5,
f = χc11 χ

c2
2 ψ(p, q),(62)where

degχi = 1, deg p = deg q = |G|,and ψ is a form over K or over K if f ∈ K[x, y] or f ∈ K[x, y], respetively. By theassumption on linear fators of f , we have degψ ≥ 1, hene
n = deg f = c1 + c2 + |G| degψ ≥ |G|.(63)On the other hand, by Lemma 1,

η|G| := ζ|G| + ζ−1
|G| ∈ K,(64)hene by De�nition 7,

|G| ≤ a1(n,K).(65)To estimate |G| for f ∈ K[x, y] a division into ases is neessary.If c1 + c2 ≡ 0 mod 2, then
n ≡ |G| degψ mod 2.For n odd this implies n ≡ |G| mod 2, hene

|G| ≤ a2(n,K).(66)For n even either degψ ≡ 1 mod 2, and then again (66) holds, or degψ ≡ 0 mod 2, inwhih ase by (63) and (64),
|G| ≤ a1(n/2,K).But

n ≡ 0 mod 2 implies a1(n/2,K) ≤ a2(n,K),(67)sine if a1(n/2,K) ≡ 1 mod 2, we have
2a1(n/2,K) ≤ n and η2a1(n/2,K) ∈ K.If c1 + c2 ≡ 1 mod 2, then c1 6= c2, hene χ1 ∈ K[x, y] by Theorem 1, and ζ|G| ∈ Kby Lemma 14. Now (63) implies |G| ≤ n− 1, hene by De�nition 7,

|G| ≤ b(n− 1,K),whih together with (65) and (66) proves the �rst part of the lemma.To prove the seond part we put
f1 = χ

n−a1(n,K)
1 (p+ q), f2 = (χ1χ2)

(n−a2(n,K))/2(p+ q), f3 = χ
n−b(n−1,K)
1 (p+ q),where χ1, χ2 and p, q are given in De�nition 5 for G yli of order a1(n,K), a2(n,K),

b(n − 1,K), respetively. Now p + q is prime to χ1χ2, is not a perfet power in K[x, y]and has |G| oprime linear fators over K. Hene the fi are not perfet powers and sine



36 A. Shinzelfor n ≥ 3, by Corollary 13, a1(n,K) ≥ 3, a2(n,K) ≥ 3, b(n − 1,K) ≥ 2, eah fi has atleast three oprime linear fators over K.Lemma 26. Assume n ≥ 3 and either π = 0 or π > n. If f of degree n has at least threeoprime linear fators over K and Aut(f,K) is dihedral , then
|Aut(f,K)| ≤ 2a2(n,K).There exists a form f0 ∈ K[x, y] of degree n, with at least three oprime linear fatorsover K and not a perfet power in K[x, y], suh that
|Aut(f0,K)| ≥ 2a2(n,K).Proof. If G = Aut(f,K) is dihedral, then by Lemma 7, Theorem 2 and Corollary 8,
f = χc11 χ

c2
2 χ

c3
3 ψ(p, q),(68)where

degχ1 = degχ2 = |G|/2, deg p = deg q = |G|and ψ is a binary form over K or K if f ∈ K[x, y] or f ∈ K[x, y], respetively. On theother hand, by Lemma 1,
η|G|/2 ∈ K.(69)It follows from (68) that

n = c1|G|/2 + c2|G|/2 + 2c3 + |G| degψ.(70)For n odd it follows that |G|/2 ≡ 1 mod 2 and c1 + c2 ≡ 1 mod 2, hene
|G|/2 ≤ n, |G|/2 ≡ n mod 2,thus by De�nition 7 and (69),

|G| ≤ 2a2(n,K).(71)For n even, if c1 + c2 ≡ 1 mod 2, the same inequality holds; if c1 + c2 ≡ 0 mod 2, then,by (70) and the assumption on linear fators of f , either c1 + c2 ≥ 2 or ψ 6∈ K, hene
|G|/2 ≤ n/2, |G|/2 ≤ 2a1(n/2,K),and by (67) we again obtain (71).In order to prove the seond part of the lemma we put

f0 = χ2χ
(n−a2(n,K))/2
3 ,where χ2, χ3 are given in the Example (p. 25) for G dihedral of order 2a2(n,K) with

a = 1, b = 0. Sine degχ2 = a2(n,K) and degχ3 = 2 we have deg f0 = n, and sine
χ2, χ3 ∈ K[x, y] we have f0 ∈ K[x, y].Now, χ2 is prime to χ3, is not a perfet power in K[x, y] and has a2(n,K) ≥ 3 oprimelinear fators over K. Hene f0 is not a perfet power in K[x, y] and has at least threeoprime linear fators over K.Lemma 27. Let n ≥ 3 and either π = 0 or π > n and let f ∈ K[x, y] be a form of degree
n and not a perfet power. If Aut(f,K) ontains a subgroup isomorphi to Gi, where
G1 = A4, G2 = S4, G3 = A5, then

n = c1
|Gi|
i+ 2

+ c2
|Gi|
3

+ c3
|Gi|
2

+ c4|Gi|,(72)



Weak automorphs of binary forms 37where ci are non-negative integers andeither (c1, c2, c3) = 1 or c4 6= 0.(73)Moreover ,
levelK ≤ 2 and if i = 3, then √

5 ∈ K.(74)If (72)�(74) are satis�ed with c4 = 0, then there exists a form f ∈ K[x, y] of degree n,with at least three oprime linear fators over K and not a perfet power in K[x, y], suhthat Aut(f,K) ontains Gi. Moreover , for i > 1 suh a form f exists in K[x, y].Proof. If Aut(f,K) ontains a subgroup isomorphi to Gi, then PGL2(K) ontains suha subgroup, hene (74) holds by Lemma 2. Further, by Corollary 8, we have
f =

k
∏

i=1

χci

i ψ(p, q),(75)where χi and p, q are given in De�nition 5 and ψ is a binary form over K. By Lemma 7we have h = 3,
degχ1 =

|Gi|
i+ 2

, degχ2 =
|Gi|
3
, degχ3 =

|Gi|
2
,(76)while, by De�nition 5,

deg p = deg q = |Gi|.Now (72) follows from (75) with c4 = degψ, and (73) follows from (75) and the onditionthat f is not a perfet power in K[x, y].In the opposite diretion, if (72)�(74) hold with c4 = 0, we take
f =

3
∏

i=1

χci

i .By De�nition 5, χi are oprime and separable, hene the number of oprime linear fatorsof f over K is at least
|Gi|
(

sgn c1
i+ 2

+
sgn c2

3
+

sgn c3
2

)

≥ |Gi|
i+ 2

≥ 4.Also f is not a perfet power in K[x, y], sine (c1, c2, c3) = 1 by (73). For i > 1, χiare of distint degrees, hene no two of them are onjugate over K and, by Corollary 6,they are in K[x, y]. Thus f ∈ K[x, y].Lemma 28. Assume π = 0 or π > 3. A quarti form f ∈ K[x, y] with at least threeoprime linear fators over K, whih is not a perfet power in K[x, y] and for whih
Aut(f,K) ontains a subgroup isomorphi to A4, exists if and only if √−3 ∈ K.Proof. If Aut(f,K) ontains a subgroup isomorphi to A4, then it has an element oforder 3. By Corollary 3 it follows that either √

−3 ∈ K, or f is square in K[x, y], thepossibility exluded by the ondition on f .For the opposite diretion, we take f = x4 −xy3. This form has two non-trivial weakautomorphs de�ned over K,
S =

(

−1 1

2 1

)

K∗, T =

(

ζ3 0

0 1

)

K∗.They satisfy the equations S2 = E, T 3 = E, TST = ST−1S, hene 〈S, T 〉 ∼= A4.



38 A. ShinzelLemma 29. If levelK ≤ 2, √5 ∈ K and either π = 0 or π > 5, then there exists aform f ∈ K[x, y] of degree 60, with at least three oprime linear fators over K and nota perfet power in K[x, y], suh that Aut(f,K) ontains a subgroup isomorphi to A5.Proof. By Lemma 2, PGL2(K) ontains a subgroup isomorphi to A5. Let χ1, χ2, χ3 bethe polynomials de�ned in De�nition 5 for this group G, suh that χi ∈ K[x, y] and
degχ1 = 12, degχ2 = 20, degχ3 = 30(see the proof of Lemma 27). We assert that for a ertain ε = ±1,

fε = χ5
1 + εχε2has the required properties.If rε is the number of distint zeros of fε(x, 1), then by the abc-theorem for polynomials(see [18℄)

rε > 60 − degχ1(x, 1) − degχ2(x, 1) ≥ 28,thus fε has at least 29 oprime linear fators over K. If fε is a perfet power in K[x, y],then
fε = g2

ε , gε ∈ K[x, y].Moreover, Aut(gε,K) = Aut(fε,K), hene Aut(gε,K) ontains G and, by Corollary 8,
gε =

3
∏

i=1

χdεi

i ψε, ψε ∈ K.Sine (fε, χ1χ2) = 1 and deg fε = 2 degχ3 we onlude that
dε1 = dε2 = 0, dε3 = 1and

fε = ψ2
εχ

2
3.If this holds for ε = 1 and ε = −1, then

2χ5
1 = f1 + f−1 = (ψ2

1 + ψ2
−1)χ

2
3,whih ontradits (χ1, χ3) = 1.Lemma 30. The equation

m = 3c1 + 4c2 + 6c3(77)is solvable in oprime non-negative integers for every m ≥ 9, and the equation
m = 6c1 + 10c2 + 15c3(78)is solvable in suh integers if and only if m ∈ M r {30}.Proof. Solvability of (77) for m < 12 an be heked ase by ase. By a lassial theoremdue to Curran Sharp [8℄ every integer greater than ab−a−b is a linear ombination of a, bwith non-negative oe�ients. Form ≥ 12 we havem−6 ≥ 6 and henem−6 = 3c1+4c2,where c1, c2 are non-negative integers. It su�es to take c3 = 1.Solvability of (78) for odd m < 31 and for even m < 76 an be heked ase byase. For odd m ≥ 31, (m − 15)/2 ≥ 8 is an integer and, by Curran Sharp's theorem,

(m− 15)/2 = 3c1 + 5c2, where c1, c2 are non-negative integers. It su�es to take c3 = 1.



Weak automorphs of binary forms 39For even m ≥ 76, (m − 30)/2 ≥ 23 is an integer, hene by Curran Sharp's theorem
(m− 30)/2 = 3d1 + 5d2, where d1, d2 are non-negative integers. Moreover, sine 23 >

3 · 4 + 5 · 2, we have either d1 ≥ 5 or d2 ≥ 3. If at least one di is odd we take c1 = d1,
c2 = d2, c3 = 2, otherwise we take c3 = 2 and either c1 = d1−5, c2 = d2+3 or c1 = d1+5,
c2 = d2 − 3.Proof of Theorem 5. The assumption that f is not a perfet power in K[x, y] implies inthe ase (46) that k = 1, n = q + 1. This gives A(πg + 1,K) = B(πg + 1,K) = π3g − πgif Fπg ⊂ K. On the other hand, (47)�(49) imply

|Aut(f,K)| ≤ n(n− 1),hene A(n,K) ≤ n(n − 1) if either n 6= πg + 1 or Fπg 6⊂ K. This bound is attained forevery π > 0 and n = πg. Indeed, for q = πg,
Aut(xq − xyq−1,Fq) ⊃

{(

α β

0 1

)

K∗ : α ∈ F∗
q , β ∈ Fq

}

.Assume now that π = 0 or π > n. By Theorem 4,
|Aut(f,K)| 6≡ 0 mod πand, by Lemma 7, G = Aut(f,K) is either yli, dihedral or polyhedral. The �rst twoases are onsidered in Lemmas 25 and 26. If G is a polyhedral group, then (72) holdsby Lemma 27, and sine all terms on the right-hand side are even, n is even.For n odd it follows that Aut(f,K) is either yli or dihedral, and by Lemmas 25, 26,

A(n,K) ≤ max{a1(n,K), 2a2(n,K)},
B(n,K) ≤ max{b(n− 1,K), 2a2(n,K)}.The inequalities in the opposite diretion follow from the seond part of Lemmas 25 and26. This gives the theorem for n odd.For n even a further study of polyhedral groups is neessary. For n = 4 the equation(72) gives i = 1, |Gi| = 12, c3 = c4 = 0. Sine 12 > 8 = max{a1(4,K), 2a2(4,K)} weobtain from Lemmas 25�27,

A(4,K) =

{

12 if levelK ≤ 2,

max{a1(4,K), 2a2(4,K)} otherwise,and from Lemmas 25, 26 and 28,
B(4,K) =

{

12 if √−3 ∈ K,

max{b(3,K), 2a2(4,K)} otherwise.For even n > 4 we have 2a2(n,K) ≥ 12, hene the equation (72) is of interest only for
i > 1, and if n < |G|, then (c1, c2, c3) = 1 by (72), (73).For n = 6, 8, 14 and i > 1, (72) gives i = 2 and 〈c1, c2, c3〉 = 〈1, 0, 0〉 or 〈0, 1, 0〉 or
〈1, 1, 0〉, respetively. It follows by Lemmas 25�27 that for n = 6, 8, 14,

A(n,K) =

{

max{a1(n,K), 2a2(n,K), 24} if levelK ≤ 2,

max{a1(n,K), 2a2(n,K)} otherwise;
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B(n,K) =

{

max{b(n− 1,K), 2a2(n,K), 24} if levelK ≤ 2,

max{b(n− 1,K), 2a2(n,K)} otherwise.For n = 10, 16 the equation (72) has no solution with i > 1 and (c1, c2, c3) = 1, hene,by Lemmas 25�27,
A(n,K) = max{a1(n,K), 2a2(n,K)},

B(n,K) = max{b(n− 1,K), 2a2(n,K)}.For n = 12, i > 1 and (c1, c2, c3) = 1, (72) gives i = 2, 〈c1, c2, c3〉 = 〈0, 0, 1〉 or i = 3,
〈c1, c2, c3〉 = 〈1, 0, 0〉. Hene, by Lemmas 25�27,

A(12,K) =











max{a1(n,K), 2a2(n,K), 24} if levelK ≤ 2,
√

5 6∈ K,

60 if levelK ≤ 2,
√

5 ∈ K,

max{a1(n,K), 2a2(n,K)} otherwise;
B(12,K) =











max{b(n− 1,K), 2a2(n,K), 24} if levelK ≤ 2,
√

5 6∈ K,

60 if levelK ≤ 2,
√

5 ∈ K,

max{b(n− 1,K), 2a2(n,K)} otherwise.By Lemma 30 for n = 2m, m ≥ 9, (72) always has a solution with i = 2, c4 = 0,
(c1, c2, c3) = 1, and has a solution with i = 3, c4 = 0, (c1, c2, c3) = 1 if and onlyif m ∈ M r {30}. Sine M ontains all integers greater than 29 exept 32 and 44, byLemmas 25�27, the formulae for A(n,K) and B(n,K) hold for all even n, exept possiblyfor n = 2m, m = 30, 32, 44. For m = 30 the formulae follow from Lemmas 25, 26 and29, for m = 32 or 44 the only solution of (72) does not satisfy (73), hene the formulaefollow from Lemmas 25�27.Proof of Corollary 14. For K = C we have a1(n,K) = n = a2(n,K).

4. Criteria for a form to have a non-trivial automorphover a given arbitrary �eldTheorem 6. Let f ∈ K[x, y] be a form of degree n > 2 without multiple fators over K.If Aut(f,K) is non-trivial and f(x, 1) of degree m is irreduible over K, then the Galoisgroup of f(x, 1) over K is either imprimitive or yli of prime order m. For n ≤ 4 theonverse holds unless n = 4 and m = 3.Corollary 15. Assume that K ontains no primitive ubi root of unity and f ∈ K[x, y]is a form of degree 2, 3 or 4 without multiple fators over K. The group Aut(f,K) is non-trivial if and only if the Galois group of f(x, 1) over K is either transitive imprimitiveor abelian with the lengths of orbits not 〈3, 1〉.Corollary 16. Let f ∈ K[x, y] be a ubi form with f(1, 0) 6= 0 and without multiplefators over K and G be the Galois group of f(x, 1) over K. Then Aut(f,K) ∼= D3 if
G ∼= C1, Aut(f,K) ∼= C2 if G ∼= C2, Aut(f,K) ∼= C3 if G ∼= C3, and Aut(f,K) ∼= C1 if
G ∼= D3.



Weak automorphs of binary forms 41Remark. For quarti forms f the struture of the Galois group G(f) of f(x, 1) over Qdoes not determine in general the struture of Aut(f,Q), for instane for f1 = x4 +x3y+

x2y2 + xy3 + y4, f2 = x4 + 4x3y− 6x2y2 − 4xy3 + y4, G(fi) ∼= C4, while Aut(f1,Q) ∼= C2(proof by means of Lemma 17), and Aut(f2,Q) ontains C4 generated by ( 1 1

−1 1

)

Q∗.The proof of Theorem 6 is based on the followingLemma 31. Given a pair 〈g, h〉 of oprime binary forms over K eah of degree at most
2 and not both in K[xπ, yπ], there exists a non-trivial ommon weak automorph T of gand h. Moreover , if

g =

2
∑

i=0

aix
2−iyi, h =

2
∑

i=0

bix
2−iyiwe an take

T =

(

α β

γ δ

)

K∗, where (

α β

γ δ

)

=

(

−a0b2 + a2b0 − a1b2 + a2b1

a0b1 − a1b0 a0b2 − a2b0

)

.Proof. If g, h are both of degree 2 and T is as above we have
∣

∣

∣

∣

α β

γ δ

∣

∣

∣

∣

= −R(g, h) 6= 0,where R(g, h) is the resultant of g and h (see [21, p. 219℄). Also 〈α, β, γ, δ〉 = 〈α, 0, 0, α〉implies π = 2, ai = bi = 0, g ∈ K[xπ, yπ], h ∈ K[xπ, yπ], ontrary to assumption.Moreover
g(αx+ βy, γx+ δy) = R(g, h)g(x, y),

h(αx+ βy, γx+ δy) = R(g, h)h(x, y),thus T is a ommon weak automorph of g and h. The ase where one of the forms g, his linear is redued to the former by replaing this form by its square.Proof of Theorem 6. Neessity. By the assumption f is not divisible by y2, hene f(x, 1)is of degree m ≥ n − 1 ≥ 2. If m = 2 the assertion is trivial, thus assume m ≥ 3. Let
Z = {ξ ∈ K ∪ {∞} : ef (ξ) > 0}. By Lemma 17, if T ∈ Aut(f,K), we have T ∗(Z) = Zand sine T ∗∞ ∈ K ∪ {∞}, f has no zeros in K and T ∗(Z r {∞}) = Z r {∞}. If
T is non-trivial, the orbits of Z r {∞} under the ation of T ∗, say O1, . . . , Ol, are oflengths greater than 1, sine the equation T ∗ξ = ξ gives [K(ξ) : K] ≤ 2 < m. Theyare bloks of imprimitivity of the Galois group G in question, provided l > 1. Indeed,if τ ∈ G and ξ ∈ Oi, τ (ξ) ∈ Oj , then τ (T ∗ξ) = T ∗τ (ξ) ∈ Oj . If l = 1, but m isomposite, m = m1m2, mi > 1, we replae T by Tm1 and l by m1. It remains toonsider the ase l = 1, m a prime. Then T ∗ ∈ G. Indeed, sine f(x, 1) is irreduible,
G is transitive, thus if f(ξ, 1) = 0 there exists τ0 ∈ G suh that τ0(ξ) = T ∗ξ. It followsthat τ0(T ∗iξ) = T ∗iτ0(ξ) = T ∗i+1(ξ), hene τ0 = T ∗. Also for every τ ∈ G we have
τ (ξ) = T ∗jξ for some j, thus τ (T ∗iξ) = T ∗iτ (ξ) = T ∗i+jξ = T ∗j(T ∗iξ) for eah i, so
τ = T ∗j , hene G is yli, generated by T ∗.Su�ieny for n ≤ 4. In view of Lemma 31 and the ondition 〈n,m〉 6= 〈4, 3〉 it su�esto onsider f(x, 1) of degree n and moni. Let n = 3 and f(x, 1) = x3 + ax2 + bx + c.Sine G is yli there exist d, e, g in K suh that f(ξ, 1) = 0 implies f(dξ2 +eξ+g, 1) = 0



42 A. Shinzelwhere 〈d, e, g〉 6= 〈0, 0, g〉, 〈0, 1, 0〉. The system of three linear equations for α, β, γ, δ,
(e− ad)γ + dδ = 0,

−α+ (g − bd)γ + eδ = 0,

−β − cdγ + gδ = 0,has a non-zero solution 〈α, β, γ, δ〉 ∈ K4. This solution satis�es for all zeros ξ of f(x, 1)the equation
(dξ2 + eξ + g)(γξ + δ) = αξ + β.Note that γξ + δ = 0 would give α = β = γ = δ = 0 sine ξ 6∈ K, a ontradition. Hene

γξ + δ 6= 0 and
dξ2 + eξ + g =

αξ + β

γξ + δ
.It follows that for some r ∈ K,

f

(

αx+ β

γx+ δ
, 1

)

(γx+ δ)3 = rf(x, 1)and
f(αx+ βy, γx+ δy) = rf(x, y).Observe that αδ − βγ = 0 or 〈α, β, γ, δ〉 = 〈α, 0, 0, α〉 would give dξ2 + eξ + g ∈ K or

dξ2 + eξ + g = ξ, ontrary to [K(ξ) : K] = 3.Now, let n = 4. Sine m = 4, G is imprimitive. It follows that f is reduible over aseparable quadrati extension of K, say K(η). Thus we have
f = b

(

2
∑

i=0

aix
2−iyi

)(

2
∑

i=0

a′ix
2−iyi

)

,where ai, a′i ∈ K(η) and ai, a′i are onjugate over K, while b ∈ K. Applying Lemma 31with bi = a′i we �nd that the fators of f have a ommon non-trivial automorph with thematrix
M =

(

−a0a
′
2 + a2a

′
0 −a1a

′
2 + a2a1

a0a
′
1 − a1a

′
0 a0a

′
2 − a2a

′
0

)

,hene also with the matrixM/(η−η′). However, the last matrix is invariant with respetto onjugation, so its elements are in K.Proof of Corollary 15. This follows at one from Theorem 6 and Corollary 2.Remark. The assumption ζ 6∈ K, where ζ is a primitive ubi root of unity, annotbe omitted in Corollary 15, as the following example shows: K = Q(ζ), T =
( ζ 0

0 1

)

K∗,
f = x(x3 + 2y3).Proof of Corollary 16. By Corollary 1, Aut(f,K) an ontain a yli group Cν for
ν = 2 or 3 only. The lengths of the orbits of an arbitrary set under the ation of D2are even, hene, by Lemma 17, Aut(f,K) annot ontain a opy of D2. On the otherhand, |Aut(f,K)| ≤ 6 by Theorem 5. This limits the possible types of Aut(f,K) to
D3,C3,C2 and C1. If G ∼= C1, then f is equivalent over K to axy(x + y) and Aut(f,K)ontains the automorphs ( 0 1

1 0

)

K∗ and ( 0 −1

1 1

)

K∗ of orders 2 and 3, respetively, thus
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Aut(f,K) ∼= D3. If G ∼= C2, then, by Corollary 2, Aut(f,K) does not ontain C3 and,by Lemma 31, Aut(f,K) ontains a C2, thus Aut(f,K) ∼= C2. If G ∼= C3, then, byTheorem 6, Aut(f,K) is non-trivial, while, by Corollary 1, it does not ontain C2, hene
Aut(f,K) ∼= C3. Finally, if G ∼= D3, then Aut(f,K) ∼= C1 by Theorem 6.

5. The ase of an algebraially losed �eldIn this setion K is an algebraially losed �eld of harateristi π, Π is the orrespondingprime �eld and f is a non-singular binary form over K of degree n.If n = 3, then Aut(f,K) ∼= D3 by Corollary 16. We shall now onsider n = 4.Definition 10. For a form f(x, y) =
∑4

i=0 aix
4−iyi put

A(f) = a2
2 − 3a1a3 + 12a0a4,

B(f) = 27a2
1a4 + 27a0a

2
3 + 2a3

2 − 72a0a2a4 − 9a1a2a3.Remark. A(f), B(f) are invariants of f and satisfy
27D(f) = 4A(f)3 −B(f)2,where D(f) is the disriminant of f (see [27, Bd I, �70℄).Theorem 7. For a non-singular quarti binary form f over K we have

Aut(f,K) ∼=



















S4 if A(f) = B(f) = 0,

A4 if A(f) = 0, B(f) 6= 0,

D4 if A(f) 6= 0, B(f) = 0,

D2 if A(f)B(f) 6= 0.The proof is based on three lemmas.Lemma 32. For a non-singular quarti binary form f over K, Aut(f,K) ontains C3 ifand only if A(f) = 0.Proof. Neessity. If π 6= 3 and the yli group in question is generated by ( α β

γ δ

)

K∗ wehave, by Theorem 1,
f = χi(aχ

3
i + bχ3

3−i) = aχ4
i + bχiχ

3
3−i,where i ∈ {1, 2}, χ1, χ2 are given in De�nition 3 and a, b are in K. Denoting by R1 theresultant of χ1, χ2 and by f1 the form ax4 + bxy3 we obtain, by the above Remark,

A(f) = R2
1A(f1) = 0.If π = 3 we have, again by Theorem 1,

f = χ1(aχ
3
1 + b(λ2χ3

2 − χ2χ
2
1)) = aχ4

1 − bχ3
1χ2 + bλ2χ1χ

3
2,where λ, χ1, χ2 are as in De�nition 4 and a, b are in K. Denoting by R2 the resultant of

χ1, χ2 and by f2 the form ax4 − bx3y + bλ2xy3 we obtain, by the Remark,
A(f) = R2

2A(f2) = 0.



44 A. ShinzelSu�ieny. The form f is learly equivalent, by a linear transformation over K, to aform
f3 = xy(x2 + axy − y2).The ondition A(f) = 0 gives a2 + 3 = A(f3) = 0. If π 6= 3 we hoose a primitive ubiroot of unity ̺ and onlude that a = ±(̺2 − ̺). Then the transformation T2(x, y) =

(̺2x± ̺y, y) of order 3 in PGL2(K) satis�es f3(T2) = f3, hene Aut(f,K) onjugate to
Aut(f3,K) ontains C3.If π = 3 the ondition A(f3) = 0 gives a = 0. Then the transformation T2(x, y) =

(x+y, y) of order 3 in PGL2(K) satis�es f3(T2) = f3, hene again Aut(f,K) ontains C3.Lemma 33. For a non-singular quarti binary form f over K, Aut(f,K) ontains C4 ifand only if B(f) = 0.Proof. Neessity. If π = 2, then by Lemma 1 no element of PGL2(K) is of order 4, henethe assumption implies π 6= 2. If ( α β

γ δ

)

K∗ is an element of order 4 in Aut(f,K), thenby Theorem 1,
f = aχ4

1 + bχ4
2,where χ1, χ2 are given in De�nition 3. Denoting by R3 the resultant of χ1, χ2 and by f4the form ax4 + by4 we have, by the Remark,

B(f) = R3
3B(f4) = 0.Su�ieny. Sine D(f) 6= 0 the assumption B(f) = 0 implies π 6= 2 by the Remark.Then (see [11, �13℄) f is equivalent, by a linear transformation over K, to a form

f5 = x4 +mx2y2 + y4, m ∈ K.The ondition B(f) = 0 gives
2m3 − 72m = B(f5) = 0,hene m = 0,±6. But the forms x4 ± 6x2y2 + y4 are equivalent to f6 = x4 + y4, sine

x4 + 6x2y2 + y4 = 1
2 (x+ y)4 + 1

2 (x− y)4,

x4 − 6x2y2 + y4 = 1
2 (x+ ζy)4 + 1

2 (x− ζy)4,where ζ is a primitive quarti root of unity. On the other hand, the transformation
T3 = (ζx, y) of order 4 in PGL2(K) satis�es f6(T3) = T3, hene Aut(f,K) onjugate to
Aut(f6,K) ontains C4.Lemma 34. For a non-singular quarti binary form f over K, Aut(f,K) ontains D2,but no D2 × C2.Proof. If π 6= 2 then by the already quoted result f is equivalent by a linear transforma-tion over K to a form

f5 = x4 +mx2y2 + y4, m ∈ K.The transformations T4(x, y) = (y, x) and T5(x, y) = (−x, y) satisfy T 2
4 = E = T 2

5 ,
T4T5 = T5T4, f5(T4) = f5 = f5(T5), hene Aut(f,K) onjugate to Aut(f5,K) on-tains D2. On the other hand, it ontains no D2 × C2, sine this group is not on the listgiven in the proof of Lemma 7.



Weak automorphs of binary forms 45If π = 2 then f is equivalent, by a linear transformation over K, to a form
f7 = xy(x+ ξy)(x+ ξ−1y), ξ ∈ K r {0, 1}.The transformations T6(x, y) = (x + ξy, ξx + y), T7(x, y) = (ξx + y, x + ξy) satisfy

T 2
6 = e = T 2

7 , T6T7 = T7T6, f7(T6) = (ξ + 1)4f7 = f7(T7), hene Aut(f,K) onjugate to
Aut(f7,K) ontains D2. On the other hand, it ontains no D2 × C2 by Corollary 11.Proof of Theorem 7. If A(f) = B(f) = 0, then sine D(f) 6= 0 we have π = 3 by theRemark. The form f is equivalent, by a linear transformation over K, to a form

f3 = xy(x2 + axy − y2)and the ondition A(f) = 0 implies a = 0. Hene Aut(f,K) ∼= Aut(f3,K) ∼= PGL2(F3)
∼= S4 by Theorem 4.If A(f), B(f) are not both 0, then (46) is not satis�ed, hene by Theorem 4 andLemma 34,

|Aut(f,K)| divides 8 or 12.(79)If A(f) = 0 and B(f) 6= 0, then by Lemmas 32�34, Aut(f,K) ontains C3 and D2, butno C4 and no D2 ×C2. Hene its 2-Sylow subgroup is D2. On the other hand, Aut(f,K)ontains no C6 by Theorem 1. Hene, Aut(f,K) ∼= A4 by (79).If A(f) 6= 0 and B(f) = 0, then by Lemmas 32�34, Aut(f,K) ontains C4 and D2,but no C3 and no D2 × C2. Therefore, by (79), |Aut(f,K)| = 8 and Aut(f,K) ∼= D4.If A(f)B(f) 6= 0, then by Lemmas 32�34, Aut(f,K) ontains D2, but no C3, no C4and no D2 × C2. Therefore, by (79), |Aut(f,K)| = 4 and Aut(f,K) ∼= D2.Now, we proeed to the ase n ≥ 5.Definition 11. Fn(K) is the set of all binary forms f of degree n de�ned over K suhthat Aut(f,K) is non-trivial.Theorem 8. Fn(C) is Zariski losed for n ≤ 5 only.Lemma 35. F5(C) is Zariski losed.Proof. f ∈ F5(C) if and only if R = 0, where R is the Hermite invariant of f of degree 18.Indeed, if f ∈ F5(C), then, by Theorem 1, f is equivalent over C to one of the forms
x5−iyi (0 ≤ i ≤ 2), xy(x3 + y3), x5 + y5,(80)or

x(Ax4 +Bx2y2 + Cy4).(81)In eah ase we hek in the tables of Faà di Bruno [13, Anhang, Tabelle III, Die irre-duiebeln Invarianten IV5℄ that R = 0. To prove the onverse, let α be the ovariantof f of degree 1 and order 5. If α = 0, then aording to Clebsh [5, �93℄, f is eitherequivalent over C to one of the forms (80), or has a fator of multipliity at least three,in whih ase it has a non-trivial automorph by Lemma 31. If α 6= 0, but R = 0, thenagain aording to Clebsh [5, �94℄, f is equivalent over C to a form (81). It now su�esto apply Theorem 1 in the opposite diretion.



46 A. ShinzelLemma 36. For k ≥ 2 and n ≥ k + 3 we have
f0(x, y) = xk

n−k
∏

i=1

(x− iy) 6∈ Fn(C).Proof. Assuming f0(αx+ βy, γx+ δy) = f0(x, y) we obtain
(αx+ βy)k | f0(x, y),hene k ≥ 2 implies β = 0 and we have

αk
n−k
∏

i=1

(

(α− iγ)x− iδy
)

=
n−k
∏

i=1

(x− iy),thus the sequene 〈(α − iγ)/iδ〉1≤i≤n−k is a permutation of 〈1/i〉1≤i≤n−k. Clearly,
α/δ, γ/δ ∈ Q and omparing the maxima and minima in both sequenes we obtainfor α/δ > 0,

α

δ
− γ

δ
= 1,

α

δ(n− k)
− γ

δ
=

1

n− k
,for α/δ < 0,

α

δ
− γ

δ
=

1

n− k
,

α

δ(n− k)
− γ

δ
= 1.In the former ase it follows that α/δ = 1, γ/δ = 0, thus the automorph is trivial; in thelatter ase

α

δ
= −1,

γ

δ
= −1 − 1

n− k
,thus omparing the seond greatest terms in both sequenes we get

− 1

n− k − 1
+ 1 +

1

n− k
=

1

2
,whih gives n− k = 2, ontrary to assumption.Lemma 37. For an integer n ≥ 5 and a real number t ∈ (0, 1) we have ft(x, y) ∈ Fn(C),where

ft(x, y) =



























n/2
∏

i=1

(x− iy)

(

x− 2(i− 1)t

i+ it− 2t
y

) if n ≡ 0 mod 2,

(n−1)/2
∏

i=1

(x− iy)

(

x− it

i+ it− t
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) if n ≡ 1 mod 2.Proof. For t ∈ (0, 1) let
g(x, y) =

⌊n/2⌋
∏

i=1

(x− iy),

ht(x, y) =
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∏

i=1
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x− 2(i− 1)t

i+ it− 2t
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) if n ≡ 0 mod 2,

x

(n−1)/2
∏

i=1

(

x− it

i+ it− t
y

) if n ≡ 1 mod 2,

T (x, y) =

{

(2tx− 2ty, (t+ 1)x− 2ty) if n ≡ 0 mod 2,

(tx, (t+ 1)x− ty) if n ≡ 1 mod 2.



Weak automorphs of binary forms 47For n ≡ 0 mod 2 we have
g(T (x, y)) = g(2t, t+ 1)ht(x, y), ht(T (x, y)) = ht(2t, t+ 1)g(x, y),hene

ft(T (x, y)) = ft(2t, t+ 1)ft(x, y)and T is a non-trivial weak automorph of ft.Similarly, for n ≡ 1 mod 2,
g(T (x, y)) = g(t, t+ 1)ht(x, y), ht(T (x, y)) = ht(t, t+ 1)g(x, y),hene

ft(T (x, y)) = ft(t, t+ 1)ft(x, y)and T is again a non-trivial weak automorph of ft.Proof of Theorem 8. For n ≤ 4, Fn(C) onsists of all binary forms over C by Lemma 31;the ase n = 5 is overed by Lemma 35. Suppose that, for n ≥ 6, Fn(C) is given by thealternative of systems of equations Fij(a0, . . . , an) = 0 (j ∈ Ji). Using Lemma 37 anddenoting the oe�ients of ft(x, y) by a0(t), . . . , an(t) we obtain for at least one i0 and tarbitrarily lose to 0,
Fi0j(a0(t), . . . , an(t)) = 0 (j ∈ Ji0).Taking the limit as t tends to 0 we obtain
Fi0j(a0, . . . , an) = 0 (j ∈ Ji0),where ∑n

i=0 aix
n−iyi = f0(x, y). Thus by our assumption f0 ∈ Fn(C), ontrary to Lem-ma 36.
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