
1. Introduction

If J is an open subinterval of R and f is a real-valued function defined on J then for each

self-adjoint operator A on a finite-dimensional complex inner product space, the spectrum

of which is contained in J , there is defined a self-adjoint operator which is denoted by

f(A). One refers to the “operator function” f . If J and J ′ are open subintervals of R

and F is a real-valued function of two variables defined on J × J ′ then for each pair A,

B of self-adjoint operators on finite-dimensional complex inner product spaces X and

Y respectively, with spectra contained in J and J ′ respectively, there is defined a self-

adjoint operator F (A, B) on the tensor product space X⊗Y . One refers to the “operator

function” F of two variables.

There is a substantial literature concerning these operator functions and their prop-

erties. A function f : J → R is said to be operator monotone if f(A) ≤ f(B) whenever

the terms are defined and A ≤ B. There is also a natural concept of operator convexity

which for functions of one variable is intimately related to operator monotonicity. (For-

mal definitions are given in subsequent sections.) The present paper is concerned with

the Fréchet differentiability and operator convexity of operator functions.

In 1934 Löwner [13], in a celebrated paper, characterised those functions f : J → R

which are operator monotone; they are, in particular, analytic. Several proofs of Löwner’s

central result are presented in a monograph by Donoghue [5]. More recently Hansen and

Pedersen [9] have obtained yet another and very interesting proof and their development

is followed in [4]. Part I of this paper is in part a response to their paper; it prompted

the present authors to ask to what extent the results of the theory of operator monotone

and operator convex functions can be obtained by exploiting the calculus. Theorems

2.1 and 4.2 include the results that, in both the one and two-variable situations, if a

real-valued function is continuously L times differentiable then the associated operator

functions are L times Fréchet differentiable with continuous Fréchet derivatives. These

theorems fill a longstanding gap in the theory. They allow straightforward and direct

uses of the calculus in contexts where in the past ad hoc substitutes for the calculus have

often been used. In particular the elementary differential conditions for monotonicity and

convexity of real-valued functions extend naturally to operator functions (Theorems 3.1

and 3.2). Theorems 4.2 and 3.2 are exploited in Part II of the paper. Matrix forms of these

results, previously obtained in the two-variable case by relatively ad hoc methods, follow

immediately. The Fréchet differentiability of operator functions on infinite-dimensional

Hilbert spaces is the subject of a paper by Hansen and Pedersen [8] but the overlap with
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the present paper is very slight. (Readers are referred to [6] for a systematic presentation

of the Fréchet differential calculus and for the notation which we use.)

The most novel result in Part I is Theorem 2.5 in which the operator functions corre-

sponding to a continuously differentiable function f : J → R are expressed algebraically

in terms of their (first) Fréchet derivatives.

Part II of the paper is concerned with operator convex functions of two variables.

Operator convex functions of one variable were characterised by Bendat and Sherman

[3]; an alternative and elegant treatment is given in [9]. Little has been known about

operator convex functions of two variables. The one-variable developments in [3] and

[9] both exploit the relation between operator monotonicity and operator convexity for

which there is no two-variable analogue.

Let OC1 denote the set of operator convex functions f : (−1, 1) → R; it is a convex

cone. A function f : (−1, 1) → R is in OC1 if and only if it has an integral representation

f(s) = f(0) + f ′(0)s +
1

2
f ′′(0)

\ s2

1 − αs
dM(α)

for some (unique) probability measure M on [−1, 1] (stated as Thm. 5.1). The cone OC1

has a base K1 (defined by f(0) = f ′(0) = 0, f ′′(0) = 2) and its set of extreme points is

the topological interval of functions s2(1 − αs)−1, α ∈ [−1, 1].

Let OC2 be the set of operator convex functions f : (−1, 1)2 → R. It is a convex cone.

It is known [2] that if |α| ≤ 1, |β| ≤ 1 then f(s, t) = (1 − αs)−1(1 − βt)−1 ∈ OC2 (see

Section 4). These are functions which in each variable separately are “extremal” in the

convex cone OC1. The investigation in Part II stems from this fact. Any such function

has representations

f(s, t) = λ(s) + µ(s)t + ν(s)
t2

1 − β(s)t

and

f(s, t) = l(t) + m(t)s + n(t)
s2

1 − α(t)s
.

These equations are solved in Section 6 under the assumption that the functions α(t) and

β(s) have continuous second derivatives: if f is such a function then for some (α, β, e) ∈ R
3

satisfying the inequalities

(1.1) |α + β| − 1 ≤ e ≤ 1 − |α − β|,

(which implies that |α| ≤ 1, |β| ≤ 1), f must be of the form

(1.2) f(s, t) = A + Bs + Ct +
∆st + Σ0s

2 + Γ0t
2 + Σ1s

2t + Γ1t
2s + Gs2t2

1 − αs − βt + est

(Thm. 6.5 and Prop. 6.2). It is an open question whether the smoothness assumption is

redundant.

Let F (α, β, e) be the set of functions of this form which are operator convex; it is a

face of the convex cone OC2 (Thm. 6.4).

Functions f : (−1, 1)2 → R given by (1.2), subject to (1.1), are infinitely differentiable

and so, by Thm. 4.2, their operator functions are infinitely Fréchet differentiable. In Sec-
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tion 7 their second Fréchet derivatives (more precisely, the operators d2f(A, B)(H, K)2 ∈

S(CM ⊗ C
N )) are calculated. The calculations are not entirely straightforward; a simple

power series expansion of f(A+H, B+K) involves products in the algebra of operators on

C
M ⊗C

N and yields a formula for d2f(A, B)(H, K)2 which is not apparently self-adjoint.

It is a non-trivial matter to find and establish a tractable form for d2f(A, B)(H, K)2.

This is done in Thm. 7.1, and in Thm. 7.2 the differential criterion for convexity, of

Thm. 3.2, is used to characterise those functions of the form (1.2) which are operator

convex: the function must be convex on (−1, 1)2 and the coefficients in (1.2) must satisfy

the equations

Σ0e + Σ1α = Γ0 + Γ1β = G = 0.

This characterisation permits a detailed analysis in Section 8 of the faces F (α, β, e)

of the cone OC2. The analysis is not entirely complete but a considerable amount of

information is obtained. Thm. 8.1 is concerned with the set of (α, β, e) ∈ R
3 for which the

face F (α, β, e) is non-trivial, i.e. of dimension greater than three. For each (α, β) ∈ [−1, 1]2

the set {e : dim F (α, β, e) > 3} is closed and non-empty and contains a non-trivial interval

unless either max{|α|, |β|} = 1 or αβ = 0, in which cases the set is the single point αβ.

However the description of these sets is not yet complete.

The cone OC2 has a natural closed convex base K2 (see Prop. 5.3). (It is an important

open question whether K2 is compact.) Thm. 8.2 states that the intersections of the

faces F (α, β, e)∩K2 of K2 are almost all empty, the non-empty intersections being single

extreme points of K2. Thm. 8.3 establishes that a face F (α, β, e) of OC2 is of dimension

3, 4, 6, 7 or 8, and that all these cases occur.

Theorem 8.4 is concerned with the set of extreme points of F (α, β, e) ∩ K2, which

can be determined in most, possibly all, cases. The typical cases are those in which

dimF (α, β, e) = 6. If, considering the first (α, β)-quadrant, 0 < α < 1, 0 < β < 1

and max{0, α + β − 1} ≤ e ≤ αβ then dimF (α, β, e) = 6 and F (α, β, e) ∩ K2 is a two-

dimensional convex set; if also α + β − 1 < e then each point of the relative boundary

is an extreme point of K2. Thus extK2 contains four (one for each (α, β)-quadrant)

disjoint families of pairwise disjoint topological circles, each family indexed by the points

(α, β, e) of a non-empty open subset of R
3. The results provide a sharp contrast with

the one-variable situation and disappoint any expectation there may have been that

operator convex functions of two variables might have a characterisation analogous in a

straightforward way to the characterisation of operator convex functions of one variable.

I. THE CALCULUS

2. Operator functions of one variable

For a positive integer N let C
N be the standard N -dimensional complex linear space

equipped with its natural inner product 〈·, ·〉. The natural coordinate system of C
N will

play no role. Let L(CN ) denote the space of linear operators on C
N and let S(CN ) = S

be the real linear space of self-adjoint operators defined on C
N . If J denotes a subinterval
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(usually open) of R let SJ(CN ) = SJ denote the set of operators in S with spectrum

contained in J . If J is open then SJ is a convex open subset of S.

Definition. To each real-valued function f : J → R defined on J there corresponds an

operator function f : SJ → S defined in the following way. An operator A ∈ SJ has a

spectral decomposition

(2.1) A =
∑

λkEk

in which λ1, λ2, . . . are the distinct eigenvalues of A and E1, E2, . . . are the corresponding

orthogonal projections onto eigenspaces of A. An operator, denoted by f(A), in S is

defined by

f(A) =
n

∑

k=1

f(λk)Ek.

If N = 1 then f(λI) (where I denotes the identity operator) can be identified with

f(λ). It is natural to regard the operator functions f (one for each integer N) as extensions

of f : J → R and to use the same symbol for all. However it will be convenient to denote

an operator function f also by Of and to think in terms of the mapping O.

The first theorem asserts that Of inherits differentiability properties from f . Let

C(J) = C0(J) denote the space of continuous functions f : J → R. For any positive

integer L let CL(J) denote the space of functions f ∈ C(J) such that the derivative f (L)

exists and is continuous on J . Then for each L ≥ 0 the space CL(I) is a Fréchet space

[16]. If X and Y are real normed linear spaces and Ω is an open subset of X then for

each integer L ≥ 0 we denote the space of functions F : Ω → Y such that F and its

Fréchet derivatives dF, . . . , dLF exist and are continuous on Ω by CL(Ω, Y ). If X is a

finite-dimensional space and Y is a Banach space then CL(Ω, Y ) is a Fréchet space with

respect to the topology defined by the seminorms

‖dlF‖K = sup
x∈K

‖dlF (x)‖,

where 0 ≤ l ≤ L and K is a compact subset of Ω. This fact can be proved by an extension

of an elementary proof of the special case in which X = Y = R. The extension depends

upon basic results of the Fréchet differential calculus for which we refer to [6]. Our first

concern is with the case X = Y = S(CN ) and Ω = SJ(CN ). In this case the topology is

determined by the seminorms

‖dlF‖SJ′
= sup

A∈SJ′

‖dlF (A)‖

where 0 ≤ l ≤ L and J ′ is a closed subinterval of J .

The lth divided difference of a function f ∈ Cl(J) on points λ0, . . . , λl (not necessarily

distinct) will be denoted by f [l](λ0, . . . , λl). We refer to [5] for information concerning

divided differences.

The case L = 1 of the first theorem is largely contained in [5] (p. 79). The case L = 2

is in part contained, in matrix form, in [11].

Theorem 2.1. Let f ∈ CL(J), where L ≥ 0. Then Of ∈ CL(SJ ,S). The mapping

O : CL(J) → CL(SJ ,S) is continuous.
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If f ∈ CL(J), A ∈ SJ and e1, . . . , eN is an orthonormal basis of C
N consisting of

eigenvectors of A corresponding to eigenvalues λ1, . . . , λN then, for 1 ≤ l ≤ L, the matrix

of dlf(A)(H1, . . . , Hl) with respect to this basis is given by

〈dlf(A)(H1, . . . , Hl)ejl
, ej0〉(2.2)

=
∑

1≤j1,...,jl−1≤N

f [l](λj0 , . . . , λjl
)
(

∑

σ∈Sl

l
∏

r=1

〈Hσ(r)ejr
, ejr−1

〉
)

for all j0, jl ∈ {1, . . . , N}, where Sl denotes the symmetric group of permutations of

{1, . . . , l}, and the outer summation is omitted in the case l = 1.

If A ∈ SJ and sp(A) ⊆ J ′, where J ′ is a closed subinterval of J , then, for 0 ≤ l ≤ L,

(2.3) ‖dlf(A)‖ ≤ N ll!‖dlf‖J′ .

The result will be proved first for polynomial functions and will then be extended

by continuity to all of CL(J). The operator O is linear so we begin by considering the

monomials pk ∈ C∞(R) defined for k = 0, 1, . . . by pk(t) = tk. It is easily seen from the

definition of pk(A) that pk(A) = Ak for all A ∈ S. We can regard Opk as a mapping of

L(CN ) into itself. The space L(CN ) is a complex Banach algebra.

Lemma 2.2. Let A be a Banach algebra and let k ∈ N. Then the mapping pk : A → A,

defined by

pk(A) = Ak

for all A ∈ A, has Fréchet derivatives of all orders given, for l ≥ 1, by

(2.4) dlpk(A)(H1, . . . , Hl) =
∑

σ∈Sl

∑

r1+...+rl+1=k−l

Ar1Hσ(1)A
r2Hσ(2) . . . ArlHσ(l)A

rl+1

(where, in the summation, 0 ≤ r1, . . . , 0 ≤ rl+1).

Proof. First note that

(2.5) pk(A + tH) = (A + tH)k =
k

∑

l=0

tl
(

∑

r1+···+rl+1=k−l

Ar1HAr2H . . .ArlHArl+1

)

A direct calculation now shows that pk : A → A is Fréchet differentiable and that dpk is

given by (2.4) with l = 1.

We now outline a proof by induction that: dlpk exists for each l ≥ 1 and the value

dlpk(A)(H1, . . . , Hl) can be expressed as a finite sum of terms each of the form

(2.6) T (A)(H1, . . . , Hl) = Ar1Hσ(1)A
r2Hσ(2) . . . ArlHσ(l)A

rl+1

where 0 ≤ r1, . . . , 0 ≤ rl+1, r1 + . . . + rl+1 = k − l and σ ∈ Sl. We have seen that this

statement is true in the case l = 1.

Let ML : A → L(A) and MR : A → L(A) denote left and right multiplication; that

is, for each A ∈ A,

ML(A)(x) = Ax, MR(A)(x) = xA

for all x ∈ A. Then ML and MR are linear and Fréchet differentiable. The mapping

T : A → Ll(A,A)
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into the space of multilinear mappings of Al into A defined by (2.6) can be regarded as

a composite

A
φ1
−→ Al+1 φ2

−→ L(A,A)l φ3
−→ Ll(A,A)

in which

φ1(A) = (Ar1 , . . . , Arl+1),

φ2(B1, . . . , Bl+1) = (ML(B1), . . . , ML(Bl−1), MR(Bl+1) ◦ ML(Bl)),

φ3(T1, . . . , Tl)(H1, . . . , Hl) = T1H1 . . . TlHl.

Elementary arguments show that φ1, φ2 and φ3 are all Fréchet differentiable. (For ex-

ample, φ3 is shown to have continuous partial Fréchet derivatives and so ([6], p. 197) is

differentiable.) Thus T is Fréchet differentiable.

Now

dT (A)(Hl+1)(H1, . . . , Hl)

=
d

dt
T (A + tHl+1)(H1, . . . , Hl)

∣

∣

∣

∣

t=0

=
d

dt
(A + tHl+1)

r1Hσ(1) . . . (A + tHl+1)
rlHσ(l)(A + tHl+1)

rl+1

∣

∣

∣

∣

t=0

.

The last term is the coefficient of t in the expansion of the product as a polynomial in t,

which is a finite sum of the form (2.6) (with l replaced by l +1). The italicised statement

above now follows by induction.

It remains to identify the derivatives dlpk. Let D(l)pk(A)(H1, . . . , Hl) be the right hand

side of (2.4). Then D(l)pk is a mapping of A into Ll(A,A). For each A ∈ A both dlpk(A)

and D(l)pk(A) are symmetric multilinear mappings of Al into A. Now, for all H∈A,

dlpk(A)(H, . . . , H) =
dl

dtl
pk(A + tH)

∣

∣

∣

∣

t=0

=
dl

dtl
(A + tH)k

∣

∣

∣

∣

t=0

= l!
∑

r1+...+rl+1=k−l

Ar1H . . .ArlHArl+1

= D(l)pk(A)(H, . . . , H)

(the first equation is by 3.6.1 of [6], the second and third terms on the right are, by (2.5),

both l! times the coefficient of tl in the expansion of (A + tH)k as a polynomial in t). It

follows that dlpk(A) = D(l)pk(A). The proof of Lemma 2.2 is complete.

If we now apply Lemma 2.2 to A = L(CN ) and consider the restriction pk|S(CN ) we

conclude that the operator function pk : S(CN ) → S(CN ) is infinitely Fréchet differen-

tiable with derivatives given by equation (2.4).

Now suppose that A ∈ S and that e1, . . . , eN and λ1, . . . , λN are as in the statement

of the theorem. Then it follows from (2.4) that

〈dlpk(A)(H1, . . . , Hl)ejl
, ej0〉

=
∑

1≤j1,...,jl−1≤N

(

∑

r1+...+rl+1=k−l

l
∏

m=0

λ
rm+1

jm

)(

∑

σ∈Sl

l
∏

m=1

〈Hσ(m)ejm
, ejm−1

〉
)

.
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The equation (2.2) in the case f = pk now follows from the next lemma.

Lemma 2.3. For all λ1, . . . , λl+1,

(2.7) p
[l]
k (λ1, . . . , λl+1) =

∑

r1+...+rl+1=k−l

λr1

1 . . . λ
rl+1

l+1 .

Proof. The divided differences of an analytic function have integral representations ([5],

p. 2) which for the monomial pk can be written as

p
[l]
k (λ1, . . . , λl+1) =

1

2πi

\
Γ

ζk

∏l+1
r=1(ζ − λr)

dζ,

where Γ is a (large) circle containing all of λ1, . . . , λl+1. Let K = k − l. Then

1

ζ − λr
=

1

ζ

(

1 +
λr

ζ
+ . . . +

λK
r

ζK
+

λK+1
r

ζK(ζ − λr)

)

.

Let

Gr = 1 +
λr

ζ
+ . . . +

λK
r

ζK
, Rr =

λK+1
r

ζK(ζ − λr)
.

Then

ζk

∏l+1
r=1(ζ − λr)

= ζk−l−1
l+1
∏

r=1

(Gr + Rr) = ζk−l−1
(

l+1
∏

r=1

Gr + R
)

where R is a finite sum of 2l+1 − 1 terms, each a product of l + 1 factors at least one of

which is one of R1, . . . , Rl+1. If Λ = max |λr| and |ζ| ≥ 2Λ then |Gr| < 2 and

|Rr| ≤
2ΛK+1

|ζ|K+1
.

Therefore

|R(ζ)| ≤ (2l+1 − 1)2l 2ΛK+1

|ζ|K+1
.

Now let Γ be a circle with centre 0 and radius ̺ ≥ 2Λ. Then
∣

∣

∣

∣

1

2πi

\
Γ

ζk−l−1R(ζ) dζ

∣

∣

∣

∣

≤ (2l+1 − 1)2l+1ΛK+1̺−(K+1−k+l)

and the term on the right hand side tends to zero as ̺ → ∞. Also

1

2πi

\
Γ

ζk−l−1
l+1
∏

r=1

(

1 +
λr

ζ
+ . . . +

λK
r

ζK

)

dζ

is equal to the coefficient of 1/ζ in the expansion of the integrand, that is, to the term

on the right of (2.7). The proof of the lemma is complete.

The case l = 0 of (2.3), for all f , follows from the definition of f : SJ → S. Note that

if (qk)k≥1 is a sequence in C(J) convergent in C(J) to f then, by (2.3),

‖f − qk‖SJ′
→ 0

for any closed subinterval J ′ of J ; consequently, Of ∈ C(SJ ,S) and (Oqk)k≥1 is conver-

gent in C(SJ ,S) to Of .
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The divided difference f [l] is bounded by the derivative dlf ([5], p. 6) and it follows

that if f ∈ Cl(J) and equation (2.2) holds then, if A ∈ SJ′ ,

‖dlf(A)‖ = sup
‖H1‖≤1,...,‖Hl‖≤1

‖dlf(A)(H1, . . . , Hl)‖

≤ sup
‖H1‖≤1,...,‖Hl‖≤1

N sup
1≤j0,jl≤N

|〈dlf(A)(H1, . . . , Hl)ejl
, ej0〉| ≤ N ll!‖dlf‖J′ .

Thus for l ≥ 1 the inequality (2.3) is a consequence of equation (2.2) which has been

shown to hold if f = pk (k = 0, 1, . . .). Let P be the space of real polynomial functions.

Then, by linearity, if f ∈ P then f ∈ C∞(S,S) and (2.2) and (2.3) hold. It follows easily

from the inequality (2.3) that, for each L ≥ 1, the mapping

O : P (⊆ CL(R)) → CL(S,S)

is continuous.

Now consider g ∈ CL(J) and let (qk)k≥1 be a sequence of polynomials convergent

to g in the space CL(J). Then (Oqk)k≥1 is a sequence in CL(S,S). Let J ′ be a closed

subinterval of J . Then, for A ∈ SJ′ and 0 ≤ l ≤ L, by (2.3) for polynomials,

‖dl(Oqk − Oqj)(A)‖ ≤ N ll!‖dl(qk − qj)‖J′ .

Thus

‖dl(Oqk − Oqj)‖SJ′
≤ N ll!‖dl(qk − qj)‖J′ .

The sequence (qk)k≥1 is a Cauchy sequence in CL(J) and it now follows that (Oqk)k≥1

is a Cauchy sequence in CL(SJ ,S). Let q be the limit in CL(SJ ,S) of (Oqk)k≥1. Then,

for each A ∈ SJ ,

q(A) = lim
k→∞

Oqk(A) = Og(A).

Therefore Og = q ∈ CL(SJ ,S) and Og = limk→∞ Oqk. Furthermore, for l = 0, . . . , L,

g[l] = lim
k→∞

q
[l]
k .

The formula (2.2) holds for f = qk, k = 1, 2, . . . , and it follows that it holds for f = g.

The proof of the theorem is complete.

The matrix representation (2.2) of the first Fréchet derivative dOf of the operator

function Of is well known and appears frequently in the literature. However there is an

equivalent operator-theoretic form which shows that there is a sense in which, if N ≥ 2,

the derivative of the operator function Of contains both the operator function Of ′ and

the operator function Of . Note that for A ∈ S each operator T ∈ S can be represented

in the form K + i(HA − AH) where K, H ∈ S and KA = AK; with the notation of

equation (2.1) one can take

K =
∑

j

EjTEj and H =
∑

j 6=k

i

λj − λk
EjTEk.

If the eigenvalues of A are distinct this decomposition of T corresponds to the decompo-

sition of a matrix into its diagonal and off-diagonal parts.
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Theorem 2.4. Suppose f ∈ C1(J) and A ∈ SJ . If K, H ∈ S and KA = AK then

(2.8) df(A)(K + i(HA − AH)) = f ′(A)K + i(Hf(A) − f(A)H).

Proof. For the monomials pk (k = 0, 1, . . .) the formula (2.8) follows by direct calculation

from the case l = 1 of 2.4, and it extends by linearity to all polynomials and then, by

Theorem 2.1, by continuity to all f ∈ C1(J).

Using the preceding theorem it is possible to recapture the operator functions Of

from their derivatives dOf algebraically.

For notational purposes regard an h ∈ C
N as a column vector. For H ∈ S(CN ⊕ C)

let M(H) denote the natural (block) matrix of the operator H. Let

T : C
N → S(CN ⊕ C)

be the real linear mapping defined by

(2.9) M(Th) =

[

0 h

h∗ 0

]

and let

P : S(CN ⊕ C) → C
N

be the left inverse of T defined by

(2.10) P (H) = h if M(H) =

[

A h

h∗ λ

]

.

If B is an operator on a space let δB denote the derivation on the space of operators

defined by

(2.11) δB(H) = HB − BH.

It follows from Theorem 2.4 that if f ∈ C1(J) and A ∈ SJ then

(2.12) df(A)δiA = δif(A).

In the following theorem we require that 0 ∈ J in order that A⊕0 ∈ SJ(CN+1) whenever

A ∈ SJ (CN ). The identity operator on C
N is denoted by I.

Theorem 2.5. Suppose 0 ∈ J . If f ∈ C1(J) and A ∈ SJ then

f(A) = f(0)I − iPdf(A ⊕ 0)δi(A⊕0)T,

where T, P and δ are as defined in (2.9)–(2.11).

The proof is a simple calculation using (2.12) and the fact that f(A⊕0) = f(A)⊕f(0).

The operators Th occur in Lemma 3.7 of [9].

3. Operator monotonicity and convexity

Definitions. A function f : J → R is said to be operator monotone if

(3.1) A, B ∈ SJ , A ≤ B ⇒ f(A) ≤ f(B).
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The condition is equivalent to the condition that, for each N ∈ N, the real function

〈f(A + tH)ξ, ξ〉 of t is increasing on the set {t ∈ R : A + tH ∈ SJ} for all A ∈ SJ , H ∈ S

such that H ≥ 0 and ξ ∈ C
N . In Section 4 we consider operator functions of two variables

and here we define convexity in a suitably general context. Let W be a convex subset of

a real linear space X. A mapping

F : W → S(CN )

will be said to be convex if

(3.2) F ((1 − t)A + tB) ≤ (1 − t)F (A) + tF (B)

for all A, B ∈ W and all t ∈ [0, 1]. The condition (3.2) is equivalent to the condition that

〈F (A + tH)ξ, ξ〉 is a convex function of t on the convex subset Ω = {t : A + tH ∈ W} of

R for all A ∈ W, H ∈ X and ξ ∈ C
N .

A function f : J → R is said to be operator convex if each of the mappings Of :

SJ(CN ) → S(CN ) (N ∈ N) is convex. The function f : J → R is said to be operator

concave if −f is operator convex.

There is an intimate relation between operator monotonicity and operator convexity

which features prominently in [9], and operator convex functions are also analytic. It is

natural to seek to apply the calculus to the consideration of operator monotonicity and

operator convexity.

At several points in the discussion we will appeal to the fact that, by 3.1.4 and 3.6.1

of [6],

(3.3) 〈dlf(A)(H, . . . , H)ξ, ξ〉 =
dl

dtl
〈f(A + tH)ξ, ξ〉

∣

∣

∣

∣

t=0

.

For sufficiently differentiable functions the elementary differential characterisations of

monotonicity and convexity extend immediately to operator functions.

Theorem 3.1. If f ∈ C1(J) then f is operator monotone if and only if , for each N ∈ N,

df(A)(H) ≥ 0 whenever A ∈ SJ , H ∈ S and H ≥ 0.

Proof. The second condition of the theorem is equivalent, by equation (3.3), to the

condition that
d

dt
〈f(A + tH)ξ, ξ〉

∣

∣

∣

∣

t=0

≥ 0.

The latter condition is easily seen to be equivalent to the operator monotonicity of f .

For convexity it is appropriate to formulate a theorem in the general context.

Theorem 3.2. Let W be an open convex subset of a real normed linear space X. Suppose

that F ∈ C2(W,S(CN )). Then F is convex if and only if

d2F (A)(H, H) ≥ 0

for all A ∈ W and H ∈ X.
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Proof. The second condition of the theorem is equivalent, by equation (3.3), to the

condition that
d2

dt2
〈F (A + tH)ξ, ξ〉

∣

∣

∣

∣

t=0

≥ 0.

for all A ∈ W, H ∈ X and ξ ∈ C
N . The latter condition is easily seen to be equivalent to

the convexity of F .

Matrix forms of Theorem 3.1 and of Theorem 3.2 in the case of operator functions now

follow immediately from equation (2.2) of Theorem 2.1. In the monograph [5], Chap.VII,

Theorem 3.1 appears implicitly and its matrix form explicitly. A matrix form of Theo-

rem 3.2 is given in [11].

In the rest of this section we are concerned with two examples: the functions 1/t and

tα (α > 0).

Proposition 3.3. Let p−1(t) = 1/t for t ∈ R \ {0}, and consider either J = (−∞, 0) or

J = (0,∞) and p−1 ∈ C∞(J). Then, for each l ≥ 1,

(3.4) dlp−1(A)(H, . . . , H) = l!(−1)l(A−1H)lA−1

for each A ∈ SJ and each H ∈ S.

Proof. Equation (3.4) follows from the Neumann series

p−1(A + tH) =

∞
∑

l=0

(−1)ltl(A−1H)lA−1

together with equation (3.3).

From the cases l = 1,

dp−1(A)(H) = −A−1HA−1,

and l = 2,

d2p−1(A)(H, H) = 2A−1HA−1HA−1 = 2(HA−1)∗A−1(HA−1)

of (3.4) together with Theorems 3.1 and 3.2 the following well known facts follow imme-

diately.

Corollary 3.4. The function −1/t is operator monotone on both (−∞, 0) and (0,∞),

is operator convex on (−∞, 0) and operator concave on (0,∞).

Next we consider the functions pα ∈ C∞((0,∞)), for α ≥ 0, defined by

pα(t) = tα = exp(α log t).

It follows immediately from Löwner’s characterisation of operator monotone functions,

by considering the analytic extension of pα to C \ (−∞, 0), that pα is operator monotone

on (0,∞) if and only if 0 ≤ α ≤ 1. The most elegant and elementary proof of this result is

due to Pedersen [15]. It does not seem possible to obtain a simple direct proof of the result

by considering the Fréchet derivatives of the operator functions Opα. We obtain instead

conditions which are equivalent to the operator monotonicity of pα. Using Theorem 2.4

we obtain the following theorem.
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Theorem 3.5. Let α > 0. Then the following three conditions are equivalent :

(1) 0 < α ≤ 1.

(2) The function pα is operator monotone on (0,∞).

(3) For each N ∈ N,

K +
i

α
(B−αHBα − BαHB−α) ≥ 0

whenever B ∈ S(0,∞), K, H ∈ S, KB = BK and

K + i(B−1HB − BHB−1) ≥ 0.

Proof. The equivalence of (1) and (2) is well known (see above). Let A, B ∈ S(0,∞), K, H

∈ S and A = B2, H = BH1B. Then

K + i(B−1HB − BHB−1) = K + i(H1A − AH1)

and, by Theorem 2.4,

K +
i

α
(B−αHBα − BαHB−α) =

1

α
B1−αdpα(A)(K + i(H1A − AH1))B

1−α.

The equivalence of (2) and (3) now follows from Theorem 3.1.

There is a second approach to the operator monotonicity of pα. It is enough to consider

rational α. If m, n ∈ N then pm/n = p−1
n ◦ pm.

If f, g, h are real-valued functions defined on open subintervals of R and f = g◦h then

Of = Og◦Oh. If g = h−1 then Og = (Oh)−1. If f, g, h are continuously differentiable then

so are the corresponding operator functions and d(Of)(A) = d(Og)(h(A)) ◦ d(Oh)(A). It

follows that if m, n ∈ N then for each A ∈ S(0,∞) the derivative dpn(A) is invertible and

dpm/n(A) = (dpn(Am/n))−1 ◦ dpm(A).

The derivatives of Opm and Opn are given by equation (2.4) and so using the equivalence

of (1) and (2) of Theorem 3.5 together with Theorem 3.1 we obtain the following result.

Theorem 3.6. If n ∈ N then for each A ∈ S(0,∞) and H ∈ S the equation

n−1
∑

r=0

ArKAn−1−r = H

has a unique solution K ∈ S.

If m, n ∈ N then the following statements are equivalent:

(1) m ≤ n.

(2) The function pm/n is operator monotone on (0,∞).

(3) If B ∈ S(0,∞) and H, K ∈ S, H ≥ 0 and

n−1
∑

r=0

BmrKBm(n−1−r) =
m−1
∑

r=0

BnrHBn(m−1−r)

then K ≥ 0.

In the case m = 1, n = 2 the theorem is contained in a result known as Lyapunov’s

theorem (see [14] for references). If m = 1, n = 3 then assertion (3) is contained in results

of Kwong [12].
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4. Operator functions of two variables

In this section the definition of operator functions of two variables due to Korányi [10]

is recalled, the analogue for two variables of Theorem 2.1 is obtained and we begin the

consideration of operator convexity of functions of two variables. It is shown that the

calculus provides a natural proof of a theorem, deduced by Aujla [2] from a result of

Ando [1], which identifies certain operator convex functions of two variables.

Definition. Let J and J ′ be open subintervals of R and let M, N ∈ N. For a function

f : J × J ′ → R there is an associated operator function

f = Of : SJ (CM ) × SJ′(CN ) → S(CM ⊗ C
N )

defined in the following way. If (A, B) ∈ SJ (CM ) × SJ′(CN ) and

A =
∑

j

λjEj , B =
∑

k

µkFk

are the spectral resolutions of A and B respectively then

f(A, B) =
∑

j

∑

k

f(λj , µk)Ej ⊗ Fk.

The tensor product C
M ⊗ C

N has inner product defined by

〈a ⊗ b, a′ ⊗ b′〉 = 〈a, a′〉〈b, b′〉.

For the purposes of our calculations the space S(CM ) × S(CN ) will be normed by

(4.1) ‖(H, K)‖ = max{‖H‖, ‖K‖}.

The main result of this section is a two-variable analogue of Theorem 2.1 concern-

ing functions f ∈ CL(J × J ′), the space of L times continuously Fréchet differentiable

functions defined on the open subset J × J ′ of R
2. If f ∈ CL(J × J ′) and l + m ≤ L let

f (l,m) denote the (equal) partial derivatives of f in which f is differentiated l times with

respect to the first variable and m times with respect to the second variable. For such a

function f we will denote by

f [l,m](λ1, . . . , λl+1; µ1, . . . , µm+1)

the repeated divided difference of f , with respect to the first variable on the points

λ1, . . . , λl+1 in J and then with respect to the second variable on the points µ1, . . . , µm+1

in J ′. The following lemma is required.

Lemma 4.1. Suppose f ∈ CL(J × J ′) and l + m ≤ L. If J1, J ′
1 are closed subintervals

of J and J ′ respectively , and λ1, . . . , λl+1 ∈ J1, µ1, . . . , µm+1 ∈ J ′
1 then, for some

(ξ, ζ) ∈ J1 × J ′
1,

f [l,m](λ1, . . . , λl+1; µ1, . . . , µm+1) =
1

l!m!
f (l,m)(ξ, ζ).

Proof. The proof is by deduction from the one-variable result. By the Lemma of [5],
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p. 6, there exist ζ ∈ J ′
1 and ξ ∈ J1 such that

f [l,m](λ1, . . . , λl+1; µ1, . . . , µm+1) = f [l,0](λ1, . . . , λl+1; µ)[m](µ1, . . . , µm+1)

=
1

m!

∂m

∂µm
f [l,0](λ1, . . . , λl+1; µ)

∣

∣

∣

∣

µ=ζ

=
1

m!

(

∂mf

∂µm

∣

∣

∣

∣

µ=ζ

)[l]

(λ1, . . . , λl+1)

=
1

m!

1

l!

∂l

∂λl

(

∂mf

∂µm

∣

∣

∣

∣

µ=ζ

)
∣

∣

∣

∣

λ=ξ

=
1

m!

1

l!
f (l,m)(ξ, ζ)

(where the central equality expresses the fact that the divided difference operator in the

first variable commutes with the partial differential operator in the second variable).

It follows immediately from the definition of the operator function that if f(s, t) =

g(s)h(t) for (s, t) ∈ J×J ′ then f(A, B) = g(A)⊗h(B) for all (A, B) ∈ SJ (CM )×SJ′(CN ).

It is easily seen that for such a function f ∈ CL(J × J ′), if l + m ≤ L then

(4.2) f [l,m](λ1, . . . , λl+1; µ1, . . . , µm+1) = g[l](λ1, . . . , λl+1)h
[m](µ1, . . . , µm+1).

Theorem 4.2. If f ∈ CL(J × J ′) then

Of ∈ CL(SJ(CM ) × SJ′(CN ),S(CM ⊗ C
N )).

The mapping

O : CL(J × J ′) → CL(SJ(CM ) × SJ′(CN ),S(CM ⊗ C
N ))

is continuous.

If f ∈ CL(J × J ′) and J1 and J ′
1 are closed subintervals of J and J ′ respectively

then for 0 ≤ l ≤ L,

(4.3) ‖dlf‖SJ1
×SJ′

1

≤

l
∑

r=0

cl,r(M, N)‖f (r,l−r)‖J1×J′

1
,

for some coefficients cl,r(M, N).

Proof. The pattern of proof is similar to that of Theorem 2.1 but begins with the

consideration of functions of the form f(s, t) = g(s)h(t). For these functions there is a

straightforward lemma.

Lemma 4.3. Suppose that g ∈ CL(J), h ∈ CL(J ′) and that f(s, t) = g(s)h(t) for all

(s, t) ∈ J × J ′. Then Of ∈ CL(SJ(CM ) × SJ′(CN ),S(CM ⊗ C
N )) and , for 1 ≤ l ≤ L,

dlf(A, B)((H1, K1), . . . , (Hl, Kl))

=

l
∑

r=0

∑

σ∈Sl

1

r!(l − r)!
drg(A)(Hσ(1), . . . , Hσ(r)) ⊗ dl−rh(B)(Kσ(r+1), . . . , Kσ(l)).

The proof of the lemma is a technical exercise and is omitted.

The case l = 0 of the inequality (4.3) follows, for all f , from the definition of the

operator function. Now suppose that f is as in the lemma. If A ∈ SJ (CM ) and B ∈
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SJ′(CN ) let a1, . . . , aM be an orthonormal basis of C
M consisting of eigenvectors of A

corresponding to eigenvalues λ1, . . . , λM and let b1, . . . , bN be an orthonormal basis of

C
N consisting of eigenvectors of B corresponding to eigenvalues µ1, . . . , µN . Then aj⊗bk,

j = 1, . . . , M , k = 1, . . . , N , is an orthonormal basis of C
M ⊗C

N . For 1 ≤ l ≤ L we obtain

the matrix of dl(A, B)((H1, K1) . . . , (Hl, Kl)) with respect to this basis from the equation

of Lemma 4.3, equation (2.2) applied to each of the terms of that equation involving g

and h, the definition of g(A) and h(B), and equation (4.2):

(4.4) 〈dlf(A, B)((H1, K1), . . . , (Hl, Kl))aj ⊗ bk, aj′ ⊗ bk′〉

=
l

∑

r=0

∑

σ∈Sl

1

r!(l − r)!

∑

1≤j1,...,jr−1≤M

∑

1≤k1,...,kl−r−1≤N

F × C,

where, if r ≥ 2 and l − r ≥ 2,

F = f [r,l−r](λj′ , λj1 , . . . , λjr−1
, λj ; µk′ , µk1

, . . . , µkl−r−1
, µk)

and

C =
(

∑

ν∈Sr

〈Hσ(ν(1))aj1 , aj′〉

r−1
∏

s=2

〈Hσ(ν(s))ajs
, ajs−1

〉〈Hσ(ν(r))aj , ajr−1
〉
)

×
(

∑

τ∈Sl−r

〈Kσ(r+τ(1))bk1
, bk′〉

l−r−1
∏

t=2

〈Kσ(r+τ(t))bkt
, bkt−1

〉〈Kσ(r+τ(l−r))bk, bkl−r−1
〉
)

.

The factors F and C are of a similar form in the other cases. Formula (4.4) extends by

linearity to the set F of all functions f ∈ CL(J × J ′) which are finite sums of products

of functions of one variable. In the “general” case the coefficient C is a sum of r!(l − r)!

products each of l = r + (l − r) terms. Each product involves just one of each of the

pairs (H1, K1), . . . , (Hl, Kl). Now, using Lemma 4.1 and the norm (4.1), it follows that,

for (A, B) ∈ SJ1
(CM ) × SJ′

1
(CN ),

|〈dlf(A, B)((H1, K1), . . . , (Hl, Kl))aj ⊗ bk, aj′ ⊗ bk′〉|

≤
l

∑

r=0

c′l,r(M, N)‖f (r,l−r)‖I′×J′

l
∏

m=1

‖(Hm, Km)‖

for certain coefficients c′l,r(M, N). The inequality (4.3) for f ∈ F now follows, with

c = MNc′. This proves that the mapping of F into CL(SJ(CM )×SJ′(CN ),S(CM ⊗C
N ))

is continuous. The proof of Theorem 4.2 is now completed in the same way as was the

proof of Theorem 2.1 using the fact that F is dense in the space CL(J × J ′).

It is an open problem to determine which functions f : J × J ′ → R are operator

convex. An operator convex function of two variables is necessarily operator convex in

each variable separately and is itself convex on J × J ′ (the case M = N = 1). However,

the verification that a function of two variables is operator convex may not be easy. The

following interesting theorem was deduced, in a slightly more restricted form, by Aujla

[2] from a more limited result obtained by Ando [1]. It will be shown that the calculus

provides a natural and straightforward proof of the theorem, quite different from the

original proof.
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Theorem 4.4. Suppose that g ∈ C2(J), h ∈ C2(J ′) and that g and h are both positive

and operator concave. Then the function

f(s, t) =
1

g(s)h(t)

is an operator convex function of two variables on J × J ′.

The proof of the theorem requires the following lemma.

Lemma 4.5. If g ∈ C2(J), g is positive and G(s) = 1/g(s) = (p−1 ◦ g)(s) then, for all

A ∈ SJ (CM ) and all H ∈ S(CM ),

(4.5) dG(A)(H) = −g(A)−1dg(A)(H)g(A)−1

and

(4.6) d2
G(A)(H, H) = g(A)−1(−d2g(A)(H, H) + 2dg(A)(H)g(A)−1dg(A)(H))g(A)−1.

Proof. The operator O respects composition of functions: OG = Op−1 ◦ Og. Equation

(4.5) is given by the chain rule for partial derivatives together with equation (3.4). The

proof of equation (4.6) is a more involved technical exercise which we omit.

Proof of Theorem 4.4. Suppose that f, g and h are as in the statement of the theorem.

Let

G(s) =
1

g(s)
, H(t) =

1

h(t)
,

so that

f(s, t) = G(s)H(t).

Then by Theorem 3.2 and Lemma 4.1 the function f is operator convex on J × J ′ if

and only if for each M, N ∈ N and for all A ∈ SJ(CM ), B ∈ SJ′(CN ), H ∈ S(CM ) and

K ∈ S(CN ),

0 ≤ d2f(A, B)((H, K), (H, K))(4.7)

= G(A) ⊗ d2
H(B)(K, K) + 2dG(A)(H) ⊗ dH(B)(K)

+ d2
G(A)(H, H) ⊗ H(B).

By Lemma 4.5,

(4.8) (g(A) ⊗ h(B))d2f(A, B)((H, K), (H, K))(g(A)⊗ h(B))

= g(A) ⊗ (−d2h(B)(K, K) + 2dh(B)(K)h(B)−1dh(B)(K))

+ 2dg(A)(H) ⊗ dh(B)(K)

+ (−d2g(A)(H, H) + 2dg(A)(H)g(A)−1dg(A)(H)) ⊗ h(B).

By the positivity of g and h, condition (4.7) is equivalent to the condition that the

operator (4.8) is non-negative. By the positivity and operator concavity of g and h the

first and fourth of the five summands in (4.8) are non-negative. However, the sum of the
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remaining terms is

g(A) ⊗ dh(B)(K)h(B)−1dh(B)(K)

+ dg(A)(H) ⊗ dh(B)(K) + dg(A)(H)g(A)−1dg(A)(H) ⊗ h(B)

= I ⊗ dh(B)(K) g(A)⊗ h(B)−1 I ⊗ dh(B)(K) + I ⊗ dh(B)(K) dg(A)(H)⊗ I

+ dg(A)(H) ⊗ I g(A)−1 ⊗ h(B) dg(A)(H)⊗ I

=

[

I ⊗ dh(B)(K) g(A)1/2 ⊗ h(B)−1/2 +
1

2
dg(A)(H) ⊗ I g(A)−1/2 ⊗ h(B)1/2

]

×

[

g(A)1/2 ⊗ h(B)−1/2 I ⊗ dh(B)(K) +
1

2
g(A)−1/2 ⊗ h(B)1/2 dg(A)(H) ⊗ I

]

+
3

4
dg(A)(H) ⊗ Ig(A)−1 ⊗ h(B) dg(A)(H) ⊗ I.

The first term in the latter sum is the product of an operator and its adjoint and so

is non-negative; the second term is non-negative because g and h are non-negative and

dg(A)(H) ⊗ I is self-adjoint. The proof of the theorem is complete.

Corollary 4.6. If (α, β) ∈ [−1, 1]2 then the function

f(s, t) =
1

(1 − αs)(1 − βt)

is an operator convex function on (−1, 1) × (−1, 1).

Hansen [7] has extended the result of the corollary to any number of variables with

a different proof. The result of the corollary, and the extension, can be proved by a

straightforward calculation of the second Fréchet derivative and application of Thm. 3.2

in the following way.

Suppose α1, . . . , αk ∈ [0, 1] and that for j = 1, . . . , k the function fj : (−1, 1) → R is

defined by fj(t) = (1 − αjt)
−1. Let f : (−1, 1)k → R be defined by

f(t1, . . . , tk) =

k
∏

j=1

fj(tj).

Then the operator function

Of :
k

∏

j=1

S(−1,1)(C
Nj ) →

k
⊗

j=1

S(CNj )

is given by

Of(A1, . . . , Ak) =
k

⊗

j=1

Ofj(Aj).

The operator functions Ofj are infinitely Fréchet differentiable and it follows that Of is

infinitely differentiable. Now put Bj = (I − αjAj)
−1/2, Kj = BjHjBj and

K ′
j = I ⊗ . . . ⊗ I ⊗ Kj ⊗ I ⊗ . . . ⊗ I
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for j = 1, . . . , k. Then, for small H1, . . . , Hk,

f(A1 + H1, . . . , Ak + Hk) =

k
⊗

j=1

B2
j

∞
∑

r=0

(

αjHjB
2
j

)r

=
(

k
⊗

j=1

Bj

)(

k
⊗

j=1

∞
∑

r=0

(αjKj)
r
)(

k
⊗

j=1

Bj

)

.

The second derivative of the operator function f is given by the terms which are of degree

two in H1, . . . , Hk in the expansion of the inner tensor product; that is,

D2f(A1, . . . , Ak)(H1, . . . , Hk)2 = 2
(

k
⊗

j=1

Bj

)(

∑

1≤i<j≤k

αiαjK
′
iK

′
j +

k
∑

j=1

α2
jK

′
j
2
)(

k
⊗

j=1

Bj

)

=
(

k
⊗

j=1

Bj

)((

k
∑

j=1

αjK
′
j

)2

+

k
∑

j=1

α2
jK

′
j
2
)(

k
⊗

j=1

Bj

)

≥ 0,

from which it follows that f is operator convex.

II. OPERATOR CONVEX FUNCTIONS OF TWO VARIABLES

5. Preliminaries

First we must present that information about operator convex functions of one variable

which is necessary to the subsequent discussion.

Let OC1 denote the set of operator convex functions f : (−1, 1) → R, and let L1

denote the set of linear functions on (−1, 1), i.e. functions of the form

l(t) = a + bt for all t ∈ (−1, 1)

where a, b ∈ R. Thus OC1 is a convex cone and L1 ⊆ OC1. Operator convex functions of

one variable are described by the following representation theorem.

Theorem 5.1 (see [3] and [9], Thm. 4.5). If f ∈ OC1 then f is analytic on (−1, 1). If

f 6∈ L1 then there is a unique probability measure M on [−1, 1] such that

f(t) = f(0) + f ′(0)t +
1

2
f ′′(0)

\ t2

1 − αt
dM(α)

for all t ∈ (−1, 1).

Let K1 = {f ∈ OC1 : f(0) = f ′(0) = 0, f ′′(0) = 2}. Let P be the set of probability

measures on [−1, 1], and regard P as a subset of the space C([−1, 1])∗, equipped with

the weak∗ topology. Then P is a compact convex set and its set of extreme points is the

set {δα : α ∈ [−1, 1]} of atoms of measure one. If T : P → K1 is the mapping defined by

(Tµ)(t) =
\ t2

1 − αt
dM(α),

for t ∈ (−1, 1), then T is continuous with respect to the topology of pointwise convergence

on K1 and, by the theorem, it is bijective. So the following proposition is a consequence
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of the theorem (although in the development of [9] facts closely related to those of the

proposition are preliminaries to the theorem rather than consequences of it).

Proposition 5.2. The set K1 is convex , compact in the topology of pointwise conver-

gence, and its set of extreme points is the set of functions of the form t2(1 − αt)−1 with

α ∈ [−1, 1].

It follows from the theorem that OC1 = L1 + R
+K1, and that the representation of

f ∈ OC1 as f = l + k where l ∈ L1 and k ∈ R
+K1 is unique.

The two-dimensional space L1 is a (trivial) face (closed convex extremal non-empty

subset) of the convex cone OC1, and any face of OC1 contains L1. If F is a non-trivial

face of OC1, that is, F 6= L1, then F ∩ K1 is a face of K1; and this correspondence is a

bijection between the non-trivial faces of OC1 and the faces of K1. If G is a face of K1

then L1 + R
+G is the corresponding face of OC1. For a function f ∈ OC1 \ L1 it will be

convenient to say that f is an extremal function of OC1 if L1 + R
+f is a face of OC1, or

if, equivalently, the function

2

f ′′(0)
(f(t) − f(0) − f ′(0)t)

is an extreme point of K1.

As an example with which we shall be concerned, note that if α ∈ [−1, 1] then the

function t2(1− αt)−1 is an extreme point of K1 and if α 6= 0 then (1− αt)−1 = 1 + αt +

α2t2(1 − αt)−1 is an extremal function of OC1.

Theorem 5.1 characterises completely operator convex functions on (−1, 1). The re-

sults which follow are a contribution towards solving the corresponding problem for op-

erator convex functions of two variables. First an appropriate notation is introduced.

If a function f : (−1, 1)2 → R is an operator convex function of two variables then for

each s and each t in (−1, 1) the functions f(s, ·) and f(·, t) are operator convex functions

of one variable and so are analytic on (−1, 1); that is, f is separately analytic in each

variable. Let OC2 be the set of operator convex functions f : (−1, 1)2 → R. Let K2 be

the set of f in OC2 such that

f(0, 0) = f (1,0)(0, 0) = f (0,1)(0, 0) = 0, f (2,0)(0, 0) + f (0,2)(0, 0) = 2.

Let L2 be the set of linear functions l : (−1, 1)2 → R, that is, functions of the form

l(s, t) = a + bs + ct for all (s, t) ∈ (−1, 1)2,

where a, b, c ∈ R.

Proposition 5.3. If f ∈OC2, (s0,t0) and (s1,t1) are points of (−1, 1)2 and f (2,0)(s0, t0)

= f (0,2)(s1, t1) = 0 then f ∈ L2. Consequently ,

OC2 = L2 + R
+K2

and the representation of f ∈ OC2 as f = l + k, where l ∈ L2 and k ∈ R
+K2, is unique.

Proof. Suppose f ∈ OC2 and f (2,0)(s0, t0) = f (0,2)(s1, t1) = 0. Then, by Thm. 5.1,

the functions f(s1, ·) and f(·, t0) are linear and the graph of f contains line segments

above {s1} × (−1, 1) and (−1, 1) × {t0}. Therefore the support plane Π to the graph of

f through the point (s1, t0, f(s1, t0)) is unique and contains the two line segments. The
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graph of f lies above Π but, by the convexity of f , that part of the graph which is above

the convex hull of ({s1} × (−1, 1)) ∪ ((−1, 1) × {t0}) lies beneath Π, and so in Π. Thus

the restriction of f to the open quadrilateral co(({s1} × (−1, 1)) ∪ ((−1, 1) × {t0})) is

linear. It follows by the separate analyticity of f that it is linear on (−1, 1)2. This proves

the first assertion of the proposition, and the second is a straightforward consequence.

The three-dimensional space L2 is a face of the convex cone OC2, any face of the cone

contains L2. There is a bijection between the faces of K2 and the non-trivial faces of

OC2. An extreme point of K2 corresponds to a four-dimensional face of OC2. A function

f ∈ OC2 \L2 will be said to be an extremal function of OC2 if L2 + R
+f is a face of OC2;

thus an extremal function of OC2 determines an extreme point of K2.

Suppose that α, β ∈ [−1, 1]. Then the functions (1−αs)−1 and (1−βt)−1 are extremal

functions of OC1. The function (1 − αs)−1(1 − βt)−1 is in OC2 by Cor. 4.6 and one can

describe it as being separately extremal. It is natural to ask whether it is extremal in OC2.

The results in the rest of this paper flow from this question, the answer to which is “no”

if αβ 6= 0 (Thm. 8.3(3)).

Consider, more generally, a function f ∈ OC2 which is such that for each s ∈ (−1, 1)

the function f(s, ·) is extremal in OC1, and for each t ∈ (−1, 1) the function f(·, t) is

extremal in OC1. Then f can be represented in each of the two forms

(5.1) f(s, t) = λ(s) + µ(s)t + ν(s)
t2

1 − β(s)t

and

(5.2) f(s, t) = l(t) + m(t)s + n(t)
s2

1 − α(t)s
.

It should be noted that if f : (−1, 1)2 → R is separately operator convex in each variable

then it has representations

(5.3) f(s, t) = λ(s) + µ(s)t + ν(s)
\ t2

1 − βt
dMs(β)

and

(5.4) f(s, t) = l(t) + m(t)s + n(t)
\ s2

1 − αs
dNt(α).

The representations (5.1) and (5.2) are the special cases of the representations (5.3) and

(5.4) in which the measures Ms and Nt are atoms.

The next section is devoted to the solution of the pair of equations (5.1) and (5.2)

under the assumption that the functions α(t) and β(s) have continuous second derivatives.

6. Separately extremal functions of two variables

We will consider the following pair of equations of which equations (5.1) and (5.2) are a

particular case:

(6.1) f(s, t) = λ(s) + µ(s)t + ν(s)t2ks(t)
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and

(6.2) f(s, t) = l(t) + m(t)s + n(t)s2ht(s)

where ht(s) and ks(t) are defined for (s, t) ∈ (−1, 1)2.

Assumptions. It will be assumed that the functions ht(s) and ks(t) satisfy the following

conditions:

(C0) ht(s) is separately continuous in s and t. Here and in the next three conditions it

is to be understood the the corresponding condition for k obtained by replacing

h by k and interchanging s and t is included.

(C1) ∂
∂tht(s) exists and is separately continuous in s and t.

(C2) ∂2

∂t2 ht(s) exists and is separately continuous in s and t,
∂2

∂s2 ht(s) exists and is a continuous function of s, and
∂2

∂s∂tht(s)
∣

∣

(0,0)
exists.

(C3) ∂2

∂s2

(

∂
∂tht(s)

)∣

∣

t=0
exists and is a continuous function of s.

(C4) ht(s) 6= 0 and ks(t) 6= 0 for all (s, t) ∈ (−1, 1)2.

In the present context the following condition is a convenient normalisation which

lightens the calculations a little:

(C5) ht(0) = 1 for all t ∈ (−1, 1), ks(0) = 1 for all s ∈ (−1, 1).

For notational convenience we write

H1(s) =
∂

∂t
ht(s)

∣

∣

∣

∣

t=0

,

Φ1(t, s) =
1

t
(ht(s) − h0(s)),

H2(s) =
∂2

∂t2
ht(s)|t=0,

Φ2(t, s) =
1

t2

(

ht(s) − h0(s) −

(

∂

∂t
ht(s)

∣

∣

∣

∣

t=0

)

t

)

.

The corresponding functions defined in terms of ks(t) will be denoted by K1(t), K2(t),

Ψ1(s, t) and Ψ2(s, t).

Theorem 6.1. Suppose that ht(s) and ks(t) are functions which satisfy conditions (C0)–

(C5). Then a function f : (−1, 1)2 → R can be represented both in the form (6.1) and in

the form (6.2) for some functions λ, µ, ν, l, m, and n if and only if there are constants

A, B, C, ∆, Γ0, Γ1, Σ0, Σ1 and G such that

f(s, t) = A + Bs + Ct + ∆st(6.3)

+Σ0

(

h0(s) + H1(s)t + 1
2ks(t)H2(s)t

2
)

s2 + Σ1(h0(s) + ks(t)H1(s)t)s
2t

+Γ0t
2ks(t) + Γ1st

2ks(t) + 1
2Gks(t)h0(s)s

2t2

and

(6.4) Γ0

(

Ψ2(s, t) −
1
2ht(s)K2(t)

)

+ Γ1(Ψ1(s, t) − ht(s)K1(t)) + 1
2Gks(t)h0(s)

= Σ0(Φ2(t, s) −
1
2ks(t)H2(s)) + Σ1(Φ1(t, s) − ks(t)H1(s)) + 1

2Ght(s)k0(t),

for all (s, t) ∈ (−1, 1)2.

Proof. Suppose that f is both of the form (6.1) and of the form (6.2). It will be shown

that µ′(0), m′(0), ν′′(0) and n′′(0) exist and that the relations (6.3) and (6.4) are satisfied
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by

(6.5)
A = λ(0) = l(0), B = m(0), C = µ(0), ∆ = µ′(0) = m′(0),

Γ0 = ν(0), Γ1 = ν′(0), Σ0 = n(0), Σ1 = n′(0), G = ν′′(0) = n′′(0).

It follows from (6.1) and (6.2) together with (C2) that

(C6) ∂2

∂s2 f exists and is a continuous function of s, and ∂2

∂t2 f exists and is a continuous

function of t.

Letting s = 0 and t = 0 in turn we deduce that

l(t) = f(0, t) = λ(0) + µ(0)t + ν(0)t2k0(t),(6.6)

λ(s) = f(s, 0) = l(0) + m(0)s + n(0)s2h0(s).(6.7)

Thus, by (C2),

(C7) λ′′ and l′′ exist and are continuous.

Substitution for l and λ, given by (6.6) and (6.7), in (6.1) and (6.2) gives

f(s, t) = l(0) + m(0)s + n(0)s2h0(s) + µ(s)t + ν(s)t2ks(t),(6.8)

f(s, t) = λ(0) + µ(0)t + ν(0)t2k0(t) + m(t)s + n(t)s2ht(s).(6.9)

The equality of the right hand sides of (6.8) and (6.9) leads to the equations

µ(s) − µ(0) + (ν(s)ks(t) − ν(0)k0(t))t

=
m(t) − m(0)

t
s +

n(t)ht(s) − n(0)h0(s)

t
s2

=
m(t) − m(0)

t
s +

n(t) − n(0)

t
ht(s)s

2 + n(0)
ht(s) − h0(s)

t
s2.

By (C0), for each s the left hand side is convergent to µ(s)−µ(0) as t → 0, and, by (C1),

the third term in the final sum is convergent to n(0) ∂
∂tht(s)

∣

∣

t=0
s2 as t → 0. It follows

that m′(0) and n′(0) exist and that

(6.10) µ(s) = µ(0) + m′(0)s +
∂

∂t
(n(t)ht(s))

∣

∣

∣

∣

t=0

s2.

In the same way we obtain

(6.11) m(t) = m(0) + µ′(0)t +
∂

∂s
(ν(s)ks(t))

∣

∣

∣

∣

s=0

t2.

It now follows from either (6.10) or (6.11) that µ′(0) = m′(0). It also follows, by (C2)

and (C3), that

(C8) µ′′ and m′′ exist and are continuous.

Now, by (6.1) and (C4)

ν(s) =
f(s, t) − λ(s) − µ(s)t

t2ks(t)

and so, by (C6)–(C8) and (C2), and by the corresponding argument for n,

(C9) ν′′ and n′′ exist and are continuous.
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Substitution for µ, given by (6.10), in (6.8) gives

f(s, t) = l(0) + m(0)s + µ(0)t + m′(0)st + n(0)h0(s)s
2 + ν(0)k0(t)t

2(6.12)

+
∂

∂t
(n(t)ht(s))

∣

∣

∣

∣

t=0

s2t +
∂

∂s
(ν(s)ks(t))

∣

∣

∣

∣

s=0

t2s

+

(

ν(s)ks(t) − ν(0)k0(t) −
∂

∂s
(ν(s)ks(t))

∣

∣

∣

∣

s=0

s

)

t2.

The sum has been written (adding and subtracting the second terms of the second and

third row) so that the first row contains the trivial terms and the second and third rows

are symmetric in the two variables (that is, they are invariant under interchanges of s

and t, h and k, and n and ν). The corresponding form for f given by (6.11) and (6.9)

differs from (6.12) only in the final summand. The equality of the two forms is therefore

equivalent to the equation

(6.13)

(

ν(s)ks(t) − ν(0)k0(t) −
∂

∂s
(ν(s)ks(t))

∣

∣

∣

∣

s=0

s

)

t2

=

(

n(t)ht(s) − n(0)h0(s) −
∂

∂t
(n(t)ht(s))

∣

∣

∣

∣

t=0

t

)

s2.

It now follows, by (6.13) and C(1), (C2), (C9), (C0) and (C5), that

s2

2

∂2

∂t2
(n(t)ht(s))

∣

∣

∣

∣

t=0

= lim
t→0

1

t2

(

n(t)ht(s) − n(0)h0(s) −
∂

∂t
(n(t)ht(s))

∣

∣

∣

∣

t=0

t

)

s2

= lim
t→0

(

ν(s)ks(t) − ν(0)k0(t) −
∂

∂s
(ν(s)ks(t))

∣

∣

∣

∣

s=0

s

)

= ν(s) − ν(0) − ν′(0)s

and so

(6.14) ν(s) = ν(0) + ν′(0)s +
s2

2

∂2

∂t2
(n(t)ht(s))

∣

∣

∣

∣

t=0

It follows from 6.14, by (C9) and (C0)–(C2), that ν′′(0) = n′′(0).

Now, by (6.14), using (6.5),

(6.15) ν(s)ks(t) − ν(0)k0(t) −
∂

∂s
(ν(s)ks(t))

∣

∣

∣

∣

s=0

s

=

(

ν(0) + ν′(0)s +
s2

2

∂2

∂t2
(n(t)ht(s))

∣

∣

∣

∣

t=0

)

ks(t) − ν(0)k0(t) −
∂

∂s
(ν(s)ks(t))

∣

∣

∣

∣

s=0

s

= ν(0)

(

ks(t) − k0(t) −
∂

∂s
ks(t)

∣

∣

∣

∣

s=0

s

)

+ ν′(0)s(ks(t) − k0(t))

+
s2

2

(

n(0)
∂2

∂t2
ht(s)

∣

∣

∣

∣

t=0

+ 2n′(0)
∂

∂t
ht(s)

∣

∣

∣

∣

t=0

+ n′′(0)h0(s)

)

ks(t)

=

(

Γ0Ψ2(s, t) + Γ1Ψ1(s, t) +

(

1

2
Σ0H2(s) + Σ1H1(s) +

1

2
Gh0(s)

)

ks(t)

)

s2.

Using the corresponding formula for the right hand side of (6.13) we deduce that

(6.13) is equivalent to (6.4). Substitution from (6.15) into (6.12) gives f in the final form

(6.3). The proof of Theorem 6.1 is complete.
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Theorem 6.4 below shows that the smooth solutions to equations (5.1) and (5.2) form

essentially one three-parameter family. First we describe it.

For (α, β, e) ∈ R
3 let D : [−1, 1]2 → R be the function defined by

D = 1 − αs − βt + est.

Our concern is with the application of Theorem 6.1 to functions

(6.16)

ht(s) =
1 − βt

D
=

1

1 − (α − et)s/(1 − βt)
,

ks(t) =
1 − αs

D
=

1

1 − (β − es)t/(1 − αs)
.

The condition which (α, β, e) must satisfy in order that these functions be defined on the

open square (−1, 1)2 is given by the next elementary proposition, whose proof is omitted.

Proposition 6.2. The three conditions

(i) D(s, t) = 1 − αs − βt + est > 0, for all (s, t) ∈ (−1, 1)2,

(ii) D(s, t) = 1 − αs − βt + est ≥ 0, for all (s, t) ∈ [−1, 1]2, and

(iii) |α + β| − 1 ≤ e ≤ 1 − |α − β|,

are equivalent. If condition (iii) is satisfied then max{|α|, |β|} ≤ 1.

If |α| ≤ |β| 6= 0 then condition (iii) is equivalent to

(iv) |e − αβ/|β|| ≤ 1 − |β|.

Throughout the subsequent discussion (α, β, e) will always denote a triple which sat-

isfies condition (i) of the proposition.

If ht(s) and ks(t) are functions of the form (6.16) then the Assumptions (C0)–(C5)

are satisfied and one calculates that

Φ1(t, s) − ks(t)H1(s) = 0,

Ψ1(s, t) − ht(s)K1(t) = 0,

Φ2(t, s) −
1
2ks(t)H2(s) = 0,

Ψ2(s, t) −
1
2ht(s)K2(t) = 0,

and

ks(t)h0(s) = 1/D = hs(t)k0(t),

so that, for these functions, (6.4) places no restriction on the coefficients ∆, Σ0, Σ1, Γ0,

Γ1 and G. Thus Thm. 6.1 has the following immediate corollary.

Corollary 6.3. A function f : (−1, 1)2 → R can be written both in the form

(6.17) f(s, t) = λ(s) + µ(s)t + ν(s)t2
1 − αs

1 − αs − βt + est

and in the form

(6.18) f(s, t) = l(t) + m(t)s + n(t)s2 1 − βt

1 − αs − βt + est

if and only if it is of the form

f(s, t) = A + Bs + Ct + ∆st +
(Σ0 + Σ1t)(1 − βt)s2 + (Γ0 + Γ1s)(1 − αs)t2+ 1

2Gs2t2

1 − αs − βt + est
,
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which can also be written as

(6.19) f(s, t) = A + Bs + Ct +
∆st + (Σ0 + Σ′

1t)s
2 + (Γ0 + Γ ′

1s)t
2 + G′s2t2

1 − αs − βt + est
.

The two forms for f are related by the equations

Σ′
1 = Σ1 − Σ0β − ∆α, Γ ′

1 = Γ1 − Γ0α − ∆β, G′ = 1
2G − βΣ1 − αΓ1 + ∆e.

Calculations in Section 7 will use the form (6.19) and the primes will be dropped from

the Σ′
1, Γ

′
1 and G′.

Definition. For (α, β, e) ∈ R
3 satisfying condition (i) of Prop. 6.2 let F (α, β, e) be the

set of those functions of the form (6.19) which are operator convex. Then F (α, β, e) is

a finite-dimensional convex cone which contains L2. That it is often non-trivial will be

seen in Section 8, which is devoted to an investigation of the sets F (α, β, e). Cor. 6.3 has

as a consequence the following result.

Theorem 6.4. For each (α, β, e) the set F (α, β, e) is a face of the convex cone OC2.

Proof. Suppose that f ∈ F (α, β, e), that f0, f1 ∈ OC2, 0 < θ < 1 and that f =

(1− θ)f0 + θf1. The function f can be represented in each of the forms (6.17) and (6.18),

and so also in the forms (5.1) and (5.2) with

α(t) =
α − et

1 − βt
, β(s) =

β − et

1 − αs
.

Thus for each s ∈ (−1, 1) the function f(s, ·) and for each t ∈ (−1, 1) the function f(·, t)

are extremal functions of OC1. Therefore f0 and f1 are also of the form (6.17) and of the

form (6.18). Then, by Cor. 6.3, they are also of the form (6.19) and so lie in F (α, β, e).

This shows that F (α, β, e) is an extremal subset of OC2; it is also closed and convex and

so is a face of OC2.

The next theorem shows that the functions of Cor. 6.3 provide the only nice solutions

to equations (5.1) and (5.2).

Theorem 6.5. If f : (−1, 1)2 → R is a function, not of the form f(s, t) = A + Bs +

Ct + ∆st, which has representations

(6.20) f(s, t) = λ(s) + µ(s)t + ν(s)
t2

1 − β(s)t

and

(6.21) f(s, t) = l(t) + m(t)s + n(t)
s2

1 − α(t)s

in which the functions α(t) and β(s) have continuous second derivatives , then for some

(α, β, e) ∈ R
3 the function f(s, t) is of the form

(6.22) f(s, t) = A + Bs + Ct +
∆st + (Σ0 + Σ1t)s

2 + (Γ0 + Γ1s)t
2 + Gs2t2

1 − αs − βt + est
,

where A, B, C, ∆, Σ0, Σ1, Γ0, Γ1, G ∈ R.
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Proof. Write

ht(s) =
1

1 − α(t)s
, ks(t) =

1

1 − β(s)t
.

Then h and k satisfy conditions (C0)–(C5) and so, by Thm. 6.1, f is of the form (6.3),

the cofficients Σ0, Σ1, Γ0, Γ1 and G are not all zero, and h, k satisfy the relation (6.4).

Rearranging (6.4) so that ks(t), either explicitly or implicitly in Ψ1 and Ψ2, appears only

on the left, and ht(s) appears only on the right, we obtain the equivalent relation

(6.23) Γ0Ψ2 + Γ1Ψ1 + 1
2Gks(t)h0(s) + 1

2Σ0ks(t)H2(s) + Σ1ks(t)H1(s)

= Σ0Φ2 + Σ1Φ1 + 1
2Ght(s)k0(t) + 1

2Γ0ht(s)K2(t) + Γ1ht(s)K1(t).

We now calculate the left and right hand sides of (6.23) in terms of the functions α(t)

and β(s) explicitly. Let

Rl(s) =
Γ0

s2
+

Γ1

s
+

1

2
Gh0(s) +

1

2
Σ0H2(s) + Σ1H1(s)

(the subscript “l” in Rl is for “left”). Then

Rl(s) =
1

(1 − α(0)s)3s2
̺l(s),

where ̺l(s) is a polynomial. Let

Ql(s, t) =
Γ0

s2

(

k0(t) + K1(t)s

)

+
Γ1

s
k0(t).

Then

Ql(s, t) =
1

s2(1 − β(0)t)2
Q′

l(s, t)

where Q′
l(s, t) = (Γ0 + Γ1s)(1 − β(0)t) + Γ0β

′(0)st is a polynomial, of degree at most

one in each of s and t. The left hand side of (6.23) is ks(t)Rl(s) − Ql(s, t). There are

corresponding functions and polynomials for the right hand side of (6.23) (with subscript

“r” for “right”) and the equation can now be written as

(6.24) ks(t)Rl(s) − Ql(s, t) = ht(s)Rr(t) − Qr(t, s).

If Rl is zero then Γ0 = Γ1 = G = 0. Therefore, by the assumption that f is non-trivial,

Rl and Rr are not both zero. There is a symmetry between the left and right of (6.24)

and we may assume that Rl is non-zero. From (6.24) it follows that

ks(t) =
ht(s)Rr(t) − Qr(t, s) + Ql(s, t)

Rl(s)

and

(6.25) β(s) =
1

t

(

1 −
1

ks(t)

)

=
(1/t)(ht(s)Rr(t) − Qr(t, s) + Ql(s, t) − Rl(s))

ht(s)Rr(t) − Qr(t, s) + Ql(s, t)

Equation (6.25) holds for all s, t ∈ (−1, 1) \ {0}, so β(s) is the limit as t → 0 of the

right hand side of (6.25). It follows that Rl(s) is the limit as t → 0 of the denominator

on the right of (6.25) and that the numerator is convergent to a limit Lβ(s), say. Then
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substituting for Rr, Qr, Ql and Rl, we obtain

Lβ(s) = lim
t→0

Σ0
1

t3

(

ht(s) − h0(s) − H1(s)t −
1

2
H2(s)t

2

)

+Σ1H2(s) + β′(0)

(

Γ0

s
+ Γ1h0(s)

)

+ β′′(0) 1
2h0(s)Γ0 +

G

2

(

H1(s) + h0(s)β(0)

)

.

The limit on the right (the first term of the sum) must exist and it follows (by laborious

calculation) that if Σ0 6= 0 then

lim
t→0

1

t3

(

α(t) − α(0) − α′(0)t −
1

2
α′′(0)t2

)

exists and that, whatever Σ0,

(6.26) Lβ(s) =
1

(1 − α(0)s)4s2
Pβ(s)

where Pβ is a polynomial. Thus, taking the limit as t → 0 in (6.25) we obtain the following

expressions for β(s) and ks(t):

(6.27) β(s) =
Lβ(s)

Rl(s)
=

Pβ(s)

(1 − α(0)s)̺l(s)
, ks(t) =

(1 − α(0)s)̺l(s)

(1 − α(0)s)̺l(s) − Pβ(s)t
.

In particular, β(s) is a rational function. Note that the denominator in the expression for

ks(t) is never zero.

If Rr 6= 0 then there are corresponding expressions for α(t) and ht(s) for which a

symmetric notation will be used: Pα(t), ̺r(t) and Q′
r(t, s).

Let Ml(s) be a greatest common divisor of the polynomials (1−α(0)s)̺l(s) and Pβ(s).

If (1 − β(0)t)̺r(t) and Pβ(s) are not both zero let Mr(t) be a greatest common divisor.

Let

Πl(s, t) =
(1 − α(0)s)̺l(s)

Ml(s)
−

Pβ(s)

Ml(s)
t, Πr(t, s) =

(1 − β(0)t)̺r(t)

Mr(t)
−

Pα(t)

Mr(t)
s.

There are now two cases to be considered.

Case 1: Rl 6= 0, Rr = 0. In this case Σ0 = Σ1 = G = 0. The relation (6.24) becomes, on

substituting for ks(t) from (6.27),

(6.28) t2̺l(s)
2(1 − β(0)t)2

= Ml(s)Πl(s, t)(Q
′
l(s, t)t

2(1 − α(0)s)2 − Q′
r(t, s)s

2(1 − β(0)t)2)

If Pβ = 0 then β(s) = 0 = β(0). Suppose Pβ 6= 0. If the second factor on the right

of (6.28) is of degree zero in s then, by (6.27), β(s) = β(0); if it were of degree ≥ 1 in s

then it would be an irreducible polynomial in the unique factorisation domain R[s, t] and

would consequently divide one of the factors on the left of (6.28), which is not possible.

Therefore β(s) = β(0) and, if we put β = β(0), ks(t) = (1− βt)−1. Then by (6.3), f(s, t)

is of the form

f(s, t) = A + Bs + Ct + ∆st + (Γ0t
2 + Γ1st

2)
1

1 − βt

and is linear as a function of s. The function α(t) is indeterminate but does not enter

into the representation (6.21). The representation (6.22) holds with (α, β, e) = (0, β, 0).
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Case 2: Rl 6= 0, Rr 6= 0. It will be shown that in this case

(6.29) β(s) = β(0) +
ds

1 − α(0)s
, α(t) = α(0) +

dt

1 − β(0)t

where d = α′(0) = β′(0), so that, by (6.19) of Cor. 6.3, the conclusion of the theorem is

satisfied by (α, β, e) = (α(0), β(0), α(0)β(0)− d).

It follows from the conditions of Case 2 that ̺l 6= 0 and ̺r 6= 0. The functions β(s)

and α(t), ks(t) and ht(s), are given by (6.27) and the corresponding right hand version.

The relation (6.24), on substituting for ks(t) and ht(s), becomes

(6.30) ̺l(s)
2(1 − β(0)t)2t2Mr(t)Πr(t, s) − ̺r(t)

2(1 − α(0)s)2s2Ml(s)Πl(s, t)

= Mr(t)Πr(t, s)Ml(s)Πl(s, t)(Q
′
l(s, t)t

2(1 − α(0)s)2 − Q′
r(t, s)s

2(1 − β(0)t)2),

which is a polynomial identity.

There are now three subcases to be considered.

(a) Suppose Pβ(s) = 0, Pα(t) = 0. Then β(s) = 0, α(t) = 0 and the equalities (6.29)

are satisfied.

(b) Suppose Pβ(s) = 0, Pα(t) 6= 0. Then β(s) = 0 and ks(t) = 1. The identity (6.30)

becomes

̺l(s)t
2Mr(t)Πr(t, s) − ̺r(t)

2(1 − α(0)s)3s2

= Mr(t)Πr(t, s)(1 − α(0)s)(Q′
l(s, t)t

2(1 − α(0)s)2 − Q′
r(t, s)s

2).

Then Πr(t, s) is an irreducible polynomial in R[s, t] and is a divisor of the second summand

on the left; it has to be an associate of (1 − α(0)s):

̺r(t)

Mr(t)
−

Pα(t)

Mr(t)
s = θ(1 − α(0)s)

for some θ ∈ R. It follows that α(t) = α(0). Thus the equalities (6.29) are again satisfied.

(c) Now suppose that Pβ(s) 6= 0, Pα(t) 6= 0. Let δl be the degree in s of Πl(s, t); its

degree in t is one.

If δl ≥ 1 then Πl(s, t) is an irreducible polynomial in R[s, t], it is a divisor of two of

the products in (6.30), so is a divisor of the third, in which only the factor Πr(s, t) can

be of positive degree in both s and t. The factor Πr(s, t) is also irreducible and therefore

Πr(s, t) and Πl(s, t) are associates:

(6.31)
(1 − α(0)s)̺l(s)

Ml(s)
−

Pβ(s)

Ml(s)
t = θ

(

(1 − β(0)t)̺r(t)

Mr(t)
−

Pα(t)

Mr(t)
s

)

for some θ ∈ R \ {0}. It follows that Πl(s, t) and Πr(t, s) are in this case both of degree

one in each of s and t. Thus

(1 − α(0)s)̺l(s)

Ml(s)
= xl1 + xl2s,

Pβ(s)

Ml(s)
= yl1 + yl2s,

(1 − β(0)t)̺r(t)

Mr(t)
= xr1 + xr2t,

Pα(t)

Mr(t)
= yr1 + yr2t
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for some constants xl1, xl2, . . . Then by (6.27) and its companion

β(s) =
yl1 + yl2s

xl1 + xl2s
, α(t) =

yr1 + yr2t

xr1 + xr2t
,

and, by equating coefficients in (6.31),

xl1 = θxr1, xl2 = −θyr1, yl1 = −θxr2, yl2 = θyr2.

It follows that

β(s) =
−xr2 + yr2s

xr1 − yr1s
, β(0) = −

xr2

xr1
, α(0) =

yr1

xr1
,

and the equations (6.29) are satisfied by d = α(0)β(0) + yr2/xr1. It follows that d =

α′(0) = β′(0).

Suppose finally that δl = 0. If δr, the degree of Πr(t, s) in t, were at least one then

it would follow, as in the previous case, that δl ≥ 1. So Πl(s, t) is of degree zero in s

and Πr(t, s) is of degree zero in t. Consequently, β(s) = β(0) and α(t) = α(0) and the

equalities (6.29) are again satisfied.

The proof of Theorem 6.5 is complete.

Remark. Suppose now that f ∈ OC2 and that for each s the function f(s, ·) and for

each t the function f(·, t) are extremal in OC1. Then f can be represented in each of

the forms (5.1) and (5.2). If the functions α(t) and β(s) which occur are twice con-

tinuously differentiable then the hypotheses of Thm. 6.5 are satisfied and therefore f

is of the form (6.19) for some (α, β, e) ∈ R
3. However, in the representation (5.1),

λ(s) = f(s, 0), µ(s) = f (0,1)(s, 0) and ν(s) = 1
2f (0,2)(s, 0). If f (0,2)(s, 0) is nowhere zero

then β(s) can be expressed in terms of f and its derivatives, and if these are sufficiently

differentiable then β(s) will be twice continuously differentiable.

In Section 7 those functions of the form (6.19) which are operator convex will be

characterised. In Section 8 the faces F (α, β, e) of OC2 will be described.

7. A characterisation of functions in F (α, β, e)

Suppose that f : (−1, 1)2 → R is a function of the form (6.19):

(7.1) f(s, t) = A + Bs + Ct +
∆st + (Σ0 + Σ1t)s

2 + (Γ0 + Γ1s)t
2 + Gs2t2

D(s, t)

where D(s, t) = 1 − αs − βt + est and (α, β, e) satisfies the condition of Prop. 6.2. Then

f ∈ C2((−1, 1)2), by Thm. 4.2 the operator function f is also a C2 function, and so, by

Thm. 3.2, f ∈ OC2 if and only if d2f(A, B)(H, K)2 ≥ 0 for all (A, B) ∈ SI(C
M )×SI(C

N ),

for all (H, K) ∈ S(CM )×S(CN ) and all M, N ∈ N. The operator f(A+H, B +K) has a

series expansion as a sum of terms each of which is homogeneous in (H, K). The operator
1
2d2f(A, B)(H, K)2 is the sum of those terms which are homogeneous of degree two.

However, this procedure, or, alternatively, the use of extensions of the elementary rules

of the calculus, yields a formula for d2f(A, B)(H, K)2 which is not apparently self-adjoint.

The formula, in order to be tractable, must be recast. We do not have an algorithm for
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doing so. The formula (7.2) below was initially found by direct, exploratory and lengthy

calculations which, with hindsight, it is possible to abbreviate.

In the statement and proof of the next theorem the following notation will be used.

If P is an operator then {P + ∗} will denote the sum P + P ∗ of P and its adjoint. In

terms which are of the form D(A, B), p(A, B), ∂p
∂s (A, B), . . . the operator variables A and

B may be suppressed and we will write simply D, P, ∂p
∂s , . . . It will be clear from the

context whether the arguments of D, P, ∂p
∂s , . . . are to be read as (A, B) or (s, t).

Theorem 7.1. Suppose f : (−1, 1)2 → R is a function of the form (7.1). Then

(7.2) D
1

2
d2f(A, B)(H, K)2D

= H ⊗ I I ⊗ S1(B) D−1 H ⊗ I + I ⊗ K S2(A) ⊗ I D−1 I ⊗ K

+ {H ⊗ I S(A, B)D−1 I ⊗ K + ∗}

− (Σ0e + Σ1α)A ⊗ I H ⊗ K A ⊗ I − (Γ0e + Γ1β)I ⊗ B H ⊗ K I ⊗ B

+ G

{

A ⊗ B H ⊗ K

(

D −
e

2
A ⊗ B

)

+ ∗

}

,

where the functions S1, S2, and S are given by

(7.3) S1(t) =
1

2
D3 ∂2f

∂s2
(s, t), S2(s) =

1

2
D3 ∂2f

∂t2
(s, t)

and

S(s, t) =
1

2
D3 ∂2f

∂s∂t
+

D

2
(Σ0e + Σ1α)s2 +

D

2
(Γ0e + Γ1β)t2 − GDst

(

D −
1

2
est

)

.

Proof. Let p denote the numerator of the quotient in (7.1). It is a polynomial in s and

t of degree at most two in each of s and t. The second Fréchet derivatives of the operator

functions f and pD−1 coincide.

First consider the derivatives of the operator function p. If q(s) is one of the functions

1, s and s2 then

(7.4) q(A + H) = q(A) +

{

1

2

∂q

∂s
(A)H + ∗

}

+
1

2

∂2q

∂s2
(A)H2.

If r(t) is one of the functions 1, t, t2 and p = qr then p(A+H, B+K) = q(A+H)⊗r(B+K)

and, substituting for q(A + H) from (7.4) and for r(B + K) from the corresponding

equation, one obtains the equation

p(A + H, B + K) = p +

{(

1

2

∂p

∂s
H ⊗ I +

1

2

∂p

∂t
I ⊗ K

)

+ ∗

}

(7.5)

+
1

2

∂2p

∂s2
H2 ⊗ I +

1

2

∂2p

∂t2
I ⊗ K2

+

{

1

4

∂2p

∂s∂t
H ⊗ K + ∗

}

+

{

1

4
H ⊗ I

∂2p

∂s∂t
I ⊗ K + ∗

}

+ terms of higher degree in (H, K).

The equation (7.5) extends by linearity to any polynomial p of degree at most two in

each of s and t.
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One can write

D(A + H, B + K) = D +
∂D

∂s
H ⊗ I +

∂D

∂t
I ⊗ K + eH ⊗ K,

and a geometric series expansion of D(A + H, B + K)−1 gives the equation

D−1(A + H, B + K) = D−1 − D−1

(

∂D

∂s
H ⊗ I +

∂D

∂t
I ⊗ K

)

D−1(7.6)

+ D−1

(

∂D

∂s

)2

H ⊗ I D−1 H ⊗ I D−1

+ D−1

(

∂D

∂t

)2

I ⊗ K D−1 I ⊗ K D−1

+ D−1

({

H ⊗ I
∂D

∂s

∂D

∂t
D−1 I ⊗ K + ∗

}

− eH ⊗ K

)

D−1

+ terms of higher degree in (H, K).

Now 1
2d2(pD−1)(A, B)(H, K)2 is the sum of terms of degree two in (H, K) in the

expansion of the product p(A + H, B + K)D−1(A + H, B + K), where the factors are

replaced by the expressions of (7.5) and (7.6). Thus

(7.7) D 1
2d2f(A, B)(H, K)2D = T11 + T22 + T12

where T11 and T22 are the sums of those terms which are of degree two in H and K

respectively, and T12 is the sum of those terms which are of degree one in each of H and

K. The first two of these summands are easily dealt with:

T11 =

[

p

(

∂D

∂s

)2

− D
1

2

∂p

∂s

∂D

∂s

]

H ⊗ I D−1 H ⊗ I

+ D H ⊗ I

[

1

2

∂2p

∂s2
D −

1

2

∂p

∂s

∂D

∂s

]

D−1 H ⊗ I.

The derivative with respect to s of the function of the second square bracket on the right

is zero, so the function is a function of t alone, and the term in square brackets commutes

with H ⊗ I. So

T11 =

[

p

(

∂D

∂s

)2

− D
1

2

∂p

∂s

∂D

∂s
+

1

2

∂2p

∂s2
D2 −

1

2

∂p

∂s

∂D

∂s
D

]

H ⊗ I D−1 H ⊗ I.

The derivative of the function of the term in square brackets with respect to s is zero, so

the function is a function of t alone, and we will denote it by S1(t). The term in square

brackets is then I ⊗ S1(B) and it commutes with H ⊗ I. Therefore

T11 = H ⊗ I I ⊗ S1(B) D−1 H ⊗ I,

and there is a corresponding form for T22.

The summand T12 is a sum of eleven terms, each a product; we can write

T12 = T
(1)
12 + T

(2)
12 + T

(3)
12
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where

T
(1)
12 = p H ⊗ I

∂D

∂s

∂D

∂t
D−1 I ⊗ K

−
1

2
D

∂p

∂s
H ⊗ I

∂D

∂t
D−1 I ⊗ K −

1

2
D H ⊗ I

∂p

∂s

∂D

∂t
D−1 I ⊗ K,

T
(2)
12 = p I ⊗ K

∂D

∂s

∂D

∂t
D−1 H ⊗ I

−
1

2
D

∂p

∂t
I ⊗ K

∂D

∂s
D−1 H ⊗ I −

1

2
D I ⊗ K

∂p

∂t

∂D

∂s
D−1 H ⊗ I,

T
(3)
12 = −ep H ⊗ K + D

[{

1

4

∂2p

∂s∂t
H ⊗ K + ∗

}

+

{

H ⊗ I
1

4

∂2p

∂s∂t
I ⊗ K + ∗

}]

.

In the course of the reduction of T12 to the form stated in the theorem bookkeeping

is not necessary for terms of the form H ⊗ I Φ(A, B) I ⊗ K or I ⊗ K Ψ(A, B) H ⊗ I. A

sum of such terms will be denoted by (BIN).

The function p(s, t) can be written as

p(s, t) = τ0 + τ1s + τ2s
2 = σ0 + σ1t + σ2t

2

where τ0, τ1, τ2 and σ0, σ1, σ2 are quadratic functions of t and s respectively. One can

write

(7.8) D = I ⊗ (I − βB) + A ⊗ I
∂D

∂s

and so

(7.9) D H ⊗ I = H ⊗ I I ⊗ (I − βB) + A ⊗ I H ⊗ I
∂D

∂s
.

If, now, in the expression for T
(1)
12 one substitutes for p and ∂p

∂s in terms of τ0, τ1, τ2,

for D in the second term from (7.8), and for D H ⊗ I in the third term from (7.9), and

expands the products then the term involving τ0 and three of the terms involving I −βB

can be assigned to (BIN), the terms involving τ1 and A2 ⊗ τ2 cancel, and the remaining

two terms combine (going from right to left in (7.8)) to give the equation

(7.10) T
(1)
12 = A ⊗ τ2(B) H ⊗ K (βI − eA) ⊗ I + (BIN).

In a similar way one obtains the equation

(7.11) T
(2)
12 = σ2(A) ⊗ B H ⊗ K I ⊗ (αI − eB) + (BIN).

Now suppose that p(s, t) = sktl. Then

T
(3)
12 =

kl

4
D(A, B){Ak−1 ⊗ Bl−1 H ⊗ K + ∗}(7.12)

+
kl

4
D(A, B){I ⊗ Bl−1 H ⊗ K Ak−1 ⊗ I + ∗} − eAk ⊗ Bl H ⊗ K.

Substituting in turn (k, l) = (1, 1), (2, 0), (0, 2), (2, 1), (1, 2) and (2, 2), with the corre-

sponding functions τ2 and σ2, one obtains from (7.10)–(7.12) a simple expression for T12

for each of the functions p = st, s2, t2, s2t, st2 and s2t2. Taking the linear combination for
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the general polynomial p of (7.1) one obtains the equation

T12 = (BIN) − (Σ0e + Σ1α) A ⊗ I H ⊗ K A ⊗ I(7.13)

− (Γ0e + Γ1β) I ⊗ B H ⊗ K I ⊗ B

+ G

{

A ⊗ B H ⊗ K

(

D −
e

2
A ⊗ B

)

+ ∗

}

.

However, the left hand side of (7.7) is self-adjoint and so also are T11 and T22. Therefore

T12 is self-adjoint and so the term (BIN) is self-adjoint. Thus (BIN) can be replaced by
1
2{(BIN) + ∗} and hence T12 is obtained in the form implicit in (7.2). The form (7.2) is

now established.

In the case in which M = N = 1 the equation (7.2) becomes, if we replace (A, B) by

(s, t) and (H, K) by (h, k),

D
1

2
d2f(s, t)(h, k)2D

= S1(t)D
−1h2 + S2(s)D

−1k2

+ (2S(s, t)D−1 − (Σ0e + Σ1α)s2 − (Γ0e + Γ1β)t2 + G(2D − est))hk,

from which the expressions for S1, S2 and S follow. The proof of Theorem 7.1 is complete.

It is now possible to characterise those functions of the form (7.1) which are operator

convex.

Theorem 7.2. Let f : (−1, 1)2 → R be defined by equation (7.1). Then the following

conditions are equivalent :

(1) f ∈ OC2.

(2) Σ0e + Σ1α = Γ0e + Γ1β = G = 0 and f : (−1, 1)2 → R is convex.

(3) Σ0e + Σ1α = Γ0e + Γ1β = G = 0 and

S1(t) ≥ 0, S2(s) ≥ 0 and S1(t)S2(s) ≥ S(s, t)2

for all (s, t) ∈ [−1, 1]2, where S1, S2 and S are the functions of Thm. 7.1.

Proof. By Thm. 4.2 the operator functions of f are infinitely differentiable and, by

Thm. 3.2, f ∈ OC2 if and only if

(7.14) D(A, B)
1

2
d2f(A, B)(H, K)2D(A, B) ≥ 0

for all A ∈ SI(C
M ), B ∈ SI(C

N ), all H ∈ S(CM ), K ∈ S(CN ) and all M, N ∈ N.

Henceforth we will suppress the variables A, B and H, K in the expressions S1(B),

D(A, B), . . . and write simply S1, D, . . . when it is not inconvenient to do so.

(1)⇒(2). Suppose that f ∈ OC2. Condition (7.14) is equivalent to the condition that

(7.15)
〈

D 1
2d2fDx, x

〉

≥ 0

for all relevant A, B, H, K and all x ∈ C
M ⊗ C

N and all M, N ∈ N.

Suppose that Σ0e+Σ1α 6= 0. It will be shown that the condition (7.15) is not satisfied.

Let B = 0 and suppose that H, x have been chosen so that H ⊗ Ix = 0. Then
〈

D 1
2d2fDx, x

〉

= 〈S2 ⊗ I D−1 I ⊗ Kx, I ⊗ Kx〉

− (Σ0e + Σ1α)〈I ⊗ K A ⊗ Ix, H ⊗ I A ⊗ Ix〉.
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The first term on the right is of degree two in K, the second is of degree one. If for some

choice of the variables the second term is non-zero then, replacing K by εK where ε is

small and of appropriate sign, we obtain a choice which violates the condition (7.15). If

ξ1, ξ2 ∈ C
M \ {0} is an orthonormal pair (so M ≥ 2), η ∈ C

N \ {0}, x = ξ1 ⊗ η, and

H ∈ S(CM ) is chosen so that Hξ1 = 0 and Hξ2 = ξ2, K = I ∈ S(CN ) and A ∈ SI(C
M )

is chosen so that Aξ1 = θξ2 where 0 < θ < 1 then

〈I ⊗ K A ⊗ I x, H ⊗ I A ⊗ I x〉 = θ2‖ξ2‖
2‖η‖2 6= 0.

This proves that if f ∈ OC2 then Σ0e + Σ1α = 0, and so, by symmetry, Γ0e + Γ1β = 0

also.

Now suppose that f ∈ OC2 and that Σ0e + Σ1α = Γ0e + Γ1β = 0. Suppose that

G 6= 0. It will be shown that the elements A, B, H, K and x can be chosen so that the

condition (7.15) is violated.

Suppose that α 6= 0. Again suppose that H, x have been chosen so that H ⊗ Ix = 0.

In this case
〈

D
1

2
d2fDx, x

〉

= 〈S2 ⊗ I D−1 I ⊗ K x, I ⊗ K x〉

− 2αG Re〈A ⊗ B I ⊗ K x, H ⊗ I A ⊗ I x〉

+ eG〈A ⊗ B H ⊗ K A ⊗ B x, x〉.

The first term on the right is of degree two in K, the others are of degree one. So it is

enough to show that the elements can be chosen so that the sum of the second and third

terms is non-zero. But the second term is of degree one in B and the third is of degree

two, so it is enough to show that the elements can be chosen so that

Re〈A ⊗ B I ⊗ K x, H ⊗ I A ⊗ I x〉 6= 0.

This is achieved by choosing B = φI with 0 < φ < 1 and A, H, K as before. This proves

that if α 6= 0 then G = 0. Similarly, if β 6= 0 then G = 0.

Now suppose that f ∈ OC2 and that α = β = 0 but that e 6= 0. Then in the same

way it follows that G = 0.

Finally suppose that α = β = e = 0, but that G 6= 0. Then D = I ⊗ I and

D 1
2d2fD = H ⊗ I I ⊗ S1 H ⊗ I

+ I ⊗ K S2 ⊗ I I ⊗ K + {H ⊗ I S I ⊗ K + ∗} + G{A ⊗ B H ⊗ K + ∗}.

Let M ≥ 2, N ≥ 2. Choose orthonormal pairs ξ1, ξ2 ∈ C
M , η1, η2 ∈ C

N . Let x1 = ξ1⊗η1,

x2 = ξ2 ⊗ η2 and x = εx1 + x2. Choose A, B, H, K so that

Aξ2 = − sgn Gδξ1, 0 < ‖A‖ = δ < 1,

Bη2 = δη1, 0 < ‖B‖ = δ < 1,

Hξ1 = ξ1, Hξ2 = 0; Kη1 = η1, Kη2 = 0.

Then
〈

D 1
2d2fDx, x

〉

= −2|G|εδ2 + ε2(〈I ⊗ S1x1, x1〉 + 〈S2 ⊗ Ix1, x1〉 + 2 Re〈Sx1, x1〉 + 2G Re〈A ⊗ Bx1, x1〉),

which is negative if ε > 0 is small. This completes the proof that if f ∈ OC2 then G = 0.
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If M = N = 1 then the operator function of f can be identified with f and so an

operator convex function is a convex function. The proof that (1)⇒(2) is complete.

(2)⇒(3). The functions S1, S2 and S are continuous so that the inequalities of (3) are

satisfied for all (s, t) ∈ [−1, 1]2 if and only if they are satisfied for all (s, t) ∈ (−1, 1)2.

The inequalities of (3) are therefore a consequence of the elementary condition for the

convexity of f : (−1, 1)2 → R.

(3)⇒(1). Suppose that (3) is satisfied. It will be shown that (7.14) is satisfied.

The function S1 is a polynomial and so the set of B ∈ SI(C
N ) such that S1(B) is

invertible is dense in SI(C
N ). Hence it is enough to show that condition (7.14) is satisfied

by those relevant B for which S1(B) is invertible. By Thm. 7.1, if S1(B) is invertible,

D 1
2d2fD = H ⊗ I I ⊗ S1 D−1 H ⊗ I + I ⊗ K S2 ⊗ I D−1 I ⊗ K

+ {H ⊗ SD−1 I ⊗ K + I ⊗ K SD−1H ⊗ I}

= (H ⊗ I (I ⊗ S1 D−1)1/2 + I ⊗ K SD−1(I ⊗ S1 D−1)−1/2)

×((I ⊗ S1 D−1)1/2 H ⊗ I + (I ⊗ S1 D−1)−1/2SD−1 I ⊗ K)

+ I ⊗ K(S2 ⊗ I D−1 − SD−1(I ⊗ S1 D−1)−1SD−1)I ⊗ K.

(The operators S1(B) and D(A, B)−1, being operator functions of (A, B), commute and

are both non-negative self-adjoint.) In the latter sum the first term is the product of an

operator and its adjoint and so is non-negative. It now remains to show that

S2 ⊗ I D−1 − S I ⊗ S−1
1 SD−1 ≥ 0,

which, by the commutativity of the operator functions, holds if and only if

S2 ⊗ S1 − S2 ≥ 0.

A finite-dimensional self-adjoint operator is non-negative if and only if its eigenvalues

are non-negative. The eigenvalues of (S2S1 − S2)(A, B) are of the form (S2S1 − S2)(s, t)

where s ∈ sp A and t ∈ sp B (and similarly for S1(B) and S2(A)). It therefore follows from

condition (3) of the theorem that S1(B) ≥ 0, S2(A) ≥ 0 and S2(A)⊗S1(B)−S(A, B)2 ≥ 0

for all A ∈ SI(C
M ), B ∈ SI(C

N ) and all M, N ∈ N. Hence condition (7.14) is satisfied.

The proof of Theorem 7.2 is complete.

8. The faces F (α, β, e) of OC2

In order to use the characterisation of Thm. 7.2 to investigate the faces F (α, β, e) of

OC2 it is now necessary to calculate the second order partial derivatives of functions

f : (−1, 1)2 → R of the form

(8.1) f = A + Bs + Ct + (∆st + Σ0s
2 + Γ0t

2 + Σ1s
2t + Γ1st

2)D(s, t)−1,

where A, B, C, ∆, Σ0, Σ1, Γ0, Γ1 ∈ R and the conditions

(8.2) Σ0e + Σ1α = Γ0e + Γ1β = 0
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are satisfied. For these functions one obtains, by Thm. 7.1 and elementary calculation,

the following formulae:

S1 =
1

2
D3 ∂2f

∂s2
(8.3)

= ∆(α − et)(1 − βt)t + (Σ0 + Σ1t)(1 − βt)2 + (Γ0α + Γ1)t
2(α − et).

One can obtain S2 = (1/2)D3f (0,2) from (8.3) by interchanging Σ and Γ , α and β,

and s and t. Next,

S =
1

2
D3 ∂2f

∂s∂t
(8.4)

= ∆

(

1

2
D + (αβ − e)st

)

+ (Σ0β + Σ1)s(1 − βt) + (Γ0α + Γ1)t(1 − αs).

It follows in particular that f (2,0)(0, 0) = 2Σ0 and f (0,2)(0, 0) = 2Γ0, so that if f ∈

F (α, β, e) then f ∈ K2 if and only if A = B = C = 0 and Σ0 + Γ0 = 1.

By Thm. 7.2, the function f is operator convex if and only if

(8.5) S1(t) ≥ 0, S2(s) ≥ 0, S1(t)S2(s) ≥ S(s, t)2

for all (s, t) ∈ [−1, 1]2.

Recall that, by Prop. 6.2, equation (8.1) defines a function f : (−1, 1)2 → R if and

only if

(8.6) |α + β| − 1 ≤ e ≤ 1 − |α − β|

and then max{|α|, |β|} ≤ 1; furthermore, if max{|α|, |β|} = 1 then e = αβ.

Four questions will now be considered: (1) For which (α, β, e) are the convex cones

F (α, β, e) non-trivial (i.e. F (α, β, e) 6= L2 or, equivalently, dim F (α, β, e) > 3)? (2) What

is the intersection of two distinct members of the family? (3) What is the dimension of

F (α, β, e)? (4) What is the set of extreme points of the set F (α, β, e)∩K2? The authors’

present state of knowledge will be presented in four composite theorems. The analysis is

elementary, sometimes lengthy but surprisingly calculable. Some details and some proofs

will be omitted.

Theorem 8.1. (1) {e : F (α, β, e) 6= L2} is a closed subset of the interval [|α+β|−1, 1−

|α−β|]. Let em and eM denote the minimum and maximum of {e : F (α, β, e) 6= L2} when

the set is non-empty.

(2) Suppose F (α, β, e) 6= L2. Then |e| ≤ min{|α|, |β|}. If |e| = min{|α|, |β|} then

e = αβ and either αβ = 0 or max{|α|, |β|} = 1.

(3) If αβ > 0 and max{|α|, |β|} < 1 then

(8.7) αβ < eM < min{|α|, |β|} < 1 − |α − β|

and

|α + β| − 1 = em if |α + β| ≥ 1,(8.8)

|α + β| − 1 < em if |α + β| < 1.(8.9)

There is a corresponding statement for αβ < 0.

(It is not known whether {e : F (α, β, e) 6= L2} must be either empty or an interval.)
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Theorem 8.2. If (α, β, e) 6= (α′, β′, e′) and F (α, β, e) ∩ F (α′, β′, e′) ∩ K2 is non-empty

then e = αβ, e′ = α′β′ and either β = β′ and the intersection is {t2(1 − βt)−1}, or

α = α′ and the intersection is {s2(1 − αs)−1}. Consequently , the functions t2(1 − βt)−1

and s2(1 − αs)−1 are extreme points of K2.

The proof of Theorem 8.2 is omitted.

Theorem 8.3. (1) Suppose αβ 6= 0, and max{|α|, |β|} < 1.

(a) For each e, the convex cone F (α, β, e) has dimension 3 (the trivial case), 4 or 6.

(b) {e : dim F (α, β, e) = 6} is a relatively open subset of the interval [|α + β| − 1,

1 − |α − β|] and contains αβ[0, 1] ∩ [|α + β| − 1, 1 − |α − β|].

If αβ > 0 then dimF (α, β, eM) = 4.

If αβ > 0 and |α + β| < 1 then dimF (α, β, em) = 4.

There are corresponding statements for αβ < 0.

(2) If αβ 6= 0 then dimF (α, β, αβ) = 6 and the function (1 − αs)−1(1 − βt)−1 is in

the relative interior of F (α, β, αβ).

(3) If α 6= 0 then dimF (α, 0, 0) = 7.

(4) dim F (0, 0, 0) = 8.

It is not known whether the sets {e : dim F (α, β, e) = 4} can contain points other

than those identified in (1).

Theorem 8.4. If αβ 6= 0, max{|α|, |β|} < 1 and |α + β| − 1 < e < 1 − |α − β| then

each point of the relative boundary of the convex set F (α, β, e) ∩ K2 is an extreme point

of K2.

The authors’ further analysis of the extreme point sets of F (α, β, e) ∩ K2 is lengthy,

though incomplete, and at present of insufficient interest to merit inclusion in this paper.

We only mention that in Cases (2) (max{α, β} = 1), (3) and (4) below, the relative

boundary of F (α, β, e) ∩ K2 contains non-degenerate line segments.

The rest of this section discusses the proofs of Theorems 8.1–8.4. Additional theorems

are technical in nature.

Theorem 8.5. If (α, β, e) ∈ R
3, F (α, β, e) 6= L2, a function f given by (8.1) is in

F (α, β, e) \ L2 and S1(t0) = 0 for some t0 ∈ [−1, 1], then e ∈ αβ[0, 1].

Proof. By Prop. 6.2, if 1 − βt0 = 0 then |β| = 1 and e = αβ, so the conclusion is

satisfied.

Suppose 1 − βt0 6= 0. By condition (8.5), S(s, t0) = 0 for all s ∈ [−1, 1] from which it

follows that

∆ =
−2(Γ0α + Γ1)t0

1 − βt0
,(8.10)

Σ0β + Σ1 =
(Γ0α + Γ1)t

2
0(αβ − e)

(1 − βt0)2
.

Substituting for ∆ in the expression for S1(t0) = 0 we deduce that

Σ0 + Σ1t0 =
(Γ0α + Γ1)t

2
0(α − et0)

(1 − βt0)2
.
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From the latter two equations one finds that

Σ0 =
(Γ0α + Γ1)t

2
0α

(1 − βt0)2
,(8.11)

Σ1 =
(Γ0α + Γ1)t

2
0(−e)

(1 − βt0)2
(8.12)

and

Σ0 + Σ1t =
(Γ0α + Γ1)t

2
0(α − et)

(1 − βt0)2
.

Substituting for ∆ and Σ0 + Σ1t in the formula for S1 we obtain

S1(t) =
(Γ0α + Γ1)(t − t0)

2(α − et)

(1 − βt0)2
.

Substituting for ∆ and Σ0β + Σ1 in the formula for S2, and using the relation

(Γ0α + Γ1)(β − es) = (Γ0 + Γ1s)(αβ − e)

(a consequence of (8.2)), we obtain

S2(s) =
(Γ0 + Γ1s)D(s, t0)

2

(1 − βt0)2
.

Similarly,

S(s, t) =
(Γ0α + Γ1)D(s, t0)(t − t0)

(1 − βt0)2
.

Therefore, for all (s, t) ∈ [−1, 1]2,

0 ≤ S1(t)S2(s) − S(s, t)2 = −(Γ0α + Γ1)Γ1D(s, t0)
2D(s, t)

(t − t0)
2

(1 − βt0)4
.

The condition 1 − βt0 6= 0 entails that D(s, t0) 6= 0 for some s ∈ [−1, 1]. Consequently,

0 ≤ −(Γ0α + Γ1)Γ1.

If Γ0α were zero then it would follow that Γ1 = 0 and then, by (8.10), (8.11), and (8.12),

that f ∈ L2, which is a contradiction. So Γ0 6= 0 and, by (8.2),

0 ≤ −(Γ0α + Γ1)Γ1β
2 = Γ 2

0 (αβ − e)e

and therefore e ∈ αβ[0, 1].

Proof of Theorem 8.1(1), (2). For (1) notice that the functions S1, S2 and S are

continuous functions of all the variables. The assertion is given by a simple compactness

argument.

(2) Now suppose that f ∈ F (α, β, e) \ L2 and that 0 6= |e| ≥ |α|. Then Σ0 + Σ1t =

Σ1(α − et)/e, α/e is a zero of S1 and α/e ∈ [−1, 1]. Therefore e ∈ αβ[0, 1] by Thm. 8.5.

The statement (2) now follows.

The four cases of Thm. 8.3 require separate discussion. In Cases (1) and (2) one can
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substitute Σ1 = −eΣ0/α, Γ1 = −eΓ0/β and regard S1, S2 and S as linear functions of

π = (∆, Σ0, Γ0) ∈ R
3. In Cases (2)–(4) condition (8.5) for the convexity of the function

f of (8.1) can be simplified. We introduce a notation which is common to the four cases,

but first we state a simple proposition.

Proposition 8.6. Let C = {(x, y, z) ∈ R
3 : x ≥ 0, y ≥ 0, xy = z2}. Then C is a closed

convex cone and each boundary ray of C is an extremal subset of C.

The four cases are now described.

Case (1): αβ 6= 0, max{|α|, |β|} < 1. Let d1 = 3. For π = (∆, Σ0, Γ0) ∈ R
3 = R

d1 let

(8.13) fπ =

(

∆st + Σ0s
2

(

1 −
e

α
t

)

+ Γ0t
2

(

1 −
e

β
s

))

D(s, t)−1

and write

(8.14) T1(π; t) = S1(π; t) =
α − et

α

(

∆α(1 − βt)t + Σ0(1 − βt)2 + Γ0
α

β
(αβ − e)t2

)

,

T2(π; s) = S2(π; s) for the corresponding expression for 1
2D2f

(0,2)
π and

T (π; s, t) = S(π, s, t) = ∆

(

1

2
D(s, t) + (αβ − e)st

)

(8.15)

+ Σ0
αβ − e

α
s(1 − βt) + Γ0

αβ − e

β
t(1 − αs).

Define Φ
(1)
s,t : R

3 → R
3 by

(8.16) Φ
(j)
s,t (π) = (T1(π; t), T2(π; s), T (π; s, t))

with j = 1 on the left. In Cases (2)–(4) below the mappings Φ
(j)
s,t for j = 2, 3, 4 are defined

in the same way.

Case (2): e = αβ 6= 0. Note that this case overlaps Case (1), though the principal concern

here is when max{|α|, |β|} = 1.

In this case D(s, t) = (1 − αs)(1 − βt).

Let d2 = 3. For π = (∆, Σ0, Γ0) ∈ R
3 = R

d2 the equation (8.13) now becomes

(8.17) fπ = ∆st(1 − αs)−1(1 − βt)−1 + Σ0s
2(1 − αs)−1 + Γ0t

2(1 − βt)−1.

Let

T1(π; t) = ∆αt + Σ0(1 − βt), so that S1(π; t) = (1 − βt)2T1(π; t),

T2(π; s) = ∆βs + Γ0(1 − αs), so that S2(π; s) = (1 − αs)2T2(π; s),

T (π; s, t) = 1
2∆, so that S(π; s, t) = (1 − αs)(1 − βt)T (π; s, t).

Case (3): α 6= 0, e = β = 0. Let d3 = 4. For π = (∆, Σ0, Γ0, Γ1) ∈ R
4 = R

d3 write

(8.18) fπ = (∆st + Σ0s
2 + Γ0t

2 + Γ1st
2)(1 − αs)−1.

(The right hand side is obtained from the right hand side of (8.1) by putting A = B =

C = 0 and substituting Σ1 = −eΣ0/α = 0.)

Let

T1(π; t) = S1(π, t) = ∆αt + Σ0 + (Γ0α + Γ1)αt2.
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Next let

T2(π; s) = Γ0 + Γ1s so that S2(π; s) = (1 − αs)2T2(π; s),

T (π; s, t) = ∆/2 + (Γ0α + Γ1)t so that S(π; s, t) = (1 − αs)T (π; s, t).

Case (4): (α, β, e) = (0, 0, 0). Let d4 = 5. For π = (∆, Σ0, Γ0, Σ1, Γ1) ∈ R
5 = R

d4 write

fπ = ∆st + Σ0s
2 + Γ0t

2 + Σ1s
2t + Γ1t

2s

and let

T1(π; t) = S1(π; t) = Σ0 + Σ1t,

T2(π; s) = S2(π; s) = Γ0 + Γ1s,

T (π; s, t) = S(π; s, t) = 1
2∆ + Σ1s + Γ1t.

Now let j be any one of 1, 2, 3 and 4. If π ∈ R
dj then the condition (8.5) for fπ to be

convex and operator convex reduces to:

(8.19) T1(π; t) ≥ 0, T2(π; s) ≥ 0, (T1T2 − T 2)(π; s, t) ≥ 0

for all (s, t) ∈ [−1, 1]2.

If (α, β, e) belongs to Case (j) let

Π(j) = {π ∈ R
dj : fπ ∈ F (α, β, e)}.

Note that

F (α, β, e) = L2 + {fπ : π ∈ Π(j)},

dimF (α, β, e) = 3 + dim Π(j),

F (α, β, e) ∩ K2 = {fπ : π ∈ Π(j), Σ0 + Γ0 = 1}.

Condition (8.19) can now be expressed in the form

(8.20) Π(j) =
⋂

(s,t)∈[−1,1]2

Φ
(j)−1
s,t (C).

Information about the mappings Φ
(j)
s,t , j = 1, 2, 3, 4, is given by the next lemma. The

next two lemmas are primarily concerned with formulae for which there exist pedestrian

verifications.

In Lemma 8.8 it will only be assumed that αβ 6= 0 (Case (1) or Case (2)) and

S1, S2 and S will be regarded as functions of π = (∆, Σ0, Γ0) ∈ R
3, as in Case (1). For

π = (∆, Σ0, Γ0) we will write

θs,t(π) = ∆st +
Σ0

α
s(1 − βt) +

Γ0

β
t(1 − αs).

Lemma 8.7. (1) Suppose that αβ 6= 0. Then

(8.21) detΦ
(1)
s,t =

(α − et)(β − es)

2αβ
D(s, t)3.

If (s, t) ∈ [−1, 1]2 then det Φ
(1)
s,t = 0 if and only if either

(i) max{|α|, |β|} = 1, e = αβ and (1 − αs)(1 − βt) = 0, or
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(ii) max{|α|, |β|} < 1, D(s, t) = 0, either e = |α + β| − 1 or e = 1 − |α − β| and

|s| = |t| = 1. (Compare Thm. 8.1(3).)

If |s| = |t| = 1, D(s, t) = 0, and π = (∆, Σ0, Γ0) then

(8.22) Φ
(1)
s,t (π) = θs,t(π)((1 − βt)2, (1 − αs)2, (1 − αs)(1 − βt)st).

(2) The mappings Φ
(3)
s,t : R

4 → R
3 and Φ

(4)
s,t : R

5 → R
3 are surjective for each

(s, t) ∈ [−1, 1]2.

Lemma 8.8. Suppose αβ 6= 0, π = (∆, Σ0, Γ0) ∈ R
3. Then

(S1S2 − S2)(π; s, t)

= D

(

e(αβ − e)θs,t(π)2 + ∆eDθs,t(π) + D

(

Σ0

α

Γ0

β
(αβ − e + eD) −

∆2

4

))

.

(Note that αβ − e + eD = (α − et)(β − es).)

The next theorem is the key to the analysis of the facial structure of the convex

cones F (α, β, e). In particular, Thm. 8.4 is an immediate consequence of part (3) of the

theorem.

Theorem 8.9. Suppose (α, β, e) belongs to Case (j ) for j = 1, 2, 3 or 4.

(1) If π ∈ R
dj and Φ

(j)
s,t (π) ∈ int C for all (s, t) ∈ [−1, 1]2 then π ∈ int Π(j) and

dimΠ(j) = dj.

(2) Suppose π ∈ Π(j) and let Eπ be the minimal extremal subset of Π(j) containing

π. If (s, t) ∈ [−1, 1]2, the mapping Φ
(j)
s,t : R

dj → R
3 is surjective, x = Φ

(j)
s,t (π) ∈ bdy C,

Hπ is a support hyperplane to C at x (unique if x 6= 0), then π ∈ bdy Π(j) and Eπ ⊆

Φ
(j)−1
s,t (Hπ) ∩ Π(j).

(3) If (α, β, e) belongs to Case (1) and |α + β| − 1 < e < 1− |α− β| then dimΠ(1) is

0, 1, or 3. If dimΠ(1) = 3 then each boundary ray of Π(1) is an extremal and exposed

subset of Π(1).

(4) Suppose that j = 2 or 3 and that dim Π(j) = dj . If π ∈ Π(j) then π ∈ bdy Π(j)

if and only if Φ
(j)
s,t (π) ∈ bdy C for some (s, t) ∈ [−1, 1]2. If (s, t) satisfies this condition

and Hπ is a support hyperplane to C at Φ
(j)
s,t (π) then Φ

(j)−1
s,t (Hπ)∩Π(j) is a face of Π(j)

which contains Eπ. Every maximal face of Π(j) is of this form.

Proof. (1) The hypothesis of (1) is equivalent to the inequalities of (8.19) being strict

for each (s, t) ∈ [−1, 1]2. The functions T1, T2 and T are continuous functions of π and

(s, t) and so the inequalities remain strict after small perturbations of π. This proves (1).

It follows that if π ∈ bdy Π(j) then Φ
(j)
s,t (π) ∈ bdy C for some (s, t) ∈ [−1, 1]2.

(2) Let Hπ be the null space of a linear functional x
∗ on R

3. Then, since Φ
(j)
s,t is

surjective, x
∗Φ

(j)
s,t is a non-zero linear functional on R

dj and its null space Φ
(j)−1
s,t (Hπ) is

a hyperplane in R
dj and Π(j) is contained in one of its closed half-spaces. The set Eπ

is the union of those line segments in Π(j) which pass through π and π ∈ Φ
(j)−1
s,t (Hπ).

Therefore Eπ ⊆ Φ
(j)−1
s,t (Hπ) ∩ Π(j).

(3) By Lemma 8.7 and the hypothesis of (3) the mapping Φ
(1)
s,t is bijective for each

(s, t) ∈ [−1, 1]2. Suppose π ∈ bdy Π(1) and (s, t) is such that Φ
(1)
s,t (π) ∈ bdy C (there is
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such by (1)). Then, by (2) and Prop. 8.6,

R
+π ⊆ Eπ ⊆ Φ

(1)−1
s,t (Hπ) ∩ Π(1) ⊆ Φ

(1)−1
s,t (RΦ

(1)
s,t (π)) ∩ Π(1) = R

+π.

If dimΠ(1) < 3 and π ∈ relint Π(1) then π ∈ bdy Π(j) and Eπ = Π(1).

(4) By Lemma 8.7 the mappings Φ
(3)
s,t and Φ

(4)
s,t are surjective for each (s, t) ∈ [−1, 1]2.

Suppose that π, (s, t) and Hπ are as stated, and so as in (2). Then by (2), Φ
(j)−1
s,t (Hπ)

is a support hyperplane to Π(j) at π so that the first conclusion of (4) holds. If E is a

maximal face of Π(j) and π ∈ relint E then it follows that E = Eπ = Φ
(j)−1
s,t (Hπ)∩Π(j).

The proofs of Theorems 8.1 and 8.3 can now be completed.

Case (1). One may restrict attention to the first quadrant of the (α, β)-plane. Results

for the other quadrants can then be obtained by means of the reflections s 7→ −s and

t 7→ −t. So, suppose that 0 < α < 1, 0 < β < 1.

Then min{α, β} < 1 − |α − β| and, by Thm. 8.1, eM < min{α, β}. Thus two of the

inequalities of (8.7) hold. If α + β − 1 < e ≤ eM then, by Thm. 8.9(3), dim F (α, β, e) =

3 + dimΠ(1) = 3, 4, or 6.

Suppose that α + β − 1 = e and F (α, β, e) 6= L2. Then D(s, t) = 0 if and only if

(s, t) = (1, 1), so, by Thm. 8.1(2) and Lemma 8.7(1), det Φ
(1)
s,t = 0 if and only if s = t = 1.

By (8.22) of Lemma 8.7(1),

(8.23) (S1S2 − S2)(π; 1, 1) = 0

for all π ∈ R
3. Now one calculates that

(8.24)
∂

∂t
(S1S2 − S2)(π; 1, 1) = −eθ1,1(π)2(1 − α)2(1 − β).

If π ∈ F (α, β, e)\L2 then condition (8.5) requires that ∂
∂t (S1S2−S2)(π; 1, 1) ≤ 0, so that

either θ1,1(π) = 0 or e ≥ 0. However, if θ1,1(π) = 0 then S1(π, 1) = 0 by (8.22) and so

e ∈ αβ[0, 1] by Thm. 8.5. This proves that α + β ≥ 1. The assertion (8.9) of Thm. 8.1(3)

follows.

Now suppose further that e = α + β − 1 > 0 and π = (0, Σ0, Γ0) where Σ0 >

0, Γ0 > 0. Then S1(π, t) > 0 and S2(π, s) > 0 for all s, t ∈ [−1, 1] and, by Lemma 8.8,

(S1S2 − S2)(π; s, t) > 0 for all (s, t) 6= (1, 1). Also, by (8.24) (and its companion)

(8.25)
∂

∂t
(S1S2 − S2)(π; 1, 1) < 0,

∂

∂s
(S1S2 − S2)(π; 1, 1) < 0.

The inequalities (8.25) continue to hold after small perturbations of π so there exists an

open neighbourhood N of (1, 1) in [−1, 1]2 and a neighbourhood W of π in R
3 such that

(S1S2 −S2)(π′; s, t) ≥ 0 for all (π′; s, t) ∈ W ×N . Then there exists a neighbourhood W ′

of π such that (S1S2 − S2)(π′; s, t) ≥ 0 for all (π′; s, t) ∈ W ′ × ([−1, 1]2 \N). This proves

that π ∈ int Π(1) and dim F (α, β, α + β − 1) = 6.

If e = α + β − 1 = 0 then (0, Σ0, Γ0) ∈ Π(1) if Σ0 ≥ 0, Γ0 ≥ 0; one also verifies that

(αs + βt)2(1 − αs − βt)−1 ∈ F (α, β, 0) so that again dim F (α, β, 0) = 6.

Thus if 0 < α < 1, 0 < β < 1 and e = α + β − 1 ≥ 0 then dimF (α, β, 0) = 6. Hence

(8.8) of Thm. 8.1(3) is established.
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Now suppose that 0 < α < 1, 0 < β < 1, that e ∈ αβ[0, 1] and α + β − 1 < e. If π =

(0, Σ0, Γ0), where Σ0 ≥ 0, Γ0 ≥ 0, then, by Lemma 8.8, π ∈ Π(1). Thus dimF (α, β, e) ≥ 2

and so, by Thm. 8.9(3), is = 3.

Suppose that 0 < α < 1, 0 < β < 1 and α + β − 1 < e ≤ eM. If dimΠ(1) = 3

and π ∈ int Π(1) then, by Lemma 8.7(1), detΦ
(1)
s,t 6= 0 for all (s, t) ∈ [−1, 1]2 and, by

Thm. 8.9(2), Φ
(1)
s,t (π) ∈ int C for all (s, t) ∈ [−1, 1]2, which is to say that the inequalities

in (8.5) are all strict. They remain strict under small perturbations of e. Part (1)(b) of

Thm. 8.3 now follows, by using Thm. 8.9. The first inequality of (8.7) also follows.

Case (2). Suppose e = αβ 6= 0,

1

(1 − αs)(1 − βt)
= 1 + αs + βt + fπ(s, t)

where π = (αβ, α2, β2). Then Φ
(2)
s,t (π) =

(

α2, β2, 1
2αβ

)

and the conditions (8.19) are

satisfied with strict inequalities. Part (2) of Thm. 8.3 now follows from Thm. 8.9(1).

Case (3) and Case (4). The proofs of (3) and (4) of Thm. 8.3 follow that of (2). If

Σ0 > 0 and Γ0 > 0 then (0, Σ0, Γ0, 0) ∈ int Π(3). If Σ0 > 0, Γ0 > 0 and 4Σ0Γ0 > ∆2

then π = (∆, Σ0, Γ0, 0, 0) ∈ int Π(4).

The proofs are now complete.
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