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Abstract

We prove comparison results for the Swendsen–Wang (SW) dynamics, the heat-bath (HB) dy-
namics for the Potts model and the single-bond (SB) dynamics for the random-cluster model
on arbitrary graphs. In particular, we prove that rapid (i.e. polynomial) mixing of HB implies
rapid mixing of SW on graphs with bounded maximum degree and that rapid mixing of SW
and rapid mixing of SB are equivalent. Additionally, the spectral gap of SW and SB on planar
graphs is bounded from above and from below by the spectral gap of these dynamics on the
corresponding dual graph with suitably changed temperature.

As a consequence we obtain rapid mixing of the Swendsen–Wang dynamics for the Potts
model on the two-dimensional square lattice at all non-critical temperatures, as well as rapid
mixing for the two-dimensional Ising model at all temperatures. Furthermore, we obtain new
results for general graphs at high or low enough temperatures.
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1. Introduction and results

We study the mixing properties of Markov chains for the q-state Potts model. The Potts

model with q ∈ N states at inverse temperature β ≥ 0 consists of the set ΩP = {1, . . . , q}V
of (not necessarily proper) colorings of a graph G = (V,E) together with the probability

measure

π(σ) =
1

Z
eβ|E(σ)|, σ ∈ ΩP,

where E(σ) denotes the set of edges of the graph G with equally colored endvertices

and Z is the normalization constant. This model, especially in the case q = 2 where it is

called the Ising model, attracted much interest over the last decades not only in statistical

physics but also in several branches of mathematics and computer science. The goal is

to sample from π, at least approximately, and since exact sampling is in general not

feasible, Markov chains are typically used. There are a couple of (more or less efficient)

Markov chains to attack this problem and, usually, it is an easy task to show that their

distributions converge in the long-time limit towards the right distribution. However, it

is much more delicate to prove bounds on the mixing time, i.e. the number of steps a

Markov chain has to run in order that its distribution is “close” to its limit distribution.

In the following, a chain is said to be rapidly mixing for a family of graphs if, for each

graph of this family, the Markov chain can be defined analogously on it and its mixing

time is bounded by a polynomial in the number of vertices of the graph.

We will consider two Markov chains for the Potts model, namely the heat-bath (HB)

dynamics and the Swendsen–Wang (SW ) dynamics. The heat-bath dynamics is the most

common chain for this purpose. It is a local Markov chain that can be described as follows.

Suppose that the current configuration is σ = (σ(v))v∈V ∈ ΩP. In each step, a vertex

v ∈ V of the underlying graph is chosen uniformly at random and a new color is assigned

to v with respect to the conditional probability given that the color of all other vertices

is fixed, so that the new configuration τ satisfies τ(u) = σ(u) for all u 6= v. The heat-

bath dynamics is proven to be rapidly mixing in several instances (see Section 2.5), but

is typically slowly (i.e. not rapidly) mixing if the inverse temperature β is large. For

example, if the underlying graph is the two-dimensional square lattice Z2
L of side length

L, it is known that there exists a critical inverse temperature βc(q) such that the heat-

bath dynamics is rapidly mixing if β < βc(q) and slowly mixing if β > βc(q) (the latter

seems to be proven only for q = 2 but it is at least expected to be true for all q ≥ 2). See

Section 2.5 for more known results and the specific bounds.

The second Markov chain under consideration is the Swendsen–Wang dynamics that

changes the color of a large portion of the vertices in each step. One step of this chain,

[5]



6 M. Ullrich

given the current state σ ∈ ΩP, can be described by the following two-step procedure.

First, generate a subset A ⊂ E(σ) of the edges of the graph with equally colored end-

vertices, such that every edge of E(σ) is included in A with probability 1 − e−β. In the

second step, assign independently and uniformly at random a color from {1, . . . , q} to

each connected component of the subgraph (V,A). This gives a new Potts configuration.

It is widely believed that this Markov chain is rapidly mixing in much more cases than

the heat-bath dynamics, e.g. at low temperatures (large β), and is therefore the preferred

algorithm in practice since its invention around 1987. Nevertheless, results in this direc-

tion are rare. Besides some rapid mixing results concerning special classes of graphs like

trees, cycles and the complete graph, or results for sufficiently high or low temperatures,

there is no result that shows that it is generally advisable to use Swendsen–Wang instead

of heat-bath dynamics.

Our first main result (see Chapter 3) shows that rapid mixing of heat-bath dynamics

implies rapid mixing of Swendsen–Wang, if the underlying graph has bounded maximum

degree, which partially confirms the above-mentioned intuition.

In order to give precise statements we need some notation. We define the spectral gap

of a Markov chain with transition matrix P as 1 minus the second largest eigenvalue

of P in absolute value and we denote it by λ(P ). It is well-known that polynomial

(in |V |) bounds on the mixing time are equivalent to polynomial bounds on the inverse

spectral gap (see Lemma 2.3), and since the spectral gap seems to be more convenient

for comparison results, this is the quantity we are interested in. (Note that we classify

Markov chains by their transition matrices, since the quantities of interest do not depend

on anything else.)

For the following comparison results we consider the two above-mentioned Markov

chains for the Potts model, as defined in Section 2.4, and we use this notation for their

transition matrices:

• PHB for the heat-bath dynamics for the Potts model (see (2.18)),

• PSW for the Swendsen–Wang dynamics for the Potts model (see (2.21)).

The first result that we want to present here is a comparison between heat-bath and

Swendsen–Wang dynamics for the Potts model.

Theorem 3.1. Suppose that PSW (resp. PHB) is the transition matrix of the Swendsen–

Wang (resp. heat-bath) dynamics for the q-state Potts model at inverse temperature β on

a graph G with maximum degree ∆. Then

λ(PSW) ≥ cSWλ(PHB),

where

cSW := cSW(∆, β, q) = q−1(qe2β)−2∆. (3.1)

This result implies rapid mixing of the Swendsen–Wang dynamics in some new in-

stances. But, since the heat-bath dynamics is typically slow at low temperatures, it is not

helpful for large values of β. For this reason we switch to dynamics for a closely related

model on the edges of the underlying graph, i.e. the random-cluster (RC ) model, where

it was possible to deduce some lower bounds on the spectral gap at low temperatures
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from lower bounds at high temperatures. The random-cluster model consists of the set

of subsets of the edges ΩRC = {A : A ⊂ E} and the probability measure

µ(A) =
1

Z

(
p

1− p

)|A|
qc(A), A ⊂ E,

where c(A) denotes the number of connected components of the subgraph (V,A), and

p := 1 − e−β. In fact, the Swendsen–Wang dynamics is based on the tight connection

of Potts and random-cluster models. That is, there exists a clever coupling of π and µ,

say ν, such that the conditional probabilities, given either a Potts or a random-cluster

configuration, are equal to the probability distributions that are involved in the first and

the second step of the Swendsen–Wang dynamics, respectively (see Section 2.3).

From this construction it is obvious that the Swendsen–Wang dynamics (with its

two steps in reverse order) also defines a Markov chain for the random-cluster model.

Additionally, we define the single-bond (SB) dynamics, which is a local Markov chain for

the random-cluster model that chooses an edge e ∈ E of the graph uniformly at random

and includes or deletes e from the current random-cluster configuration with a certain

probability (see (2.27)). The transition matrices of these two dynamics are denoted as

follows:

• P̃SW for the Swendsen–Wang dynamics for the RC model (see (2.22)),

• P̃SB for the single-bond dynamics for the RC model (see (2.27)).

As an easy corollary of the construction of the Swendsen–Wang dynamics we obtain

λ(PSW) = λ(P̃SW) (see Lemma 2.6). Thus, every result on P̃SW immediately yields a

result on PSW.

It turns out that Swendsen–Wang and single-bond dynamics can be represented on

the joint Potts/random-cluster model (i.e. the model corresponding to the coupling ν)

using the same “building blocks”, which leads to the second main result of this paper.

We prove that rapid mixing of Swendsen–Wang dynamics is equivalent to rapid mixing

of single-bond dynamics.

Theorem 4.8. Let P̃SW (resp. P̃SB) be the transition matrix of the Swendsen–Wang

(resp. single-bond) dynamics for the random-cluster model on a graph with m ≥ 3 edges.

Then

λ(P̃SB) ≤ λ(P̃SW) ≤ 8m logm · λ(P̃SB).

Finally, in Chapter 5 we restrict attention to a special class of graphs, namely planar

graphs, and, using the notion of dual graphs, it will be possible to relate the mixing prop-

erties of the Swendsen–Wang dynamics on the original graph to the mixing properties

on its dual with a suitable change of the temperature parameter. This is done by prov-

ing such a result for the single-bond dynamics and, using the comparison result above,

translating it to the Swendsen–Wang dynamics.

For this, assume that the underlying graph is planar, i.e. can be drawn in the plane

without intersecting edges. Furthermore, given a random-cluster model on a planar graph

G with parameters p and q, we call the random-cluster model on the dual graph G† with

parameters p∗ = q(1−p)
p+q(1−p) and q the dual model.
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Theorem 5.6. Let P̃SW (resp. P̃SB) be the transition matrix of the Swendsen–Wang

(resp. single-bond) dynamics for the random-cluster model on a planar graph G with

m edges and let P̃ †
SW (resp. P̃ †

SB) be the SW (resp. SB) dynamics for the dual model.

Then

λ(P̃SB) ≤ qλ(P̃ †
SB),

λ(P̃SW) ≤ 8qm logm · λ(P̃ †
SW).

Since the dual model of the dual model is the primal random-cluster model (if G

is connected), we get the bound in the other direction by applying Theorem 5.6 twice.

This theorem allows us to obtain some new results on rapid mixing at low temperatures

directly from known results at high temperatures.

Now we turn to applications of the theorems above. But first, note that we do not

give a direct analysis of the Markov chains under consideration. Thus, all results on rapid

mixing in specific settings rely ultimately on already known mixing results. In fact, the

three results given below are based on lower bounds on the spectral gap of the heat-bath

dynamics for the Potts model. We refer to Section 2.5 for a collection of all previously

known results that are necessary for the analysis in this paper.

The first application, which was the main reason for our study, deals with the two-

dimensional square lattice Z2
L of side length L. This is the graph Z2

L = (VL,2, EL,2) with

vertex set VL,2 = {1, . . . , L}2 ⊂ Z2 and edge set EL,2 = {{u, v} ⊂ VL,2 : |u − v| = 1},
where | · | denotes the Euclidean norm.

Theorem 5.9. Let PSW be the transition matrix of the Swendsen–Wang dynamics for

the q-state Potts model on Z2
L at inverse temperature β. Let n = L2. Then there exist

constants cβ = cβ(q), c
′ > 0 and C <∞ such that

λ(PSW) ≥ cβ/n for β < βc(q),

λ(PSW) ≥ cβ
n2 logn

for β > βc(q),

λ(PSW) ≥ c′n−C for q = 2 and β = βc(2),

where βc(q) = log(1 +
√
q).

This result shows rapid mixing of the Swendsen–Wang dynamics for the Potts model

on the two-dimensional square lattice Z2
L at all non-critical temperatures, i.e. at all

β 6= βc(q), as well as rapid mixing at all temperatures in the case q = 2. Note that it was

not even known that the SW dynamics mixes rapidly for β < βc, as it is known for the

heat-bath dynamics.

As a byproduct we obtain the following result for the single-bond dynamics for the

random-cluster model.

Theorem 5.10. Let P̃SB be the transition matrix of the single-bond dynamics for the RC

model on Z2
L with parameters p and q. Let m = 2L(L − 1) = |EL,2|. Then there exist

constants cp = cp(q), c
′ > 0 and C <∞ such that



Rapid mixing of Swendsen–Wang dynamics in two dimensions 9

λ(P̃SB) ≥
cp

m2 logm
for p 6= pc(q),

λ(P̃SB) ≥ c′m−C for q = 2 and p = pc(2),

where pc(q) =
√
q

1+
√
q .

For the third application we consider the more general family of planar graphs of

bounded maximum degree.

Corollary 5.7. The Swendsen–Wang dynamics for the random-cluster model with pa-

rameters p and q on a planar, simple and connected graph G with m edges and maximum

degree ∆ ≥ 6 satisfies

λ(P̃SW) ≥





c(1− ε)

m
if p ≤ ε

3
√
∆− 3

,

c(1− ε)

m2 logm
if p ≥ 1− ε

q∆† ,

for some c = c(∆, p, q) > 0 and ε > 0, where ∆† is the maximum degree of a dual graph

of G.

Additionally, we present a similar result for arbitrary graphs of bounded maximum

degree. In this case the Swendsen–Wang dynamics is proven to be rapidly mixing if

p ≤ ε/∆ (see Corollary 3.3 and Lemma 2.6). These results enlarge the previously known

set of temperatures where rapid mixing is known (see [34] or Theorem 2.18), but lead to

a worse bound on the spectral gap.

2. Detailed introduction

In this chapter we provide the necessary definitions and notations. The experienced reader

could skip this chapter and visit it when necessary.

First we give an elementary introduction to Markov chains on finite state spaces. See

Levin, Peres and Wilmer [39] for more details. Then we define the measure of efficiency of

Markov chains which we are concerned with, the spectral gap, and explain the relation of

this quantity to the rate of convergence of a Markov chain to its stationary distribution,

as well as the relation to another quantity, the mixing time. In the subsequent sections we

focus on Markov chains for Potts and random-cluster models, and give precise definitions

of the models and the Markov chains used. Finally, in Section 2.5, we state several known

results on their mixing properties.

2.1. Markov chains. Let Ω be a finite set, P be an Ω × Ω-matrix with P (x, y) ≥ 0

and
∑

z∈Ω P (x, z) = 1 for all x, y ∈ Ω, and X = (Xt)t∈N, Xt ∈ Ω, be a sequence of

Ω-valued random variables defined on a probability space (X,F ,P). We call X a Markov

chain on Ω with transition matrix P if, for all t ≥ 1 and all x0, . . . , xt ∈ Ω such that

P(X0 = x0, . . . , Xt−1 = xt−1) > 0, we have

P(Xt = xt | X0 = x0, . . . , Xt−1 = xt−1) = P(Xt = xt | Xt−1 = xt−1) = P (xt−1, xt).
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This is called the Markov property. Note that this implies that, for all x, y ∈ Ω and s ∈ N

with P(Xs = x) > 0,

P t(x, y) =
∑

z∈Ω

P t−1(x, z)P (z, y) = P(Xs+t = y | Xs = x) for all t ≥ 0,

which defines the t-step transition probabilities. It is clear that the Markov property

implies that the knowledge of P and of the distribution of X = (Xt)t∈N at any time,

say 0, determines the distribution of the Markov chain at all future times: Suppose that

the distribution of the Markov chain at time 0 is given by some probability mass function

η0, i.e. η0(x) = P(X0 = x) for all x ∈ Ω; then the distribution of the Markov chain at

time t ≥ 1 satisfies

P(Xt = x) =
∑

z∈Ω

η0(z)P
t(z, x). (2.1)

Therefore, we can simulate one realization of the Markov chain X on Ω with transi-

tion matrix P and initial distribution η0 by first generating a state x0 with respect

to the distribution η0, and then generating successively the state xt with respect to

P (xt−1, ·), t ≥ 1. In particular, if the initial distribution of the Markov chain is con-

centrated at a single state, i.e. η0(x) = 1(x = x0) for some x0 ∈ Ω, the distributions

of the Markov chain take the simple form P(Xt = x) = P t(x0, x). Here, the indica-

tor function 1 is defined by 1(x = x0) = 1 if x = x0 and 1(x = x0) = 0 otherwise.

In general, 1 equals 1 if the statement in the parentheses is true and equals 0 other-

wise.

From now on we will identify probability mass functions with row-vectors, so that

equality (2.1) simplifies to P(Xt = x) = η0P
t(x), and for a probability mass function π

we define, for A ⊂ Ω, the probability measure π by

π(A) :=
∑

x∈A

π(x).

(By convention, we will use π interchangeably as a measure and a mass function.)

Markov chains are typically used to sample (approximately) from distributions for

which direct simulation is not feasible. For this it is necessary that, at least in the limit,

the distribution of the Markov chain reaches this distribution, say π, i.e.

π(x) = lim
t→∞

P(Xt = x) for all x ∈ Ω. (2.2)

It is in general not guaranteed that such limits exist, but we can present a sufficient

condition for existence. We call a Markov chain irreducible if for all x, y ∈ Ω, there exists

t such that P t(x, y) > 0, and aperiodic if for all x ∈ Ω, gcd{t ≥ 1 : P t(x, x) > 0} = 1,

where gcd{J} denotes the greatest common divisor of all elements in J ⊂ N. Clearly,

for an irreducible Markov chain, P (x, x) > 0 for any x ∈ Ω is a sufficient condition for

aperiodicity. All Markov chains in this paper will be irreducible and aperiodic, and we

use ergodic as an abbreviation for irreducible and aperiodic. It is well-known that the

above limit (2.2) exists for aperiodic Markov chains X and, if the Markov chain is also

irreducible, the limit distribution π is independent of the initial distribution η0 and sat-

isfies π(x) > 0, ∀x ∈ Ω. Thus, πP = π, which follows obviously from (2.2), is equivalent
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to (2.2) whenever X is an ergodic Markov chain with transition matrix P . We call a

distribution π with πP = π a stationary distribution of the Markov chain with transition

matrix P .

Another important concept is the reversibility of Markov chains. A Markov chain with

transition matrix P is reversible (or satisfies detailed balance) with respect to π if for all

x, y ∈ Ω,

π(x)P (x, y) = π(y)P (y, x).

It is not hard to prove that, under this condition, π is a stationary distribution of P . Fi-

nally, we call a Markov chain lazy, if its transition matrix P satisfies P (x, x) ≥ 1
2 , ∀x ∈ Ω.

Obviously, lazy Markov chains are aperiodic. If X is a Markov chain with transition ma-

trix P , and X̃ is a Markov chain with transition matrix Q, such that Q(x, y) = 1
2P (x, y)

for all x 6= y, x, y ∈ Ω, and P(X̃0 = x) = P(X0 = x), ∀x ∈ Ω, then we say that X̃ is the

lazy version of X . Necessarily, Q(x, x) = 1
2 + 1

2P (x, x) for all x ∈ Ω.

Throughout this paper we will refer to properties of a Markov chain with transition

matrix P as properties of P , unless they depend on more than P . For example we say for

an ergodic Markov chain with transition matrix P that is reversible with respect to π,

that P is ergodic and reversible with respect to π.

2.2. Spectral gap and mixing time. In the following we want to estimate the efficiency

of Markov chains for approximate sampling from their stationary distribution. For more

details and aspects of the convergence of Markov chains to their stationary distribution

see Levin, Peres and Wilmer [39].

To quantify this efficiency we first define the total variation distance of two distribu-

tions ν and π on Ω by

‖ν − π‖TV :=
1

2

∑

x∈Ω

|ν(x) − π(x)| = max
A⊂Ω
|ν(A) − π(A)|.

See [39, Prop. 4.2] for the second equality. Using this as a metric on the set of all prob-

ability measures on Ω it is natural to ask how fast the convergence in (2.2) takes place,

i.e. how fast the distribution of a Markov chain for increasing time t converges to its

stationary distribution. The next statement, which is called the Convergence Theorem,

provides a more quantitative version of (2.2) (see e.g. [39, Theorem 4.9]).

Theorem 2.1. Let P be ergodic with stationary distribution π. Then there exist constants

α ∈ [0, 1) and C > 0 such that

max
x∈Ω
‖P t(x, ·) − π‖TV ≤ Cαt. (2.3)

This theorem shows that, for every x ∈ Ω, the distribution of a Markov chain with

transition matrix P and initial distribution concentrated at x converges exponentially fast

(in total variation) to its stationary distribution. In fact, the worst initial distribution,

i.e. the distribution η0 that maximizes ‖η0P t(·)−π‖TV, is concentrated at a single state.

To see this, note that for a distribution η0 on Ω,
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‖η0P t(·)− π‖TV =
∥∥∥
∑

x∈Ω

η0(x)P
t(x, ·) − π

∥∥∥
TV

=
∥∥∥
∑

x∈Ω

η0(x)(P
t(x, ·)− π)

∥∥∥
TV

≤
∑

x∈Ω

η0(x)‖P t(x, ·)− π‖TV ≤ max
x∈Ω
‖P t(x, ·)− π‖TV.

Thus, it is enough to consider the maximum as in Theorem 2.1 to get a statement for

arbitrary initial distributions.

For given ε > 0, we are interested in the minimal time t such that the total variation

distance between the distribution of our Markov chain at time t and its stationary distri-

bution is at most ε, independent of the initial distribution. This t is called the ε-mixing

time and is defined by

tmix(P, ε) := min
{
t ≥ 0 : max

x∈Ω
‖P t(x, ·)− π‖TV ≤ ε

}
.

Using the fact that tmix(P, ε) ≤ ⌈log(ε−1)⌉tmix(P, 1/2e) (see e.g. [39, p. 55]), it is enough

to consider the mixing time tmix(P ) := tmix(P, 1/2e). Unless otherwise stated, log denotes

the natural logarithm. Obviously, bounds on tmix imply (and follow from) bounds on the

optimal, i.e. smallest, constants C and α in Theorem 2.1. To be precise, if we know some

constants C and α for which (2.3) holds, we obtain tmix(P ) ≤ log(2eC) · log(1/α)−1. For

the reverse direction note that

max
x∈Ω
‖P t(x, ·) − π‖TV ≤ e−⌊t/tmix⌋ ≤ e1−t/tmix

with tmix = tmix(P ) (see [39, eq. (4.34)]).

In this paper we are concerned with bounding the optimal constant α in (2.3) and,

in particular, comparing the optimal constants for different Markov chains. We will see

(Lemma 2.3) that this also implies bounds on the mixing time.

For this we introduce the spectral gap of a Markov chain. Let P be the transition

matrix of a Markov chain on Ω that is ergodic and reversible with respect to π. We regard

P as an operator that maps functions f : Ω→ R to functions by

Pf(x) :=
∑

y∈Ω

P (x, y)f(y). (2.4)

Such an operator is called the Markov operator that corresponds to P , and we will use the

same notation for the Markov operator and its corresponding transition matrix. Note that

Pf(x) is the expectation of f with respect to the distribution P (x, ·), i.e. the distribution
of the Markov chain with transition matrix P and initial distribution concentrated at

x ∈ Ω after one step. If we consider a function f on Ω as an element of RΩ (i.e. a column

vector), then Pf is simply matrix multiplication. Additionally, we endow the function

space RΩ with the inner product

〈f, g〉π :=
∑

x∈Ω

f(x)g(x)π(x), f, g ∈ R
Ω, (2.5)

and denote by L2(π) the inner product space (or Hilbert space) that consists of RΩ with

the inner product 〈·, ·〉π . In particular, the norm in L2(π) is given by

‖f‖2π := 〈f, f〉π =
∑

x∈Ω

f(x)2π(x), f ∈ R
Ω.
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Using the inner product (2.5) we define the adjoint operator P ∗ of P as the (unique)

operator that satisfies 〈f, Pg〉π = 〈P ∗f, g〉π for all f, g ∈ L2(π). Then P ∗ is also a Markov

operator and the corresponding transition matrix is

P ∗(x, y) =
π(y)

π(x)
P (y, x), x, y ∈ Ω. (2.6)

Since P is reversible with respect to π, we obtain P = P ∗. Hence, P defines a self-adjoint

operator. This implies that P has only real eigenvalues, i.e. real numbers ξ with Pf = ξf

for some 0 6= f ∈ RΩ (see e.g. [36, Thm. 9.1-1]). By the ergodicity of P , these eigenvalues

{ξi} satisfy −1 < ξi ≤ 1; additionally, Pf = f if and only if f is constant (see [39,

Lemma 12.1]).

We define the (absolute) spectral gap of P by

λ(P ) := 1−max{|ξ| : ξ is an eigenvalue of P, ξ 6= 1}.
It is well-known that the spectral gap can be written in terms of norms of the Markov

operator P . For this we define the spectral norm (or simply operator norm) of an operator

P by

‖P‖π := ‖P‖L2(π)→L2(π) = max
‖f‖π=1

‖Pf‖π. (2.7)

We use ‖ · ‖π interchangeably for functions and operators, because it will be clear from

the context which norm is used. For a self-adjoint P the operator norm ‖P‖π equals the

largest eigenvalue of P in absolute value. To give a representation of the spectral gap

we also need the operator Sπ that is defined by Sπf = 〈f, 1〉π. This (Markov) operator

corresponds to the (transition) matrix Sπ(x, y) = π(y) for x, y ∈ Ω. Obviously, Sπ has only

the eigenvalues 1 and 0, and the eigenspace to eigenvalue 0 is {f ∈ L2(π) : 〈f, 1〉π = 0},
which is also the union of all eigenspaces of P for eigenvalues different from 1. Thus,

λ(P ) = 1− ‖P − Sπ‖π. (2.8)

As stated above, the spectral gap and the speed of convergence in Theorem 2.1 are

closely related. The next lemma (see [39, Cor. 12.6]) demonstrates this relation.

Lemma 2.2. Let P be ergodic and reversible with respect to π. Then

lim
t→∞

(
max
x∈Ω
‖P t(x, ·) − π‖TV

)1/t

= 1− λ(P ).

This shows that 1− λ(P ) is the optimal constant α in (2.3). One may hope that this

asymptotic equality holds, at least approximately, also non-asymptotically, i.e. that there

exist constants c, C > 0 such that

c(1− λ(P ))t ≤ max
x∈Ω
‖P t(x, ·) − π‖TV ≤ C(1− λ(P ))t

for all t ∈ N, and in fact, this inequality holds with constants c = 1
2 [39, (12.13)] and

C−1 = minx∈Ω π(x) [39, (12.11)]. Plugging this into the definition of the mixing time

we deduce that mixing time and spectral gap of a Markov chain (on finite state spaces)

satisfy the following inequality (see e.g. [39, Theorems 12.3 & 12.4]).
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Lemma 2.3. Let P be the transition matrix of a reversible, ergodic Markov chain with

state space Ω and stationary distribution π. Then

λ(P )−1 − 1 ≤ tmix(P ) ≤ log

(
2e

πmin

)
λ(P )−1,

where πmin := minx∈Ω π(x).

We are interested in the spectral gap of specific Markov chains and, in particular, in the

dependence on the size of the state space if the Markov chain can be defined analogously

on an unbounded family of state spaces. Thus, if we consider an indexed family of state

spaces {Ωn}n∈N with a corresponding family of transition matrices {Pn}n∈N, we say that

the Markov chain is rapidly mixing for the given family if λ(Pn)
−1 ≤ c log(|Ωn|)C for all

n ∈ N and some c, C <∞.

Remark 2.4. The main reason for sampling from a given probability distribution π on

Ω is the approximation of expectations Sπf = 〈f, 1〉π for certain functions f ∈ R
Ω.

This is frequently done e.g. in statistical physics to deepen the understanding of the

underlying model. If exact sampling from π is not feasible, then this often can be done by

Markov chain Monte Carlo methods that can be described as follows. Choose an initial

state x0 ∈ Ω (deterministically or by some distribution), then simulate k steps of the

Markov chain with transition matrix P to obtain a sequence x1, . . . , xk ∈ Ω and, finally,

take the average Ak(f) :=
1

k+1

∑k
i=0 f(xi). Usually it is better to omit several states at

the beginning of the sequence to improve the performance (see e.g. Rudolf [62]). The

number of these omitted states is called burn-in in the literature. We know from the

Ergodic Theorem [39, Thm. 4.16] that limk→∞ Ak(f) = Sπf almost surely, whenever P

is irreducible and has stationary distribution π. In this context the spectral gap plays an

important role in bounding the number k of steps of the Markov chain that are necessary

to achieve a prescribed error ε > 0. For a bound on k for the probabilistic error criterion

that depends on the spectral gap and the ε-mixing time see Levin et al. [39, Sec. 12.6].

Another bound that deals with the mean square error and depends only on the spectral

gap is given in [60, 61]; see also Novak and Woźniakowski [54] for some context and

results in a more general setting. Overall, one can say that the existence of a rapidly

mixing Markov chain for a family of state spaces {Ωn}n∈N with corresponding measures

{πn}n∈N leads to an efficient algorithm for the approximation of expectations of functions

(with respect to πn) defined on Ωn, i.e. an algorithm that needs time proportional to ε−2

times a polynomial in log(|Ωn|) (times the variance of the considered function).

To finish this section we present a simple technique to compare the spectral gaps

of two Markov chains on the same state space, but with possibly different stationary

distributions. This result is well-known (see e.g. [15] or [39]), but since it is used several

times in this paper we present its proof here. See also Dyer, Goldberg, Jerrum and

Martin [21] for a survey on more general techniques for comparison of Markov chains.

Lemma 2.5. Suppose P1 (resp. P2) is an ergodic and reversible transition matrix with

stationary distribution π1 (resp. π2) on Ω. If there exist constants a,A > 0 such that

π1(x)P1(x, y)

π2(x)P2(x, y)
≤ A and

π1(x)

π2(x)
≥ a



Rapid mixing of Swendsen–Wang dynamics in two dimensions 15

for all x, y ∈ Ω, then

λ(P1) ≤
A

a
λ(P2).

If P2 has only non-negative eigenvalues it is enough to verify the conditions for x 6= y.

Proof. For f ∈ RΩ define

E1(f) := 〈(I − P1)f, f〉π1
and F1(f) := 〈(I + P1)f, f〉π1

with the identity If := f . Equivalently we define E2 and F2 for P2. By reversibility and

ergodicity, P1 has only real eigenvalues

1 = ξ1(P1) > ξ2(P1) ≥ · · · ≥ ξ|Ω|(P1) > −1,

i.e. λ(P1) = min{1 − ξ2(P1), 1 + ξ|Ω|(P1)}. Thus, using the “min-max characterization”

of the eigenvalues [33, Thms. 4.2.2 & 4.2.11] and the fact that ξ1(P1) corresponds to the

constant eigenfunction, we obtain

1− ξ2(P1) = 1− max
f 6=0:

〈f,1〉π1
=0

〈Pf, f〉π1

〈f, f〉π1

= min
f 6=0:

〈f,1〉π1
=0

E1(f)
〈f, f〉π1

= min
f 6=0:

〈f,1〉π1
=0

E1(f)
Varπ1

(f)

with Varπ1
(g) = 〈g, g〉π1

− 〈g, 1〉2π1
for g ∈ RΩ. Noting that E1(f) = E1(f + c) and

Varπ1
(f) = Varπ1

(f + c) for every c ∈ R, we get

1− ξ2(P1) = min
f∈R

Ω:
Varπ1

(f) 6=0

E1(f)
Varπ1

(f)
,

where Varπ1
(f) 6= 0 iff f is not constant. Equivalently,

1 + ξ|Ω|(P1) = 1 +min
f 6=0

〈Pf, f〉π1

〈f, f〉π1

= min
f 6=0

F1(f)

〈f, f〉π1

.

It is easy to check (using reversibility) that

E1(f) =
1

2

∑

x,y∈Ω

(f(x)− f(y))2π1(x)P1(x, y),

F1(f) =
1

2

∑

x,y∈Ω

(f(x) + f(y))2π1(x)P1(x, y).

It follows from the first assumption of this lemma that E1(f) ≤ AE2(f) and F1(f) ≤
AF2(f) for every f ∈ RΩ. The second assumption implies 〈f, f〉π1

≥ a〈f, f〉π2
and hence

1 + ξ|Ω|(P1) ≤ (A/a)(1 + ξ|Ω|(P2)). Additionally, for f ∈ RΩ with 〈f, 1〉π1
= 0, we obtain

Varπ2
(f) = 〈f, f〉π2

− 〈f, 1〉2π2
≤ 〈f, f〉π2

≤ 1

a
〈f, f〉π1

=
1

a
Varπ1

(f),

which implies Varπ1
(f) ≥ aVarπ2

(f) for every f ∈ RΩ and therefore 1 − ξ2(P1) ≤
(A/a)(1 − ξ2(P2)). Note that if P2 has only non-negative eigenvalues it is enough to

compare E1 and E2, since λ(P2) = 1 − ξ2(P2). Both do not depend on the diagonal

elements of P1 and P2. This proves the claim.
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2.3. The models. In this section we introduce the models that we study in this paper.

Although we are mainly interested in sampling from the Potts model, we additionally

need the closely related random-cluster and Fortuin–Kasteleyn–Edwards–Sokal (FKES)

models. Since all these models are defined on an underlying graph, we begin with provid-

ing some general graph terminology; see e.g. Diestel [17] or Mohar and Thomassen [53]

for a more comprehensive introduction to graph theory.

A graph G is a pair (V,E), where V is the finite set of vertices and E is the set

of edges, together with a function ϕ that assigns to each edge e ∈ E a set of at most

two vertices, i.e. ϕ(e) = {u, v} for some u, v ∈ V , which are called its endvertices . We

denote the endvertices of an edge e ∈ E by e(1) and e(2), i.e. ϕ(e) = {e(1), e(2)}. Let
ϕ(E) = {ϕ(e) : e ∈ E}. We say that u and v are neighbors in G if {u, v} ∈ ϕ(E).

Furthermore, u and v are called connected , if there exist vertices v0, . . . , vn ∈ V such

that v0 = u, vn = v and {vi−1, vi} ∈ ϕ(E), i = 1, . . . , n. We write u↔ v if u and

v are connected (in G). Now suppose we have two graphs, G = (VG, EG, ϕG) and

H = (VH , EH , ϕH). We say that H is a subgraph of G if VH ⊂ VG, EH ⊂ EG and

ϕH(e) = ϕG(e) for all e ∈ EH . If additionally VH = VG, we say H is a spanning sub-

graph of G. Let A ⊂ E be a subset of the edges of the graph G = (V,E, ϕ). Then

GA := (V,A, ϕ) is a spanning subgraph of G and we write u
A←→ v if u, v ∈ V are

connected in GA, i.e. there exist vertices v0, . . . , vn ∈ V such that v0 = u, vn = v and

{vi−1, vi} ∈ ϕ(A), i = 1, . . . , n. Clearly,
A←→ defines an equivalence relation on V for

every A ⊂ E; its equivalence classes are called connected components of GA. Two dis-

tinct edges e1, e2 ∈ E that have the same endvertices, i.e. ϕ(e1) = ϕ(e2), are said to be

parallel, and edges with equal endvertices, i.e. e ∈ E with e(1) = e(2) (or |ϕ(e)| = 1), are

called loops .

Most graphs of this paper are simple, i.e. contain no parallel edges. (Some authors use

the term “graph” for simple graphs, and “multigraph” for graphs as defined above.) The

advantage of simple graphs is that |ϕ(E)| = |E| and thus ϕ is a bijection between E and

ϕ(E). In this case we identify ϕ(E) with E and write G = (V,E) for the graph (V,E, ϕ),

as well as e = {u, v} for ϕ(e) = {u, v}. With a slight abuse of notation we omit ϕ also if

the graph is not simple, i.e. we write G = (V,E) for (V,E, ϕ), and make the convention

that {u, v} = e (resp. {u, v} ∈ E) simply means {u, v} = ϕ(e) (resp. {u, v} ∈ ϕ(E)).

(Note that we will use this notation only in one direction, i.e. given e ∈ E we obtain a

unique {u, v} ⊂ V with {u, v} = e. The other way cannot be done uniquely if the graph

contains parallel edges.)

As example graphs one can have in mind the two-dimensional square lattice Z2
L of

side length L, i.e. the graph Z2
L = (VL,2, EL,2) with vertex set VL,2 = {1, . . . , L}2 ⊂ Z2

and edge set EL,2 = {{u, v} ⊂ VL,2 : |u − v| = 1}, where | · | denotes the ℓ2 norm (see

Figure 1, left), and a tree, which is a graph T = (V,E) with |E| = |V |−1 and exactly one

connected component (see Figure 1, right). Obviously, deletion of any edge of T increases

the number of connected components.

For the further analysis we need the following graph quantities. First of all, we will

refer to the number of vertices of a graph, i.e. |V | for G = (V,E), as the size of the graph.

The degree of a vertex v in G = (V,E), i.e.
∣∣{e ∈ E : v ∈ e}

∣∣, is denoted by degG(v), and
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Fig. 1. The graph Z
2

5 (left) and a tree (right)

we use ∆(G) for the maximum degree of G, i.e.

∆(G) = max
v∈V

degG(v).

For example, ∆(Z2
L) = 4 for every L ≥ 3. Additionally, for a graph G = (V,E) we denote

by c(GA) the number of connected components of the graph GA = (V,A), A ⊂ E. Thus,

c(GA) is the number of equivalence classes in V with respect to
A←→. If the graph is fixed

we simply write c(A) for c(GA). Note that, if T = (V,E) is a tree, c(TA) = |V | − |A| for
all A ⊂ E.

Now we introduce the models under consideration. For this, fix a graph G = (V,E),

a natural number q ≥ 1 and a real number β ≥ 0. Typically, β is called the inverse

temperature. The q-state Potts model on G is defined as the set of possible configurations

ΩP := ΩP(G) = [q]V , where [q]:={1, . . . , q} is the set of colors (or spins), together with

the probability measure

π(σ) := πG
β,q(σ) =

1

Z(G, β, q)
eβ|E(σ)|, σ ∈ ΩP, (2.9)

where

E(σ) := {e ∈ E : σ(u) = σ(v) for {u, v} = e} (2.10)

is the set of edges with equally colored endvertices. The normalization constant (also

called partition function) Z is given by

Z(G, β, q) :=
∑

σ∈ΩP(G)

eβ|E(σ)|.

This measure is called the Potts measure (or Boltzmann distribution) and if q = 2 we call

the Potts model the Ising model . The inverse temperature β determines the interaction

strength between neighboring vertices in the graph and since β is non-negative, configu-

rations with more equally colored neighbors have a larger weight in π. In particular, at

infinite temperature, i.e. β = 0, the measure π is the uniform distribution on ΩP and the

larger β the more weight goes to the (almost) constant configurations.

A closely related model is the random-cluster model (also known as the FK model),

that was introduced by Fortuin and Kasteleyn [24]. It is defined on the graph G = (V,E)

by its state space ΩRC = {A : A ⊆ E} and the random-cluster (RC ) measure

µ(A) := µG
p,q(A) =

1

Z
(
G, log

(
1

1−p

)
, q
)
(

p

1− p

)|A|
qc(A), A ⊂ E, (2.11)

where p ∈ [0, 1], c(A) is the number of connected components in the graph (V,A) and
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Z(·, ·, ·) is the same normalization constant as for the Potts model [29, Thm. 1.10] (see

(2.13) and (2.14)). For a historical treatment and related topics see Grimmett [29].

To describe the connection of Potts and random-cluster models we state a coupling of

the corresponding measures that is due to Edwards and Sokal [23]. This coupling leads to

the third model that will be considered, namely the Fortuin–Kasteleyn–Edwards–Sokal

(FKES) model (or simply the joint model). For this let p = 1 − e−β, as we will assume

henceforth. The joint model is defined on ΩJ := ΩP × ΩRC by the FKES measure

ν(σ,A) := νGp,q(σ,A) =
1

Z
(
G, log

(
1

1−p

)
, q
)
(

p

1− p

)|A|
1(A ⊂ E(σ)) (2.12)

for (σ,A) ∈ ΩJ. Again, the normalization constant Z(·, ·, ·) is the same as for the Potts

measure [29, Thm. 1.10]. To see this, note that

A ⊂ E(σ) ⇔ ∀{u, v} ∈ A : σ(u) = σ(v),

which implies that σ is constant on each connected component of (V,A). Hence, for a

given A ⊂ E there are exactly qc(A) configurations σ ∈ ΩP with ν(σ,A) > 0. Using this,

for σ ∈ ΩP and A ⊂ E we obtain

∑

τ∈ΩP

(
p

1− p

)|A|
1(A ⊂ E(τ)) =

(
p

1− p

)|A|
|{τ ∈ ΩP : A ⊂ E(τ)}|

=

(
p

1− p

)|A|
qc(A), (2.13)

and since p = 1− e−β,

∑

B∈ΩRC

(
p

1− p

)|B|
1(B ⊂ E(σ)) =

|E(σ)|∑

k=0

(|E(σ)|
k

)(
p

1− p

)k

=

(
1 +

p

1− p

)|E(σ)|
= eβ|E(σ)|. (2.14)

Summing over A ∈ ΩRC in (2.13) and over σ ∈ ΩP in (2.14) proves that the normalization

constants of π, µ and ν are equal. Another fact that can be deduced from (2.13) and (2.14)

is that the marginal distributions of ν are exactly π and µ, respectively (see [23] or [29]).

This means that for all σ ∈ ΩP and A ⊂ E,

π(σ) =
∑

A⊂E

ν(σ,A) = ν(σ,ΩRC) and µ(A) =
∑

σ∈ΩP

ν(σ,A) = ν(ΩP, A).

We define the conditional probability of σ ∈ ΩP with respect to ν given A ⊂ E by

ν(σ|A) :=
{
ν(σ,A)/ν(ΩP, A) if (σ,A) ∈ ΩJ,

0 otherwise.
(2.15)

For ν(A |σ) replace ν(ΩP, A) by ν(σ,ΩRC). We obtain
∑

A∈ΩRC

µ(A)ν(σ |A) = π(σ) and
∑

σ∈ΩP

π(σ)ν(A |σ) = µ(A).
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This can be interpreted in the following way. Assume that we can simulate a random

variable X ∈ ΩRC that is distributed with respect to µ. The random variable Y ∈ ΩP

obtained by sampling from ν(· |X) is then distributed with respect to π. In fact, the

conditional probabilities take a rather simple form, namely ν(σ|A) = q−c(A)
1(A ⊂ E(σ))

and ν(A |σ) = p|A|(1− p)|E(σ)|−|A|
1(A ⊂ E(σ)). Thus, given a RC configuration X ∼ µ,

i.e. one that is distributed with respect to µ, we can generate a Potts configuration

Y ∼ π by assigning a random color from {1, . . . , q} independently to each connected

component of the graph (V,X). For the reverse way, given Y ∼ π, include all edges

e = {e(1), e(2)} ∈ E with Y (e(1)) = Y (e(2)) in X with probability p. Hence, if the Potts

and the RC model are defined on the same graph G and p = 1− e−β, then the possibility

of efficient sampling from either model enables also efficient sampling from the other.

We will see in the following section that the non-local Markov chain considered,

namely the Swendsen–Wang dynamics, is based on this connection of the Potts and

random-cluster models.

2.4. The dynamics. This section is devoted to the definition of the Markov chains that

will be used to sample approximately from the Potts and the random-cluster model. In

Chapters 3 and 4 we will compare the spectral gaps of these Markov chains and, as a

consequence, obtain new results on the mixing properties of the Swendsen–Wang and

the single-bond dynamics. Recall that we have fixed a graph G = (V,E), some q ∈ N,

a real β ≥ 0 and p = 1− e−β . We distinguish between dynamics for the Potts model and

dynamics for the random-cluster model, and we will propose one local and one non-local

Markov chain in both cases. “Local” means that the Markov chain changes the current

state in one step only locally. In other words: let P (resp. P̃ ) be the transition matrix of a

Markov chain on ΩP (resp. ΩRC) with stationary distribution π (resp. µ); then we say that

P (resp. P̃ ), or its corresponding Markov chain, is local if |{v ∈ V : σ(v) 6= τ(v)}| ≤ 1

for all σ, τ ∈ ΩP with P (σ, τ) > 0 (resp. |(A \ B) ∪ (B \ A)| ≤ 1 for all A,B ∈ ΩRC

with P̃ (A,B) > 0). Thus, local Markov chains update only one vertex (resp. edge) of the

current configuration per step.

Another notion of locality is that the transition probabilities, e.g. P (σ, τ) for σ, τ ∈ ΩP,

depend only locally on the states σ and τ . This is called the finite range interaction prop-

erty of the transition probabilities (see e.g. [45]), and means (in the case of the Potts

model) that for every σ, τ ∈ ΩP with P (σ, τ) > 0 there exists a subset of the vertices

V0 ⊂ V , with |V0| “not too large”, such that P (σ, τ) = P (σ′, τ ′) for σ′, τ ′ ∈ ΩP with

σ(v) = σ′(v) and τ(v) = τ ′(v) for all v ∈ V0. An analogous formulation can be found

for Markov chains for the RC model. This property is especially interesting for compu-

tational reasons, because it enables efficient computation of the transition probabilities

and therefore efficient simulation of the Markov chain. From the local dynamics of this

section only the one for the Potts model satisfies the finite range interaction property.

2.4.1. Dynamics for the Potts model

The heat-bath dynamics. We begin with the definition of the local Markov chain for

the Potts model. This Markov chain, namely the heat-bath (HB) dynamics (or Glauber

dynamics), was introduced by Glauber [27] in 1963 for the Ising model and, since then,
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has become the most studied Markov chain for the q-state Potts model (especially for

q = 2). The one-step transitions can be described as follows. Suppose that the current

state of the Markov chain is σ ∈ ΩP. Then:

(HB1) Choose a vertex v ∈ V uniformly at random.

(HB2) Let Ωσ,v := {τ ∈ ΩP : τ(u) = σ(u), ∀u 6= v} and choose the next state of the

Markov chain, say τ , with respect to π(· |Ωσ,v), that is, the conditional probability

(with respect to π) given that τ differs from σ only at v.

For σ ∈ ΩP, k ∈ [q] and u, v ∈ V , let

σv,k(u) :=

{
σ(u) if u 6= v,

k if u = v,
(2.16)

be the configurations that differ from σ at most at v ∈ V and let

dv,k(σ) := |{e ∈ E : σ(u) = k for {u, v} = e}|

be the number of edges in G connecting v to vertices with color k in σ. It is easy to

see that the set Ωσ,v from (HB2) can be written as Ωσ,v =
⋃q

l=1{σv,l}, and that the

conditional probabilities satisfy

π(σv,k |Ωσ,v) =
π(σv,k)∑q
l=1 π(σ

v,l)
=

eβdv,k(σ)

∑q
l=1 e

βdv,l(σ)
, (2.17)

and π(τ |Ωσ,v) = 0 whenever τ 6= σv,k for all k. Therefore we can write the transition

matrix of the heat-bath dynamics on ΩP as

PHB(σ, τ) := PG
HB,β,q(σ, τ) =

1

|V |
∑

v∈V

π(τ)∑q
l=1 π(σ

v,l)
1(τ ∈ Ωσ,v). (2.18)

Clearly, PHB is reversible with respect to π and, as long as β <∞, also ergodic.

An interesting feature of this simple construction of a Markov chain is that the (tem-

poral) mixing properties of the heat-bath dynamics are proven to be equivalent to some

spatial mixing properties of the associated Potts measure if the underlying graph is a

rectangular subset of the (physically most relevant) d-dimensional integer lattice Zd; see

e.g. [1, 22, 32, 46, 47, 48, 49, 65] or the survey [45] by Martinelli. Similar results are

known for trees [52]. It turns out that certain spatial properties of the model imply tight

bounds on the spectral gap (or mixing time) of the heat-bath dynamics. In Section 2.5

we will state some of these results, in particular for the two-dimensional square lattice

where we have an almost complete characterization of the mixing properties.

One drawback of the heat-bath dynamics is that it is typically slowly (i.e. not rapidly)

mixing at low temperatures (large β); see e.g. [6, 7, 39, 64]. We refer again to Section 2.5.

In fact, at zero temperature (β = ∞) the heat-bath dynamics is not even irreducible,

although this is the simplest case: uniform distribution on q (constant) configurations.

In the next paragraph we introduce the Swendsen–Wang dynamics, which overcomes

the slow mixing behavior at low temperatures. This Markov chain is the primarily studied

Markov chain of this paper.
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The Swendsen–Wang dynamics. Inspired by the representation of the Potts models of

Fortuin and Kasteleyn [24], Swendsen and Wang [67] invented around 1987 a Markov

chain that makes large steps through the state space and is surprisingly simple to im-

plement. We call this Markov chain, which is presently the best candidate for the most

efficient dynamics to sample from the Potts model on general families of graphs, the

Swendsen–Wang (SW) dynamics.

As stated several times, this Markov chain is based on the connection of the random-

cluster and Potts models that is given by the coupling of the corresponding measures of

Edwards and Sokal [23].

First, recall that this coupling is given by the FKES measure (2.12), i.e.

ν(σ,A) =
1

Z

(
p

1− p

)|A|
1(A ⊂ E(σ)), σ ∈ ΩP, A ∈ ΩRC,

with E(σ) from (2.10) and some p ∈ [0, 1], and that the conditional probabilities (with

respect to ν) of σ given A (or of A given σ) satisfy

ν(σ |A) = q−c(A)
1(A ⊂ E(σ)), (2.19)

ν(A |σ) = p|A|(1− p)|E(σ)|−|A|
1(A ⊂ E(σ)) (2.20)

(see (2.15) and the discussion thereafter).

The Swendsen–Wang dynamics (for the Potts model) makes use of these conditional

probabilities in such a way that, given the current state σ ∈ ΩP, the next state τ ∈ ΩP

is generated by first sampling an A ⊂ E from ν(· |σ), and then sampling τ from ν(· |A).
Thus, the transition matrix of the Swendsen–Wang dynamics for the q-state Potts model

on G at inverse temperature β = − ln(1− p) is given by

PSW(σ, τ) := PG
SW,β,q(σ, τ) =

∑

A⊂E

ν(A |σ)ν(τ |A)

= (1− p)|E(σ)|
∑

A⊂E

(
p

1− p

)|A|
q−c(A)

1(A ⊂ E(σ) ∩ E(τ)). (2.21)

Using the same interpretation of this sampling with respect to the conditional proba-

bilities that was given in Section 2.3, we can describe one step of the Swendsen–Wang

dynamics as the following two-step procedure:

(SW1) Given a Potts configuration σ ∈ ΩP on G, delete each edge of E(σ) independently

with probability 1− p = e−β. This gives A ∈ ΩRC.

(SW2) Assign a random color from [q] independently to each connected component of

(V,A). Vertices of the same component get the same color. This gives τ ∈ ΩP.

Ergodicity of this Markov chain is easy to check. For this, imagine that the gener-

ated edge set A of the first step (SW1) is the empty set (this happens with probability

(1− p)|E(σ)| > 0 for p < 1), and then, in step (SW2), every possible configuration can be

generated with probability q−|V |. Hence, PSW(σ, τ) > 0 for all σ, τ ∈ ΩP, which implies

ergodicity. If p = 1 (β =∞), then the only elements of ΩP with positive measure are the

q constant configurations, for which we have PSW(σ, τ) = q−1 > 0. For the reversibility

of PSW with respect to π note that π(σ) = (1/Z)(1 − p)−|E(σ)|, since p = 1 − e−β . We
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deduce from (2.21) that

π(σ)PSW(σ, τ) =
1

Z

∑

A⊂E

p|A|(1 − p)−|A|q−c(A)
1(A ⊂ E(σ) ∩ E(τ)),

which is symmetric in σ, τ . This shows that the SW dynamics is reversible and ergodic for

any G, q and β, but, in contrast with the heat-bath dynamics, this Markov chain seems

to be efficient also for large β. For results showing that this is true for large enough β see

e.g. [34] and [44]. Additionally, there are plenty of numerical results suggesting that the

Swendsen–Wang dynamics is rapidly mixing at all temperatures in various cases. These

include the Ising model and the 3-state Potts model on the two-dimensional square lattice

[19, 63] and the Ising model on the three-dimensional cubic lattice [56].

However, rigorous proofs of such statements are rare. There are, as far as we know,

presently only four cases where rapid mixing at all temperatures is proven. These are on

trees, cycles [11, 34, 41] and narrow grids [10] for all q ∈ N and on the complete graph for

q = 2 [41, 42]. One of our goals is to add the Ising model (q = 2) on the two-dimensional

square lattice to this list.

There are also some rigorous results regarding slow mixing. We state three of them:

Li and Sokal [40] proved that the inverse spectral gap is larger than some constant times

the specific heat (that is proportional to the second derivative with respect to β of the

Potts normalization constant Z, see (2.9)). This shows (at least) that the inverse spectral

gap cannot be bounded independently of the size of the graph in many cases of interest.

Furthermore, Gore and Jerrum [28] showed slow mixing of the SW dynamics on the

complete graph for q ≥ 3 for some value of the inverse temperature. Recently, Borgs,

Chayes and Tetali [5] gave tight upper and lower bounds on the spectral gap (or mixing

time) for SW on rectangular subsets of Zd, d ≥ 2, with periodic boundary conditions

at some (critical) temperature for q large enough, which show that the spectral gap is

exponentially small in the size of the graph. Since we need some of the above results in

the following, we state them in more detail in Section 2.5.

Apart from the results given above, the Swendsen–Wang dynamics resisted a precise

analysis in (physically) relevant cases, where the heat-bath dynamics is well-understood.

For instance, it was not even proven that SW is rapidly mixing for the Ising model on

the two-dimensional square lattice for all temperatures above the critical one, which has

been known for the heat-bath dynamics for 20 years [47, 48].

We will prove this statement in Chapter 3 by comparison with the heat-bath dynamics.

Furthermore we will obtain rapid mixing at all temperatures below the critical one.

The main challenge in proving rapid mixing of the Swendsen–Wang dynamics for the

two-dimensional square lattice is the low temperature (large β) regime, where no Markov

chain is proven so far to be rapid down to the critical temperature. Therefore, we need

to consider dynamics for the corresponding random-cluster model that seems to be (and

we will see that it indeed is) more convenient for relating spectral gaps at high and low

temperatures.

2.4.2. Dynamics for the random-cluster model. We begin this subsection with the

definition of a non-local Markov chain for the random-cluster model. This is again the
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Swendsen–Wang dynamics. Since it is defined by means of conditional probabilities with

respect to the FKES measure ν (see (2.21)), this Markov chain can be naturally defined

also for the random-cluster model.

The Swendsen–Wang dynamics. The SW dynamics for the random-cluster model is based

on the same connection that was given in the last subsection, but here we make the two-

step procedure in reverse order:

(S̃W1) Given a random-cluster configuration A ∈ ΩRC on G, assign a random color from

[q] independently to each connected component of (V,A). Vertices of the same

component get the same color. This gives σ ∈ ΩP.

(S̃W2) Take E(σ) and delete each edge independently with probability 1− p. This gives

the new RC configuration B ∈ ΩRC.

Thus, the transition matrix of the Swendsen–Wang dynamics for the random-cluster

model on G with parameters p and q is given by

P̃SW(A,B) := P̃G
SW,p,q(A,B) =

∑

σ∈ΩP

ν(σ |A)ν(B |σ)

= q−c(A)

(
p

1− p

)|B| ∑

σ∈ΩP

(1 − p)|E(σ)|
1(A ∪B ⊂ E(σ)). (2.22)

Ergodicity and reversibility of this Markov chain can be shown by similar ideas to those

above. Although the Swendsen–Wang dynamics for the RC model appears quite often in

the literature (especially its generalization to non-integer values of q; see e.g. [8, 9, 13, 14])

we are not aware of any attempt to prove mixing properties of this Markov chain. The

following lemma shows however that every result on the spectral gap of the SW dynamics

for the Potts model is also valid for SW for the corresponding random-cluster model.

Lemma 2.6. Let P̃SW (resp. PSW) be the Swendsen–Wang dynamics for the random-

cluster (resp. q-state Potts) model with parameters p and q (resp. at inverse temperature

β with p = 1− e−β). Then

λ(PSW) = λ(P̃SW).

Proof. Define the ΩP × ΩRC-matrix C by

C(σ,A) := ν(A |σ) = ν(σ,A)

π(σ)
, σ ∈ ΩP, A ∈ ΩRC.

Regard C as an operator that maps from L2(µ) to L2(π) (cf. (2.4)) by

Cg(σ) =
∑

A∈ΩRC

C(σ,A)g(A)

for g ∈ RΩRC . By the usual definition of the adjoint of an operator between different

Hilbert spaces (see e.g. [36, Def. 3.9-1]), the adjoint operator C∗ of C satisfies

〈C∗f, g〉µ = 〈f, Cg〉π
for all f ∈ RΩP and g ∈ RΩRC . Thus, the matrix corresponding to C∗ is given by

C∗(A, σ) = π(σ)

µ(A)
C(σ,A) = ν(σ,A)

µ(A)
= ν(σ |A).
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The definitions of the Swendsen–Wang dynamics in (2.21) and (2.22) imply PSW = CC∗
and P̃SW = C∗C. Additionally, we define Sπ(σ, τ) := π(τ), Sµ(A,B) := µ(B) and

S(π,µ)(σ,A) = µ(A) for all σ, τ ∈ ΩP and A,B ∈ ΩRC. It is straightforward to verify that

S∗
(π,µ)(A, σ) = π(σ), σ ∈ ΩP, A ∈ ΩRC. Thus, S(π,µ)S

∗
(π,µ) = Sπ and S∗

(π,µ)S(π,µ) = Sµ.

We obtain CC∗−Sπ = (C −S(π,µ))(C −S(π,µ))
∗ since by definition S(π,µ)C∗ = Sπ = S∗

π =

CS∗
(π,µ) (see (2.15) and below). Analogously we get C∗C − Sµ = (C − S(π,µ))

∗(C − S(π,µ)).

Recall the definition of the spectral gap from (2.8). It follows from simple properties of

the norm of (adjoint) operators between Hilbert spaces (see e.g. [36, Thm. 3.9-4]) that

1− λ(PSW) = ‖PSW − Sπ‖π = ‖(C − S(π,µ))(C − S(π,µ))
∗‖π = ‖C − S(π,µ)‖2L2(µ)→L2(π)

= ‖(C − S(π,µ))
∗(C − S(π,µ))‖µ = ‖P̃SW − Sµ‖µ = 1− λ(P̃SW),

which proves the statement.

The single-bond dynamics. The last kind of Markov chains we want to consider are the

local Markov chains for the random-cluster model. In fact, we need more than one con-

struction in this case. This comes from the fact that the two dynamics, namely heat-bath

and single-bond dynamics, both have properties that are needed for the further analysis.

First of all we introduce the heat-bath (HB) dynamics for the random-cluster model.

Similarly to the heat-bath dynamics for the Potts model, suppose that A ∈ ΩRC is the

current state of the Markov chain. Then:

(H̃B1) Choose an edge e ∈ E uniformly at random.

(H̃B2) Choose the next state, say B ∈ ΩRC, with respect to µ(· | {A ∪ e, A \ e}), i.e. the
conditional probability (with respect to µ) given that B differs from A only by e.

We use A ∪ e instead of A ∪ {e} (similarly for ∩, \). Recall that, for A ∈ ΩRC, we write

u
A←→ v if u, v ∈ V are connected in the subgraph (V,A) and that we denote the endpoints

of e ∈ E by e(1) and e(2). Write u X

A←→ v if u and v are not connected in (V,A). If we

additionally define Ae := A⊖ e with the symmetric difference ⊖, i.e.

Ae =

{
A ∪ e if e /∈ A,

A \ e if e ∈ A,
(2.23)

we can write the transition probability matrix P̃HB := P̃G
HB,p,q of the heat-bath dynamics

for the RC model as

P̃HB(A,B) =
1

|E|
∑

e∈E

µ(B)

µ(A) + µ(Ae)
1(B \ e = A \ e). (2.24)

Note that unless A = B, at most one summand in the above sum is not zero. Using the

definition of µ from (2.11) we obtain

µ(A)

µ(Ae)
=

(
p

1− p

)|A|−|Ae|
qc(A)−c(Ae), (2.25)

where c(A) = c(Ae) if and only if e(1)
A\e←→ e(2). Otherwise, c(A)− c(Ae) = 21(e /∈ A)− 1.
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Hence, P̃HB satisfies

P̃HB(A,B) =
1

|E|
∑

e∈E





p if B = A ∪ e and e(1)
A\e←→ e(2),

1− p if B = A \ e and e(1)
A\e←→ e(2),

p
p+q(1−p) if B = A ∪ e and e(1)

A\e
X←→ e(2),

q(1−p)
p+q(1−p) if B = A \ e and e(1)

A\e
X←→ e(2),

(2.26)

for A,B ∈ ΩRC. We immediately obtain from this equation that P̃HB does not have the

finite range interaction property, since we have to check connectivity of two vertices in

each step, which is in general a non-local property.

In addition to the need of this Markov chain in an intermediate step of our proof of

rapid mixing for the Swendsen–Wang dynamics, the heat-bath dynamics is interesting in

its own right. One reason is that it also provides a Markov chain for the random-cluster

model with non-integer values of q > 0. It would be interesting to prove a similar relation

between temporal mixing properties of P̃HB and some “spatial mixing” property in the

RC model, as it is known for single-spin dynamics for the Potts model. Another reason

is that the heat-bath dynamics was proposed by Propp and Wilson [57] to produce exact

samples from µ (and so also from the Potts model) using their famous coupling from

the past procedure. Therefore, every mixing time bound on P̃HB leads to a bound on the

(expected) cost of their procedure.

To the best of our knowledge, there is presently only one result on mixing of local

dynamics for the RC model. This is the upper bound on the mixing time of Ge and

Štefankovič [25] that shows rapid mixing of a Metropolis-type version of P̃HB for every

p ∈ (0, 1) and q > 0 if the underlying graph has bounded tree-width. We will state this

result later (see Theorem 2.19).

The advantage of the heat-bath dynamics for our purposes is that its spectral gap, if

the underlying graph G is planar, can be shown to be the same as the spectral gap of

the heat-bath dynamics for the RC model on the dual graph of G with suitable values

of the parameters p and q (see Chapter 5). This provides us with a relation of the

mixing properties of the Swendsen–Wang dynamics at high and low temperatures (see

Theorem 5.6).

The second local Markov chain that we consider is inspired by the local behavior of the

Swendsen–Wang dynamics and we will see (Theorem 4.8) that it enables us to give lower

and upper bounds on the spectral gap of the SW dynamics in terms of the spectral gap of

this Markov chain. The aforementioned local behavior can be demonstrated by the follow-

ing example. Fix p ∈ (0, 1), q ∈ N and let the graph be given by G1 = ({u, v}, {{u, v}}),
i.e. the graph with two vertices and one edge between them. Let e = {u, v}. Then it is

easy to verify that the transition probabilities of the SW dynamics satisfy P̃G1

SW(∅, e) = p/q

and P̃G1

SW(e, ∅) = 1 − p. For this note that, following the steps (S̃W1) and (S̃W2), if the

current configuration is ∅ ⊂ {e} we assign independently a random color from [q] to each

of the vertices, and if their colors agree (which happens with probability 1/q), we put an

edge between them with probability p. Hence, P̃G1

SW(∅, e) = p/q. The second equality can

be shown analogously. We use these transition probabilities to construct a local Markov
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chain for the RC model on arbitrary graphs, which we call the single-bond dynamics, as

follows. Let the current state be A ⊂ E, choose an edge e ∈ E uniformly at random and

decide if e shall be included in the new configuration or not depending on the connec-

tivity of the endvertices of e in A. If the endvertices are not connected in A include e

with probability P̃G1

SW(∅, e), otherwise include e with probability P̃G1

SW(e, e). Note that in

the heat-bath dynamics, we check connectivity in A \ e instead of connectivity in A.

The transition matrix of the single-bond (SB) dynamics is given by

P̃SB(A,B) =
1

|E|
∑

e∈E





p if B = A ∪ e and e(1)
A←→ e(2),

1− p if B = A \ e and e(1)
A←→ e(2),

p
q if B = A ∪ e and e(1) X

A←→ e(2),

1− p
q if B = A \ e and e(1) X

A←→ e(2).

(2.27)

Ergodicity of P̃SB is clear. For the reversibility with respect to µ it is enough to prove

P̃SB(A \ e, A ∪ e)

P̃SB(A ∪ e, A \ e)
=

µ(A ∪ e)

µ(A \ e)
(2.25)
=





p
1−p if e(1)

A\e←→ e(2),

p
q(1−p) if e(1)

A\e
X←→ e(2),

for every A ∈ ΩRC and e ∈ E. First note that e(1) and e(2) are always connected in

A ∪ e, hence we divide by P̃SB(A ∪ e, A \ e) = 1 − p independently of A and e in the

above equation. Additionally, the numerator of the above fraction is p or p/q depending

on connectivity in A \ e, as desired.
As for the heat-bath dynamics for the RC model, the single-bond dynamics is also a

valid local Markov chain for non-integer values of q, but here we have to assume q ≥ 1

in order to ensure that P̃SB is well-defined.

In Section 4.1 we will present the usefulness of this dynamics by providing a common

representation of this and the Swendsen–Wang dynamics on the joint (FKES) model,

using the same “building blocks”. We finish this section with an inequality between the

spectral gaps of P̃SB and P̃HB.

Lemma 2.7. For P̃HB and P̃SB for the random-cluster model with parameters p and q we

have (
1− p

(
1− 1

q

))
λ(P̃HB) ≤ λ(P̃SB) ≤ λ(P̃HB).

Proof. First we show that P̃HB and P̃SB have only non-negative eigenvalues. For this write

P̃HB = 1
|E|

∑
e∈E P̃e with

P̃e(A,B) :=
µ(B)

µ(A) + µ(Ae)
1(B \ e = A \ e), A,B ∈ ΩRC

(see (2.24)). Obviously, P̃e, e ∈ E, is reversible with respect to µ and satisfies P̃ 2
e = P̃e,

since the distributions P̃e(A\e, ·) and P̃e(A∪e, ·) are equal. This shows that all P̃e, e ∈ E,

are projections (see [36, Thm. 9.5-1]), and thus positive, i.e. 〈P̃eg, g〉µ ≥ 0 for all g ∈ L2(µ)

(see [36, Thm. 9.5-2]). Using the fact that the sum of positive operators is positive we

obtain positivity of P̃HB. It follows that P̃HB has only non-negative eigenvalues (see [33,
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Obs. 7.1.4]). Similar arguments lead to the same statement for P̃SB (see Remark 4.4). By

Lemma 2.5, and since P̃HB and P̃SB have the same stationary distribution, it is sufficient

to show (
1− p

(
1− 1

q

))
P̃HB(A,B) ≤ P̃SB(A,B) ≤ P̃HB(A,B)

for A 6= B ∈ ΩRC, i.e. for B = Ae for some e ∈ E (otherwise P̃HB(A,B) = P̃SB(A,B) = 0).

By reversibility we obtain

P̃HB(A \ e, A ∪ e)

P̃SB(A \ e, A ∪ e)
=

P̃HB(A ∪ e, A \ e)
P̃SB(A ∪ e, A \ e)

(2.27)
=

|E|
1− p

P̃HB(A ∪ e, A \ e).

Since
1− p

|E| ≤ P̃HB(A ∪ e, A \ e) ≤ 1

|E|
q(1− p)

p+ q(1 − p)

for q ≥ 1, it follows that

1 ≤ P̃HB(A,A
e)

P̃SB(A,Ae)
≤ q

p+ q(1 − p)
=

1

1− p(1− q−1)
(2.28)

for all A ∈ ΩRC and e ∈ E.

2.5. Known results. In this section we present a selection of known results on the

mixing properties for the above introduced algorithms. In fact, for the heat-bath dynamics

for the Potts model, we will state only results that are needed for the further analysis.

For the Swendsen–Wang dynamics and the local Markov chains for the random-cluster

model we try to give a complete overview of the known results.

Since, in the original papers, some results are given in terms of spectral gap and some

with mixing times, we first state a corollary to Lemma 2.3 that we need for translation.

Corollary 2.8. Let P (resp. P̃ ) be the transition matrix of a reversible, ergodic Markov

chain for the q-state Potts (resp. random-cluster) model on a graph G = (V,E) at inverse

temperature β (resp. with parameters p and q). Then

λ(P )−1 − 1 ≤ tmix(P ) ≤ (2 + β|E|+ |V | log q)λ(P )−1,

λ(P̃ )−1 − 1 ≤ tmix(P̃ ) ≤
(
2 + |E| log 1

p(1− p)
+ |V | log q

)
λ(P̃ )−1.

In particular, this shows that every result of this paper can also be written in terms

of the mixing time, loosing the same factor as in Corollary 2.8.

We begin with the probably most studied instance: the heat-bath dynamics for the

q-state Potts model on the two-dimensional square lattice. For d ≥ 1, define the d-

dimensional hypercubic lattice Z
d
L of side length L as the graph Z

d
L = (VL,d, EL,d) with

vertex set VL,d = {1, . . . , L}d ⊂ Zd and edge set EL,d = {{u, v} ⊂ VL,d : |u − v| = 1},
where | · | denotes the Euclidean norm. For d = 2 we call Z2

L the two-dimensional square

lattice of side length L. In this case (d = 2) there is an almost complete characterization

of the spectral gap, that was established over the last decades, in particular for the

Ising model (q = 2). Beginning with the work of Holley [32], Aizenman and Holley [1]

and Stroock and Zegarliński [66], who showed rapid mixing of the heat-bath dynamics

given some spatial mixing property, which is called complete analyticity (or Dobrushin–
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Shlosman mixing condition) (see [18]), it was finally proven by Martinelli and Olivieri

[47, 48] that the heat-bath dynamics for the Ising model is rapidly mixing up to the

critical temperature, i.e. if the inverse temperature β satisfies β < βc(2) = log(1 +
√
2).

Using results of Cesi, Chayes, Chayes, Guadagni, Martinelli and Schonmann [7, 6, 64] it

is known that this is (almost) best possible in the sense that the spectral gap of the HB

dynamics on Z2
L at inverse temperature β is smaller than exp(−cL), for some c > 0, if

β > βc(2). Only recently has rapid mixing at the critical temperature βc been proven by

Lubetzky and Sly [43]. For the proof of rapid mixing of the heat-bath dynamics for the

Potts model at all β < log(1+
√
q) we need exponential decay of connectivities in the RC

model (see Beffara and Duminil-Copin [3]). This implies weak mixing in the Potts model

(see Alexander [2]), and thus rapid mixing of the heat-bath dynamics (see Martinelli,

Olivieri and Schonmann [49]).

Before we summarize these results in Theorem 2.10, we introduce a variant of the Potts

measure (2.9) and the heat-bath dynamics (2.18) with (constant) boundary condition.

For this define the boundary of VL,d by

∂VL,d := {v = (v1, . . . , vd) ∈ VL,d : vi ∈ {1, L} for some i ∈ [d]}
and let d+L,d(v) be the number of neighbors of v in Zd \ VL,d, i.e.,

d+L,d(v) := |{u ∈ Z
d \ VL,d : |v − u| = 1}|.

The Potts measure on Zd
L with 1-boundary condition is defined by

π
Z
d
L,1

β,q (σ) := Z̄−1π
Z
d
L

β,q(σ)
∏

v∈∂VL,d

exp
(
βd+L,d(v)1(σ(v) = 1

)
), σ ∈ ΩP(Z

d
L), (2.29)

where Z̄ is the proper normalization constant and π
Z
d
L

β,q is defined as in (2.9). This measure

can be interpreted as the conditional distribution of the configurations on VL,d given that

all vertices of Zd \ VL,d have color 1.

Remark 2.9. The critical inverse temperature βc(d, q) for the q-state Potts model on Zd,

that was cited above for d = 2, is generally defined by

βc(d, q) := inf{β : Md,q(β) > 0}, (2.30)

where

Md,q(β) := lim
L→∞

1

|VL,d|
∑

v∈VL,d

(
π
Z
d
L,1

β,q ({σ : σ(v) = 1})− 1

q

)
.

(It is well-known that these limits exist; see e.g. Grimmett [29].) We write βc(q) for

βc(2, q). A closed formula for βc(q) was first established by Onsager [55] in the case q = 2

by giving an explicit formula for M2,2(β). A proof of the equality βc(q) = log(1 +
√
q)

for all q ≥ 2, which was expected to be true, has been given only recently by Beffara and

Duminil-Copin [3]. For d ≥ 3 it is still a challenging open problem to give an explicit

formula for the critical inverse temperature. However, it is known (see Laanait et al. [37])

that

βc(d, q) =
1

d
log q +O(q−1/d)

for q large enough.
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Let π1 := π
Z
2

L,1
β,q . Similarly to (2.18) we define the transition matrix of the heat-bath

dynamics for the Potts model on Z
2
L with 1-boundary condition by

PHB,1(σ, τ) := P
Z
2

L

HB,1,β,q(σ, τ) =
1

|VL,2|
∑

v∈VL,2

π1(τ)∑q
l=1 π

1(σv,l)
1(τ ∈ Ωσ,v) (2.31)

for all σ, τ ∈ ΩP(Z
2
L). We summarize the rapid mixing results stated above in the following

theorem.

Theorem 2.10. Let PHB be the transition matrix of the heat-bath dynamics for the q-state

Potts model on Z2
L at inverse temperature β. Let n = L2 = |VL,2|. Then there exist

constants cβ = cβ(q) > 0 and C <∞ such that

λ(PHB) ≥
cβ
n

for β < βc(q)

and

λ(PHB) ≥ n−C for q = 2 and β = βc(2),

where βc(q) = log(1 +
√
q). These bounds hold also if we replace PHB by PHB,1.

Proof. The results, as originally given in [43, 47], refer to a continuous-time Markov pro-

cess for the Potts model. See e.g. [45] for an introduction to the “graphical construction”

of the continuous-time heat-bath dynamics for the Ising model. In fact, these papers

present lower bounds on gap(Z2
L), which is defined by

gap(Z2
L) := inf

f∈L2(π):
Varπ(f)=1

1

2

∑

σ∈ΩP

∑

v∈VL,2

q∑

k=1

π(σ)
π(σv,k)∑q
l=1 π(σ

v,l)
(f(σv,k)− f(σ))2

(cf. [49, Sec. 3]). By the variational characterization of the eigenvalues of reversible tran-

sition matrices (see e.g. [16] or the proof of Lemma 2.5) we can write

1− ξ2 = inf
f∈L2(π):
Varπ(f)=1

1

2

∑

σ∈ΩP

∑

τ∈ΩP

π(σ)PHB(σ, τ)(f(τ) − f(σ))2,

where ξ2 is the second largest eigenvalue of PHB. By definition, gap(Z2
L) = n(1− ξ2) (see

(2.18)). But PHB has in general only non-negative eigenvalues, and thus λ(PHB) = 1− ξ2.

To see this, write PHB = 1
|V |

∑
v∈V Pv with Pv(σ, τ) = π(τ |Ωσ,v) (cf. (2.17)), and note

that P 2
v = Pv since Ωσ,v = Ωτ,v for all σ, τ with Pv(σ, τ) > 0. That is, Pv is a projection

(see [36, Thm. 9.5-1]). It follows that all Pv, v ∈ V , and thus PHB, have only non-negative

eigenvalues by [36, 9.5-2]. Similar ideas were used in the proof of Lemma 2.7.

Hence, it is enough to show that there exist constants c̃β > 0 and C̃ <∞ such that

gap(Z2
L) ≥

{
c̃β for β < βc(q),

n−C̃ for q = 2 and β = βc(2).

The second inequality is proven in [43, Thm. 4.2]. By [49, Thm. 3.2] the first inequality is

equivalent to a weak mixing property of the Potts measure (see [49, eq. (1.11)]). This weak

mixing property is shown [2, Thm. 3.6] to hold whenever correlations decay exponentially
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or, equivalently, we have exponential decay of connectivities in the corresponding infinite-

volume random-cluster model, i.e., for all u, v ∈ Z
2 we have

lim
L→∞

µ
Z
2

L
p,q({A ⊂ EL,2 : u

A←→ v}) ≤ α1e
−α2|u−v|

with some 0 < α1(p, q), α2(p, q) <∞ and Euclidean norm | · |. This was proven by Beffara

and Duminil-Copin [3, Thm. 2] for all q ≥ 1 and p < pc(q) := 1 − e−βc(q). Furthermore,

the statements of this theorem hold true if we consider the case of 1-boundary condition.

For this see [43, Thm. 1] and note that the result of [49, Thm. 3.2] holds for arbitrary

boundary conditions. This proves the theorem.

Remark 2.11. As stated above it is known that the heat-bath dynamics for the Ising

model (without boundary conditions) is slow mixing if β > βc(2). Additionally, we are

only aware of a result that shows an exponentially small upper bound on the spectral gap

if β > βc(q) and q is large enough for some specific (periodic) boundary condition; see

[5, Thm. 1.2] or Theorem 2.12 below. However, it is reasonable to believe that the HB

dynamics is slowly mixing for all q ≥ 2 and β > βc(q) on Z2
L without (or with periodic)

boundary condition.

We now turn to another class of underlying graphs, namely to rectangular subsets of

the hypercubic lattice Zd. In fact, we consider only the case of periodic boundary condi-

tion. For this consider the cycle CL of length L, that is the graph CL = ({1, . . . , L}, ẼL)

with ẼL := {{v, v + 1} : v ∈ {1, . . . , L − 1}} ∪ {1, L}, and define, for two graphs

G1 = (V1, E1) and G2 = (V2, E2), the graph product of G1 and G2, written G1 × G2,

as the graph with vertex set V1 × V2, where (u1, u2), (v1, v2) ∈ V1 × V2 are neighbors in

G1×G2 iff either u1 and v1 are neighbors in G1 and u2 = v2, or u2 and v2 are neighbors

in G2 and u1 = v1. We then define the d-dimensional torus Z̃
d
L of side length L by the

d-fold graph product

Z̃
d
L := Cd

L = CL × · · · × CL. (2.32)

From Borgs, Chayes and Tetali [5] we obtain the following theorem.

Theorem 2.12. Let PHB (resp. PSW) be the transition matrix of the heat-bath (resp.

Swendsen–Wang) dynamics for the q-state Potts model on Z̃
d
L, d ≥ 2, at inverse temper-

ature β. Then there exist constants k1, k2 < ∞ and a constant k3 > 0 (all depending on

d, β and q) such that, for q and L large enough,

e−(k1+k2β)L
d−1 ≤ λ(PHB) ≤ e−k3βL

d−1

for all β ≥ βc(d, q)

and

e−(k1+k2β)L
d−1 ≤ λ(PSW) ≤ e−k3βL

d−1

for β = βc(d, q)

with βc(d, q) from (2.30). In fact, the lower bounds hold for all β, q and L.

This theorem shows (at least for large q) that the heat-bath dynamics is slowly mixing

at and below the critical temperature and, additionally, that also the Swendsen–Wang

dynamics has an exponentially small spectral gap at the critical temperature if q is large

enough. We will see in Chapter 4 that an analogous result holds for the single-bond

dynamics for the random-cluster model.
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Before we discuss other results for the Swendsen–Wang dynamics, we state a result for

the HB dynamics on a more general class of graphs. For this, fix a graph G = (V,E) and

define the adjacency matrix AG ofG byAG(u, v) := 1({u, v} ∈ E), u, v ∈ V . Additionally,

write ‖AG‖ for its (unweighted) operator norm, i.e. ‖AG‖ = max|x|=1 |AGx|, where the

maximum is taken over x ∈ R|V | and | · | is the Euclidean norm. In the literature ‖AG‖
is called the principal eigenvalue of the graph G. The following theorem is based on a

result of Hayes [31].

Theorem 2.13. The heat-bath dynamics for the q-state Potts model at inverse tempera-

ture β on a graph G with n vertices satisfies

λ(PHB) ≥
1− ε

n

whenever β ≤ 2ε‖AG‖−1.

Proof. Note first that one key ingredient for the result is Observation 11 of [31]. The

result is stated only for the Ising model (q = 2), but it can be generalized quite easily by

induction on q. We state the proof here for completeness. For this, we have to show, for

all u, v ∈ V , that

ρu,v ≤ tanh(β/2)AG(u, v),

where ρu,v, i.e. the influence of v on u, is defined by

ρu,v := max
σ∈ΩP

τ∈Ωσ,v

1

2

q∑

k=1

∣∣∣∣
π(σu,k)∑q
l=1 π(σ

u,l)
− π(τu,k)∑q

l=1 π(τ
u,l)

∣∣∣∣

= max
σ∈ΩP

τ∈Ωσ,v

1

2

q∑

k=1

∣∣∣∣
eβdu,k(σ)

∑q
l=1 e

βdu,l(σ)
− eβdu,k(τ)

∑q
l=1 e

βdu,l(τ)

∣∣∣∣

(see [31, Def. 4]). As before, Ωσ,v is the set of configurations that differ from σ only at

v (cf. (HB2) on page 20), and du,k(σ) is the number of neighbors of u in G with color k

in σ. Note that in [31] the above bound is stated with β in place of β/2. This comes from

the difference in the normalization of the measure.

Obviously, ρu,v = 0 if {u, v} /∈ E since the term inside the absolute value depends only

on the colors of the neighbors of u, which are equal if v is neither of them. Now fix some

neighbors u, v ∈ V and configurations σ, τ ∈ ΩP with τ ∈ Ωσ,v. Let rk := du,k(σ). Since

σ and τ differ only at one neighbor of u, there exist i, j ∈ [q] such that du,i(τ) = ri + 1,

du,j(τ) = rj − 1 and du,k(τ) = rk for all k 6= i, j. Assume without loss of generality that

i = 1 and j = 2. Then some simple calculations show that

1

2

q∑

k=1

∣∣∣∣
eβdu,k(σ)

∑q
l=1 e

βdu,l(σ)
− eβdu,k(τ)

∑q
l=1 e

βdu,l(τ)

∣∣∣∣ =
Nq(r)

Dq(r)
, r = (r1, . . . , rq),

where

Nq(r) := (eβ − e−β)eβ(r1+r2) +max{(eβ − 1)eβr1, (1− e−β)eβr2}
q∑

k=3

eβrk
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and

Dq(r) :=
( q∑

k=1

eβrk
)(

eβ(r1+1) + eβ(r2−1) +

q∑

l=3

eβrl
)
.

We will prove that Nq(r)/Dq(r) ≤ tanh(β/2) for all r ∈ Rq and q ∈ N by induction.

Let us first recall the q = 2 case from Observation 11 of [31]. In this case the last sum

in the definition of N2 and D2 disappears. Thus, for r ∈ R2,

N2(r)

D2(r)
=

(eβ − e−β)eβ(r1+r2)

(eβr1 + eβr2)(eβ(r1+1) + eβ(r2−1))
=

eβ − e−β

eβ + e−β + eβ(r1−r2+1) + e−β(r1−r2+1)

≤ eβ − e−β

eβ + e−β + 2
= tanh(β/2),

where the last inequality comes from ex+e−x ≥ 2, x ∈ R. Now assume that the statement

holds for q − 1 and all s = (r1, . . . , rq−1) ∈ Rq−1 and let r = (r1, . . . , rq−1, rq) for some

rq ∈ R. We obtain

Nq(r)

Dq(r)
=

Nq−1(s) + eβrq max{(eβ − 1)eβr1 , (1− e−β)eβr2}
Dq−1(s) + (eβ + 1)eβ(r1+rq) + (1 + e−β)eβ(r2+rq) + e2βrq + 2eβrq

∑q−1
k=3 e

βrk

≤ Nq−1(s) + eβrq max{(eβ − 1)eβr1 , (1− e−β)eβr2}
Dq−1(s) + eβrq [(eβ + 1)eβr1 + (1 + e−β)eβr2 ]

≤ tanh

(
β

2

)
,

since a/b ≤ t and c/d ≤ t imply (a + c)/(b + d) ≤ t for a, b, c, d, t ≥ 0. This proves

Observation 11 of [31] for all q ∈ N and thus, under the assumptions of this theorem, we

find by [31, Thm. 6] that

max
σ∈ΩP(G)

‖P t
HB(σ, ·) − π‖TV ≤ n

(
1− 1− ε

n

)t

.

Using Lemma 2.2 we obtain the result.

In particular we have the following corollary (see [31]).

Corollary 2.14. The heat-bath dynamics for the q-state Potts model at inverse tem-

perature β on a graph G with n vertices and maximum degree ∆ satisfies

λ(PHB) ≥
1− ε

n

if β ≤ 2ε/∆.

Proof. Using [33, Thm. 8.1.22] we obtain ‖AG‖ ≤ maxu∈V

∑
v∈V AG(u, v) = ∆(G).

Thus, the result follows from Theorem 2.13.

In [31] one can find also an improvement of this corollary if we restrict to the class of

planar graphs. We will use this in Chapter 5 to obtain a result for the Swendsen–Wang

dynamics on planar graphs (see Corollary 5.7).

Remark 2.15. There are, of course, a lot of other results concerning mixing properties

of the heat-bath dynamics for the Potts model. These include, e.g., rapid mixing for

heat-bath dynamics on trees at all temperatures [4]. Additionally, only recently was the

complete picture of rapid mixing or lack thereof established for the HB dynamics on the

complete graph [12, 38].
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Now we want to state some known results on the mixing properties of the Swendsen–

Wang dynamics. We try to give an overview of all known results, but we omit results

that involve boundary conditions (or external magnetic field) (see e.g. [44, 50, 51]), and

results where the underlying graph is random (see [11]).

We start with the known results on the complete graph, where at least for q = 2 the

mixing behavior is completely known. Denote by Kn the complete graph on n vertices,

i.e. Kn = ([n],
(
[n]
2

)
), where

(
[n]
2

)
is the set of all two-element subsets of [n]. For two

non-negative functions f, g : N→ R, we write f(n) = Θ(g(n)) iff 0 < limn→∞
f(n)
g(n) <∞.

The result below is due to Long, Nachmias and Peres [42, 41] in the case q = 2 (see also

[10]). For q ≥ 3 the results are adopted from Gore and Jerrum [28] and Huber [34].

Theorem 2.16. Let PSW be the transition matrix of the Swendsen–Wang dynamics for

the q-state Potts model on the complete graph Kn at inverse temperature β = log
(

n
n−c

)
,

c ≥ 0 (or p = 1− e−β = c/n). Then, with tmix := tmix(PSW),

(i) for q = 2 and

• c < 2: tmix = Θ(1),

• c = 2: tmix = Θ(n1/4),

• c > 2: tmix = Θ(logn);

(ii) for q ≥ 3 and

• c =
2(q − 1) log(q − 1)

q − 2
: tmix ≥ eε

√
n for some ε > 0,

• c <
1

3
: tmix ≤ C logn for some C <∞,

• c > 2q log(3qn): tmix ≤ Cqn for some C <∞.

As far as we know, Theorems 2.12 and 2.16(ii) contain the only presently known slow

mixing results for the Swendsen–Wang dynamics (except for results on random graphs).

Other classes of graphs where rapid mixing of SW is known at all temperatures, but now

for every q ∈ N, are trees and cycles (see Cooper and Frieze [11] and Long [41]).

Theorem 2.17. Let T be a tree on n vertices and Cn be a cycle of length n. Then

• tmix(P
T
SW,β,q) = Θ(logn), and

• tmix(P
Cn

SW,β,q) ≤ cn logn for some c <∞.

In fact, we have λ(PT
SW,β,q) = 1− p(1− 1/q).

For the statement on the spectral gap consider the construction of [41, Chap. 7] and

Exercise 12.7 of [39]. The last result that we want to present here for the SW dynamics

is, similarly to Corollary 2.14, a result on graphs of bounded maximum degree from [34]

(see also [11]).

Theorem 2.18. The Swendsen–Wang dynamics for the q-state Potts model at inverse

temperature β on a graph G with n vertices and maximum degree ∆ satisfies

tmix(PSW) ≤ C logn for some C <∞
whenever β ≤ 1

3(∆−1) .
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Now we turn to a result for the single-bond (or heat-bath) dynamics for the random-

cluster model. In fact, this is the only result on the mixing properties of this Markov

chain that we are aware of.

For this define the linear width of a graph G = (V,E) as the smallest number ℓ such

that there exists an ordering e1, . . . , e|E| of the edges with the property that for every

i ∈ [|E|] there are at most ℓ vertices that are an endvertex of both an edge in {e1, . . . ei}
and an edge in {ei+1, . . . e|E|}. See [25] for bounds on the linear width of paths, cycles,

trees and a bound in terms of a related quantity, the tree width.

The following result is due to Ge and Štefankovič [25] (we only state the q ≥ 1 case).

Theorem 2.19. Let P̃SB be the transition matrix of the single-bond dynamics for the

random-cluster model with parameters p and q ≥ 1 on a graph G = (V,E) with linear

width bounded by ℓ. Let m := |E|. Then

λ(P̃SB) ≥
1

2qℓ+1

1

m2
. (2.33)

Proof. In [25] the authors consider the (lazy) Metropolis version of the single-bond dy-

namics. This Markov chain has transition probabilities

P̃M(A,Ae) =
1

2|E| min

{
1, qc(A

e)−c(A)

(
p

1− p

)|Ae|−|A|}
, A ⊂ E,

with P̃M(A,A) such that P̃M is a stochastic matrix and with Ae from (2.23). For this

Markov chain they prove a lower bound on the congestion, which is defined as follows.

Let Γ := {γAB : A,B ⊂ E}, where γAB are paths from A to B in the graphH = (ΩRC, E)
with E = {(A,B) : P̃M(A,B) > 0}. Then we define the congestion of P̃M (with respect

to Γ) by

̺(P̃M,Γ) := max
(B1,B2)∈E

1

µ(B1)P̃M(B1, B2)

∑

A,C:(B1,B2)∈γAC

|γAC |µ(A)µ(C),

where |γAC | denotes the length of the path. The bound of [25, Lemma 16] is ̺(P̃M,Γ) ≤
2|E|2qℓ for a suitable choice of Γ, and so, by [16, Prop. 1′] (note that P̃M is lazy),

λ(P̃M)−1 ≤ 2|E|2qℓ.
But since it is easy to show that P̃M(A,B) ≤ qP̃SB(A,B) for all A 6= B ⊂ E and that P̃SB

has only non-negative eigenvalues (see Remark 4.4), we can conclude from Lemma 2.5

that

λ(PSB)
−1 ≤ qλ(PM)−1 ≤ 2|E|2qℓ+1.

Finally, we want to mention an algorithm that allows approximate sampling in poly-

nomial time from the Ising model on arbitrary graphs and at all temperatures. This

algorithm is due to Randall and Wilson [58] and is based on the seminal work of Jerrum

and Sinclair [35], which shows the first (and presently the only) polynomial-time algo-

rithm to approximate the partition function of an arbitrary (ferromagnetic) Ising system.

We are not aware of an explicit bound on the expected running time of this sampling

procedure, but there is a bound for the algorithm for the partition function in [35]. Maybe
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due to its simplicity, the Swendsen–Wang dynamics is, however, still the preferred algo-

rithm in practice and, needless to say, it would be amazing to obtain rapid mixing of this

Markov chain in the same regime.

3. Comparison with single-spin dynamics

This chapter is based on [68]. We prove by comparison that the spectral gap of the

Swendsen–Wang dynamics (SW) is bounded from below by some constant times the

spectral gap of the heat-bath chain (HB). This result leads to rapid mixing of SW on

graphs of bounded degree whenever HB mixes rapidly.

We will prove the following theorem, which is a minor improvement of [68, Thm. 1].

Theorem 3.1. Suppose that PSW (resp. PHB) is the transition matrix of the Swendsen–

Wang (resp. heat-bath) dynamics for the q-state Potts model at inverse temperature β on

a graph G with maximum degree ∆. Then

λ(PSW) ≥ cSWλ(PHB),

where

cSW = cSW(∆, β, q) := q−1(qe2β)−2∆. (3.1)

Remark 3.2. The inequality of Theorem 3.1 is probably off by a factor of |V (G)|,
because we compare the SW dynamics with a Markov chain that changes only the

color of one vertex of the graph per step. We conjecture that a bound of the form

λ(PSW) ≥ c|V (G)|λ(PHB), for some constant c > 0, holds and that, in particular, this

constant c has a “better” dependence on the parameters involved. Unfortunately, this

does not seem to be possible to show with our techniques.

Before we prove Theorem 3.1 we state some corollaries that can be deduced directly

from the known results for the heat-bath dynamics (see Section 2.5).

The first corollary deals with the class of graphs with bounded maximum degree. It

relies on a slight generalization of a result of Hayes [31], who gives a simple condition

on β, depending on the maximum degree, for rapid mixing of the heat-bath dynamics for

the Ising model (see Theorem 2.13 and Corollary 2.14).

Corollary 3.3. The Swendsen–Wang dynamics for the q-state Potts model at inverse

temperature β on a graph G with n vertices and maximum degree ∆ satisfies

λ(PSW) ≥ cSW(1− ε)/n

with cSW = cSW(∆, β, q) from (3.1) and ε > 0, if

β ≤ 2ε/∆.

This result improves that of Huber [34] (see Theorem 2.18) in the range of applicabil-

ity, which was β ≤ 1/(3(∆− 1)) before, but while the result of [34] is a logarithmic (in n)

upper bound on the mixing time, Corollary 3.3 together with Corollary 2.8 leads only to
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a quadratic bound. We will see a further improvement of the above result in Chapter 5

if we consider only planar graphs (see Corollary 5.7).

The second corollary, which we call a theorem because of its importance for the rest

of this work, gives a bound on the spectral gap for the Swendsen–Wang dynamics on

the square lattice. For this recall that the two-dimensional square lattice of side length L

is the graph Z
2
L = (VL,2, EL,2) with vertex set VL,2 = {1, . . . , L}2 ⊂ Z

2 and edge set

EL,2 = {{u, v} ⊂ VL,2 : |u− v| = 1} (see Figure 1).

Theorem 3.4. Let PSW be the transition matrix of the Swendsen–Wang dynamics for

the q-state Potts model on Z2
L at inverse temperature β. Let n = L2 = |VL,2|. Then there

exist constants cβ = cβ(q) > 0 and C <∞ such that

λ(PSW) ≥ cβ/n for β < βc(q),

and

λ(PSW) ≥ cSWn−C for q = 2 and β = βc(2),

with cSW = cSW(4, βc(2), 2) from (3.1) and βc(q) = log(1 +
√
q).

This result is a consequence of Theorem 3.1 and the corresponding result for the

heat-bath dynamics (see Theorem 2.10 as well as the references in its proof).

Remark 3.5. Note that only the presence of q under the exponent in the definition of

cSW from (3.1) prevents us from the application of Theorem 3.1 to the complete graphKn.

This comes from ∆(Kn) = n− 1 and the usual normalization of the inverse temperature

to β = c/n for some c > 0 (cf. Theorem 2.16), which would lead (without the q) to a

lower bound on cSW(Kn, c/n, q) independent of n.

3.1. Proof of Theorem 3.1. The proof is based on standard techniques for the com-

parison of Markov chains (see Lemma 2.5), together with an appropriate choice of an

auxiliary Markov chain that can be compared to both Swendsen–Wang and heat-bath

dynamics. For the remainder of this section fix a graph G = (V,E), some β ≥ 0 and

q ∈ N, and recall that we denote by π the measure for the q-state Potts model on G

at inverse temperature β (see (2.9)). We will analyze the auxiliary Markov chain with

transition probability matrix

Q = PHBPSWPHB (3.2)

where PHB is from (2.18) and PSW from (2.21). Since PHB and PSW are reversible with

respect to π, we see that Q is also reversible.

The first lemma shows that a Markov chain with transition matrix Q has a larger

spectral gap than the heat-bath dynamics.

Lemma 3.6. With the definitions above we get

λ(Q) ≥ λ(PHB).
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Proof. With Sπ(σ, τ) = π(τ) for σ, τ ∈ ΩP, we have Q−Sπ = (PHB−Sπ)PSW(PHB−Sπ),

which is self-adjoint. Hence we can write the spectral gap (see (2.8)) as

1− λ(Q) = ‖Q− Sπ‖π = ‖(PHB − Sπ)PSW(PHB − Sπ)‖π
≤ ‖PHB − Sπ‖2π‖PSW‖π ≤ ‖PHB − Sπ‖π = 1− λ(PHB),

where we use submultiplicativity of the spectral norm as well as ‖PSW‖π ≤ 1 and

‖PHB − Sπ‖π ≤ 1.

To prove a lower bound on the spectral gap of PSW it remains to prove λ(PSW) ≥
cλ(Q) for some c > 0. For this we need an estimate of the transition probabilities of

the Swendsen–Wang dynamics on G with respect to some subgraph of G. Therefore we

denote the transition matrix of the Swendsen–Wang dynamics for the q-state Potts model

on a graph G at inverse temperature β throughout this section by PG, i.e.

PG := PG
SW,β,q (3.3)

(cf. (2.21)). We prove the following lemma.

Lemma 3.7. Let G = (V,E) be a graph and G0 = (V,E0) be a spanning subgraph of G

with E0 ⊂ E. Then

a
|E\E0|
1 PG0

(σ, τ) ≤ PG(σ, τ) ≤ a
|E\E0|
2 PG0

(σ, τ)

for all σ, τ ∈ ΩP, where

a1 = a1(β) := e−β and a2 = a2(β, q) := 1 + q(eβ − 1).

Proof. The first inequality is already known from the proof of Lemma 3.3 in [5], but

we state it here for completeness. Let p = 1 − e−β and note that E0(σ) ⊂ E(σ) for all

σ ∈ ΩP. We deduce by (2.21) that

PG(σ, τ) =
∑

A⊂E

p|A|(1− p)|E(σ)|−|A|q−c(A)
1(A ⊂ E(σ) ∩ E(τ))

≥
∑

A⊂E0

p|A|(1 − p)|E(σ)|−|A|q−c(A)
1(A ⊂ E0(σ) ∩ E0(τ))

= (1 − p)|E(σ)|−|E0(σ)|PG0
(σ, τ) ≥ (1− p)|E\E0|PG0

(σ, τ).

For the second inequality suppose for now E0 = E \ e with some e ∈ E and note that

c(A ∪ e) ≥ c(A)− 1. We get

PG(σ, τ) =
∑

A⊂E(σ)∩E(τ)

p|A|(1− p)|E(σ)|−|A|q−c(A)

=
∑

A⊂E(σ)∩E(τ):
e∈A

p|A|(1− p)|E(σ)|−|A|q−c(A)

+
∑

A⊂E(σ)∩E(τ):
e/∈A

p|A|(1 − p)|E(σ)|−|A|q−c(A)
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=
∑

A′⊂E0(σ)∩E0(τ)

p|A
′∪e|(1− p)|E(σ)|−|A′∪e|q−c(A′∪e)

+
∑

A′⊂E0(σ)∩E0(τ)

p|A
′|(1− p)|E(σ)|−|A′|q−c(A′)

≤ qp

1− p

∑

A′⊂E0(σ)∩E0(τ)

p|A
′|(1− p)|E0(σ)|−|A′|q−c(A′) + PG0

(σ, τ)

=

(
qp

1− p
+ 1

)
PG0

(σ, τ) = (1 + q(eβ − 1))PG0
(σ, τ).

For |E \ E0| > 1 one can iterate this procedure |E \ E0| times.

We use this lemma to prove that the transition probability from σ to τ is similar

to the probability of going from a neighbor of σ to a neighbor of τ . Recall that σv,k is

defined by σv,k(v) = k ∈ [q] and σv,k(u) = σ(u), u 6= v.

Lemma 3.8. Let σ, τ ∈ ΩP, v ∈ V and k, l ∈ [q]. Then

PG(σ
v,k, τv,l) ≤ a

degG(v)
3 PG(σ, τ) with a3 = a3(β, q) := qe2β − (q − 1)eβ,

where degG(v) denotes the degree of the vertex v in G.

Proof. Define Ev := {e ∈ E : v ∈ e} and Gv := (V,E \ Ev). Then v ∈ V is an isolated

vertex in Gv. By the definition of the Swendsen–Wang dynamics we get

PGv
(σv,k, τv,l) = PGv

(σ, τ).

If we set E0 = E \ Ev we get |E \ E0| = degG(v). We deduce by Lemma 3.7 that

PG(σ
v,k, τv,l) ≤ a

degG(v)
2 PGv

(σv,k, τv,l) = a
degG(v)
2 PGv

(σ, τ) ≤
(
a2
a1

)degG(v)

PG(σ, τ)

with a1 and a2 from Lemma 3.7.

Now we are able to prove the main result of this chapter.

Proof of Theorem 3.1. Because of Lemma 3.6 we only have to prove λ(PSW) ≥ cSWλ(Q).

Let

c := max
σ1,σ2,τ1,τ2∈ΩP:
σ1∼σ2, τ1∼τ2

PSW(σ1, τ1)

PSW(σ2, τ2)
, (3.4)

where σ ∼ τ :⇔∑
v∈V 1(σ(v) 6= τ(v)) ≤ 1, i.e. σ and τ differ in at most one vertex. Note

that PHB(σ, τ) 6= 0 if and only if σ ∼ τ . We find for σ1, τ1 ∈ ΩP that

Q(σ1, τ1) =
∑

σ2,τ2∈ΩP

PHB(σ1, σ2)PSW(σ2, τ2)PHB(τ2, τ1)

≤ cPSW(σ1, τ1)
∑

σ2∼σ1

PHB(σ1, σ2)
∑

τ2∼τ1

PHB(τ2, τ1) ≤ qcPSW(σ1, τ1).

Using Lemma 2.5 we obtain

λ(Q) ≤ qcλ(PSW).
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It remains to bound c. Recall that degG(v) ≤ ∆ for all v ∈ V (G). With a3 from Lemma 3.8

we get, for σ1, σ2, τ1, τ2 ∈ ΩP with σ1 ∼ σ2 and τ1 ∼ τ2,

PSW(σ1, τ1)

PSW(σ2, τ2)
≤ a∆3

PSW(σ2, τ1)

PSW(σ2, τ2)
≤ a2∆3

PSW(σ2, τ2)

PSW(σ2, τ2)
= a2∆3 .

Finally,

λ(Q) ≤ qcλ(PSW) ≤ qa2∆3 λ(PSW) ≤ q(qe2β)2∆λ(PSW).

3.2. A slight generalization. In this section we present a generalization of Theorem 3.1

that is necessary to handle also graphs with a single vertex of maximal degree. The

idea behind this modification is that the transition probabilities of the Swendsen–Wang

dynamics are invariant under global flips of the color of all vertices, i.e.

PSW(σ, τ) = PSW(σ + k, τ + l), σ, τ ∈ ΩP, k, l ∈ [q], (3.5)

where (σ + k)(v) := (σ(v) + k − 1 mod q) + 1 for all v ∈ V . To see this, note that

PSW(σ, τ) (cf. (2.21)) does not depend on the precise colors in σ and τ , but on the

“edges of agreement” E(σ) and E(τ) (see (2.10)), which are invariant under global flips.

If we now consider the heat-bath dynamics with additional global flips, i.e. in each step

make one step using PHB and then change the color of all vertices at once by a random

increment, it is reasonable to conjecture that SW has also an (almost) larger spectral

gap than this Markov chain. In the following theorem we prove this statement, but in a

different form, namely, we consider the original Markov chains under the condition that

the color of the configurations is fixed at a single vertex. Because of symmetry we can

assume that the fixed color equals 1. This can be interpreted as “boundary conditions”

for the neighbors of this single vertex.

For some fixed vertex w ∈ V in the graph G = (V,E) we denote by

Λw := {1, . . . , q}V \w

the set of all colorings of the vertices V \ w and define a probability measure on Λw by

πw(σ̄) := qπ(σ̄1), σ̄ ∈ Λw, (3.6)

with π from (2.9), where σ̄1 ∈ ΩP is a coloring of V such that σ̄1(u) = σ̄(u), u 6= w, and

σ̄1(w) = 1. One may think of πw as the conditional probability measure on the colorings

of the vertices V \ w with respect to π given that w is colored 1.

It is not difficult to show (using ideas similar to those of the proof of Theorem 3.9

below) that the Markov chain on Λw with transition matrix P̄ (σ̄, τ̄ ) := qPSW(σ, τ), where

σ, τ ∈ ΩP and σ̄, τ̄ ∈ Λw are such that

σ̄(v) := (σ(v) − σ(w) mod q) + 1, v ∈ V \ w,
is reversible with respect to πw and has the same spectral gap as PSW. Additionally, we

define the heat-bath dynamics that is reversible with respect to πw similarly to (2.18) by

Pw
HB(σ̄, τ̄) := PG,w,1

HB,β,q(σ̄, τ̄ ) =
1

|V | − 1

∑

v∈V \w

πw(τ̄ )∑q
l=1 π

w(σ̄v,l)
1(τ̄ ∈ Ωw

σ,v), (3.7)

where Ωw
σ̄,v := {τ̄ ∈ Λw : τ̄ (u) = σ̄(u), ∀u 6= v}. The following theorem gives a comparison

inequality between PSW and Pw
HB that will be essential in utilizing results on the heat-
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bath dynamics for the Potts model with boundary conditions (cf. (2.29)) for the analysis

of the SW dynamics.

Theorem 3.9. Suppose that PSW is the transition matrix of the Swendsen–Wang dy-

namics for the q-state Potts model at inverse temperature β on a graph G = (V,E).

Furthermore, let w ∈ V be any vertex and Pw
HB be as in (3.7). Then

λ(PSW) ≥ c̃SWλ(Pw
HB) with c̃SW = c̃SW(G, β, q) := q−1(qe2β)−2∆̃,

where

∆̃ := max
u∈V \w

degG(u)

is the maximum degree over V \ w.
Before we prove Theorem 3.9, we present an application of it. For this recall the

definition of the two-dimensional square lattice Z2
L = (VL,2, EL,2) of side length L from

Section 2.5, and that the boundary of VL,2 is defined by ∂VL,2 := {v = (v1, v2) ∈ VL,2 :

vi ∈ {1, L} for some i ∈ [2]}. Now we introduce a new auxiliary vertex v∗ and let Z
2†
L

be the graph Z2
L−1 with additional vertex v∗ and edges between v∗ and all boundary

vertices u ∈ ∂VL−1,2. That is, Z
2†
L := (V †

L,2, E
†
L,2, ϕ) is the (multi-)graph (cf. Section 2.3)

with vertex set V †
L,2 = VL−1,2 ∪ v∗ and edge set E†

L,2 such that the set of endpoints of

the edges in E†
L,2 satisfies ϕ(E†

L,2) = EL−1,2 ∪ {{v∗, u} : u ∈ ∂VL−1,2} and, for each of

the vertices (1, 1), (1, L− 1), (L− 1, 1), (L− 1, L− 1) ∈ V †
L,2, there are two parallel edges

to v∗ (see Figure 2). Now we can deduce the following directly from Theorem 2.10.

b b

b b b

Fig. 2. The graph Z
2†
3

Corollary 3.10. Let PSW be the transition matrix of the Swendsen–Wang dynamics

for the q-state Potts model on Z
2†
L at inverse temperature β. Let n = |V †

L,2|. Then there

exists a constant cβ = cβ(q) > 0 such that

λ(PSW) ≥ cβ/n for β < βc(q)

with βc(q) = log(1 +
√
q).

Proof. Let the auxiliary vertex v∗ be the vertex with fixed color from Theorem 3.9.

Then we see that P v∗

HB from (3.7) equals PHB,1 from (2.31). Thus, the result follows from

Theorem 2.10.

We finish this chapter with the proof of Theorem 3.9.
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Proof of Theorem 3.9. The proof is very similar to the proof of Theorem 3.1. First, recall

that for σ ∈ ΩP, σ̄(v) = (σ(v) − σ(w) mod q) + 1, v ∈ V \w, with σ̄ ∈ Λw. Additionally,

for σ̄ ∈ Λw, we denote by σ̄1 ∈ ΩP the configuration with σ̄1(v) = σ̄(v), v 6= w, and

σ̄1(w) = 1.

We define, for σ ∈ ΩP and τ̄ ∈ Λw, the “flip” transition matrices

F1(σ, τ̄ ) := 1(τ̄ = σ̄) and F2(τ̄ , σ) :=
1

q

q−1∑

l=0

1(σ = τ̄1 + l).

(If we consider F1 as an operator mapping from L2(π
w) to L2(π), then F2 = F ∗

1 .) With π

from (2.9) and πw from (3.6), it is easy to check that πF1 = πw and πwF2 = π. Following

the same ideas as in Section 3.1 with

Q = F1P
w
HBF2PSWF1P

w
HBF2,

which is reversible with respect to π, we get

‖Q− Sπ‖π ≤ ‖F1P
w
HBF2 − Sπ‖π = ‖F1(P

w
HB − Sπw )F2‖π ≤ ‖Pw

HB − Sπw‖πw .

This proves λ(Q) ≥ λ(Pw
HB). It remains to show that λ(PSW) ≥ c̃SWλ(Q). By the con-

struction of the Swendsen–Wang dynamics we know that

PSW(σ, τ) = PSW(σ̄1, τ̄1), ∀σ, τ ∈ ΩP.

Hence we deduce with

c̃ := max
σ1,σ2,τ1,τ2∈ΩP:
σ̄1

1
∼σ̄1

2
, τ̄1

1
∼τ̄1

2

PSW(σ1, τ1)

PSW(σ2, τ2)

(cf. (3.4)) that, for all σ, τ ∈ ΩP,

Q(σ, τ) =
∑

σ̄1,τ̄1∈Λw

σ2,τ2∈ΩP

Pw
HB(σ̄, σ̄1)F2(σ̄1, σ2)PSW(σ2, τ2)P

w
HB(τ̄2, τ̄1)F2(τ̄1, τ)

=
∑

σ̄1∈Λw,
τ2∈ΩP

Pw
HB(σ̄, σ̄1)PSW(σ̄1

1 , τ̄
1
2 )P

w
HB(τ̄2, τ̄ )F2(τ̄ , τ)

≤ c̃PSW(σ̄1, τ̄1)
∑

σ̄1∼σ̄

Pw
HB(σ̄, σ̄1) ·

1

q

∑

τ2:τ̄2∼τ̄

Pw
HB(τ̄2, τ̄ )

= c̃PSW(σ, τ)
∑

τ̄3∈Λw:
τ̄3∼τ̄

Pw
HB(τ̄3, τ̄ ) ≤ qc̃PSW(σ, τ).

With a3 from Lemma 3.8 we see for σ1, σ2, τ1, τ2 ∈ ΩP with σ̄1
1 ∼ σ̄1

2 and τ̄11 ∼ τ̄12 that

PSW(σ1, τ1)

PSW(σ2, τ2)
≤ a∆̃3

PSW(σ2, τ1)

PSW(σ2, τ2)
≤ a2∆̃3

PSW(σ2, τ2)

PSW(σ2, τ2)
= a2∆̃3 ,

because degG(v) ≤ ∆̃ for all v ∈ V \w. By the same ideas as in the proof of Theorem 3.1

(and Lemma 2.5) we conclude that

λ(Q) ≤ qc̃λ(PSW) ≤ qa2∆̃3 λ(PSW) ≤ q(qe2β)2∆̃λ(PSW).
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4. Comparison with single-bond dynamics

The goal of this chapter is to present a comparison of Swendsen–Wang and single-bond

dynamics for the random-cluster model. In fact, we prove that the spectral gaps of both

Markov chains are equal up to a small polynomial in the number of edges of the underlying

graph G = (V,E), i.e. up to c|E| log |E| for some c < ∞. In particular, this proves that

rapid mixing of both Markov chains is equivalent.

In this chapter, we first give a representation of both Markov chains (or their transition

matrices) on the joint (FKES) model (see (2.12)) using the same “building blocks”.

Then we provide some technical lemmas that yield estimates on the norm of products of

operators between (not necessarily equal) Hilbert spaces.

Using these ingredients we obtain several new rapid mixing results for the single-bond

dynamics, but we can also use Theorem 2.19 to get a result on Swendsen–Wang dynamics

on graphs of bounded linear width. Additionally we adopt the result of Theorem 2.12 to

prove matching upper and lower bounds for the spectral gap of the single-bond dynamics

on the d-dimensional torus (see (2.32)) at the critical temperature that show slow mixing

if the number of colors is large enough.

4.1. Common representation. We want to represent the Swendsen–Wang and the

single-bond dynamics on the joint model, which consists of the product state space ΩJ :=

ΩP × ΩRC and the FKES measure. This was done first in [70] and we follow the steps

from that article. First recall that, if G = (V,E), p = 1 − e−β and q ∈ N are fixed, we

denote by µ (resp. ν) the random-cluster (resp. FKES) measure on G with parameters

p and q (see (2.11) and (2.12)) and that L2(µ) (resp. L2(ν)) is the Hilbert space that

consists of RΩRC (resp. RΩJ) with the inner product 〈·, ·〉µ (resp. 〈·, ·〉ν).
We introduce the stochastic matrix M that defines the mapping (by matrix multipli-

cation) from the RC to the joint model by

M(B, (σ,A)) := q−c(B)
1(A = B)1(B ⊂ E(σ)) (4.1)

for B ∈ ΩRC and (σ,A) ∈ ΩJ. Obviously, we find by definition of µ and ν that M satisfies

µM(σ,A) =
∑

B∈ΩRC
µ(B)M(B, (σ,A)) = ν(σ,A). (See the discussion after (2.15) for a

possible interpretation of that equality.) As in (2.4), M defines an operator that maps

from L2(ν) to L2(µ) by

Mf(B) :=
∑

(σ,A)∈ΩJ

M(B, (σ,A))f(σ,A), f ∈ L2(ν). (4.2)

Its adjoint operator M∗, i.e. the operator that satisfies

〈M∗g, f〉ν = 〈g,Mf〉µ for all f ∈ L2(ν), g ∈ L2(µ),

can be given by the (stochastic) matrix

M∗((σ,A), B) = 1(A = B).

One simple and useful property of the matrices M and M∗ is that their product satisfies

MM∗(A,B) = 1(A = B) for all A,B ∈ ΩRC, or equivalently, the corresponding operators

satisfy MM∗ = I with If := f for all f ∈ L2(µ).
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Remark 4.1. The matrices above will be used with the following interpretation in mind.

We want to construct a Markov chain for the RC model that is reversible with respect

to µ. This could be done, starting in a RC configuration, by making a “step” with M first,

which leads to a configuration in the joint model (with an unchanged RC coordinate).

Then make updates of the RC coordinate in the joint configuration that are reversible

with respect to ν. Finally, forget about the coloring to obtain a new RC configuration.

At first sight this is no advantage, but we will see that it is possible in some cases to find

a representation of Markov chains for the RC model by rather simple update rules on the

joint model, while the original updates are difficult to handle.

The following matrices provide the updates of the “RC coordinate” in the joint model.

For (σ,A), (τ, B) ∈ ΩJ and e ∈ E with e = {e(1), e(2)} let

Te((σ,A), (τ, B)) := 1(σ = τ)





p, B = A ∪ e and σ(e(1)) = σ(e(2)),

1− p, B = A \ e and σ(e(1)) = σ(e(2)),

1, B = A \ e and σ(e(1)) 6= σ(e(2)).

(4.3)

The lemma below shows some interesting properties of the matrices from (4.1) and

(4.3). For example {Te}e∈E is a family of commuting projections in L2(ν). This will be

important in the proof of the main result.

Lemma 4.2. Let M , M∗ and Te be the matrices above. Then

(i) M∗M and Te are self-adjoint in L2(ν).

(ii) TeTe = Te and TeTe′ = Te′Te for all e, e′ ∈ E.

(iii) ‖Te‖ν = 1 and ‖M∗M‖ν = 1.

Proof. The first part of (i) is obvious since (M∗M)∗ = M∗(M∗)∗ = M∗M (see e.g. [36,

Thm. 3.9-4]). The second part can be checked easily using (2.6). Part (ii) comes from the

fact that the transition probabilities depend only on the “coordinate” that will not be

changed. For (iii) note that ‖M∗M‖ν = ‖MM∗‖µ (see [36, Thm. 3.9-4]), and MM∗ = I

with If := f , f ∈ L2(µ). Hence, ‖M∗M‖ν = ‖I‖µ = 1. It remains to prove ‖Te‖ν = 1.

By TeTe = Te and the self-adjointness of Te we obtain ‖Te‖ν
(ii)
= ‖T 2

e ‖ν
(i)
= ‖Te‖2ν. This

implies ‖Te‖ν ∈ {0, 1}, but since Teg = g if g is constant, ‖Te‖ν cannot be zero.

We finish this section with a lemma that demonstrates the relation of M and Te to the

Swendsen–Wang and single-bond dynamics. Recall that P̃SW and P̃SB are their transition

matrices (see (2.22) and (2.27)).

Lemma 4.3. Let M , M∗ and Te be the matrices above. Then

(i) P̃SW = M
(∏

e∈E

Te

)
M∗.

(ii) P̃SB =
1

|E|
∑

e∈E

MTeM
∗ = M

(
1

|E|
∑

e∈E

Te

)
M∗.

From Lemma 4.2(ii) we know that the order of multiplication in (i) is not important.
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Proof of Lemma 4.3. For (i) note that
(∏

e∈E

Te

)
((σ,A), (τ, B)) = 1(σ = τ)1(B ⊂ E(σ))p|B|(1− p)|E(σ)|−|B|.

Hence,

M
(∏

e∈E

Te

)
M∗(A,B) =

∑

σ∈ΩP

M(A, (σ,A))

(∏

e∈E

Te

)
((σ,A), (σ,B))

=
∑

σ∈ΩP

q−c(A)
1(A ⊂ E(σ))1(B ⊂ E(σ))︸ ︷︷ ︸

=1(A∪B⊂E(σ))

p|B|(1− p)|E(σ)|−|B|

= PSW(A,B).

For part (ii) we define 1e(σ) := 1(σ(e(1)) = σ(e(2))) and 1e(A) := 1(e(1)
A←→ e(2)) for

σ ∈ ΩP, A ∈ ΩRC and e ∈ E with e = {e(1), e(2)}. Now write

Te((σ,A), (σ,B)) = 1(B = A \ e) + p1e(σ)[1(B = A ∪ e)− 1(B = A \ e)]
and note that |{σ ∈ ΩP : A ⊂ E(σ)}| = qc(A) (because the colorings have to be constant

on each of the c(A) components) and

q−c(A)
∑

σ:A⊂E(σ)

1e(σ) =
1

q
+ 1e(A)

(
1− 1

q

)
.

Hence,

MTeM
∗(A,B) =

∑

σ

q−c(A)
1(A ⊂ E(σ))Te((σ,A), (σ,B))

= 1(B = A \ e)
+ p[1(B = A ∪ e)− 1(B = A \ e)]q−c(A)

∑

σ:A⊂E(σ)

1e(σ)

=





p, B = A ∪ e and e(1)
A←→ e(2),

1− p, B = A \ e and e(1)
A←→ e(2),

p/q, B = A ∪ e and e(1) X

A←→ e(2),

1− p/q, B = A \ e and e(1) X

A←→ e(2).

Summing over E and dividing by |E| shows equality to (2.27).

Remark 4.4. We know from Lemma 4.2 that Te, e ∈ E, is self-adjoint and idempotent.

Hence, Te is positive, i.e. 〈Tef, f〉ν ≥ 0 for all f ∈ L2(ν) (see [36, Thms. 9.5-1 & 9.5-2]).

In fact, all eigenvalues of Te are either 0 and 1. Additionally,
∏

e∈E Te is positive, because

it is the product of commuting and self-adjoint linear operators (see [36, Thm. 9.3-1]).

Consequently,

〈P̃SWg, g〉µ =
〈
M

(∏

e∈E

Te

)
M∗g, g

〉
µ
=

〈(∏

e∈E

Te

)
M∗g,M∗g

〉
ν
≥ 0,

〈P̃SBg, g〉µ =
1

|E|
∑

e∈E

〈MTeM
∗g, g〉µ =

1

|E|
∑

e∈E

〈TeM
∗g,M∗g〉ν ≥ 0



Rapid mixing of Swendsen–Wang dynamics in two dimensions 45

for all g ∈ L2(µ). This shows that the transition matrices of Swendsen–Wang and single-

bond dynamics are positive, which implies that they have only non-negative eigenvalues

(see [33, Obs. 7.1.4]).

4.2. Technical lemmas. In this section we provide some technical lemmas that will be

necessary for the analysis. We state them in a general form, because we guess that they

could be useful also in other settings. First let us introduce the notation. Consider two

Hilbert spaces H1 and H2 with the corresponding inner products 〈·, ·〉H1
and 〈·, ·〉H2

. The

norms in H1 and H2 are defined as usual as the square root of the inner product of a

function with itself. Throughout this section we consider two bounded, linear operators,

R : H2 → H1 and T : H2 → H2, such that

• T is self-adjoint, i.e. T = T ∗, and
• T is positive, i.e. 〈Tg, g〉H2

≥ 0 for all g ∈ H2.

We denote by ‖ · ‖H1
(resp. ‖ · ‖H2→H1

) the operator norms of operators mapping from

H1 to H1 (resp. H2 to H1), i.e.

‖R‖H2→H1
:= max

‖g‖H2
=1
‖Rg‖H1

and ‖ · ‖H1
is as in (2.7). As is well-known, the adjoint operator of R, i.e. R∗ : H1 → H2,

with 〈R∗f, g〉H2
= 〈f,Rg〉H1

for all f ∈ H1 and g ∈ H2, satisfies ‖R∗‖H1→H2
=

‖R‖H2→H1
(see e.g. Kreyszig [36, Thm. 3.9-2]). Additionally note that self-adjointness of

T implies that RT kR∗, k ∈ N, are self-adjoint operators on H1.

Lemma 4.5. Let T and R be as above. Then

‖RT k+1R∗‖H1
≤ ‖T ‖H2

‖RT kR∗‖H1
for all k ∈ N.

In particular, if ‖T ‖H2
≤ 1 this proves monotonicity in k.

Proof. By the assumptions, T has a unique positive square root T̃ , i.e. T = T̃ T̃ , which

is again self-adjoint (see e.g. [36, Th. 9.4-2]). Using the fact that ‖A‖2H2→H1
= ‖AA∗‖H1

for every bounded linear operator A : H2 → H1, we obtain

‖RT k+1R∗‖H1
= ‖RT̃ 2k+2R∗‖H1

= ‖RT̃ k+1‖2H2→H1

≤ ‖RT̃ k‖2H2→H1
‖T̃‖2H2

= ‖RT̃ 2kR∗‖H1
‖T ‖H2

= ‖T ‖H2
‖RT kR∗‖H1

.

Lemma 4.6. In the above setting let additionally ‖R‖2H2→H1
= ‖RR∗‖H1

≤ 1. Then

‖RTR∗‖2kH1
≤ ‖RT 2kR∗‖H1

for all k ∈ N.

Proof. The case k = 0 is obvious. Now suppose the statement is correct for k − 1; then

‖RTR∗‖2kH1
= ‖RTR∗‖2k−12

H1
≤ ‖RT 2k−1

R∗‖2H1

≤ ‖RT 2k−1‖2H2→H1
‖R∗‖2H1→H2

= ‖RT 2k−1

T 2k−1

R∗‖H1
‖RR∗‖H2

≤ ‖RT 2kR∗‖H1
,

which proves the statement for k.

The next corollary combines the statements of the last two lemmas to give a result

similar to Lemma 4.6 for arbitrary exponents.
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Corollary 4.7. Additionally to the general assumptions of this section let ‖T ‖H2
≤ 1

and ‖RR∗‖H1
≤ 1. Then

‖RTR∗‖2kH1
≤ ‖RT kR∗‖H1

for all k ∈ N.

Proof. Let ℓ = ⌈log2 k⌉, so that k ≤ 2ℓ ≤ 2k. Since ‖RTR∗‖H1
≤ 1 by assumption, we

obtain

‖RTR∗‖2kH1
≤ ‖RTR∗‖2ℓH1

4.6
≤ ‖RT 2ℓR∗‖H1

4.5
≤ ‖RT kR∗‖H1

.

In the following section we will apply these bounds for a specific choice of R and T .

4.3. The result. We prove the following theorem (see [69, 70]).

Theorem 4.8. Let P̃SW (resp. P̃SB) be the transition matrix of the Swendsen–Wang

(resp. single-bond) dynamics for the random-cluster model on a graph with m ≥ 3 edges.

Then

λ(P̃SB) ≤ λ(P̃SW) ≤ 8m logm · λ(P̃SB).

This theorem shows that the Swendsen–Wang dynamics is rapidly mixing if and only

if the single-bond dynamics is rapidly mixing, since the spectral gaps can differ only by a

polynomial in the number of edges of the graph. In Section 4.4 we will state some of the

results that follow from the (already discussed) results for the Swendsen–Wang dynamics.

The proof of Theorem 4.8 is based on the bounds of the last section and a suitable

choice of the involved operators. Recall that we consider both dynamics on a graph

G = (V,E) with m edges, i.e. m = |E|. Fix an arbitrary ordering e1, . . . , em of the edges

e ∈ E. We set the Hilbert spaces from Section 4.2 to

H1 := L2(µ) and H2 := L2(ν)

and define the operators

T :=
1

m

m∑

i=1

Tei and T :=

m∏

i=1

Tei ,

where the Te, e ∈ E, are from the common representation in (4.3). Recall that P̃SB =

MTM∗ and P̃SW = MTM∗ by Lemma 4.3 with M from (4.1). Additionally we define

Tα :=

m∏

i=1

Tαi
ei

for α ∈ Nm. By Lemma 4.2(ii) we deduce for α, γ ∈ Nm that Tα = Tγ if and only if

{i : αi = 0} = {i : γi = 0}. Furthermore, Tα = T iff αi > 0 for all i = 1, . . . ,m.

To conclude the proof of Theorem 4.8 we need two lemmas that are stated in the

sense of Section 4.2. Afterwards we will see how this implies the result. The first lemma

follows from Lemma 4.5.

Lemma 4.9. Let R : H2 → H1 be a bounded linear operator. Then

‖RT R∗‖H1
≤ ‖RT kR∗‖H1

for all k ∈ N.

Proof. See Remark 4.4 for arguments that show positivity of T . Additionally, Lemma 4.2

leads to ‖T ‖H2
≤ 1

m

∑m
i=1 ‖Tei‖H2

= 1. Hence T satisfies the assumptions of Lemma 4.5.
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We obtain

‖RT ℓR∗‖H1
≤ ‖RT kR∗‖H1

for every k ≤ ℓ.

Note that limℓ→∞ T ℓ = T (in norm topology) implies limℓ→∞ ‖RT ℓR∗‖H1
= ‖RT R∗‖H1

,

which yields the result.

Lemma 4.9 (or 4.5) shows that, while k approaches infinity, ‖RT kR∗‖H1
monotonically

approaches ‖RT R∗‖H1
. This suggests that, for k large enough, these norms are close to

each other. The next lemma yields such a reverse inequality.

Lemma 4.10. Let k = ⌈m log(m/ε)⌉ and R : H2 → H1 be a bounded linear operator with

‖RR∗‖H1
≤ 1. Then

‖RT kR∗‖H1
≤ (1− ε)

∥∥RT R∗∥∥
H1

+ ε.

Proof. Define the index sets Im,k := {α ∈ Nm :
∑m

i=1 αi = k} and I1m,k := {α ∈ Im,k :

αi > 0, ∀i = 1, . . . ,m}. Let I0m,k := Im,k \ I1m,k and denote by
(
k
α

)
, for α ∈ Im,k, the

multinomial coefficient, i.e. (
k

α

)
=

k!

α1! · · ·αm!
.

Obviously (by the multinomial theorem [30, eq. (2.21)]),

∑

α∈Im,k

(
k

α

)
= mk

and

Zm,k :=
∑

α∈I0

m,k

(
k

α

)
≤

m∑

i=1

∑

α∈I0

m,k
:αi=0

(
k

α

)
= m

∑

γ∈Im−1,k

(
k

γ

)
= m(m− 1)k.

We write

T k =

(
1

m

m∑

i=1

Tei

)k

=
1

mk

∑

α∈Im,k

(
k

α

)
Tα =

1

mk

∑

α∈I1

m,k

(
k

α

)
Tα +

1

mk

∑

α∈I0

m,k

(
k

α

)
Tα.

Note that we use for the second equality the fact that the Te’s are commuting by

Lemma 4.2(ii). Since we know that Tα = T for every α ∈ I1m,k (note that I1m,k = ∅
for k < m) and ‖RTαR∗‖H1

≤ 1 for every α ∈ Im,k, we obtain

‖RT kR∗‖H1
≤ 1

mk

∑

α∈I1

m,k

(
k

α

)∥∥RTαR∗∥∥
H1

+
1

mk

∑

α∈I0

m,k

(
k

α

)
‖RTαR∗‖H1

≤
(
1− Zm,k

mk

)
‖RT R∗‖H1

+
Zm,k

mk
.

Using (1− a)c+ a ≤ (1− b)c+ b for c ≤ 1 and a ≤ b, we find that

‖RT kR∗‖H1
≤

(
1−m

(
1− 1

m

)k)∥∥RT R∗∥∥
H1

+m

(
1− 1

m

)k

.

Setting k = ⌈m log(m/ε)⌉ yields the result.
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Now we are able to prove the comparison result for SW and SB dynamics. For this

let S1(B, (σ,A)) := ν(σ,A) for all B ∈ ΩRC and (σ,A) ∈ ΩJ, which defines an oper-

ator (by (4.2)) that maps from H2 to H1. The adjoint operator S∗
1 is then given by

S∗
1((σ,A), B) := µ(B), and thus S1S

∗
1 (A,B) = Sµ(A,B) = µ(B) for all A,B ∈ ΩRC. For

the proof we choose the operator

R := M − S1

with M from (4.1). This operator has some useful properties which can be deduced

directly from the properties of M and S1. First of all, note that the matrix corresponding

to S∗
1 is constant in the first (FKES) coordinate. This readily implies MS∗

1 = Sµ. But Sµ

defines a self-adjoint operator on H1 := L2(µ), and hence Sµ = S∗
µ = (MS∗

1 )
∗ = S1M

∗.
It follows that

RR∗ = (M − S1)(M
∗ − S∗

1 ) = MM∗ − Sµ = I − Sµ,

with If := f for all f ∈ L2(µ), because MM∗(A,B) = 1(A = B). Since (RR∗)2 =

(I − Sµ)
2 = I − Sµ = RR∗, we deduce that R satisfies ‖RR∗‖H1

∈ {0, 1} and thus the

assumptions of Lemmas 4.9 and 4.10. Note that ‖RR∗‖H1
= 1 wheneverm > 1, since then

there always exists a non-constant function f ∈ H1 with 〈f, 1〉µ = 0, i.e. (I − Sµ)f = f .

Additionally, we find from Lemma 4.3 that

P̃SB − Sµ = RTR∗ and P̃SW − Sµ = RT R∗.

Proof of Theorem 4.8. Recall that by definition

λ(P̃SB) = 1− ‖P̃SB − Sµ‖H1
= 1− ‖RTR∗‖H1

,

λ(P̃SW) = 1− ‖P̃SW − Sµ‖H1
= 1− ‖RT R∗‖H1

.

Obviously, Lemma 4.9 (with k = 1) implies the first inequality of Theorem 4.8.

Now let k = ⌈m log (m/ε)⌉. Since we know from Lemma 4.10 that

‖RT R∗‖H1
≥ 1

1− ε
(‖RT kR∗‖H1

− ε)

we obtain

λ(P̃SW) = 1− ‖RT R∗‖H1

4.10
≤ 1− 1

1− ε
(‖RT kR∗‖H1

− ε)

=
1

1− ε
(1− ‖RT kR∗‖H1

)
4.7
≤ 1

1− ε
(1 − ‖RTR∗‖2kH1

)

≤ 2k

1− ε
(1− ‖RTR∗‖H1

) =
2k

1− ε
λ(P̃SB),

where the last inequality comes from 1 − xk ≤ k(1 − x) for x ∈ [0, 1]. Setting ε = 1
2 , we

obtain 2k
1−ε = 4k ≤ 8m logm.

4.4. Applications. We present three applications of Theorem 4.8. The first one concerns

the Swendsen–Wang dynamics on graphs with bounded linear width and is based on a

result of Ge and Štefankovič [25] (see Theorem 2.19 above). For this recall the definition

of the linear width of a graph G = (V,E) as the smallest number ℓ such that there exists

an ordering e1, . . . , e|E| of the edges with the property that for every i ∈ [|E|] there are

at most ℓ vertices that have an adjacent edge in {e1, . . . , ei} and in {ei+1, . . . , e|E|}.
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Corollary 4.11. Let P̃SW be the transition matrix of the Swendsen–Wang dynamics

for the random-cluster model with parameters p and q ∈ N on a graph G = (V,E) with

linear width bounded by ℓ. Let m := |E|. Then

λ(P̃SW) ≥ 1

2qℓ+1

1

m2
. (4.4)

Proof. The result follows from Theorem 4.8 together with Theorem 2.19.

Note that Lemma 2.6 shows that the result holds true if we replace the random-cluster

model by the corresponding Potts model at inverse temperature β = − log(1 − p) and

P̃SW by PSW.

Now we turn to the single-bond dynamics. The second result of this section, analo-

gously to Theorems 2.10 and 3.4, describes rapid mixing on Z2
L = (VL,2, EL,2), i.e. on the

two-dimensional square lattice of side length L, at high temperatures.

Corollary 4.12. Let P̃SB be the transition matrix of the single-bond dynamics for the

RC model on Z2
L with parameters p and q ≥ 1. Let m = 2L(L− 1) = |EL,2|. Then there

exist constants cp = cp(q), c
′ > 0 and C <∞ such that

λ(P̃SB) ≥
cp

m2 logm
for p < pc(q),

and

λ(P̃SB) ≥ c′m−C for q = 2 and p = pc(2),

where pc(q) =
√
q

1+
√
q .

Proof. The bounds for the Swendsen–Wang (SW) dynamics for the Potts model from

Theorem 3.4 and Lemma 2.6 show that SW is rapidly mixing in the desired range of p.

Theorem 4.8 leads to the specific bounds (since |VL,2| ≤ |EL,2| = 2L(L− 1) ≤ 2|VL,2|).

In the next chapter we present techniques that allow us to relate the spectral gap

of local Markov chains for the random-cluster model at high and low temperatures. In

particular, we will extend the first bound of Corollary 4.12 to all non-critical temperatures

(see Theorem 5.10).

The third and last result that we want to present here yields tight bounds on the

spectral gap of the single-bond dynamics on the d-dimensional torus Z̃d
L of side length L

(see (2.32)) at the critical temperature. These bounds show slow mixing if q is large

enough. This complements (and also uses) a result of Borgs, Chayes and Tetali [5] (see

Theorem 2.12).

Theorem 4.13. Let P̃SB (resp. P̃SW) be the transition matrix of the single-bond (resp.

Swendsen–Wang) dynamics for the random-cluster model on Z̃d
L, d ≥ 2, with parameters

p and q. Then there exist constants k1, k2 <∞ and a constant k3 > 0 (depending all on

d, β and q) such that, for q and L large enough,

e−(k1+k2β)L
d−1 ≤ λ(P̃SB) ≤ e−k3βL

d−1
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and

e−(k1+k2β)L
d−1 ≤ λ(P̃SW) ≤ e−k3βL

d−1

if p = 1− e−βc(d,q) with βc(d, q) from (2.30). The lower bounds hold for all p, q and L.

Proof. We obtain the second inequality immediately from Theorem 2.12 and Lemma 2.6.

The result on the single-bond dynamics thus follows from Theorem 4.8.

The original proof of the lower bound on λ(P̃SB), as given in [70], uses the bound of

Theorem 2.19 together with a bound on the linear width of Z̃d
L.

Remark 4.14. There are some more results on rapid mixing of the single-bond dynamics

that follow directly from Theorem 4.8. These include rapid mixing on trees and cycles

(cf. Theorem 2.17), on the complete graph (cf. Theorem 2.16) and on graphs with bounded

degree if p is small enough (cf. Theorem 3.3). We do not state them here explicitly, because

our main purpose is to prove rapid mixing of the Swendsen–Wang dynamics.

5. Rapid mixing in two dimensions

This chapter is devoted to the study of the spectral gaps of Swendsen–Wang and single-

bond dynamics if the underlying graph for the random-cluster model has a special struc-

ture. Namely, we consider planar graphs, i.e. graphs that can be drawn in the plane

without intersecting edges. For each such graph it is possible to define a corresponding

dual graph and we will see that it is possible to prove bounds on the spectral gap (of

both dynamics) on the original graph in terms of the spectral gap on the dual one, if the

temperature is suitably changed. In particular, we prove results on rapid mixing of the

dynamics at low temperatures, where the previous techniques, which rely on rapid mixing

of single-spin dynamics for the Potts model at the same temperature, do not apply.

The plan of this chapter is as follows. In Section 5.1 we introduce the notion of rep-

resentations of graphs in the plane and, consequently, the notion of planar graphs. This

leads to the construction of dual graphs and we will see that there is a tight connection

between the random-cluster model on a graph and its dual. In Section 5.2 we use this

connection to prove the main results of this chapter, i.e. the comparison of the spectral

gaps on a graph and on its dual graph. This ends in a proof of rapid mixing of the consid-

ered dynamics on the two-dimensional square lattice at all non-critical temperatures, see

Section 5.3. Finally, in Section 5.4, we present a slight generalization of the given results

to graphs that can be drawn on a surface with bounded genus.

5.1. Planar and dual graphs. The following introduction to embeddings of graphs in

the plane and to the construction of dual graphs is presented according to Mohar and

Thomassen [53] and we refer to this monograph for a more comprehensive study of the

topic.

Throughout this chapter we consider only connected graphs. Let a connected graph

G = (V,E, ϕ) be given and recall that ϕ is the function that assigns to each edge e ∈ E

the set of its endvertices. For convenience, we will mostly omit ϕ from the notation. We
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say that G is a planar graph if there is a representation of G in the plane R
2. That is,

there exists a finite set Ṽ ⊂ R
2, a bijection κ from V to Ṽ and a set of simple curves

Ẽ = {γe : [0, 1]→ R2 : e ∈ E} in R2 such that

• γe(0) ∈ Ṽ and γe(1) ∈ Ṽ for all e ∈ E,

• for all u, v ∈ V and e ∈ E we have

{γe(0), γe(1)} = {κ(u), κ(v)} ⇔ ϕ(e) = {u, v},
• γe((0, 1)) ∩ γf ([0, 1]) = ∅ for all e 6= f ∈ E.

Note that a curve γ : [0, 1]→ R2 is always assumed to be continuous, and is called simple

if it does not cross itself except for its ends, i.e. γ(x) = γ(y) for x 6= y implies x, y ∈ {0, 1}.
The above assumptions mean respectively that the ends of all curves are elements of Ṽ ,

that γe connects the elements of Ṽ that correspond (by κ) to the endvertices of e ∈ E,

and that the interior of each curve is disjoint from all other curves. The tuple G̃ = (Ṽ, Ẽ)

is called a representation of G in the plane and we assume henceforth that we fix for

every planar graph G a representation G̃ in the plane. In the literature G̃ is also called

a plane graph, planar embedding or drawing of G. See e.g. Figure 3 for two examples of

planar graphs (or, more precisely, their representations in the plane).
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Fig. 3. Left: The graph Z
2

3 (dots and solid lines) and its dual graph Z
2†
3

(crosses and dashed
lines). Right: An RC configuration on Z

2

3 and its dual configuration.

Clearly, being connected by a simple curve in a set C ⊂ R2 defines an equivalence

relation on C, whose equivalence classes are called regions of C. A face of C is a region

of R2 \C and we call the faces of
⋃

e∈E γe([0, 1]), i.e. the faces of the union of the images

of all curves of G̃, the faces of G̃. Note that since we consider finite graphs, there is

exactly one unbounded face. We call it the outer face of G̃. In the following we need the

number of faces of a representation G̃ of a graph G, which we denote by F (G̃). One may

think that this number depends on the choice of the representation, but the following

lemma, which is known as Euler’s (polyhedral) formula, shows that this is not the case

(see e.g. [53, Prop. 2.2.3]).

Lemma 5.1 (Euler’s formula). Let G = (V,E) be a connected planar graph and G̃ be a

representation of G in the plane. Then

2 = |V | − |E|+ F (G̃).

This proves that the number of faces does not depend on the particular representation

and thus we write F (G) for the number of faces of any representation of G.
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In addition to the statement of Lemma 5.1 for the whole graph G, we need a result

on its spanning subgraphs. For this recall that we denote by GA = (V,A), A ⊂ E, the

graph G without the edges of E \A and that c(GA) (or simply c(A)) denotes the number

of connected components of GA. The representation of GA in the plane is fixed to be the

representation of G without the curves corresponding to the edges of E \A and we write

F (A) for the number of faces of the (fixed) representation of GA. The next equation is a

simple corollary of Lemma 5.1.

Corollary 5.2. Let G be a planar graph and GA, A ⊂ E, be a spanning subgraph of G.

Then

c(A) + 1 = |V | − |A|+ F (A).

Proof. We know from Lemma 5.1 that for each connected componentGi = (Vi, Ei) of GA,

i = 1, . . . , c(A), we have 2 = |Vi| − |Ei|+ F (Gi). Summing over i leads to 2c(A) = |V | −
|A|+∑c(A)

i=1 F (Gi), but in the last sum we count the outer face c(A) times. Subtracting

c(A)− 1 from both sides yields the result.

Now we turn to the definition of the dual graph of a graph G. For this consider the

(fixed) representation in the plane G̃ = ( Ṽ, Ẽ) of the connected graph G = (V,E). We

define the dual graph as the (unique) graph G† = (V †, E†) such that its representation

in the plane G̃† = ( Ṽ †, Ẽ†) satisfies:

• there is exactly one ṽ† ∈ Ṽ † in every face of G̃, and

• for every e ∈ E there is exactly one simple curve γ†
e ∈ E† with endpoints in Ṽ † that

intersects γe ∈ Ẽ, but not γf , f 6= e ∈ E.

Note that, for every γe ∈ Ẽ, the endpoints of the corresponding “dual” curve γ†
e are

unique, since there is only one vertex in every face of G̃ and a curve can separate at most

two faces from each other (by Jordan’s Curve Theorem [53]). We call the edge e† ∈ E†

in the dual graph that belongs to the dual curve γ†
e the dual edge of e ∈ E.

In general, the definition of the dual graph of G depends on the representation of G in

the plane. Therefore recall that we fix such a representation whenever we fix the graph.

This implies that the dual graph is well-defined, unique and that the dual of the dual

graph is the original graph. (Here we presume that the representation in the plane of the

dual graph is fixed to be the one constructed above.)

Remark 5.3. Note that the dual graph of any planar graph is connected. Therefore

the connectivity of G is necessary to ensure that the dual of the dual graph of G is G.

Additionally, it is known (see [53, Thm. 2.6.7]) that if we restrict to 3-connected planar

graphs, i.e. planar graphs with at least four vertices such that every subgraph obtained by

deleting two vertices is still connected, then the dual graph is unique and thus independent

of the representation.

In view of the application to Markov chains for the random-cluster model we also

define a dual configuration A† ⊂ E† on the dual graph G† for every random-cluster

configuration A ⊂ E on G by the property that for all e ∈ E (and corresponding e† ∈ E†)

e† ∈ A† ⇔ e /∈ A. (5.1)
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Thus, a dual edge is present in A† whenever the original one is absent from A. In par-

ticular, |E| = |E†| = |A|+ |A†| for every A ⊂ E. See Figure 3 for an example of a graph

and its dual together with a proper pair of RC configurations.

Recall that G̃A, A ⊂ E, is the representation of the spanning subgraph GA = (V,A)

in the plane that is adopted from G̃ by forgetting the curves corresponding to E \A, and
c(A) is the number of connected components of GA. With a slight abuse of notation we

write c(A†), A† ⊂ E†, for the number of connected components of G†
A† .

It is easy to verify (cf. Figure 3) that every face of G̃A contains a unique connected

component of G†
A† and vice versa. Thus, we have c(A†) = F (A). Using Euler’s formula

(see Corollary 5.2) we obtain

c(A) + 1 = c(A†) + |V | − |A| = c(A†) + |V | − |E|+ |A†|. (5.2)

This equality leads immediately to the following lemma that shows the tight connection

between the random-cluster measure on G and G† (see e.g. Grimmett [29, eq. (6.4)]).

Lemma 5.4. Let µG
p,q be the random-cluster measure on a planar graph G = (V,E) with

parameters p and q. Furthermore, let G† be the dual graph of G. Then

µG
p,q(A) = µG†

p∗,q(A
†) for all A ⊂ E,

where p∗ satisfies
p∗

1− p∗
=

q(1− p)

p
. (5.3)

Proof. Recall from (2.11) that

µG
p,q(A) =

1

Z̃(G, p, q)

(
p

1− p

)|A|
qc(A),

where Z̃(G, p, q) =
∑

A⊂E

(
p

1−p

)|A|
qc(A) is the normalization constant. With (5.2) and

(5.3) we obtain
(

p

1− p

)|A|
qc(A) (5.2)

=

(
p

1− p

)|A|
qc(A

†)+|V |−|E|+|A†|−1

(5.3)
=

(
q(1− p∗)

p∗

)|E|−|A†|
qc(A

†)+|V |−|E|+|A†|−1

= q|V |−1

(
p∗

1− p∗

)|A†|−|E|
qc(A

†).

Thus, with Z̃(G†, p∗, q) = q1−|V |(p∗/(1− p∗))|E|Z̃(G, p, q) we get µG
p,q(A) = µG†

p∗,q(A
†) as

desired.

The relation from (5.3) has a unique self-dual point, i.e. a value of p such that p = p∗.
This value is given by

psd(q) :=

√
q

1 +
√
q
. (5.4)

Note that psd(q) equals 1− eβc(q), where βc(q) is the critical inverse temperature for the

q-state Potts model on the two-dimensional square lattice (see Remark 2.9).
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5.2. Dynamics on planar graphs. We prove that the spectral gap of the Swendsen–

Wang and the single-bond dynamics for the random-cluster model on a planar graph G is

bounded from above and from below by the spectral gap of the corresponding dynamics on

the dual graph G† if we change the temperature parameter p to p∗ from the last section.

Furthermore, we state a second corollary of Theorem 2.13 at the end of this section,

that shows rapid mixing of the Swendsen–Wang dynamics for the Potts model on planar

graphs if the inverse temperature is small or large enough (depending on the maximum

degree). This is a modification of Corollary 3.3 to planar graphs (cf. Theorem 2.13).

For this fix a connected planar graph G = (V,E) (together with its representation in

the plane), some p ∈ (0, 1) and a natural number q. Let G† be the dual graph of G, and p∗

be the unique value satisfying (5.3), i.e. p∗ = q(1−p)
p+q(1−p) . We call the random-cluster model

on G† with parameters p∗ and q the dual model and abbreviate µG†

p∗,q to µ†. Additionally,

given a Markov chain for the random-cluster model with transition matrix P̃ , we write

P̃ † for the transition matrix of the Markov chain for the corresponding dual model.

The first result demonstrates the usefulness of the heat-bath dynamics for the random-

cluster model, which is one of the two previously defined local Markov chains for this

model (see (2.24) for the definition of its transition matrix P̃HB). It turns out that the

spectral gap of P̃HB equals the spectral gap of P̃ †
HB. This is a simple consequence of

Lemma 5.4 and is probably known, but we could not find a reference for it.

Lemma 5.5. Let P̃HB (resp. P̃ †
HB) be the transition matrix of the heat-bath dynamics for

the random-cluster model on a planar graph G (resp. for the dual model). Then

λ(P̃HB) = λ(P̃ †
HB).

Proof. By definition we have, for all A,B ⊂ E,

P̃HB(A,B) =
1

|E|
∑

e∈E

µ(B)

µ(A ∪ e) + µ(A \ e)1(B \ e = A \ e)

(see (2.24)). Using Lemma 5.4 and since (A ∪ e)† = A† \ e† (resp. (A \ e)† = A† ∪ e†),
by (5.1), we obtain

P̃HB(A,B) =
1

|E|
∑

e∈E

µ(B)

µ(A ∪ e) + µ(A \ e)1(B \ e = A \ e)

=
1

|E|
∑

e∈E

µ†(B†)

µ†((A ∪ e)†) + µ†((A \ e)†)1((B \ e)
† = (A \ e)†)

=
1

|E†|
∑

e†∈E†

µ†(B†)

µ†(A† \ e†) + µ†(A† ∪ e†)
1(B† ∪ e† = A† ∪ e†) = P̃ †

HB(A
†, B†).

Note for the last equality that B† ∪ e† = A† ∪ e† if and only if B† \ e† = A† \ e†. This
obviously implies that the matrices P̃HB and P̃ †

HB have the same eigenvalues and thus the

same spectral gap.

We immediately obtain the last ingredient for the proof of rapid mixing of Swendsen–

Wang and single-bond dynamics on the two-dimensional square lattice at all non-critical

temperatures (see Section 5.3).
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Theorem 5.6. Let P̃SW (resp. P̃SB) be the transition matrix of the Swendsen–Wang

(resp. single-bond) dynamics for the random-cluster model on a planar graph G with m

edges, and let P̃ †
SW (resp. P̃ †

SB) be the SW (resp. SB) dynamics for the dual model. Then

λ(P̃SB) ≤ qλ(P̃ †
SB) and λ(P̃SW) ≤ 8qm logm · λ(P̃ †

SW).

Proof. With Lemmas 2.7 and 5.5 we get

λ(P̃SB) ≤ λ(P̃HB) = λ(P̃ †
HB) ≤

(
1− p∗

(
1− 1

q

))−1

λ(P̃ †
SB).

The constant on the right hand side is maximal for p∗ = 1. This proves the first statement

of the theorem. For the second we additionally use Theorem 4.8. Thus,

λ(P̃SW) ≤ 8m logm · λ(P̃SB) ≤ 8qm logm · λ(P̃ †
SB) ≤ 8qm logm · λ(P̃ †

SW).

Prior to the application of this result to the two-dimensional square lattice in the next

section, we present the above-mentioned result on rapid mixing of the Swendsen–Wang

dynamics at sufficiently high and low temperatures if the underlying graph is planar and

has bounded maximum degree. This corollary relies on a result of Hayes [31].

Corollary 5.7. The Swendsen–Wang dynamics for the random-cluster model with pa-

rameters p and q on a planar, simple and connected graph G with m edges and maximum

degree ∆ ≥ 6 satisfies

λ(P̃SW) ≥





c(1− ε)

m
if p ≤ ε

3
√
∆− 3

,

c(1− ε)

m2 logm
if p ≥ 1− ε

q∆† ,

for some c = c(∆, p, q) > 0 and ε > 0, where ∆† is the maximum degree of a dual graph

of G.

Proof. From Theorem 2.13 together with the bound on the operator norm of the adja-

cency matrix of planar simple graphs from [31, Cor. 17] we obtain λ(PHB) ≥ (1 − ε)/n,

where PHB is the transition matrix of the heat-bath dynamics for the Potts model on G,

and n is the number of vertices, if β ≤ ε/
√
3(∆− 3). Recall that p = 1 − e−β, which

implies β ≤ p/(1−p); we deduce that the assumption on p yields the desired bound on β.

By connectedness of G we have m ≥ n − 1. Thus, Theorem 3.1 completes the proof of

the first inequality.

For the second we use λ(P̃SW) ≥ λ(P̃ †
SW)/(8qm logm) from Theorem 5.6, where P̃ †

SW

is the Swendsen–Wang dynamics for the dual model, i.e. the RC model on the dual graph

G† with parameters p∗ = q(1−p)
p+q(1−p) and q ≥ 1. Since p∗ ≤ q(1 − p), it is enough to prove

λ(P̃ †
SW) ≥ c̃(1 − ε)/m if p∗ ≤ ε/∆†. But, because of β ≤ p/(1 − p) and m ≥ n − 1, this

follows from Corollary 3.3 and Lemma 2.6.

Note that the maximum degree of the dual graph corresponds to the maximum number

of edges that are needed to surround a single face in a planar representation of the original

graph. This quantity is sometimes called the maximum face-degree of G in the literature.

Unfortunately, in the second inequality of Corollary 5.7 the lower bound on p contains

∆† and not its square root. The reason for this is that the proof of the bound on the
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principal eigenvalue of a planar graph requires the graph to be simple, see [31, Cor. 17].

(Note that although Euler’s formula is valid also for non-simple graphs, one cannot deduce

from it that there is a vertex of small degree.) But since the proof of Corollary 5.7 uses

dual graphs, and we cannot guarantee in general that the dual graph is simple, we have to

use the stronger assumption. If we considered only 3-connected graphs (see Remark 5.3),

then it is known that the dual graph is simple. In this case one could improve the lower

bound on p to 1− ε/(3q
√
∆† − 3) under the additional assumption ∆† ≥ 6.

5.3. Rapid mixing on the square lattice. The goal of this section is to present an

application of Theorem 5.6 to the random-cluster model on the two-dimensional square

lattice. We prove that the Swendsen–Wang and single-bond dynamics are rapidly mixing

for each q ∈ N if the parameter p satisfies p 6=
√
q

1+
√
q . Translated to the q-state Potts

model this shows that the Swendsen–Wang dynamics is rapidly mixing at all non-critical

temperatures, i.e. at all β 6= βc(q) (see Remark 2.9).

This is done by a successive application of the results of the previous chapters. Espe-

cially, we need Theorem 3.4, Corollary 3.10, Theorem 4.8 and Theorem 5.6. Note that,

since we proved only comparison results between different Markov chains, the results

on rapid mixing rely ultimately on the known results on the mixing properties of the

heat-bath dynamics for the Potts model (see Section 2.5).

First of all, recall the definition of Z2
L = (VL,2, EL,2), i.e. the two-dimensional square

lattice of side length L, from Section 2.5 and of Z2†
L from Section 3.2. It is easy to see

that Z
2†
L is indeed the dual graph of Z2

L (see Figure 3). Hence, we obtain the following

result.

Theorem 5.8. Let P̃SW be the transition matrix of the Swendsen–Wang dynamics for

the random-cluster model on Z2
L with parameters p and q. Let m = 2L(L− 1) = |EL,2|.

Then there exist constants cp = cp(q), c
′ > 0 and C <∞ such that

λ(P̃SW) ≥ cp/m for p < pc(q),

λ(P̃SW) ≥ cp
m2 logm

for p > pc(q),

λ(P̃SW) ≥ c′m−C for q = 2 and p = pc(2),

where pc(q) =
√
q

1+
√
q .

Proof. The first and the last inequality follow from Theorem 3.4, Lemma 2.6 and the fact

that |VL,2| ≤ m = 2L(L − 1) ≤ 2|VL,2|. For the second let P̃ †
SW be the Swendsen–Wang

dynamics on Z
2†
L with parameters p∗ = q(1−p)

p+q(1−p) and q. Corollary 3.10 (together with

Lemma 2.6) implies that λ(P̃ †
SW) ≥ cp∗/m for some cp∗ <∞, if p∗ < pc(q). (Recall that

pc(q) = 1 − e−βc(q).) But since p∗ < pc(q) if and only if p > pc(q), we can deduce the

desired bound from Theorem 5.6.

An immediate consequence is the following.

Theorem 5.9. Let PSW be the transition matrix of the Swendsen–Wang dynamics for

the q-state Potts model on Z2
L at inverse temperature β. Let n = L2. Then there exist
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constants cβ = cβ(q), c
′ > 0 and C <∞ such that

λ(PSW) ≥ cβ/n for β < βc(q),

λ(PSW) ≥ cβ
n2 logn

for β > βc(q),

λ(PSW) ≥ c′n−C for q = 2 and β = βc(2),

where βc(q) = log(1 +
√
q).

Proof. Apply Lemma 2.6 to Theorem 5.8 and note, again, that n ≤ |EL,2| ≤ 2n.

The bounds as given in Theorem 5.9 are certainly not optimal. We conjecture λ(PSW)

to be bounded below by a constant for β 6= βc(q). However, this seems to be the first

polynomial bound for the Swendsen–Wang dynamics in this regime.

We also obtain the following for the single-bond dynamics.

Theorem 5.10. Let P̃SB be the transition matrix of the single-bond dynamics for the RC

model on Z2
L with parameters p and q. Let m = 2L(L − 1) = |EL,2|. Then there exist

constants cp = cp(q), c
′ > 0 and C <∞ such that

λ(P̃SB) ≥
cp

m2 logm
for p 6= pc(q),

λ(P̃SB) ≥ c′m−C for q = 2 and p = pc(2),

where pc(q) =
√
q

1+
√
q .

Proof. The result for p ≤ pc(q) was already given in Corollary 4.12. For the result for

p > pc(q) take the bound of Corollary 3.10 and apply Lemma 2.6 and Theorem 4.8.

5.4. Graphs of higher genus. In this final section we give a brief description of embed-

dings of graphs into surfaces, i.e. into two-dimensional topological manifolds, and show

that it is possible to extend the results of Section 5.2 to this case. For convenience, we

only consider connected, orientable and closed surfaces, which we simply call surfaces in

what follows. The plan of this section is to define the genus of a surface (or a graph) and

then, analogously to Section 5.1, to define representations of graphs into surfaces. Then

we give a formulation of Euler’s formula, define dual graphs and show the consequence

for the random-cluster measure.

For this, let Γ1 and Γ2 be two surfaces and define their connected sum Γ1 ⊔ Γ2 as the

surface that is obtained by cutting out a small disc from each of the surfaces Γ1 and Γ2

and gluing them together along the boundaries of the resulting holes. (See e.g. Giblin [26]

for a more formal definition.) It is known that the surface Γ1⊔Γ2 does not depend (up to

homeomorphisms) on the choice of the discs that are cut out from the primal surfaces (see

[26, Prop. 2.17]). We consider the surfaces Sh, h ≥ 0, which are given by Sk+1 := Sk ⊔S1,
where S0 is the two-dimensional sphere and S1 is the torus. That is, Sh is the surface

that can be obtained from a sphere by adding h handles to it. We call Sh the (orientable)

surface of genus h. For example, the sphere is a surface of genus 0 and the torus a surface

of genus 1. Note that each connected, closed and orientable surface is homeomorphic to

precisely one of the surfaces Sh, h ≥ 0 (see [53, Thm. 3.1.3]).
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Let G = (V,E) be a connected graph. In the light of Section 5.1 we say that G has a

representation in Sh, namely G̃ = ( Ṽ, Ẽ), if there exists a finite set Ṽ ⊂ Sh, a bijection

κ from V to Ṽ and a set of simple, continuous curves Ẽ = {γe : [0, 1] → Sh : e ∈ E}
in Sh with the same three properties as given at the beginning of Section 5.1. Here, we

consider planar graphs as graphs that admit a representation in the sphere S0.

The genus g(G) of the graph G is defined to be the smallest integer h such that

G has a representation in Sh, and we call a representation of G in Sg(G) a minimum

genus representation. For example, the graph Z̃2
L, L ≥ 3, i.e. the two-dimensional torus

(see (2.32)), has genus 1.

Remark 5.11. Every finite graph can be represented in Sh if h is sufficiently large. For

this consider the complete graph Kn, whose genus satisfies g(Kn) = ⌈(n− 3)(n− 4)/12⌉
(see [59]), and observe that every graph on n vertices can be represented in the same

surface than Kn (since they are subgraphs). Below we will see that there are constants

involved in the results that depend exponentially on the genus. Therefore, the forthcoming

results are only useful in cases where the genus is at most logarithmic in the size of the

graph.

Recall that F (G̃) denotes the number of faces of the representation G̃. It turns out

that there is a version of Euler’s formula also in this case (see [53, eq. (3.7)]).

Lemma 5.12 (Euler’s formula II). Let G = (V,E) be a connected graph and G̃ be a

minimum genus representation of G. Then

2− 2 g(G) = |V | − |E|+ F (G̃).

Following the ideas of Section 5.1 we fix a minimum genus representation G̃ of G

and fix the representation of the spanning subgraphs GA = (V,A), A ⊂ E, to be G̃

without the curves corresponding to E \A. We write F (A) for the number of faces in this

representation of GA. Note that a subgraph could be of smaller genus, e.g. G∅ = (V, ∅) is
obviously planar. However, we equip subgraphs of G with a representation in Sg(G). We

obtain the following corollary, which is the basis of the remaining results.

Corollary 5.13. Let G be a connected graph and GA, A ⊂ E, be a spanning subgraph

of G. Then

2− 2 g(G) ≤ |V | − |A|+ F (A)− c(A) + 1 ≤ 2.

Proof. We prove that the term in the middle cannot increase if we replace A by A∪e, i.e.
|V |− |A∪e|+F (A∪e)− c(A∪e)+1 ≤ |V |− |A|+F (A)− c(A)+1. This proves the claim

since the first and second inequalities of the statement become equalities for A = E and

A = ∅, respectively. Thus, it is enough to prove F (A ∪ e)− F (A) ≤ c(A ∪ e)− c(A) + 1

for all A ⊂ E. The right hand side of this inequality equals 1 if the endpoints of e are

connected in (V,A), i.e. e(1)
A←→ e(2), and 0 otherwise. Consequently, we want to verify

F (A ∪ e) − F (A) ≤ 1(e(1)
A←→ e(2)), that is, if adding e to A induces a new face, then

the endpoints of e are connected in GA. But this is clearly true, because if a new face is

induced by e, then e is contained in a “cycle” in GA∪e, which implies that the endpoints

are already connected in GA.
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Given a graph G = (V,E) and a corresponding minimum genus representation G̃ =

( Ṽ, Ẽ) we define the dual graph G† = (V †, E†) just as in Section 5.1. That is, G† is the

unique graph that has a representation in Sg(G) with a single vertex in every face of G̃

and, for every curve γe ∈ Ẽ, a curve that intersects only γe and connects the vertices (or

the vertex) on both sides of γe. We write e† for the edge that corresponds to this “dual”

curve.

A dual configuration A† ⊂ E† of A ⊂ E is given by

e† ∈ A† ⇔ e /∈ A

(cf. (5.1)). It is again easy to convince oneself that every face of the representation of G̃A

(adopted from G̃) contains a connected component of G†
A† , i.e. F (A) = c(A†). Thus,

c(A†) + |A†| − 1 ≤ c(A)− |V |+ |E| ≤ c(A†) + |A†| − 1 + 2 g(G). (5.5)

This implies an analogous result to Lemma 5.4 and, eventually, the following theorem.

Recall that the dual model to the random-cluster model on G with parameters p and q

is the RC model on G† with parameters p∗ and q, where p∗ = q(1−p)
p+q(1−p) .

Theorem 5.14. Let P̃HB, P̃SB and P̃SW (resp. P̃ †
HB, P̃

†
SB and P̃ †

SW) be the transition

matrices of the heat-bath, single-bond and Swendsen–Wang dynamics for the random-

cluster model on a graph G (resp. for the dual model). Then

λ(P̃HB) ≤ q8g(G)λ(P̃ †
HB)

and hence

λ(P̃SB) ≤ q8
g(G)+1λ(P̃ †

SB),

λ(P̃SW) ≤ 8q8g(G)+1m logm · λ(P̃ †
SW).

Proof. We only prove the first inequality. The other two follow in the same way as

Theorem 5.6 follows from Lemma 5.5. An easy computation (similar to the proof of

Lemma 5.5) shows

q−2g(G)µG
p,q(A) ≤ µG†

p∗,q(A
†) ≤ q2 g(G)µG

p,q(A)

for all A ⊂ E. By the definition of P̃HB (see (2.24)), this implies

P̃HB(A,B) ≤ q4 g(G)P̃ †
HB(A

†, B†).

But these two inequalities yield λ(P̃HB) ≤ q8 g(G)λ(P̃ †
HB) (see Lemma 2.5).

Theorem 5.14 can be used in the same way as Theorem 5.6 to prove results on the

mixing properties of the Markov chains involved in specific cases. For example, a result,

similar to Corollary 5.7, on graphs of bounded degree can be proven by using Theo-

rem 2.13 and a bound on the principal eigenvalue of graphs with bounded genus (see

e.g. [20]). Another application is that lower bounds on the spectral gap of the Markov

chains for the Potts model on the two-dimensional square lattice with periodic boundary

condition (i.e. on the two-dimensional torus Z̃2
L) at high temperatures can be translated

to lower bounds at low temperatures (cf. Section 5.3). We omit the details.
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[65] D. W. Stroock and B. Zegarliński, The equivalence of the logarithmic Sobolev inequality

and the Dobrushin–Shlosman mixing condition, Comm. Math. Phys. 144 (1992), 303–323.
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configuration, 52
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model, 54

dynamics

heat-bath, 19, 24

single-bond, 26

Swendsen–Wang, 21, 23

endvertices, 16

ergodic, 10

FKES
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model, 18

genus, 58

graph, 16

complete, 33

dual, 52

number of faces, 51

planar, 51

product, 30

representation, 51

simple, 16

size, 16

indicator function (1), 10

inverse temperature, 17

Ising model, 17

joint model, see FKES model

lazy, 11

linear width, 34

loops, 16

Markov chain, 9

Markov operator, 12

mixing time, 12
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operator norm, 13

parallel edges, 16

Potts

measure, 17

model, 17

random-cluster

measure, 17

model, 17

rapid mixing, 14

RC, see random-cluster

reversible, 11

simple curve, 51

spectral gap, 13

square lattice, 16

subgraph, 16

spanning, 16

torus, 30

total variation distance, 11
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