
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Definition and identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1. Some of the classical identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2. Identities involving Gn and Hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. Identities involving Sn, Tn, Yn and Zn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Arithmetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1. Special primes and gcd(Xn, X

∗
n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1. General recursions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2. Recursions with D = −E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3. Recursions with D = −3F 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2. Laws of appearance and repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1. Laws of appearance and repetition for U and V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2. Laws of appearance and repetition for G and H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3. Laws of appearance and repetition for S, T , Y and Z . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3. Values of Xp (mod p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1. Values of Up and Vp (mod p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2. Values of Gp and Hp (mod p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3. Values of Sp, Tp, Yp and Zp (mod p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4. Powers of 2 and 3 in X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1. Powers of 2 in V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2. Powers of 2 in G and H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3. Powers of 2 and 3 in S, T , Y and Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4. On a Lucasian generalization of a theorem of Wolstenholme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1. On former Wolstenholme congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2. A Wolstenholme congruence for ratios Gn/Hn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3. Wolstenholme congruences when D = −3F 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4. Concluding comments, results and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. On the set of indices n such that n |Xn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2. Recursions of discriminant −E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3. Recursions of discriminant −3F 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1. The sets NS and NT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2. The sets NY and NZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6. Density of prime factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1. Prime density of the V and the G sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2. Prime densities of the V , S and Z sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3. Prime densities heuristically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.1. Density heuristics for −E2 discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.2. Density heuristics for the −3F 2 discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
List of symbols and vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

[3]



Abstract

A pair of Lucas sequences Un = αn−βn

α−β and Vn = αn + βn is famously associated with each

polynomial x2 − Px + Q ∈ Z[x] with roots α and β. It is the purpose of this paper to show
that when the root field of x2 − Px + Q is either Q(i), or Q(ω), where ω = e2πi/6, there
are respectively two and four other second-order integral recurring sequences of characteristic
polynomial x2 − Px + Q that are of the same kinship as the U and V Lucas sequences. These
are, when Q(α, β) = Q(i), the G and the H sequences with

Gn = [(1− i)αn + (1 + i)ᾱn]/2, Hn = [(1 + i)αn + (1− i)ᾱn]/2,

and, when Q(α, β) = Q(ω), the S, T , Y and Z sequences given by

Sn = (ωαn − ω̄ᾱn)/
√
−3,

Tn = (ω2αn − ω̄2ᾱn)/
√
−3,

Yn = ω̄αn + ωᾱn,

Zn = ωαn + ω̄ᾱn,

where ᾱ = β and ω̄ = e−2πi/6. Several themes of the theory of Lucas sequences have been
selected and studied to support the claim that the six sequences G, H, S, T , Y and Z ought to
be viewed as Lucas sequences.

Acknowledgments. I am very thankful to Hugh Williams for remembering his relevant paper [29]
and mentioning it to me. I also thank an anonymous referee for his appreciative comments.

2010 Mathematics Subject Classification: 11B39, 11B83, 11A07, 11B05.
Key words and phrases: Lucas sequences, identities, laws of appearance and repetition, congru-

ences, Wolstenholme congruence, divisibility, prime density.
Received 13.8.2012; revised version 21.3.2013.

[4]



Dedicated to
John Brillhart and Hugh Williams

1. Introduction

We begin by recalling in some detail the definition of Lucas sequences. To a monic
quadratic polynomial x2 − Px + Q, where P and Q are rational integers, Q non-zero,
we associate a pair of Lucas sequences U = (Un)n≥0 and V = (Vn)n≥0. Both sequences
satisfy the binary recursion

Xn+2 = PXn+1 −QXn for n ≥ 0. (1.1)

Their respective initial values are

U0 = 0, U1 = 1 and V0 = 2, V1 = P. (1.2)

Note that recursion (1.1) and the initial conditions (1.2) do define the two sequences U
and V and that their terms are integral.

If the discriminant D = P 2 − 4Q is non-zero and the complex roots of x2 − Px + Q

are denoted by α and β, then any recurring sequence X = (Xn)n≥0 of complex numbers
with characteristic polynomial x2−Px+Q, that is, satisfying recursion (1.1), has closed
form

Xn = c1α
n + c2β

n,

for some complex numbers c1 and c2.
It is straightforward to compute the closed form, the so-called Binet form, of our

Lucas sequences,

Un =
αn − βn

α− β
and Vn = αn + βn. (1.3)

If D is zero, then the double root α is the integer P/2. The closed form of any recurring
sequence of complex numbers satisfying (1.1) is then of type (c1 + c2n)αn. For the U and
V sequences, we find

Un = nαn−1 and Vn = 2αn. (1.4)

Alternatively, we may obtain (1.4) using the Binet form (1.3) for Un and Vn. Note
that Un =

∑n−1
k=0 α

n−1−kβk, so that taking the limits limβ→α Un and limβ→α Vn in (1.3)
yields (1.4).

The classical theory of Lucas sequences [16, 17, 5, 21, 30] deals with identities involving
the terms of the U and/or the V sequences, their arithmetic properties and many arith-
metic applications such as the solving of some Diophantine equations and the primality
testing of certain types of numbers.

As Lucas [16] himself pointed out it may be observed that the Un and Vn functions
form a discrete version of the sine and cosine functions. Indeed, there is a one-to-one cor-
respondence between Lucas identities and sine and cosine identities. The (fundamental)
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6 1. Introduction

Lucas sequence (Un), being a difference of two exponential functions, acts as the sine
function, whereas the (companion, or associate) Lucas sequence (Vn), being the sum of
two exponentials, acts as the cosine.

Many mathematically inclined people are familiar with some aspects of Lucas se-
quences, either special identities, or special arithmetic properties, sometimes more so for
particular pairs (Un, Vn). One of the most studied and known pair is that of the Fi-
bonacci and Lucas numbers (Fn, Ln) that corresponds to (P,Q) = (1,−1). The purpose
of this paper is to show that, for some pairs (P,Q) with special discriminants D, there
are simply more than two Lucas sequences. In poetic, or silly, or preposterous terms, if
one is to compare each recursion (1.1) with a solar system, where, say, (Un) is the star
around which some planets revolve, i.e., the companion Lucas sequences, it may happen
that more than one planet, besides the V sequence, orbits around its star. Such a claim
would seem to require a formal definition of what is a Lucasian sequence; however, we
will not attempt to define what we mean by a Lucas sequence. Of course, it has to be,
at least, a second order recurring sequence X = (Xn) satisfying (1.1) and it has to have
integral terms for all n ≥ 0. Also, it should satisfy some addition and multiplication for-
mulas, i.e., identities of the type Xm+n = · · · and Xmn = · · · , where the right-hand sides
should be polynomial expressions in the mth and nth terms of such Lucasian sequences.
Indeed, addition and, most of all, multiplication formulas are fundamental to the theory
of Lucas sequences. Defined additively, these sequences, nevertheless, satisfy numerous
divisibility properties that are linked to cyclotomy. In fact, this long paper is written so
as to convince the readers that the few sequences that are studied herein are indeed of
the same kinship as the U and the V Lucas sequences.

It should be clear from what we just wrote that this paper is not about elaborating
a new generalization of Lucas sequences. It is about studying very basic objects mostly
with the classical and elementary tools from the traditional theory of Lucas sequences.

The next paragraph is meant to introduce and motivate within this introduction and
with some precision, albeit from one chosen perspective, these other Lucasian sequences.

Given a prime number p not dividing Q, we denote by ρ = ρ(p) the rank of appearance
of p in the U sequence. That is, ρ is the smallest positive index t such that p |Ut. Any
prime not dividing Q has a well defined rank. In fact, it is well known that, if p does
not divide 2Q, then ρ is a divisor of p − εp, where throughout the paper εp will denote
the Legendre character (D | p), which is 0 or ±1 according as, respectively, p divides D,
D is a non-zero square modulo p or D is not a square modulo p. This rank property is
called the law of appearance for primes. The rank is said to be maximal whenever it is
p − εp. The law of repetition states that p divides Un if and only if n is a multiple of ρ,
provided p does not divide Q. However, if we consider the V sequence, then, generally,
primes that do not divide any term of that sequence make up a positive proportion of
the set of primes. For a prime p which divides terms of the V sequence, we will denote
by ρV = ρV (p) the least positive integer t such that p divides Vt. Thus, ρV is the rank of
appearance of p in the V sequence. The law of appearance for primes in the V sequence
basically says that ρV exists if and only if ρ is even, in which case ρV = ρ/2. We may say
that the V sequence ‘captures’ all primes of even rank. Given a prime p with rank ρV ,
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the law of repetition with respect to the V sequence says that p divides Vn if and only
if n is of the form ρV + kρ = (2k + 1)ρV , where k is an integer. Thus, any prime p of
maximal rank, not a factor of 2QD, divides all terms Vn with n congruent to (p− εp)/2
modulo p− εp. Indeed, p− εp is even for odd primes not dividing D.

The object of this paper is to demonstrate that when the discriminant D = P 2 − 4Q
of the characteristic polynomial x2 − Px + Q is minus a square, or minus three times a
square, i.e., D = −E2, or D = −3F 2, where E and F are non-zero integers, then the
theory of Lucas sequences is even richer than usual. Indeed in these cases, there are,
besides the V sequence, other integral companion sequences all satisfying recursion (1.1)
that lead to yet more identities, arithmetic properties and applications of the Lucas type.

When D is of the form −E2, that is, when the root field of x2 − Px + Q is the
cyclotomic field Q(i), where i designates as usual the complex number of norm one and
argument π/2, then there are two additional special sequences, denoted throughout by
G = (Gn)n≥0 and H = (Hn)n≥0. See equations (2.15) and (2.16) for the definitions of
the G and the H sequences. A peculiarity of recursions with root field Q(i) is that, for
all primes p not dividing 2E, p − εp is not only even, but divisible by four. The G and
the H sequences share the same prime factors and these primes are exactly the primes
whose rank is divisible by 4. In fact, we will prove, among other items, that p divides
Gn if and only if n is of the form ρG + kρ, where ρG is either ρ/4 or 3ρ/4 and k is any
integer. The same result holds for H with ρH replacing ρG and ρH + ρG = ρ.

When the discriminant D is of the form −3F 2, F a non-zero integer, that is, when
the associated root field is the cyclotomic field Q(ω), ω being the complex number e2πi/6,
there are, besides the classical U and V Lucas sequences, four additional sequences that
ought to be viewed as Lucas sequences. They are the S = (Sn)n≥0 and the T = (Tn)n≥0

sequences on one hand, and the Y = (Yn)n≥0 and the Z = (Zn)n≥0 sequences on the
other. See (2.37), (2.39), (2.41), (2.43) for their exact definitions. Note that when the root
field of x2−Px+Q is Q(ω), the quantity p− εp for primes p not dividing 6F is always a
multiple of 6. Each of the two sequences S and T capture all primes of rank a multiple
of 3, whereas the sequences Y and Z, each individually, capture all primes whose rank is
a multiple of 6.

If Φn(x, y) denotes the nth homogeneous cyclotomic polynomial, then Φ1(αn, βn)
is, up to the constant α − β, equal to Un, while Vn, which is U2n/Un, is Φ2(αn, βn).
Thus, the U and the V sequences are respectively connected to Φ1 and Φ2. The fourth
polynomial Φ4 is also connected, that way, to a second order recurring sequence, namely
(V2n). Indeed, Φ4(x, y) = (x4 − y4)/(x2 − y2) = x2 + y2 and U4n/U2n = V2n. But, unless
(P,Q) = (−1, 1) or (2, 1), the sequence (V2n) satisfies a distinct recursion, namely

Xn+2 = V2Xn+1 −Q2Xn.

What is remarkable about recursions with a discriminant of the form −E2 is that V2n =
2GnHn, where G and H are both integral second order recurrences that follow the same
recursion as U and V .

In general, Φ3(αn, βn) = α2n + (αβ)n +β2n and Φ6(αn, βn) = α2n− (αβ)n +β2n will
be third order recurring sequences. However, for recursions with a discriminant of the
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form −3F 2, we have the conspicuous fact that

Φ3(αn, βn) =
α3n − β3n

αn − βn
=
U3n

Un
= 3SnTn,

Φ6(αn, βn) =
(α6n − β6n)(αn − βn)

(α3n − β3n)(α2n − β2n)
=

U6nUn
U3nU2n

=
V3n

Vn
= YnZn,

where all four sequences S, T , Y and Z are integral second order recurring sequences
satisfying the same recursion as the U and the V sequences.

It may be noted that these Lucasian sequences all come in pairs either (G,H), or
(S, T ) and (Y,Z). Returning to our grand comparison, we may think of each pair as
being a pair of planets sharing the same orbit, but diametrically opposed to each other
at all times! No doubt, an implausible curiosity of astronomy. In earnest, the symmetry
of each pair is best expressed algebraically by the formulas

QnG−n = Hn, QnS−n = Tn and QnY−n = Zn,

which hold for all n ∈ Z. Indeed, since Q is non-zero, recursion (1.1) may be run backward,
and we may consider our sequences as indexed over Z with, possibly, non-integral rational
terms for n < 0.

Besides this introductory chapter, the paper is divided into five chapters. Each chapter
deals with one theme in the theory of Lucas sequences. Chapters 2 and 3 deal with basic
classical aspects of Lucas theory, while the last three, Chapters 4, 5 and 6, deal with themes
that are less often visited. The structure of each chapter is invariably the same: we begin
by reviewing the properties exhibited by the U and the V Lucas sequences with respect
to the chapter’s theme, we then move to a section on recursions of discriminant D = −E2

establishing corresponding results for theG and theH sequences and, finally, treat the case
of −3F 2 recursions and prove theorems for the four sequences, first for the S and the T ,
and secondly for the Y and Z sequences. The case D=−E2 is comparatively simpler than
that of D=−3F 2 in that precisely there are only two sequences instead of four to study.

Except for Theorems 3.16 and 3.25 which are extended Euler criteria for Lucas se-
quences and are based on higher reciprocity laws that require a smattering of algebraic
number theory, the first three chapters require no more than number theory knowledge
found in an introduction to elementary number theory such as Fermat’s little theorem, or
the law of quadratic reciprocity. That is also nearly true of Chapter 5, except that again
the three lemmas 5.11, 5.20 and 5.27, use elementary notions of algebraic number theory.
The last chapter, Chapter 6, uses basic notions of algebraic number theory in a more
extensive way and, on a few occasions, familiarity with basic analytic number theoretic
notation and manipulation.

Chapter 2 is devoted to defining the ‘new’ sequences and listing identities. We made
a small selection of classical U and V identities that includes addition and multiplication
formulas in Section 2.1. In Section 2.2, we list identities for the G and H sequences in a
way that respects the order in which U and V identities were listed in Section 2.1 so as
to ease comparison. The same is then done for the four sequences S, T , Y and Z that
are defined for −3F 2 discriminants in a third section. Many identities listed will also be
useful at some point in the paper.
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In Chapter 3, we chose to study how some arithmetic properties of the U and V

Lucas sequences extend, or generalize, to the other six sequences to which this paper
is dedicated. The chapter is divided into four sections each corresponding to a distinct
arithmetic property. Of course, each section then splits into three subsections following
the usual order of study, i.e., general recursions, −E2 recursions and −3F 2 recursions.
Arithmetic properties of the Lucas functions Un(P,Q) and Vn(P,Q) are often developed
with the assumption that gcd(P,Q) = 1. We do not generally make this assumption. In
fact, special primes, i.e., primes that divide both P and Q, play an important role in
Chapter 5.

Section 3.1, thus, is placed first because it deals with lemmas that assert that, with
scarce exception, if the nth terms of two of the four, or the six sequences at hand, are
divisible by some prime q, then q must be special. These lemmas will be useful throughout
the paper.

The second section, Section 3.2, examines how the classical laws of appearance and
repetition of primes in the U and V sequences adjust to the six sequences under study.
We already provided partial answers to the question within this introduction since we
motivated this study through the respective rank properties of prime divisors. Proposition
3.11, which is a repetition law, and Theorem 3.12, known as Euler’s criterion for Lucas
sequences, have taken place within Subsection 3.2.1 since they relate to the notion of the
rank of a prime and to the law of repetition in the U sequence. Proposition 3.11 will be
used many times. Thus, two proofs are given for each of the three theorems that, respec-
tively, state the law of repetition of primes in the G and H sequences (Theorem 3.14),
the law of repetition in the S and T sequences (Theorem 3.20) and the law of repetition
in the Y and the Z sequences (Theorem 3.23). One proof uses Lucasian identities and
the other Proposition 3.11. Again we do so to promote comparisons and for the pleasure
of seeing analogies both in the statement of results and in their proof(s). Theorem 3.12
is the so-called Euler criterion for Lucas sequences, and analogous theorems are stated
for the other sequences.

In Section 3.3, we derive a congruence formula that yields for all primes p the value of
Xp (mod p), where X stands for any of the two, four or six sequences at hand, depending
on whether no condition is imposed on D, D = −E2 or D = −3F 2. In fact, this congru-
ence is not specific to our sequences, but holds for all integral sequences satisfying (1.1)
at least for all odd primes. Still giving explicit versions of this congruence for our various
Lucasian sequences highlights the interplay in between each of the three pairs (G,H),
(S, T ) and (Y,Z). Also, our eight sequences have this in common that the congruence for
Xp (mod p) may be derived from multiplication formulas.

Suppose p is a prime that does not divide Q. Then arbitrarily large powers of p will
divide some U terms. In fact, if p does not divide 6 and p divides some X terms, where
X stands for anyone of our eight Lucasian sequences, then arbitrarily large powers of p
will also divide some X terms. The situation is different, say for X = V and p = 2, where
some V terms may be even, yet the highest power of 2 dividing V terms be bounded.
In Section 3.4, we examine the question of whether arbitrarily large powers of 2 and 3
divide the sequences herein studied. As might be expected, the role of 2 in V and the
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role of 3 in S and T in this respect are analogous. Here as in earlier sections theorems
and, occasionally, their several proofs are arranged so as to enhance the twin-character
of the properties satisfied by our sequences.

Today the theory of Lucas sequences is still a lively field of mathematics if one judges
from the numerous publications that have appeared since, say, the year 1998. The 1998
book [30] which we will refer to on several occasions in this paper contains much on
Lucas sequences, in particular in relation to their use in primality testing, but also a
whole chapter, Chapter 4, on their properties, and the identities they satisfy. In fact,
a new cubic generalization, arguably more satisfactory that most past generalizations,
was the object of Eric Roettger’s 2009 thesis. A summary of the main features of this
generalization appeared in [19]. The last three chapters of the present paper are each
based on relatively recent papers on Lucas sequences. Chapter 4 attempts to discover
new facets of a beautiful property of Lucas sequences discovered by William Kimball and
William Webb in a 1999 publication [12]. Chapter 5 finds its motivation principally from
a 2010 paper of Chris Smyth [25], while Chapter 6 has for main source the approaches to
the prime density of the V companion Lucas sequences that were conducted in the 2008
paper by the author [2].

In an 1862 paper [31], Joseph Wolstenholme proved the congruence

1 +
1
2

+
1
3

+ · · ·+ 1
p− 1

≡ 0 (mod p2)

for all prime p ≥ 5. A rational number a/b, where a and b are coprime integers, is said
to be divisible by the integer d if d is coprime to b and d divides a.

Several elementary generalizations of Wolstenholme’s congruence soon appeared be-
fore and after 1900, but mostly around 1900 [9, Chapter 8]. Amusingly, the genuine
elementary generalization in [12] took some hundred more years to find a discoverer. It
involves sums of consecutive quotients Vn/Un that are congruent to zero modulo the
square of a prime ≥ 5.

In Chapter 4, Section 4.1, we begin by re-examining the theorem of [12] and giving it
a slightly more general form. In Sections 4.2 and 4.3, we establish comparable theorems
for sums of consecutive quotients of other pairs of sequences such as (G,H), (S,Z) or
(T, Y ). These theorems could actually all be given analogous proofs based on similar, yet
different Lucasian identities each time. We wrote Chapter 4 by mostly and purposefully
preserving the naive way the theorems came to us. However in Section 4.4 we added
some comments and began addressing questions raised by the extreme similarity all these
Wolstenholme-like, Lucas theory-based theorems share. For instance, do they all produce
zero modulo p2 in essentially the same way? Is there a hint that they are all instances of
the same phenomenon and could all be proven at once?

Let X be one of the two Lucas sequences U or V . Suppose NX denotes the set of
integers n which divide Xn, where n ≥ 1. Let Ω(·) be the function that maps integers to
the number of their prime factors. An integer b in NX is said to be X-basic if either b is 1
or no divisor d of b with Ω(d) = Ω(b)−1 lies in NX . In [25], completing the work of other
authors, in particular that of Lawrence Somer, Smyth showed that NX has at most two
basic elements, either 1 and 6, or 1 and 12, or 1 only. Also, for n in NX the sets PX,n
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of primes p for which np is in NX are fully characterized as all the prime factors of Xn

(with possibly a few others we omit here). That enables one in theory to construct all
integers n in NX starting with an X-basic element b and multiplying it, one at a time, by
Ω(n)−Ω(b) prime factors p, where at each stage if m is already constructed the prime p
is chosen in PX,m. Smyth adds that it would be interesting to see whether the analysis
of his paper could be extended to other second-order recurrence sequences. This is what
we have attempted to do in Chapter 5 for the sequences that are under scrutiny in this
paper. As turns out, a comparable analysis, beautiful in its smoothness and its analogy
with the study in [25], may be carried out provided we look at these sequences in pairs
{X,X∗} where {X,X∗} stands for {G,H}, {S, T} or {Y, Z}. Indeed, if n divides Xn and,
omitting detail, if p divides Xn, then np divides either Xnp or X∗np according to whether
respectively the Legendre character εp is ±1.

A prime is said to divide a sequence X if it divides some term of X. The prime density
of a sequence X is the limit, if it exists, of the ratio of the number of primes ≤ x that
divide X to π(x), the number of primes less than or equal to x, as x goes to∞. All primes,
but perhaps those dividing Q, divide a U(P,Q) Lucas sequence so the prime density of all
U sequences is 1. Several papers referenced in [2] have shown some V sequences to have
a prime density of 2/3. The object of [2] was two-fold. First to show heuristically why
2/3 ought to be the expected prime density of most V Lucas sequences and then to prove
that, in some definite sense indeed, almost all V sequences do have prime density 2/3.
The approach taken to prove the latter result was to consider all recursions x2−Px+Q,
or all pairs of integers (P,Q) within a square box |P | ≤ x and |Q| ≤ x, and show that
the number of corresponding V = V (P,Q) sequences not having prime density 2/3 is
o(x2) as x tends to ∞. In Chapter 6, we borrow notation and use the methods of [2]
to establish comparable density results for both −E2 recursions and −3F 2 recursions.
In Section 6.1 we show that in some definite sense within the set of all −E2 recursions
almost all V and G sequences have prime densities 5/6 and 2/3 respectively. Note that,
assuming existence, a G and an H sequences satisfying the same recursion share the same
prime density. We then turn to −3F 2 recursions in Section 6.2 and establish that the
prime densities of the V , the S (or the T ) and the Y (or the Z) sequences associated with
almost all −3F 2 recursions are respectively 2/3, 3/4 and 1/2. The heuristics predicting
the prime densities of Sections 6.1 and 6.2 are conducted in Section 6.3.

Some instances of the sequences defined in this paper have appeared here and there
in the literature. Roger Laxton ([14], [15]) studied a group associated with each recursion
x2 − Px + Q. The elements of the group are equivalence classes of integral sequences
that satisfy recursion (1.1), where two such sequences are in the same class if they are
equal modulo a shift of index and a multiplication by a rational scalar. The class of the U
sequence is the identity of the group, while the class of the V sequence is of order 2. For
many recursions, these two classes are the only two of finite order in the group. It is easy
to check that in a −E2 recursion the successive powers of the class of G are respectively
the classes of G, V , H and U so that, if the four classes are distinct, the class of G
has order 4. Similarly, in a −3F 2 recursion the successive powers of the class of the Z
sequence are respectively the classes of Z, T , V , S, Y and U so that, if all six classes
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are distinct, the class of Z is of order 6. In [15, p. 178], Laxton considers as an example
the recursion x2 − 5x + 7 which has discriminant −3 and notes that the two sequences
with initial terms 1 and 3, and 1 and 2, have classes of order 3. They are respectively an
instance of an S and a T sequence if we assume F is 1. Thus, another common point of
the sequences we study in this paper is that they are torsion elements of infinite groups
with finite torsion subgroup.

The third sequence of which Jeffrey Lagarias computes the prime density in [13] is
again the T sequence associated with x2− 5x+ 7. Its prime density is 3/4. As Chapter 6
further demonstrates, all our sequences lend themselves to unconditional prime density
calculations, that is, to calculations that do not require generalized Riemann hypotheses,
unlike most other second order recurring sequences.

The paper [3] studies three specific third-order recurring sequences that are associated
with each cubic polynomial of the form x3 − 3m2x2 − 3εmx − 1, where m is a non-zero
integer and ε = ±1. Their classes form a subgroup of order 3 in a group that generalizes
the group of Laxton to higher order recurrences. These sequences also lent themselves to
some unconditional density calculations. It was explicitly remarked [3, p. 276], alas with
a few mistakes in the theorem that accompanied the remark, that they could be viewed
as generalizing the triplet (U, S, T ) of a −3F 2 quadratic recursion.

One paper [29] did entirely focus on the sequences U , S and T , and to a lesser degree
also on the Y and Z sequences, which concerns us here. Although the upshot of the
paper [29] was to develop necessary and sufficient primality tests for numbers of the
form 2m3nA − 1, where A < 2m+13n − 1, many identities and arithmetic properties
that intersect and complete the corresponding sections of Chapters 2 and 3 of our paper
may be found there. In fact, properties such as laws of appearance and repetition, are
developed for general integers rather than just primes. However, this is done under the
hypothesis that gcd(P,Q) = 1 unlike the present paper. Notation differs: Rn, Sn, Tn,
Wn, Xn and Yn stand respectively for what we denote as Tn, −Sn, FUn, Vn, Yn and Zn.
In fact, the Rn, Sn and Tn sequences of Hugh Williams appeared earlier in [28], where
formal identities and connections to Diophantine equations were developed [28, pp. 40–
52]. The main object of the thesis [28] is to study three third order recurring sequences
associated with a cubic integral monic polynomial. These were denoted by the letters W ,
V and U and they display properties analogous to a classical pair of Lucas sequences.
Therefore, another letter than the letter U (namely T ) had to be used to denote (up to a
constant) the ordinary U Lucas sequence. Incidentally, we first developed this long paper
without being aware of the earlier paper [29]. This raises the obvious question of whether
one may, or may not, develop new primality tests based on the G and the H sequences,
or find connections of these two sequences with some Diophantine equations.

No doubt, the sequences we study here must have occurred elsewhere, in places we
are not aware of. What characterizes this paper, as well as the two earlier papers [29]
and to some extent [15], is that their primary focus is on these particular sequences and
their properties. The emphasis of the present paper is on showing that the six sequences
G, H, S, T , Y and Z, that is, when they exist, are Lucas sequences. In fact, from the
work of Laxton [14], [15], one may expect that, for some polynomials x2−Px+Q, other
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such sequences are waiting to be studied and, perhaps, shown to be yet additional Lucas
sequences. Indeed, if Q is a square, say R2, then the two sequences with initial values
1 and P + R, and 1 and P − R, yield two order-two torsion sequences in the Laxton
group. Thus, we may expect eight or twelve sequences with Lucasian properties when, in
addition to Q being a square, the discriminant D is respectively of the form −E2 or of
the form −3F 2.

It is our fond hope that this work will spur people with an interest in Lucas theory
to initiate further studies, either on aspects of the Lucas theory of the sequences studied
herein, or with respect to yet other sequences.



2. Definition and identities

2.1. Some of the classical identities. We only select a few of the classical identities
involving the U and the V sequences, but enough, we think, to convince one that the G
and the H sequences for −E2 discriminants, and the S, T , Y and Z sequences for −3F 2

discriminants, satisfy identities of a similar nature. Proofs of these classical identities can
be found in [16] or [30].

Note that the Binet forms (1.3), (1.4), or running the recursion (1.1) backwards, allows
us to view the U and the V sequences as defined for all n ∈ Z. Of course, their negative
terms are rational numbers whose denominators are powers of Q. We will, whenever
convenient, also view the binary sequences defined in the next two sections as defined for
all n ∈ Z, although we still refer to the terms of index n = 0 and n = 1 as the initial
values of the sequence. All identities are valid for all indices m and n in Z. Note that the
U and V identities listed below are valid with no restriction on D. In particular, D may
be 0.

We begin by the formulas that relate the nth term to the (−n)th term,

QnU−n = −Un and QnV−n = Vn. (2.1)

Here is the Pythagorean formula akin to cos2 x+ sin2 x = 1:

V 2
n −DU2

n = 4Qn. (2.2)

We have the addition and subtraction formulas,

2Um+n = UmVn + UnVm, (2.3)

2QnUm−n = UmVn − UnVm. (2.4)

Subtracting (2.4) from (2.3) yields

Um+n = VmUn +QnUm−n. (2.5)

We have more such formulas:

2Vm+n = VmVn +DUmUn, (2.6)

2QnVm−n = VmVn −DUmUn. (2.7)

Subtracting (2.7) from (2.6) gives

Vm+n = DUmUn +QnVm−n. (2.8)

[14]
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Some double-angle identities are easily obtained from the above formulas:

U2n = UnVn, (2.9)

V2n = V 2
n − 2Qn = DU2

n + 2Qn. (2.10)

Replacing m by n and n by 1 in both (2.5) and (2.8) yields

Un+1 −QUn−1 = Vn and Vn+1 −QVn−1 = DUn. (2.11)

Also we have

U2
n − Un−1Un+1 = Qn−1 and V 2

n − Vn−1Vn+1 = −DQn−1. (2.12)

Finally we give the multiplication formulas

2m−1Umn =
b(m−1)/2c∑

k=0

(
m

2k + 1

)
DkU2k+1

n V m−2k−1
n , (2.13)

2m−1Vmn =
b(m−1)/2c∑

k=0

(
m

2k

)
DkU2k

n V m−2k
n . (2.14)

2.2. Identities involving Gn and Hn. We assume that D = P 2−4Q = −E2, where E
is a non-zero integer. It may be convenient, but not necessary, given only the knowledge
of P and Q in a recursion x2 − Px + Q with D = −E2, to adopt the convention that
E > 0 so as to lift any ambiguity about what the G and the H sequences are.

The roots α and ᾱ of x2 − Px+Q are complex conjugate and by convention

α =
P + iE

2
and ᾱ =

P − iE
2

,

so that α− ᾱ = iE.
Let us introduce the two new binary recurring sequences G = (Gn)n≥0 and H =

(Hn)n≥0 both via their Binet form and via their initial values. For any n ∈ Z, we define

Gn =
1
2
[
(1− i)αn + (1 + i)ᾱn

]
=
√

2
2
[
ζ̄8α

n + ζ8ᾱ
n
]
, (2.15)

with initial values G0 = 1 and G1 = (P + E)/2.
The nth term of the H sequence is

Hn =
1
2
[
(1 + i)αn + (1− i)ᾱn

]
=
√

2
2
[
ζ8α

n + ζ̄8ᾱ
n
]
, (2.16)

with initial values H0 = 1 and H1 = (P − E)/2.
Note that looking at the equation P 2 +E2 = 4Q modulo 4, we see that P and E are

both even. Thus, G1 and H1 are indeed rational integers. Because both sequences (Gn)
and (Hn) are linear combinations of the two sequences (αn) and (ᾱn), G and H both
satisfy recursion (1.1).

The Un and Vn Lucas functions, as Lucas mentioned in the first sentence of his
memoir [16], are symmetric functions of the roots α and β as can be seen from their
Binet form (1.3). Permuting the roots α and ᾱ interchanges Gn and Hn. Since, up to
powers of Q, Gn and H−n are identical, we may say that Gn and Hn are nearly symmetric
functions of the roots. Of course, GnHn is. Note that permuting α and ᾱ also corresponds
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to changing the sign of E. It may be of interest to see the effect of changing the signs in
both E and P as we do in the following lemma.

Given two even integers P and E, E 6= 0, we denote the nth term of a linear recurring
sequence X satisfying (1.1) with P = P and Q = (P 2 + E2)/4 by Xn(P,E). Then we
have

Lemma 2.1. For all n ≥ 0,

Gn(P,−E) = Hn(P,E) and Gn(−P,E) = (−1)nHn(P,E).

Proof. The two binary sequences
(
Gn(P,−E)

)
and

(
Hn(P,E)

)
have the same initial

values 1 and (P −E)/2 and share the same recursion since Q is independent of the sign
of E, so they must be the same sequences.

The sequences
(
Gn(−P,E)

)
and

(
(−1)nHn(P,E)

)
are both equal to 1 for n = 0 and

to −(P − E)/2 for n = 1. We then show that if they agree on two consecutive terms,
n and n + 1, they agree on the next two, n + 1 and n + 2. Thus, equality of the two
sequences will follow by induction. Indeed, assuming equality for n and n+ 1 we have

Gn+2(−P,E) = −PGn+1(−P,E)−QGn(−P,E)

= −P (−1)n+1Hn+1(P,E)−Q(−1)nHn(P,E)

= (−1)n
[
PHn+1(P,E)−QHn(P,E)

]
= (−1)n+2Hn+2(P,E).

We are about to list some selected identities involving the G and the H sequences.
Besides some fundamental ‘first degree’ formulas such as

Vn = Gn +Hn and EUn = Gn −Hn, (2.17)

we have attempted to make a list that matches the order in which, in Section 2.1, we
listed U, V -identities: Pythagorean, addition and subtraction, double-angle, and so on.
These identities, valid for all integers m and n, can be obtained in various ways and often
conveniently by the Binet forms for Gn and Hn. We list them below:

QnG−n = Hn and QnH−n = Gn, (2.18)

G2
n +H2

n = 2Qn, (2.19)

EUm+n = GmGn −HmHn, (2.20)

Vm+n = GmHn +HmGn, (2.21)

2Gm+n = GmVn + EHmUn, (2.22)

2Hm+n = HmVn − EGmUn, (2.23)

and a subtraction formula

EQnUm−n = GmHn −GnHm. (2.24)

Equation (2.22), for example, besides being easy to check via the Binet forms (1.3),
(2.15) and (2.16) can be proved by fixing an arbitrary value of m. Then 2Gm+n and
GmVn + EHmUn being two second order recurring sequences in n satisfying (1.1), it
is enough to verify their equality for two consecutive values of n. For n = 0, this is
immediate, since V0 = 2 and U0 = 0. For n = 1, this boils down to checking that
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Gm+1 − QGm−1 = EHm. Now both terms of this equation are second order recurring
sequences in m that satisfy equation (1.1), and their equality holds for m = 0 and m = 1.

We have some useful double-angle identities. First,

V2n = 2GnHn. (2.25)

Putting m = n in (2.22) and using both identities in (2.17) and the Pythagorean identity
(2.19), we get the double-angle formula

G2n = EUnHn +Qn. (2.26)

A similar calculation leads to

H2n = −EUnGn +Qn. (2.27)

We also have the important formula

U4n = U2nV2n = 2UnVnGnHn. (2.28)

Combining identities (2.17) together with (2.11) leads to formulas between the G and
the H sequences analogous to the classical formulas in (2.11) between the U and the V
sequences, namely

Gn+1 −QGn−1 = EHn and Hn+1 −QHn−1 = −EGn. (2.29)

Also we have analogs of (2.12),

G2
n −Gn−1Gn+1 = E2Qn−1/2 = H2

n −Hn−1Hn+1. (2.30)

Finally we give some multiplication formulas. We have respectively

Gn ± iHn = (
√

2)−1
[
(ζ̄8 ± iζ8)αn + (ζ8 ± iζ̄8)ᾱn

]
,

so that, since ζ̄8+iζ8 = 0 and ζ8+iζ̄8 = 2ζ8,Gn+iHn =
√

2 ζ8ᾱn andGn−iHn =
√

2 ζ̄8αn.
Thus, adding the two expressions Gn± iHn each raised to the mth power, and expanding
them by the binomial formula, yields

2
∑
k≥0

(
m

2k

)
(−1)kGm−2k

n H2k
n = (

√
2 ζ8)mᾱmn + (

√
2 ζ̄8)mαmn. (2.31)

Putting either m = 1 + 4`, or −1 + 4`, in (2.31) gives the multiplication formulas∑
k≥0

(
m

2k

)
(−1)kGm−2k

n H2k
n =

{
(
√

2)m−1(−1)`Gmn if m = 1 + 4`,

(
√

2)m−1(−1)`Hmn if m = −1 + 4`.
(2.32)

We also have

(
√

2 ζ8)mαmn + (
√

2 ζ̄8)mᾱmn = (Hn + iGn)m + (Hn − iGn)m

= 2
∑
k≥0

(
m

2k

)
(−1)kHm−2k

n G2k
n ,

which leads to the formulas∑
k≥0

(
m

2k

)
(−1)kHm−2k

n G2k
n =

{
(
√

2)m−1(−1)`Hmn if m = 1 + 4`,

(
√

2)m−1(−1)`Gmn if m = −1 + 4`.
(2.33)
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We present two more multiplication formulas obtained in similar fashion:

22m−1EU4mn = (−1)m
2m−1∑
k=0

(
4m

2k + 1

)
(−1)k+1H2k+1

n G4m−2k−1
n , (2.34)

22m−1V4mn = (−1)m
2m∑
k=0

(
4m
2k

)
(−1)kH2k

n G4m−2k
n . (2.35)

Identity (2.35), for instance, is obtained by expressing the integer (Gn + iHn)4m +
(Gn− iHn)4m in two ways. On one hand, the binomial formula yields a sum whose terms
are even powers of Hn multiplied by even powers of Gn, where, in each term, the sum of
the exponents is 4m; on the other, noting that Gn + iHn is (1 + i)ᾱn and Gn − iHn is
(1− i)αn, the sum of their 4mth powers is (−4)mV4mn.

2.3. Identities involving Sn, Tn, Yn and Zn. We assume here that D = P 2 − 4Q =
−3F 2, where F is a non-zero integer. Here again, unless stated otherwise, it may be
convenient to assume F to be a natural number. Changing the sign of F interchanges the
two sequences S and T , and interchanges Y and Z as well.

The roots α and ᾱ of x2 − Px+Q are complex conjugate and by convention, we set√
−3 = i

√
3 and

α =
P + F

√
−3

2
and ᾱ =

P − F
√
−3

2
,

so that α − ᾱ = F
√
−3. Also, throughout the paper, we denote the complex sixth root

of unity e2iπ/6 = (1 +
√
−3)/2 by ω. In particular, 1− ω + ω2 = 0.

Let us define the four sequences S = (Sn)n≥0, T = (Tn)n≥0, Y = (Yn)n≥0 and
Z = (Zn)n≥0. They all satisfy the binary recursion (1.1), and thus are determined by
their initial values. We also provide their Binet form.

The initial values of the S sequence are

S0 = 1 and S1 = (P + F )/2. (2.36)

The Binet form of the nth term is, for any n ∈ Z,

Sn =
1√
−3
· (ωαn − ω̄ᾱn) = F

ωαn − ω̄ᾱn

α− ᾱ
. (2.37)

The T sequence has initial values

T0 = 1 and T1 = (P − F )/2, (2.38)

and the Binet form for Tn, n ∈ Z, is

Tn =
ω2αn − ω̄2ᾱn√

−3
= F

ωᾱn − ω̄αn

α− ᾱ
. (2.39)

Initial values for the Y sequence are

Y0 = 1 and Y1 = (P + 3F )/2. (2.40)

Finding the Binet form for Yn, n ∈ Z, gives

Yn = ω̄αn + ωᾱn. (2.41)
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Finally, the Z sequence is defined via its initial values

Z0 = 1 and Z1 = (P − 3F )/2, (2.42)

and its Binet form is, for all n ∈ Z,

Zn = ωαn + ω̄ᾱn. (2.43)

Note that since P ≡ P 2 ≡ −3F 2 ≡ ±F ≡ ±3F (mod 2), S1, T1, Y1 and Z1 are all
rational integers. Thus, all terms with non-negative indices are integral. In particular, as
is readily seen, all Binet forms are invariant by complex conjugation.

Unlike the U and the V sequences, the S, T , Y and Z are not exactly symmetric
functions of the roots α and ᾱ, but, as for G and H, they have a form of near-symmetry.
Permuting α and ᾱ interchanges Yn and Zn, and changes Sn into −Tn and Tn into −Sn
as can be seen from (2.41), (2.43), (2.37) and (2.39) (1). The near-symmetry comes
from considering the upcoming identities (2.46). The products SnTn and YnZn are both
symmetric functions of α and ᾱ.

As we did for G = G(P,E) and H = H(P,E), we say what the effect of changing the
signs of P and F has on our sequences. Given two integers P and F of the same parity,
where F 6= 0, we associate the recursion x2 − Px + Q, where Q = (P 2 + 3F 2)/4. This
recursion has discriminant −3F 2. We denote by Xn(P, F ) the nth term of a sequence
satisfying (1.1) with P = P and Q = (P 2 + 3F 2)/4.

We immediately see, on inspecting initial terms of our sequences and noticing that Q
is independent of the sign of F , that, for all n ≥ 0,

Un(P,−F ) = Un(P, F ),

Vn(P,−F ) = Vn(P, F ),

Sn(P,−F ) = Tn(P, F ),

Tn(P,−F ) = Sn(P, F ),

Zn(P,−F ) = Yn(P, F ),

Yn(P,−F ) = Zn(P, F ).

(2.44)

Assuming X and X ′ are two sequences with nth terms Xn = Xn(P, F ) and X ′n =
X ′n(−P, F ), where X0 = X ′0 and X1 = −X ′1, an induction will prove as in Lemma 2.1
that

Xn = (−1)nX ′n for all n ≥ 0.

This explains the last three of the identities below:

Un(P, F ) = (−1)n+1Un(−P, F ),

Vn(P, F ) = (−1)nVn(−P, F ),

Sn(P, F ) = (−1)nTn(−P, F ),

Zn(P, F ) = (−1)nYn(−P, F ).

(2.45)

(1) Had we chosen initial values for Tn equal to −1 and (−P + F )/2, then permuting the
roots would also have interchanged Sn and Tn. Instead we chose each sequence to have 0th term
equal to +1.
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Looking at the Binet forms only, one might guess that the relationship between the
S and the Z sequences on one hand, and the relationship between the T and the Y

sequences on the other, might well bear resemblance with the relationship that exists
between the U and the V sequences. Without further explicit mention, this intuition will
be corroborated many times, both by analogy in identities and properties. For example,
the Wolstenholme congruences satisfied by the quotients Vn/Un have an analogue in
terms of the quotients Zn/Sn and another in terms of the quotients Yn/Tn, as we will see
in Chapter 4. The Pythagorean formula (2.2) between the V and the U sequences has
analogues, as we will soon see, between the Z and the S sequences on one hand, and the
Y and the T sequences on the other.

All our forthcoming identities can either be proved by using the Binet forms of our
sequences, or by noting that both sides of the identity are recurring sequences sharing
the same recursion of order k, in which case checking the identity on k consecutive terms
proves the general identity, or by using identities already established, or any combination
of the three methods.

We begin by the formulas that relate nth and (−n)th terms,

QnS−n = Tn, QnT−n = Sn, QnZ−n = Yn and QnY−n = Zn. (2.46)

There are many ‘first degree’ simple identities such as

Vn = Sn + Tn and FUn = Sn − Tn, (2.47)

Vn = Yn + Zn and 3FUn = Yn − Zn, (2.48)

3Sn + Zn = 2Vn = 3Tn + Yn, (2.49)

2Sn = Tn + Yn and 2Tn = Sn + Zn, (2.50)

Zn = Tn − FUn and Yn = Sn + FUn. (2.51)

Some Pythagorean identities are echoing identity (2.2), namely

SnTn + F 2U2
n = Qn = YnZn + 3F 2U2

n, (2.52)

Z2
n + 3S2

n = 4Qn = Y 2
n + 3T 2

n . (2.53)

There are analogues of the two double-angle formulas (2.9) and (2.10)

FU2n = SnYn −Qn = −TnZn +Qn, (2.54)

V2n = SnZn + TnYn = 3SnTn −Qn = YnZn +Qn, (2.55)

S2n = TnYn and T2n = SnZn, (2.56)

S2n = SnVn −Qn and T2n = TnVn −Qn, (2.57)

Y2n = YnVn −Qn = 3S2
n − 2Qn = −Z2

n + 2Qn, (2.58)

Z2n = ZnVn −Qn = 3T 2
n − 2Qn = −Y 2

n + 2Qn. (2.59)

One of these analogues is the important triple-angle formula

U3n = 3UnSnTn. (2.60)

By (2.60), U6n = 3U2nS2nT2n and, by identities (2.9) and (2.56), we get the sextuple
angle formula

U6n = 3UnVnSnTnYnZn. (2.61)
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Since U6n = U3nV3n = 3UnSnTnV3n, we deduce that

V3n = VnYnZn. (2.62)

We give triple-angle formulas for the S and the T sequences:

S3n = VnTnYn −QnSn, (2.63)

T3n = VnSnZn −QnTn. (2.64)

Let us choose to quote some of the many summation formulas:

FUm+n = SmSn − TmTn = TmYn − ZmSn, (2.65)

Um+n = SmUn + UmTn = ZmUn + UmYn, (2.66)

2Vm+n = SmZn + ZmSn + TmYn + YmTn, (2.67)

2Sm+n = TmYn + YmTn and Sm+n = YmTn − FQnUm−n, (2.68)

2Zm+n = −YmYn + 3TmTn, (2.69)

2Ym+n = −ZmZn + 3SmSn, (2.70)

Ym+n = 3SmSn −QnVm−n = −ZmZn +QnVm−n. (2.71)

Replacing n by −n in (2.66) and using (2.47) yields the two subtraction formulas

QnUm−n = UmSn − UnSm = UmTn − UnTm. (2.72)

There are some analogues of (2.12), i.e.,

S2
n − Sn−1Sn+1 = F 2Qn−1 = T 2

n − Tn−1Tn+1, (2.73)

Y 2
n − Yn−1Yn+1 = 3F 2Qn−1 = Z2

n − Zn−1Zn+1. (2.74)

Let us now give some multiplication formulas in the same vein as identities (2.13) and
(2.14). Thus, expanding by the binomial formula the left-hand sides of the two equations
(Zn +

√
−3Sn)m = 2mωmαmn and (Zn −

√
−3Sn)m = 2mω̄mᾱmn and subtracting them

yields∑
k≥0

(
m

2k + 1

)
(−3)kZm−2k−1

n S2k+1
n =

{
2m−1Smn if m ≡ 1 (mod 6),

−2m−1Tmn if m ≡ −1 (mod 6).
(2.75)

If instead of subtracting the two equations we add them, we get∑
k≥0

(
m

2k

)
(−3)kZm−2k

n S2k
n =

{
2m−1Zmn if m ≡ 1 (mod 6),

2m−1Ymn if m ≡ −1 (mod 6).
(2.76)

Subtracting the two expressions (Yn ±
√
−3Tn)m yields the multiplication formulas∑

k≥0

(
m

2k + 1

)
(−3)kY m−2k−1

n T 2k+1
n =

{
2m−1Tmn if m ≡ 1 (mod 6),

−2m−1Smn if m ≡ −1 (mod 6).
(2.77)

Adding them gives∑
k≥0

(
m

2k

)
(−3)kY m−2k

n T 2k
n =

{
2m−1Ymn if m ≡ 1 (mod 6),

2m−1Zmn if m ≡ −1 (mod 6).
(2.78)
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We give yet a few other multiplication formulas either not covered, or not exactly
covered, by the previous formulas:

23mZ(3m+1)n = (−1)m
b 3m+1

2 c∑
k=0

(
3m+ 1

2k

)
(−3)kS2k

n Z3m+1−2k
n , (2.79)

23mS(3m+1)n = (−1)m
b 3m

2 c∑
k=0

(
3m+ 1
2k + 1

)
(−3)kS2k+1

n Z3m−2k
n , (2.80)

23m−1V3mn = (−1)m
b 3m

2 c∑
k=0

(
3m
2k

)
(−3)kS2k

n Z3m−2k
n , (2.81)

23m−1FU3mn = (−1)m
b 3m−1

2 c∑
k=0

(
3m

2k + 1

)
(−3)kS2k+1

n Z3m−2k−1
n . (2.82)

There are identities reminiscent of (2.32), (2.33) and (2.35). Indeed, taking advantage
of the identity ω4Sm +ω2Tm = −αm and its conjugate identity, as was done in the proof
of Theorem 5 in [29], we may derive the multiplication identities

Smn = (−1)n−1
n∑
k=0

(
n

k

)
µn,kS

k
mT

n−k
m ,

= (−1)n−1
n∑
k=0

(
n

k

)
µn,n−kS

n−k
m T km, (2.83)

where µn,k is −1, 0 or 1, and µn,k ≡ (n− 1 | 3) + (k | 3) (mod 3), with (x | 3) standing for
the Legendre character of x (mod 3).

Changing F into −F and using the third and fourth identities in (2.44) yields

Tmn = (−1)n−1
n∑
k=0

(
n

k

)
µn,kT

k
mS

n−k
m ,

= (−1)n−1
n∑
k=0

(
n

k

)
µn,n−kT

n−k
m Skm. (2.84)

Summing, say, identities (2.83) and (2.84) term by term yields

Vmn = (−1)n−1
n∑
k=0

(
n

k

)
νn,kS

k
mT

n−k
m , (2.85)

where

νn,k =

{
−2 if 3 |n+ k,

1 otherwise.

We end this section with a beautiful identity

QnVn = S3
n + T 3

n . (2.86)

It has the associated identity

9FQnUn = Y 3
n − Z3

n. (2.87)



3. Arithmetic properties

This chapter is divided into four sections. Each section is devoted to one arithmetic
property. This arithmetic property is studied in three subsections. The first subsection
deals with the U and V sequences when P and Q are arbitrary, the second treats the
case of the G and the H sequences for −E2 discriminants, and the third looks at the S
and the T sequences, as well as the Y and the Z sequences that are defined when the
recursion has a discriminant of the form −3F 2. This organization allows for a clear view
on the analogies that these sequences or their properties share both with the U and the
V sequences and among themselves.

We begin with a small section. The lemmas that it contains will be used many times
in the next sections as well as in Chapter 5.

3.1. Special primes and gcd(Xn, X
∗
n). Recall here that a prime is said to be special

with respect to x2 − Px+Q if and only if it divides both P and Q.

3.1.1. General recursions. Given a quadratic polynomial x2−Px+Q in Z[x], Q 6= 0,
we prove one lemma.

Lemma 3.1. If a prime q divides both Un and Vn for some n ≥ 1, then q is a special
prime, unless q = 2 and Q is odd.

Proof. By the Pythagorean identity (2.2), V 2
n −DU2

n = 4Qn so that q divides 2Q. If q |Q,
then as V1 = P and Vk+1 ≡ PVk (mod q) an induction yields Vn ≡ Pn (mod q). Hence q
also divides P , and thus q is special.

Using recursion (1.1) modulo 2, one sees that if P is even and Q is odd, then
2 | gcd(Un, Vn) whenever n is even. If P and Q are odd, then 2 | gcd(Un, Vn) iff 3 di-
vides n. Hence, if q = 2 and Q is odd, 2 will divide both Un and Vn for some positive
indices n. Yet 2 is not special.

3.1.2. Recursions with D = −E2

Lemma 3.2. Let q be a prime, and X and X∗ be any two of the four sequences U , V , G
and H. If q divides both Xn and X∗n for some n ≥ 1, then q is special, except in the case
where the sequences X and X∗ are the U and V sequences and q is 2, Q is odd and n is
even.

Proof. We first look at the case {X,X∗} = {G,H}. If q | gcd(Gn, Hn), then q2 |G2
n+H2

n.
However, G2

n +H2
n = 2Qn, so q |Q. Since Vn = Gn +Hn, we have q |Vn. Hence, Vn ≡ Pn

(mod q). Therefore, q |P and we conclude that q is a special prime.

[23]
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If, say, X is the V sequence and X∗ is either G or H, then, as Vn = Gn + Hn,
q | gcd(Gn, Hn). Hence, q is special.

Similarly, if, say, X is U and X∗ is either G or H, then, because EUn = Gn − Hn,
q | gcd(Gn, Hn). Thus, q is special.

By Lemma 3.1, if X and X∗ are U and V , then q is special, unless Q is odd and
q = 2. Note that Q may indeed be odd when D = −E2 as we may witness from, say, the
recursion x2−4x+5 of discriminant −4. However, recursions with discriminant −E2 have
even P ’s, so that, when Q is odd, we see from the proof of Lemma 3.1 that 2 | gcd(Un, Vn)
iff n is even.

3.1.3. Recursions with D = −3F 2. We first prove two useful lemmas: one about
common prime factors of Sn and Tn, and another about common prime factors of Yn
and Zn.

Lemma 3.3. Let q be a prime dividing both Sn and Tn, for some n ≥ 1. Then q is a
special prime.

Proof. We have the two identities

Sn − Tn = FUn and SnTn = Qn − F 2U2
n. (3.1)

By the first identity in (3.1), q |FUn. By the second, q2 |Qn, and thus q |Q. Now Vn ≡ Pn
(mod q) for n ≥ 1 and Vn = Sn + Tn ≡ 0 (mod q). So q |P . Hence q is a special prime.

Lemma 3.4. Let q be a prime. If q divides both Yn and Zn for some n ≥ 1, then q is
special.

Proof. By the two identities

Yn − Zn = 3FUn and YnZn + 3F 2U2
n = Qn,

we find that q |Q. Thus, Vn ≡ Pn (mod q), for any n ≥ 1. But Vn = Yn + Zn is divisible
by q. Hence, q |P and q is indeed special.

We prove a lemma comparable to that of the previous section.

Lemma 3.5. Let X, X∗ be two of the six sequences U , V , S, T , Y and Z. Let q be a
prime that divides both Xn and X∗n for some n ≥ 1, then q is special, unless q is 2, Q is
odd and the pair {X,X∗} is one of the three pairs {U, V }, {S,Z} or {T, Y }.

Proof. There are fifteen possible pairs {X,X∗}, but three have their case already settled
by the three Lemmas 3.1, 3.3 and 3.4.

So suppose, say, X is U or V , and X∗ is one of the four sequences S, T , Y or Z.
Then, by the identities FUn = Sn − Tn and 3FUn = Yn − Zn, or by the identities
Vn = Sn + Tn = Yn + Zn, and by the Lemmas 3.3 and 3.4, q is special.

If the pair {X,X∗} is either {S, Y }, or {T,Z}, then by the identities 2Sn = Tn + Yn
and 2Tn = Sn +Zn, q divides Sn and Tn. Hence, q is special by Lemma 3.3. For the two
remaining cases, i.e., {X,X∗} is either {S,Z} or {T, Y }, then the same two identities
2Sn = Tn + Yn and 2Tn = Sn + Zn and Lemma 3.3 lead to the conclusion that q is
special, provided q is odd. One can easily check that for all n, Sn ≡ Zn (mod 2), and that
Tn ≡ Yn (mod 2), and that infinitely many terms Sn and Zn, or infinitely many terms
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Tn and Yn, will be even iff P and Q are odd (see the proof of Remark 5.22). If Q is even,
then, by Lemma 5.18, P is even. Thus, in that case, q = 2 is special.

3.2. Laws of appearance and repetition. This second section of Chapter 3 deals with
the classical laws of appearance and repetition that reflect an important characteristic
of the Lucas functions U and V . Their generalizations to other sequences will be studied
here.

3.2.1. Laws of appearance and repetition for U and V . Proofs of these classical
U and V laws can be found in various places in the literature such as, for instance, [5],
[16] or [30]. They are often established with the assumption that gcd(P,Q) = 1. This
assumption is not always necessary. Comments on proofs will exclusively refer to the
proofs given in [30, Chapter 4], where most of these properties appear in concise and
rigorous form.

Definition 1. Let f(x) = x2 − Px + Q and X = (Xn)n≥0 be a sequence that satisfies
the recursion (1.1). Let m be a positive integer. If m divides some term Xn, n ≥ 1, then
we define ρX(m), the rank of m in X, as the smallest positive integer t such that m
divides Xt. When writing ρ(m) without reference to a sequence X, it is understood that
we refer to the rank, ρU (m), of m in U . The rank ρ of m relative to U is also referred to
as the rank of the integer m relative to f (1).

The first theorem is to be read with the convention that for the prime p = 2, the
symbol εp is defined by

ε2 =

{
0 if 2 |P (i.e., if 2 |D),

−1 otherwise.
(3.2)

Theorem 3.6 (Law of appearance of primes). Let p be a prime not dividing Q. Then p

has a rank ρ such that
ρ divides p− εp.

Proof. Most of the argument for proving Theorem 3.6 may be found in [30, p. 84]. The
missing cases p = 2 and p |D are easily completed. Do it!

Theorem 3.7 (Law of repetition). Let p be a prime not dividing Q. Then p has a rank
ρ and, for all n ∈ Z, we have

p divides Un ⇔ ρ divides n.

Proof. Theorem 3.7 extends to any positive integer m prime to Q. The forward impli-
cation (⇒) of the extended theorem corresponds to Theorem 4.3.4, p. 87, of [30], but it
is proved with the (unnecessary) assumption that gcd(P,Q) = 1. If gcd(P,Q) = 1, then
gcd(Uk, Vk) is, for each k, either 1 or 2. If no assumption is made on gcd(P,Q), then
gcd(Uk, Vk) divides 2Qk. However, the hypothesis that gcd(m,Q) = 1 is enough for the

(1) It may be convenient to adopt the convention that ρU (m) =∞ together with the obvious
properties of ∞, whenever this rank does not exist. However, we will only do so when explicitly
mentioned.
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proof of Theorem 4.3.4 of [30] to remain valid. The reverse direction is trivially seen to
hold because Uρ |Un.

Theorem 3.8 (Law of appearance of prime powers). Let p be a prime not dividing 2Q
of rank ρ. Assume that pa ‖Uρ for some integer a ≥ 1 (2). Let b be an integer ≥ 0. Then
the rank of pa+b is pbρ and

n is of the form kpbρ ⇔ νp(Un) = a+ b,

where k is an integer prime to p.

Proof. The direct implication in Theorem 3.8 corresponds to Theorem 4.3.6 of [30], where
it is proved with the assumption that gcd(P,Q) = 1. This assumption implies that
for any two non-negative integers m and n, gcd(Um, Un) is |Ud|, where d = gcd(m,n).
This property does not hold in general, but in the proof of Theorem 4.3.6 of [30] it can
conveniently be replaced by the fact that, since p - Q, νp(gcd(Um, Un)) = νp(Ud). (Put
` = νp

(
gcd(Um, Un)

)
and k = νp(Ud). Then k ≤ ` because Ud divides both Um and Un,

and ` ≤ k because the rank of p` divides both m and n. Therefore, ρ(p`) divides d and
p` divides Ud.)

The reverse implication is easy. By Theorem 3.7, n must be of the form kpcρ, where
c ≥ 0 and k is prime to p. But, by the direct implication (⇒) of Theorem 3.8, νp(Un) =
a+ c. Thus, we have b = c and n = kpbρ.

Theorem 3.9 (Law of appearance for primes in (Vn)). Let p be a prime not dividing 2Q
of rank ρ. Then

2 divides ρ ⇔ the rank ρV exists,

and, in case of existence, ρV = ρ/2. Moreover, VρV
has the same p-adic valuation as Uρ.

Proof. Since p - 2Q and since V 2
n −DU2

n = 4Qn, p does not divide gcd(Vn, Un), for any
n ≥ 0. Suppose ρ is even and write ρ = 2ρ∗. By the identity Uρ = Uρ∗Vρ∗ and the
definition of ρ, we find that p |Vρ∗ . Thus, ρV exists and is ≤ ρ∗. But p |VρV

⇒ p |U2ρV
.

Hence, ρ = 2ρ∗ ≤ 2ρV . Therefore, ρV = ρ/2. Also, νp(VρV
) = νp(Uρ), since p - UρV

.
Conversely, if ρV exists, then p |U2ρV

. Hence, ρ | 2ρV , but p - UρV
so that ρ is even.

Theorem 3.10 (Law of repetition for primes in (Vn)). Let p be a prime not dividing 2Q
whose rank ρ is even. Then

p divides Vn ⇔ n is of the form ρV + kρ, k ∈ Z.

Proof. After reading the proof of Theorem 3.9, one can easily see that p |Vn iff p |U2n

and p - Un, which, by Theorem 3.7, holds iff ρ | 2n and ρ - n, that is, if and only if ρV |n,
but 2ρV - n, or n is an odd multiple of ρV .

We now give a less fundamental, but handy result we will use many times, which is
the observation that a sequence (Xn) satisfying recursion (1.1), which, modulo an integer
d > 1, takes on the successive values 0 and c, where c is an integer prime to d, is, modulo d,
identical to the sequence (cUn), where (Un) is the associated Lucas U sequence. We chose

(2) If x2 − Px + Q has two roots whose ratio is a root of unity, then it may happen that
Uρ = 0. Then a does not exist and the theorem is void.
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a condition, imposed on the initial values of (Xn), that guarantees that, if d divides some
term Xn0 , then Xn0+1 is prime to d.

Proposition 3.11. Let P and Q be integers, with Q non-zero. Assume (Xn)n∈Z is a
sequence of rational numbers, with integral coprime initial values X0 and X1, that satisfies
recursion (1.1), i.e.,

Xn+2 = PXn+1 −QXn for all n ∈ Z.

Suppose d ≥ 2 is an integer prime to Q that divides some term Xn0 , n0 ∈ Z. Then, for
n ∈ Z, we have

d |Xn ⇔ n = n0 + kρ for some k ∈ Z,

where ρ is the rank of d relative to f(x) = x2 − Px+Q.

Proof. The extended version of Theorem 3.7, mentioned in the proof of Theorem 3.7,
implies the existence of the rank ρ = ρ(d), as d is prime to Q. Let c ∈ Z be such that
Xn0+1 ≡ c (mod d). Note that c must exist, because Xn0+1 is, possibly up to a power
of Q, integral and d is prime to Q. Then Xn0 ≡ cU0 (mod d) and Xn0+1 ≡ cU1 (mod d).
Running recursion (1.1) forward we get through induction that

Xn0+m ≡ cUm (mod d), ∀m ≥ 0.

Since d is prime to Q, both (Xn) and (Un) satisfy the backward recursion

xn−2 = Q−1(Pxn−1 − xn),

and this recursion is well defined modulo d. Thus, we also have Xn0+m ≡ cUm (mod d)
for all m < 0. Therefore, if gcd(c, d) > 1, then all Xn, n ∈ Z, are multiples of the
non-trivial factor gcd(c, d). But this contradicts the hypothesis gcd(X0, X1) = 1. Hence,
gcd(c, d) = 1, and thus d |Xn = Xn0+(n−n0) if and only if d |Un−n0 . Now, applying the
extended version of Theorem 3.7 yields our result.

By Theorem 3.6, if p is an odd prime that does not divide QD, then p divides the
even-indexed U term, Up−εp . Since U2n = UnVn, it may be interesting to decide which
of U(p−εp)/2 or V(p−εp)/2 is divisible by p. There is a criterion, called Euler’s Criterion
for Lucas sequences, that yields a simple answer which we state as the last result of this
subsection, since we will be referring to it a few times throughout the paper. A proof of
this criterion and historical comments may be found in [30, pp. 84–85].

Theorem 3.12. Let p be a prime not dividing 2QD. Then

p |U(p−εp)/2 iff (Q | p) = 1, and thus

p |V(p−εp)/2 iff (Q | p) = −1,

where (Q | p) is the Legendre character of Q (mod p).

3.2.2. Laws of appearance and repetition for G and H

Theorem 3.13 (Law of appearance for primes in (Gn) and (Hn)). Let p be a prime not
dividing 2Q of rank ρ. Then

4 divides ρ ⇔ the ranks ρG and ρH exist,
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and, in case of existence, ρG + ρH = ρ and {ρG, ρH} = {ρ/4, 3ρ/4}. In addition, GρG

and HρH
have the same p-adic valuation as Uρ, unless p = 3 and ρX = 3ρ/4, where X

is G or H, in which case ν3(XρX
) = 1 + ν3(Uρ).

Proof. Assume ρ = 4m. Then p |U4m and p - U2m. Since U4m = U2mV2m, we have p |V2m.
By (2.25), V2m = 2GmHm and, since p 6= 2, p |GmHm. Suppose p |Gm. Then, by (2.28),
p - Gn, for any n, 1 ≤ n < m, or else p would divide U4n, contradicting ρ = 4m. Thus,
ρG = m. Putting n = 2m in identity (2.23) yields 2H3m = HmV2m − EGmU2m from
which we get that p divides H3m. If p divided some Hn for some positive n < 3m, then,
by (2.28), p would divide U4n. Hence, we would have 4m | 4n and n would either be m
or 2m. Note that p does not divide E. For if p |E, then εp = 0 and ρ | p. This would mean
that 4 divides p, which is absurd. Now since EUm = Gm −Hm and p - EUm, p does not
divide Hm. Putting n = 2m in identity (2.20) yields EU3m = GmG2m −HmH2m. So p
cannot divide H2m, since this would entail that p |U3m. Thus ρG = ρ/4 and ρH = 3ρ/4.
The case ‘p divides Hm’ would lead, through similar arguments, to the reverse situation,
i.e., ρH = ρ/4 and ρG = 3ρ/4.

To prove the converse, put ρG = n. Since U4n = 2UnVnGnHn, p divides U4n. Hence,
ρ | 4n. Since V2n = 2GnHn and p - 2Q, p does not divide U2n by (2.2). Thus, ρ - 2n.
Therefore, 4n/ρ is an odd integer and 4 divides ρ.

Finally, consider the identity U4n = 2U2nGnHn and put n = ρG. Without loss of
generality, we may assume that ρG < ρH (if not, put n = ρH , and reason on H rather
than on G). Thus, we have ρ = 4n and, as we just saw, p - Hn, p |V2n and p - U2n. So
νp(U4n) = νp(GρG

). Now ρH = 3n and U4ρH
= 2U2ρH

GρH
HρH

. Since 4ρH = 3ρ, but
ρ - 2ρH , we find that νp(HρH

) = νp(U3ρ), which, by Theorem 3.8, is νp(Uρ), if p 6= 3, and
is 1 + ν3(Uρ), if p = 3.

Remark. The cases where, in Theorem 3.13, either ν3(GρG
), or ν3(HρH

), equals 1 +
ν3(Uρ), do occur. In fact, as soon as 3 - PQE, we have ρ(3) = 4 and so this phenomenon
occurs. For instance, for P = 2, Q = 5 and E = 4, we have ρ(3) = 4, with U4 = −12,
G1 = 3 and H3 = −9. Also, note that, to show that νp(HρH

) = 1 + ν3(Uρ) (when
ρH = 3ρG), instead of using Theorem 3.8, one may use identities (2.23) and (2.20)
(putting m = n), to get 2H3n = (2H2

n −EU2n)Gn = (3H2
n −G2

n)Gn. Hence, if 3 - Q and
3 |Gn, then ν3(H3n) = ν3(Gn) + 1.

Theorem 3.14 (Law of repetition for primes in (Gn) and (Hn)). Let p be a prime not
dividing Q whose rank ρ is a multiple of 4. Then ρG and ρH exist, and

p divides Gn ⇔ n is of the form ρG + kρ, k ∈ Z,
p divides Hn ⇔ n is of the form ρH + kρ, k ∈ Z.

We give two proofs of the theorem.

Proof 1. Let us show the first equivalence, since the second one may be shown in similar
manner. Note first that p - 2E, because 2 has a rank at most 3 and, if p |E, then ρ(p)
is p, which is not a multiple of 4. Assume n to be of the form ρG + kρ for some k

and put m = ρH . By Theorem 3.13, m + n = (k + 1)ρ. Thus p divides Um+n. But
EUm+n = GmGn −HmHn. Thus, p divides GmGn. Since p - 2Q, identity (2.19) implies
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that p - Gm. Hence p divides Gn. Conversely, by (2.24), QmEUn−m = GnHm −HnGm.
If p divides Gn and m = ρG, then p must divide Un−m. But, by Theorem 3.7, ρ |n−m,
i.e., n is of the form ρG + kρ.

Proof 2. Since the rank of 2 cannot exceed 3, p is not 2. Thus, by Theorem 3.13, ρG exists.
Since gcd(G0, G1) = 1, applying Proposition 3.11 with d = ρG yields the theorem.

Corollary 3.15. Let p be a prime not dividing Q with rank ρ divisible by 4. Then either
ρG = ρ/4 and

ρG < ρV = ρ/2 < ρH = 3ρ/4 < ρ,

or ρG = 3ρ/4 and
ρH = ρ/4 < ρV = ρ/2 < ρG = 3ρ/4 < ρ.

Proof. This is an immediate consequence of Theorems 3.9 and 3.13.

Given a prime of rank a multiple of 4, we may, in some cases, tell which of ρG or ρH
is ρ/4 by using an extension of Theorem 3.12 that includes the G and the H sequences.

Theorem 3.16. Assume D = −E2. Let p be a prime not dividing QE. If p ≡ 1 (mod 4),
then

p |U(p−1)/4 iff (Qα2 |π)4 = 1,

p |V(p−1)/4 iff (Qα2 |π)4 = −1,

p |G(p−1)/4 iff (Qα2 |π)4 = i,

p |H(p−1)/4 iff (Qα2 |π)4 = −i.

If p ≡ 3 (mod 4), then

p |U(p+1)/4 iff (α |π)4 = 1,

p |V(p+1)/4 iff (α |π)4 = −1,

p |G(p+1)/4 iff (α |π)4 = i,

p |H(p+1)/4 iff (α |π)4 = −i.

In the above two statements π is a prime ideal above p in Q(i), which is primary, that
is, π ≡ 1 (mod 2 + 2i) in Z[i], and (x |π)4 is the biquadratic Legendre character iηp of x,
i.e., x(N(π)−1)/4 ≡ iηp (mod π) in Z[i], ηp = 0, 1, 2 or 3, and N(π) is the norm of the
ideal π.

Proof. Assume p ≡ 1 (mod 4), i.e., εp = 1 and N(π) = p. As p - Q, αp−1 ≡ ᾱp−1 ≡ 1
(mod π). By definition of (α2Q |π)4, we have iηp ≡ (α2Q)

p−1
4 ≡ α3 p−1

4 (ᾱ)
p−1
4 (mod π).

Thus, (ᾱ)
p−1
4 ≡ iηpα

p−1
4 (mod π), which using the Binet formulas (1.3), (2.15) and (2.16)

yields, for ηp = 0, 1, 2 and 3, the announced results.
Suppose now p ≡ 3 (mod 4), i.e., εp = −1 and N(π) = p2. Then π = −p and αp ≡ ᾱ

(mod π). We have

(α |π)4 = iηp ≡ α
p2−1

4 = (αp−1)
p+1
4 = (αp/α)

p+1
4 ≡ (ᾱ/α)

p+1
4 (mod p),

which using the Binet forms (1.3), (2.15) and (2.16) implies that p divides X p+1
4

iff the
pair (X, ηp) is one of the four pairs (U, 0), (V, 2), (G, 1) or (H, 3).
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We illustrate the use of Theorem 3.16 with two small primes p = 13 and p = 7 and
the recursion x2 − 4x + 5, where P = 4, Q = 5 and E = 2. Then α = 2 + i. Note that
α is not a primary prime of the ring Z[i], but that the associate prime iα = −1 + 2i is
primary.

Let us first consider p = 13. We have ρ(13) = 12 so that 13 divides either G3 or H3.
Using Theorem 3.16 with the primary prime π = 3 + 2i, we have

(Qα2 |π)4 = [(i |π)4]2[(iα |π)4]3(−iᾱ |π)4

=
(
i
13−1

4
)2[(π | iα)4]3(π | −iᾱ)4

= (−1)[(−1 | iα)4]3(i | −iᾱ)4 = (−1)(−1)3i = i.

In the above calculation, we used the law of biquadratic reciprocity (see Theorem 4.21,
p. 82 of [6]) and the identities π = 3+2i = −2i(−1+2i)−1 and π = (−1+i)(−1−2i)+i.
Therefore, 13 must divide G3. In fact, G3 = 13.

We now turn to p = 7. The rank of 7 is 8 so either 7 divides G2 or H2. Theorem
3.16 may be used as a tool for deciding the case. We compute (α | 7)4. Noting that
−7 is the primary prime associate to 7, we use biquadratic reciprocity and the identity
7 = (−1 + 2i)(−1− 3i)− i to obtain

(iα | −7)4 = (−7 | iα)4 = −(7 | iα)4 = −(−i)
5−1
4 = i.

Therefore, i = (iα | −7)4 = (iα | 7)4 = (i | 7)4(α | 7)4. But (i | 7)4 = i
49−1

4 = 1. Thus,
(α | 7)4 = i, that is, η7 = 1 and 7 divides G 7+1

4
. In fact, G2 = 7.

3.2.3. Laws of appearance and repetition for S, T , Y and Z. Throughout Sub-
section 3.2.3 it is assumed that D = −3F 2, F ≥ 1. The notation is borrowed from
Subsection 2.3.

Lemma 3.17. Let p be a prime not dividing 2Q and a be either an integer ≥ 1 or ∞.
Then

pa ‖Sn if and only if pa ‖T2n and p - Zn,
pa ‖Tn if and only if pa ‖S2n and p - Yn.

Proof. The first statement follows from the identity Z2
n + 3S2

n = 4Qn and the formula
T2n = SnZn, whereas the second follows from Y 2

n + 3T 2
n = 4Qn and S2n = TnYn.

Lemma 3.18. Suppose p is a prime that does not divide 3Q and p divides Xn, where X
stands for either S or T . Then νp(U3n) = νp(Xn).

Proof. Since p - Q, p is not special. Thus, by Lemma 3.5, p - UnX∗n, where

X∗ =

{
T if X = S,

S if X = T.

But p 6= 3 and U3n = 3UnXnX
∗
n, so νp(U3n) = νp(Xn).

Theorem 3.19 (Law of appearance for primes in (Sn) and (Tn)). Let p be a prime not
dividing 3Q of rank ρ. Then

3 divides ρ ⇔ the ranks ρS and ρT exist,
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where, in case of existence, ρS + ρT = ρ and {ρS , ρT } = {ρ/3, 2ρ/3}. Moreover, SρS
and

TρT
have the same p-adic valuation as Uρ, unless p = 2 and ρS, or ρT , is 2.

Proof. Assume first that 3 divides ρ. Then p - F . Otherwise ρ(p) is p, by Theorem 3.6,
forcing p to be 3, which would contradict the hypothesis. Put ρ = 3m. By identity (2.60),
we have U3m = 3UmSmTm. Since p divides U3m, but not Um, and p 6= 3, p divides SmTm.
Suppose p |Sm. Then by identity (2.60) and the definition of ρ = 3m, p does not divide
any Sn with 1 ≤ n < m. Thus ρS is m. By Lemma 3.17, p divides T2m. Assume p divides
some Tk, with 1 ≤ k < 2m. Then again, by identity (2.60), p would divide U3k. This
would mean that 3m | 3k, and hence k = m. But p cannot divide Sm and Tm, or, by
Lemma 3.3, p would be a special prime and divide Q, yielding a contradiction. Thus,
ρT = 2m and ρS + ρT = m+ 2m = ρ. The argument is entirely similar if p |Tm, leading
instead to ρT = m and ρS = 2m.

For the converse, put ρS = n. By identity (2.60), we have that p |U3n, so that ρ
divides 3n. Note that p - Un, or else p would divide Sn and Un, which, by Lemma 3.5,
would imply that p |Q. Thus, ρ | 3n and ρ - n, which implies that 3 | ρ.

We now compare the p-adic values of Uρ, SρS
and TρT

. Say m = ρS = ρ/3; the
case m = ρT would be treated identically. Applying Lemma 3.18 with n = ρ/3 yields
νp(Uρ) = νp(SρS

). By Lemma 3.17, if p 6= 2, then T2m and Sm also have the same p-adic
valuation. The claim follows as 2m = ρT .

Theorem 3.20 (Law of repetition for primes in (Sn) and (Tn)). Let p be a prime not
dividing 3Q whose rank ρ is a multiple of 3. Then

p divides Sn ⇔ n is of the form ρS + kρ, k ∈ Z,
p divides Tn ⇔ n is of the form ρT + kρ, k ∈ Z.

As for Theorem 3.14 we may give two proofs, a direct one using Lucasian identities,
and one that uses Proposition 3.11.

Proof 1. We only write a proof for the first equivalence, but the second one can be handled
by similar means. Assume n = ρS + kρ, for some k ∈ Z, and put m = ρT . By Theorem
3.19, m+ n = (k + 1)ρ, so that p |Um+n and p |Tm. By (2.66), Um+n = TmUn + UmSn,
so p divides UmSn. But p - Um. Hence, p |Sn. For the converse, assume that p divides
some term Sn. By (2.72), we have QρSUn−ρS

= UnSρS
− SnUρS

. Hence, p must divide
QρSUn−ρS

. Since p - Q, we deduce that p divides Un−ρS
. Therefore, ρ divides n − ρS ,

which implies that n is of the form ρS + kρ, for some k ∈ Z.

Proof 2. By Theorem 3.19, the ranks ρS and ρT exist. So the theorem follows by applying
Proposition 3.11 with d = ρS for the S sequence, and with d = ρT for the T sequence.

There are comparable theorems for the Y and the Z sequences.

Lemma 3.21. Suppose p is a prime, not a factor of 2Q, which divides Xn, where X

stands for either Y or Z. Then νp(U6n) = νp(Xn).

Proof. By Lemma 3.5, p - VnX∗n, where X∗ denotes Z if X = Y , and Y if X = Z. As
V3n = VnYnZn, νp(V3n) = νp(Xn). But U6n = U3nV3n and, by Lemma 3.1, p - U3n. Thus,
νp(U6n) = νp(Xn).
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Theorem 3.22 (Law of appearance for primes in (Yn) and (Zn)). Let p be a prime not
dividing 2Q of rank ρ. Then

6 divides ρ ⇔ the ranks ρY and ρZ exist,

and, in case of existence, ρY + ρZ = ρ with {ρY , ρZ} = {ρ/6, 5ρ/6}. Moreover, YρY
and

ZρZ
have the same p-adic valuation as Uρ, unless p = 5 and ρX = 5ρ/6 (X being either

Y or Z), in which case ν5(XρX
) = ν5(Uρ) + 1.

Proof. Assume first that ρ is of the form 6m with m ≥ 1. Note that p 6= 3, as ρ(3) ≤ 4. By
Theorem 3.19, p divides S2mT2m. Suppose p |S2m. That is, by Theorem 3.19, ρS = 2m
and ρT = 4m. Since m is not of the form 4m + 6km, k ∈ Z, p does not divide Tm by
Theorem 3.20. But S2m = TmYm, so p divides Ym. By (2.61), if p divides Yn, 1 ≤ n < m,
then p divides U6n, which contradicts ρ = 6m. Hence ρY exists and is ρ/6.

By Theorem 3.20, p - S5mS10m. Also p - U10m. Thus U5ρ = 3U10mS10mT10m implies
that p divides T10m. Because T10m = S5mZ5m, we find that p divides Z5m. Suppose p |Zn,
for some n, 1 ≤ n < 5m, then by (2.61), p |U6n. Thus, by Theorem 3.7, m must divide n,
so that n ∈ {m, 2m, 3m, 4m}. Since T2n = SnZn, p divides T2n. Hence 2n is of the form
ρT + kρ = 4m+ 6km. This occurs only for n = 2m. However, p |S2m. So, by Lemma 3.5,
p - Z2m. Hence ρZ exists and is 5ρ/6. The case p |T2m is handled similarly leading to
ρY = 5ρ/6 and ρZ = ρ/6.

Conversely, put n = ρY . By (2.61), p |U6n so that ρ | 6n. Also, V3n = VnYnZn implies
that p divides V3n, which by Theorem 3.9, says that ρ is even. We next show that p cannot
divide U2n. For contradiction suppose p |U2n. Since FU2n = S2n − T2n = TnYn − SnZn,
we have p |SnZn. But V2n = SnZn + TnYn. Hence p divides gcd(V2n, U2n), which, by
Lemma 3.1, implies that p divides 2Q, a contradiction. Now ρ - 2n and ρ | 6n ⇒ 3 | ρ.
Hence, 6 | ρ.

Suppose ρ = 6n with n = ρY . By Lemma 3.21, νp(Uρ) = νp(ρY ). As ρZ = 5n, the
same lemma yields νp(U5ρ) = νp(ZρZ

). By Theorem 3.8, νp(U5ρ) = νp(Uρ), if p 6= 5, and
νp(U5ρ) = 1 + νp(Uρ), if p = 5. Hence, the claims on the p-adic valuations of Uρ, YρY

and
ZρZ

hold. The case n = ρZ is handled similarly.

Remark. Note that if 5 - FQ, then ε5 = (−3F 2|5) = −1 and ρ(5) divides 6. So, if in
addition 5 - P = U2 and (Q | 5) = −1, then, using Euler’s criterion for Lucas sequences,
i.e., Theorem 3.12, ρ(5) = 6. For instance, for P = 1, Q = 7 and F = 3, we have ρ(5) = 6
with U6 = 120, Y1 = 5 and Z5 = −25. The 5-valuation of Z5 is indeed one more than
that of Uρ and Yρ/6. Amusingly, one may show directly that ν5(Z5) = 1 + ν5(Y1), when
5 |Y1, using appropriate identities, that is, without resorting to Theorem 3.8. Indeed, by
(2.69), Z5 = xY1, with x = −Y4 + 3T 2

1Z2. Using (2.58), (2.53) and (2.59) modulo 25, one
finds that x ≡ 10Q2 (mod 25).

Theorem 3.23 (Law of repetition for primes in (Yn) and (Zn)). Let p be a prime not
dividing Q whose rank ρ is a multiple of 6. Then

p divides Yn ⇔ n is of the form ρY + kρ, k ∈ Z,
p divides Zn ⇔ n is of the form ρZ + kρ, k ∈ Z.
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Proof. As for Theorem 3.20, these statements can be proved either by application of
Proposition 3.11, or by direct use of Lucas-like identities. Here, we choose to write down
an identity-based proof only for the first equivalence. Note first that p - 6 since the
ranks of either 2, or 3 cannot be multiples of 6. By Theorem 3.22, ρY and ρZ exist.
So, assume n = ρY + kρ for some k in Z and put m = ρZ . Use the identity Um+n =
ZmUn + YnUm to deduce that p divides Yn. For the converse, use instead the identity
QnUm−n = UmYn − YmUn to write that QρY Un−ρY

= UnYρY
− YnUρY

. If p divides Yn,
then p divides Un−ρY

. Thus, by Theorem 3.7, n is of the form ρY + kρ.

Corollary 3.24. Let p be a prime not dividing Q with rank ρ divisible by 6. Then either
ρZ = ρ/6 and

ρZ < ρT = ρ/3 < ρV = ρ/2 < ρS = 2ρ/3 < ρY = 5ρ/6,

or ρZ = 5ρ/6 and

ρY = ρ/6 < ρS = ρ/3 < ρV = ρ/2 < ρT = 2ρ/3 < ρZ .

Proof. By Theorems 3.9, 3.19 and 3.22, the ranks of p in V , S, T , Y and Z all exist and
ρV = ρ/2, {ρS , ρT } = {ρ/3, 2ρ/3} and {ρY , ρZ} = {ρ/6, 5ρ/6}. Since T2n = SnZn, if ρZ
is ρ/6, then ρT is ρ/3. But then ρY is 5ρ/6 and ρS is 2ρ/3. If ρZ is 5ρ/6, then ρY is ρ/6
and we conclude using the identity S2n = TnYn.

Corollary 3.24 leaves open the question of deciding which of the two possibilities
actually takes place for a given prime p. This question was considered in the paper [29].
An analogue for the S and T sequences of Theorem 3.12, i.e., of the classical Euler
criterion for Lucas sequences, will help settle the matter in some cases.

Theorem 3.25. Assume D = −3F 2. Let p be a prime not dividing 6QF .Then

p |U(p−εp)/3 iff (Qα |π)3 = 1, and thus

p |S(p−εp)/3T(p−εp)/3 iff (Qα |π)3 6= 1,

with p |S(p−εp)/3 iff ηp = 1, where π is a primary prime ideal above p in Q(ω), that
is, π ≡ ±1 (mod 3) in Z[ω], and (Qα |π)3 is the cubic Legendre character ω2ηp , where
(Qα)(N(π)−1)/3 ≡ ω2ηp (mod π) in Z[ω], ηp = 0, 1 or 2, and N(π) is the norm of the
ideal π.

Proof. See Theorem 6 in [29].

Suppose p is a prime of rank ρ equal to p − εp with εp 6= 0. Clearly, p satisfies the
conditions of Corollary 3.24. Also, by Theorem 3.25, ηp 6= 0. Furthermore, if ηp = 1, then
p divides Sρ/3. Therefore, ρS = ρ/3 and ρT = 2ρS , that is, we are in the second case of
Corollary 3.24. If ηp = 2, then we are in the first case.

We illustrate the use of Theorem 3.25 with a simple computational example. Take
x2 − Px+Q = x2 + x+ 7, that is, P = −1, Q = 7 and F = 3. Then α = 1 + 3ω2, which
happens to be a primary prime of the ring Z[ω]. We have ρ(11) = 12. Let us compute η11.
We have

(Qα | 11)3 = (7 | 11)3 × (α | 11)3 = 1× (11 |α)3.
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Indeed, any integer, not a multiple of 11, is a cubic residue modulo 11. Note that 11 is
also a primary prime of Z[ω] and that we used cubic reciprocity. (See for instance [6,
p. 79]). Now 11 = αᾱ+ 4 ≡ 22 (mod α). But

(2 |α)3 ≡ 2(7−1)/3 = 4 ≡ −3 = −ω4(1 + 3ω2) + ω4 ≡ ω4 (mod α).

Thus, (11 |α)3 = (ω4)2 = ω2, that is, η11 = 1. Indeed, 11 divides S4 = 55 and Y2 = −11.

3.3. Values of Xp (mod p)

3.3.1. Values of Up and Vp (mod p). We are interested in a classical theorem ([30,
p. 84]) that states that, for any odd prime p, we have

Up ≡ εp (mod p), Vp ≡ P (mod p).

In fact, for p = 2, we also have U2 ≡ ε2 (mod 2) and V2 ≡ P (mod 2), provided we
agree, as in Theorem 3.6, that ε2 is 0 or −1 according as, respectively, D is even or odd.
Convention (3.2) is actually adopted throughout the paper.

We will provide extensions of this theorem to the G, H, S, T , Y and Z sequences. To
this end, it is convenient to give it a less explicit, but more uniform expression, susceptible
of generalization. Note that in the theorem below the discriminant D may, or may not,
be 0.

Theorem 3.26. For all primes p, we have

Xp ≡ Q(1−εp)/2Xεp (mod p), (3.3)

where (Xn) is either one of the two Lucas sequences (Un) or (Vn), and, by convention,
we agree that, if p divides D, then the chosen square root of Q (mod p) is P/2, when p

is odd, and Q, when p is 2.
In particular (3.3) implies that

U2 ≡ V2 ≡ P (mod 2).

Proof. Suppose p is odd. Then the classical elementary proofs use the multiplication
formulas (2.13) and (2.14) with m = p and n = 1. To obtain the congruence involving,
say, Up, note that, in (2.13), all binomial coefficients, but the last, are divisible by p. This
yields 2p−1Up ≡ D(p−1)/2 (mod p), or Up ≡ εp (mod p). The reformulation (3.3) is valid.
Indeed, that εp ≡ Q(1−εp)/2Uεp (mod p) is immediate, since U1 = 1, QU−1 = −U1 = −1
and U0 = 0. Also, P ≡ Q(1−εp)/2Vεp (mod p) holds because V1 = P , V−1 = P/Q and
V0 = 2. Suppose p = 2. Then U2 = P and V2 = P 2 − 2Q ≡ P (mod 2). Note that if P
is even, then Q(1−ε2)/2Xε2 = QX0, which for either X = U or X = V is even, as it is
respectively 0 and 2Q. If P is odd, then Q(1−ε2)/2Xε2 = QX−1, which is either −U1 = −1,
or V1 = P depending on whether X is U or V .

Corollary 3.27. For all integral sequences X = (Xn)n≥0 satisfying (1.1) and all odd
primes p, we have

Xp ≡ Q(1−εp)/2Xεp (mod p),

where the conventions for Q1/2 (mod p) and primes dividing D are those of Theorem
3.26.
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Proof. For all n ≥ 0, we have Xn = aUn + bVn, with a = X1 − PX0/2 and b = X0/2.
Thus, a and b are well defined modulo any odd prime. Therefore, by Theorem 3.26 and
for all odd primes p, we have

Xp = aUp + bVp ≡ Q(1−εp)/2(aUεp + bVεp) = Q(1−εp)/2Xεp (mod p).

3.3.2. Values of Gp and Hp (mod p). Here, we deal with recursions of discriminant
−E2, where E is a non-zero integer, and propose a theorem that extends Theorem 3.26
to the G and H sequences.

Theorem 3.28. For all primes p, we have

Xp ≡ Q(1−εp)/2Xεp (mod p),

where X, besides U or V , may stand for either G or H. Here, we adopt the convention
of Theorem 3.26, which is that, for primes p dividing E, the chosen square root of Q
(mod p) is P/2 when p is odd, and Q when p is 2.

More explicitly, we have modulo p,{
Gp ≡ G1 and Hp ≡ H1 if p ≡ 1 (mod 4),

Gp ≡ H1 and Hp ≡ G1 if p ≡ −1 (mod 4).

The primes p dividing E, which always include p = 2, satisfy both of the above congru-
ences. But we also have {

Gp ≡ Hp ≡ P/2 (mod p) for p odd,

G2 ≡ H2 ≡ Q (mod 2) for p = 2.

Proof. For odd primes we apply Corollary 3.27.
For odd primes p dividing E, we get Gp ≡ Hp ≡ P/2 (mod p). But for such primes

G1 ≡ H1 ≡ P/2 (mod p), so we also have Gp ≡ G1 ≡ H1 (mod p) and Hp ≡ H1 ≡ G1

(mod p).
Suppose p = 2. Since 4Q = P 2 + E2, P and E must both be even. Thus, G2 =

PG1 − QG0 ≡ Q (mod 2). Similarly, H2 ≡ Q (mod 2). Also, Q = (P/2)2 + (E/2)2 ≡
(P/2) + (E/2) ≡ (P/2)− (E/2) (mod 2). Therefore, the five integers Q, G2, H2, G1 and
H1 all have the same parity.

Remark. One can obtain an alternative elementary proof of Theorem 3.28 for odd
primes in line with the classical proof of Theorem 3.26. We do so here for the G sequence.
Suppose first that p = 4`+ 1, ` ≥ 1. Replacing m by p and n by 1 in (2.32), we get, since
all binomial coefficients are divisible by p except the first, 2(p−1)/2(−1)(p−1)/4Gp ≡ Gp1
(mod p). If p is 1 (mod 8), then (2 | p) = 1 so that, by Euler’s criterion, 2(p−1)/2 ≡ 1
(mod p) and (−1)(p−1)/4 = 1. Thus, Gp ≡ G1 (mod p). If p ≡ 5 (mod 8), then (2 | p) = −1
and (−1)(p−1)/4 = −1. Again we get Gp ≡ G1 (mod p). For primes p of the form −1 + 4`,
use the second identity in (2.33) modulo p with m = p and n = 1, to get Gp ≡ H1

(mod p). Note that one can also use the second identity of (2.32) with m = p and
n = −1. Assuming p = −1 + 4` does not divide Q, this leads to H−p ≡ G−1 (mod p).
But then Gp = QpH−p ≡ QG−1 = H1 (mod p). Then we would have to look at the case
where p = −1 + 4` divides Q. Since 4Q = P 2 + E2 there are no such primes, if p - P . If
p divides P , then p |Gn and p |Hn, for all n ≥ 1. Thus Gp ≡ H1 ≡ 0 (mod p).
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Remark. In the development of Chapter 5, stronger congruence results that imply the
odd prime case of Theorem 3.28 will appear in Lemma 5.11.

3.3.3. Values of Sp, Tp, Yp and Zp (mod p). We now provide a theorem, which, for all
recursions of discriminant −3F 2, extends Theorem 3.26 to the S, T , Y and Z sequences.

Theorem 3.29. For all primes p, we have

Xp ≡ Q(1−εp)/2Xεp (mod p), (3.4)

where X, besides U or V , may stand for S, T , Y or Z. As in Theorems 3.26 and 3.28,
we agree that modulo p,

Q1/2 =

{
P/2 if p is odd and p |D,
Q if p is 2 and p |D.

More explicitly, if p is congruent to 1 (mod 6), then

Sp ≡ S1, Tp ≡ T1, Yp ≡ Y1, Zp ≡ Z1 (mod p). (3.5)

If p is congruent to −1 (mod 3), then

Sp ≡ T1, Tp ≡ S1, Yp ≡ Z1, Zp ≡ Y1 (mod p). (3.6)

For primes dividing 3F , we also have

Sp ≡ Tp ≡ Yp ≡ Zp ≡

{
P/2 if p is odd,

Q if p = 2,
(mod p).

That is, primes p dividing 3F satisfy both (3.5) and (3.6), unless X is S or T , p = 3 and
3 - F , in which case S3 and T3 are congruent neither to S1, nor to T1 (mod 3).

Proof. Congruence (3.4) holds for all odd primes by Corollary 3.27. In particular, for odd
primes p dividing 3F , we have, by (3.4), Xp ≡ P/2 (mod p), since εp = 0 and X0 = 1, for
any choice of X among S, T , Y or Z. Now, S1, T1, Y1, Z1 being equal to (P ± F )/2 or
(P ±3F )/2 are all congruent to P/2 (mod p) and to each other, unless p = 3 and 3 - F . In
this latter case, only Y3 and Z3 satisfy the congruences (3.5) and (3.6), not S3 or T3, for
which neither congruence is satisfied, since, for instance, S3 ≡ P/2 6≡ (P ±F )/2 (mod 3).

Suppose p = 2. Since S1−Z1 = 2F = Y1−T1, we have S1 ≡ Z1 (mod 2) and T1 ≡ Y1

(mod 2). Now, by (2.56), S2 = T1Y1. Hence, S2 ≡ T 2
1 ≡ T1 (mod 2). Also, T2 = S1Z1 so

that T2 ≡ S1 (mod 2). The two identities (2.53) with n = 2 yield Z2 ≡ S2 (mod 2) and
Y2 ≡ T2 (mod 2). Thus, Z2 ≡ T1 ≡ Y1 (mod 2) and Y2 ≡ S1 ≡ Z1 (mod 2). Hence, 2
obeys congruence (3.6) as do primes −1 (mod 6).

However, if 2 divides F , then since the differences S1 − T1 = F , Y1 − Z1 = 3F and
S1−Z1 = 2F are all even, we deduce that S1, T1, Y1 and Z1 have the same parity. Thus,
2 follows both congruences (3.5) and (3.6), and S2 ≡ T2 ≡ Y2 ≡ Z2 ≡ Q (mod 2), since
S2 = PS1 −QS0 ≡ Q (mod 2) as P and F have the same parity.

One easily checks that congruence (3.4) predicts the correct answer when p is 2. Say
F is odd. Then Q(1−ε2)/2Xε2 = QX−1 = X∗1 , where the pair {X,X∗} is either {S, T}, or
{Y,Z}. If F is even, then Q(1−ε2)/2Xε2 = QX0, which equals Q, for X any of the four
sequences S, T , Y or Z.
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Remark. One may provide elementary proofs of Theorem 3.29 for primes not dividing 6,
which, as in the classical proof of Theorem 3.26 or in the remark that follows Theo-
rem 3.28, use appropriate multiplication identities. For instance, to prove that Zp ≡ Z1

(mod p) for primes p ≡ 1 (mod 6), we may use (2.76) with p = m and n = 1. Since
all binomial coefficients, but the first, are divisible by p, one gets 2p−1Zp ≡ S0

1Z
p
1 ≡ Z1

(mod p), yielding our congruence.

Remark. Lemmas 5.20 and 5.27 of Chapter 5 contain congruences that are, at least for
all primes not 2 or 3, more potent than those of Theorem 3.29.

3.4. Powers of 2 and 3 in X. Given a sequence X satisfying recursion (1.1) and a
prime p, we will say that powers of p in X are bounded if there exists an integer b ≥ 1
such that νp(Xn) ≤ b, for all n ∈ Z.

Suppose p is a prime not dividing Q. If p is odd, then, given an arbitrarily large power
of p, Theorem 3.8 guarantees that this power will divide some terms of the U sequence.
In fact, if p = 2 and Q is odd, powers of p in U are also unbounded ([30, Theorem 4.3.2]).
The situation for the V sequence is slightly different. All odd primes, not dividing Q,
with even rank, will have unbounded powers in V . Indeed, if p - 2Q, then, by (2.2),
p - gcd(Un, Vn). If b is an arbitrary integer ≥ 1, then, by Theorem 3.10, p divides VpbρV

.
By the identity U2n = UnVn and as p - UpbρV

, ν2(Upbρ) = ν2(VpbρV
). But, by Theorem

3.8, ν2(Upbρ) > b, thereby proving our claim. However, powers of 2 in the V sequence
are bounded, that is, when Q is odd and P (P 2 − 3Q) 6= 0. This is true in spite of the
existence of even V terms. We have already observed the special role of the integer 2
with respect to the V sequence, and hinted at the analogous role the prime 3 plays with
respect to the S and the T sequences. In this section, we study the boundedness and/or
the distribution of powers of 2 and 3 in our various sequences.

We first state a useful observation. SupposeX = (Xn) is a sequence that satisfies (1.1).
Then the terms of X = (Xn) whose indices lie in an arithmetic progression n0+mx satisfy
the recursion

Xn0+m(n+2) = VmXn0+m(n+1) −QmXn0+mn, (3.7)

where n0 and m are two fixed integers with m ≥ 1, and n ∈ Z.
Given a prime p and two rational numbers x and y, the notation x ∼p y means that

the p-adic valuations νp(x) and νp(y) are the same.

3.4.1. Powers of 2 in V . Here we provide two proofs of the fact that, generally, powers
of 2 are bounded in the V sequence. A similar result will be shown for powers of 3 in S

and T with two comparable proofs.

Theorem 3.30. Let x2 − Px+Q be in Z[x] with Q odd. If P is even, then

Vn ∼2

{
2 if n is even,

P if n is odd,
(n ∈ Z).

If P is odd, then, for all n in Z,

2 |Vn ⇔ 3 |n,
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and V3n ∼2 2 whenever Q ≡ 1 (mod 4), whereas, for Q ≡ 3 (mod 4), V6n ∼2 2 and
V6n+3 ∼2 V3 ∼2 P

2 − 3Q with 4 dividing V3.

Proof 1. We first treat the case of non-negative indices n.
If Q is odd and P is even, then, as V0 = 2 and V1 = P are even integers, all V terms

are even. Thus, if ν2(V2n) = 1, then ν2(V2n+2) = 1 as well since V2n+2 = PV2n+1 −QV2n

and ν2(PV2n+1) ≥ 2. Also, if ν2(V2n+1) = ν2(P ), then, as ν2(PV2n+2) > ν2(P ), we get
ν2(V2n+3) = ν2(P ). Thus, the result will follow by induction.

So we assume P andQ are both odd. Then looking at Vn (mod 2), we find, using the re-
cursion (1.1), the values 0, 1, 1, 0, 1, 1, · · · . Therefore, 2 |Vn iff 3 |n. Now V3 = P (P 2−3Q).
Suppose Q ≡ 1 (mod 4). Then P 2−3Q ≡ 2 (mod 4). Thus, V3 ∼2 2. By (2.10), V6 = V 2

3 −
2Q3 ∼2 2. By (3.7) with X = V , n0 = 0 and m = 3, we have V3n+6 = V3V3n+3 −Q3V3n.
Thus, if ν2(V3n) = ν2(V3n+3) = 1, then ν2(V3n+6) = ν2(V3n) = 1. As ν2(V0) = ν2(V3) = 1,
induction yields that V3n ∼2 2, for any n ≥ 0. Assume Q ≡ 3 (mod 4). Then 4 |V3. Using
again the identity V3n+6 = V3V3n+3 −Q3V3n, we find that if V3n ∼2 2, then V3n+6 ∼2 2,
and if V3n ∼2 V3, then V3n+6 ∼2 V3, since 2 |V3n+3. Hence, the result follows by induction.

If n < 0, then, as QnV−n = Vn and Q is odd, we have V−n ∼2 Vn, from which one
easily sees that the theorem holds for negative indices.

We give a second proof of Theorem 3.30 in the case where P and Q are both odd,
which, unlike the first proof, relies on Proposition 3.11.

Proof 2. Assume P and Q are odd integers. Then 2 - U2 = P and 2 |U3 = P 2 − Q, so
ρ(2) = 3. Since V0 = 2 and V1 = P are coprime, we may apply Proposition 3.11 with
X = V , d = 2 and n0 = 0, and obtain that 2 |Vn iff 3 |n. If Q ≡ 1 (mod 4), then 4 |U3.
Hence, ρ(2) = ρ(4) = 3. Thus, if 4 divided some V3n, n ∈ Z, then Proposition 3.11 (with
d = 4) would imply that 4 |V0, a contradiction. Therefore, V3n ∼2 2, for all n ∈ Z. If
Q ≡ 3 (mod 4), then V3 = P (P 2−3Q) is divisible by 4, but 21 ‖U3. Suppose 2a ‖V3 with
a an integer ≥ 2. Then since U6 = U3V3, we have ρ(4) = ρ(2a) = ρ(2a+1) = 6. Therefore,
by Proposition 3.11, if 4 |V6n for some n, then 4 |V0, a contradiction. Thus, V6n ∼2 2.
Applying Proposition 3.11 with d = 2a and n0 = 3 yields 2a |V6n+3 for all n ∈ Z. By the
same theorem, if 2a+1 divided some V6n+3, then 2a+1 would divide V3, since ρ(2a+1) = 6.
As a result, 2a ‖V6n+3 for all n ∈ Z. If V3 = 0, then 2b |V3 for all integers b ≥ 2. Hence,
ρ(2b) = 6 for any b ≥ 2, which, by Proposition 3.11, implies that each term V6n+3 is
divisible by arbitrarily large powers of 2. That is, V6n+3 = 0. Thus, V6n+3 ∼2 V3 holds in
this case as well.

3.4.2. Powers of 2 in G and H. Here the assumption is that D = −E2 6= 0 and that
2 - Q. We prove that not only powers of 2 in G and H are bounded, but actually all
terms of these two sequences are odd.

Theorem 3.31. Let x2−Px+Q in Z[x] have a non-zero discriminant of the form −E2

with Q odd. Then all terms in G and H are odd.

Proof. Recall that for such recursions P is even. Thus, by Theorem 3.30, for all n ∈ Z,
ν2(V2n) = 1. From the identity V2n = 2GnHn, valid for all integers n, we deduce that Gn
and Hn are odd.
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3.4.3. Powers of 2 and 3 in S, T , Y and Z. It should be noted here that the question
of the powers of 3 in the S and T sequences had been addressed in [29, Lemma 3], under
the assumption that gcd(P,Q) = 1. But there too, the law of appearance of prime powers
in U and the identity (2.60) had been the main ingredients.

Showing that, in general, powers of 3 in S and T are bounded can be done briefly.

Theorem 3.32. Suppose x2 − Px + Q in Z[x] has a non-zero discriminant of the form
−3F 2 and Q is not a multiple of 3. Assume U3 is not zero and 3a is the exact power of
3 in U3, then the set of 3-adic valuations of Sn and Tn as n varies over Z is bounded
above by a− 1.

Proof. Note that, as 3 - Q and 3 |D, we have ρ(3) = 3, by Theorem 3.6. Let us reason by
contradiction and assume some term Sn, n ≥ 1, is divisible by 3a. As U3n = 3UnSnTn,
3a+1 divides U3n. By Theorem 3.8, 3ρ(3) must divide 3n. But ρ(3) |n says that 3a |Un.
Therefore, 3a divides both Un and Sn, which, as 3 - Q, contradicts Lemma 3.5. The same
argument would show that 3a cannot divide any Tn with n ≥ 1. Because QnS−n = Tn,
QnT−n = Sn and S0 = T0 = 1, the claim holds for all integers n.

The upshot, however, is to prove Theorem 3.37, a theorem comparable to Theorem
3.30 in that it states precisely how powers of 3 in the S and T sequences are distributed.

We first prove a few lemmas that will help establish one of the proofs of Theorem
3.37.

Lemma 3.33. In any recursion x2 − Px + Q of discriminant D = −3F 2, where 3 does
not divide Q, we have that P ≡ ±1 (mod 3), Q ≡ 1 (mod 3), Y1 ≡ Z1 ≡ −P (mod 3),
V3 ≡ P (mod 3) and S3 ≡ T3 ≡ −P (mod 3).

Proof. Because 3 divides D = P 2 − 4Q and 3 - Q, 3 cannot divide P . Thus, P ≡ ±1
(mod 3). Also, D ≡ P 2 − Q ≡ 0 (mod 3), so that Q ≡ 1 (mod 3). Clearly, Y1 ≡ Z1 ≡
P/2 ≡ −P (mod 3). By (2.62), V3 = V1Y1Z1. Thus, V3 ≡ P (−P )2 ≡ P (mod 3). Finally,
S3 = PS2 −QS1 = PY1T1 −QS1 ≡ −(T1 + S1) ≡ −P (mod 3) and T3 = PT2 −QT1 =
PZ1S1 −QT1 ≡ −(S1 + T1) ≡ −P (mod 3).

Lemma 3.34. Suppose D = −3F 2, F 6= 0, and Q is not divisible by 3. Let λn be defined
by S1+3n = λnS1. Then, for all n ≥ 0, λn is an integer. For n < 0, λn belongs to Z/Q3n.
For all n in Z, we have, modulo 3, the congruences

λn ≡

{
1 if n is even,

−P if n is odd.
(3.8)

Proof. Congruence (3.8) holds trivially for n = 0. Using (3.7) with X = S, n0 = 1 and
m = 3, yields S4 = V3S1 − Q3S−2 = V3S1 − QT2 = (V3 − QZ1)S1, since T2 = Z1S1.
Therefore, S1 divides S4 and λ1 = V3−QZ1. By Lemma 3.33, we have λ1 ≡ −P (mod 3).
Thus, our congruence holds for n = 1. Assume congruence (3.8) holds for two consecutive
values n and n+ 1. Then, by (3.7) again, we have S1+3(n+2) = V3S1+3(n+1)−Q3S1+3n =
(V3λn+1−Q3λn)S1. Thus, S1 divides S1+3(n+2) and λn+2 = V3λn+1−Q3λn. By Lemma
3.33, λn+2 ≡ Pλn+1 − λn (mod 3). If n is even, then λn+2 ≡ P (−P ) − 1 ≡ 1 (mod 3),
whereas, if n is odd, then λn+2 ≡ P − (−P ) ≡ −P (mod 3). Hence, the result follows
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for n ≥ 0 by induction. For n < 0, the result follows also by induction on observing that
S1+3n = Q−3[V3S1+3(n+1) − S1+3(n+2)]. Note that since Q ≡ 1 (mod 3) the congruence
λn+2 ≡ Pλn+1−λn (mod 3) holds backwards as well, i.e., λn ≡ Pλn+1−λn+2 (mod 3).

Lemma 3.35. Suppose D = −3F 2, F 6= 0, and Q is not divisible by 3. Let µn be defined
by S2+3n = µnT1. Then, for all n ≥ 0, µn is an integer. For n < 0, µn is in Z/Q3n. In
addition, we have, modulo 3, the congruences

µn ≡

{
−P if n is even,

1 if n is odd.

Proof. One may proceed by induction as in the proof of Lemma 3.34, using (3.7) with
n0 = 2 and m = 3. The basis of the induction is easily established since S2 = Y1T1 and
S5 = V3S2 − Q3S−1 = V3S2 − Q2T1. By Lemma 3.33, we have µ0 = Y1 ≡ −P (mod 3)
and µ1 = V3Y1 −Q2 ≡ −P 2 − 1 ≡ 1 (mod 3).

Lemma 3.36. Suppose D = −3F 2, F 6= 0, and Q is not divisible by 3. Then for all
integers n,

S3n ≡ (−P )n ≡ T3n (mod 3).

Proof. We have S0 = 1 and, by Lemma 3.33, S3 ≡ −P (mod 3). Using the recursion
(3.7) with n0 = 0 and m = 3, one finds that S3n ≡ (−P )n (mod 3), for all n ≥ 0, by
induction. Indeed,

S3(n+2) = V3S3(n+1) −Q3S3n ≡ PS3(n+1) − S3n (by Lemma 3.33)

≡

{
P (−P )− 1 ≡ 1 (mod 3) if n is even,

P · 1− (−P ) ≡ −P (mod 3) if n is odd.

But since for all n ∈ Z, we have S3n ≡ PS3(n+1) − S3(n+2) (mod 3), we may run an
induction backwards and obtain S3n ≡ (−P )n (mod 3) for all n ∈ Z. Now, for n ∈ Z,
Q3nS−3n = T3n so that T3n ≡ S−3n ≡ (−P )−3n ≡ (−P )3n (mod 3), as P ≡ ±1 (mod 3)
and Q ≡ 1 (mod 3).

Theorem 3.37. Let x2−Px+Q in Z[x] have a non-zero discriminant of the form −3F 2

and assume that 3 does not divide Q.
If 3 does not divide P ± F , then no term Sn, or Tn, for n in Z, is divisible by 3.
Suppose 3 divides P + F . Then 3 divides Sn if and only if n ≡ 1 (mod 3), and 3

divides Tn if and only if n ≡ 2 (mod 3). Moreover, S1+3k ∼3 S1 ∼3 T2 ∼3 T2+3` for all
k and ` in Z.

Suppose 3 divides P − F . Then 3 divides Sn if and only if n ≡ 2 (mod 3), and 3
divides Tn if and only if n ≡ 1 (mod 3). In addition, S2+3k ∼3 S2 ∼3 T1 ∼3 T1+3` for all
k and ` in Z.

Proof 1. If P ±F are not multiples of 3, then neither S1, nor T1 is divisible by 3. Hence,
by Lemmas 3.34–3.36, no term of S is divisible by 3. Since Tn = QnS−n, the same is true
of the terms of T .

If 3 |P + F , then 3 |S1 and, by Lemma 3.34, S1+3k ∼3 S1 for all k ∈ Z. Since
T2 = S1Z1 and, by Lemma 3.33, 3 - Z1, we have T2 ∼3 S1. Hence, it remains to show



3.4. Powers of 2 and 3 in X 41

that T2+3` ∼3 S1 for all `. Because 3 - Q and QnT−n = Sn for all n ∈ Z, we have
T−n ∼3 Sn. Since 2 + 3` = −(1 + 3k) with k = −1− `, we find that T2+3` ∼3 S1+3k.

Suppose 3 |P − F . Since changing the sign of F exchanges the roles of S and T , we
directly deduce the claim of the theorem for that case.

We offer a second proof of Theorem 3.37, which does not use Lemmas 3.34–3.36, but
instead, much like the second proof of Theorem 3.30, is mostly based on Proposition 3.11.

Proof 2. Note that U1 = 1, U2 = P and U3 = P 2−Q so that, by Lemma 3.33, 3 |U3 and
thus ρ(3) = 3. By Proposition 3.11, 3 |Xn iff there is an `, 0 ≤ ` ≤ 2, 3 |X` and n ≡ `

(mod 3), whereX stands for either S or T . If P±F are not multiples of 3, then 3 - X0X1X2

so no term of X is divisible by 3, where, again, X stands for either sequence S or T .
If 3 |P + F , then 3 |S1. Suppose S1 6= 0 and 3a ‖S1, a ≥ 1. Since U3 = 3U1S1T1 =

3S1T1, we have ρ(3a) = ρ(3a+1) = 3. Hence applying Proposition 3.11 with X = S,
d = 3a and n0 = 1 yields 3a |S1+3k for all k ∈ Z. Suppose 3a+1 divided S1+3k for some k.
Then, since ρ(3a+1) = 3, applying Proposition 3.11 with X = S, d = 3a+1 and n0 = 1+3k
would lead to the conclusion that 3a+1 divides S1, which is not true. Hence, S1+3k ∼3 S1

for all k ∈ Z. If S1 = 0, then putting m = k and n = 1 in (2.80) gives S1+3k = 0 for all k.
Therefore, it remains true that S1+3k ∼3 S1. That terms T2+3` have the same 3-adic
value as S1 is most easily obtained, as in Proof 1, using Tn ∼3 S−n.

Since changing F into −F interchanges the roles of S and T , we readily obtain the
result claimed in the case 3 |P − F , as P − F = P + (−F ).

Thus, we have shown that if Q is odd and V3 6= 0, then powers of 2 in the V sequence
are bounded, and that, when 3 - QD, ρ(3) is even and powers of 3 in V are unbounded.
In analogy, we have, for non-zero discriminants of the form −3F 2, that, when 3 - Q
and S1T1 6= 0, powers of 3 in the S and the T sequences are bounded. To complete the
analogy, we verify that, if some S or T terms are divisible by 2, then powers of 2 in S

and T are unbounded. This is the object of the next theorem.

Theorem 3.38. Let x2−Px+Q in Z[x] have a non-zero discriminant of the form −3F 2

with Q odd. Let X stand for either the S or the T sequence. Then 2 divides some X

terms if and only if P is odd, and, if P is odd, then powers of 2 in X are unbounded.

Proof. If P is even, then ρ(2) = 2. Since Q = (P/2)2 +3(F/2)2 is odd, P/2 and F/2 have
distinct parities. Therefore, X1 is odd. By Proposition 3.11, as 2 - X0X1, no X term is
even. On the other hand, if P is odd, then ρ(2) = 3. Say 2a ‖U3. Then, by Theorem 4.3.2,
[30], 2a+b |U3n, where n = 2b and b is an arbitrary integer ≥ 1. By Theorem 3.7, 2 - Un.
As U3n = 3UnSnTn, we have 2a+b |SnTn. By Lemma 3.3, 2 cannot divide both Sn and
Tn. Hence, since Q is odd and QnS−n = Tn, 2a+b |Xm with either m = n or m = −n.

The primes 2 and 3, as seen earlier, play a special role in both the Y and the Z

sequences, so we do expect, generally, their powers to be bounded in these two sequences.
The next theorem settles this question.

Theorem 3.39. Let x2−Px+Q in Z[x] have a non-zero discriminant of the form −3F 2

with Q prime to 6. If U6 6= 0, then powers of 2 and powers of 3 are bounded in the Y and
the Z sequences. In fact, no term of the Y or the Z sequences is divisible by 3.
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Proof. By (2.61), U6 = 3V1S1T1Y1Z1. Thus, V3 = V1Y1Z1 and S1T1 are not zero. Hence,
by Theorems 3.30 and 3.37, powers of 2 in V are bounded and powers of 3 in S and T

are bounded. Consequently, since V3n = VnYnZn for all n, powers of 2 in Y and Z have
to be bounded. Likewise, since S2n = TnYn and T2n = SnZn hold for all n, powers of 3
in both Y and Z must be bounded.

That no Y or Z term is divisible by 3 can be shown in at least three ways. One way
is to use the identities S2n = TnYn and T2n = SnZn together with Theorem 3.37, which,
for example, shows that whenever 3 |S2n then 3 |Tn and ν3(Tn) = ν3(S2n). Another is
to observe that Y0Y1Y2 ≡ (−P )(−P 2 −Q) ≡ −P 6≡ 0 (mod 3), by Lemma 3.33. Because
ρ(3) = 3 and 3 - Q, we conclude by Proposition 3.11. A third method is to use an
induction and the recursion Y6n+6 = V3Y6n+3 − Q3Y3n (mod 3), and, for the last two
methods, proceed similarly for the Z sequence.



4. On a Lucasian generalization of a theorem of Wolstenholme

Our congruences will either take place in Z, or in the ring Ap of p-integers. The ring Ap
is the localization of Z at (Z \ pZ) ([11, Ch. 1]). It is the subring of the rationals with
p-adic valuation ≥ 0. Thus, if p is a prime and a an integer ≥ 1, x and y are in Ap, then
the congruence x ≡ y (mod pa) means that x − y ∈ paAp. Such congruences generalize
and are compatible with ordinary modulo pa congruences in Z, since paAp ∩Z = paZ. In
fact, the map m + paZ 7→ m + paAp for m ∈ Z is a ring isomorphism from Z/paZ onto
Ap/p

aAp.
Our theorems will all be conditional on the fact that p has maximal rank p− εp. This

condition is akin to requiring that a prime p has a given integer a as a primitive root.
Hooley [10] proved conditionally to some Riemann hypotheses that this set of primes has
a positive natural density within the set of primes, that is, if a is neither the square of an
integer, nor −1. For many a’s this density is close to 3/8. So we are confident that these
theorems apply to a positive proportion of the set of all primes, as long as Q is not the
square of an integer. Indeed, by Euler’s criterion for Lucas sequences (Theorem 3.12), if
Q is a square, then p divides U(p−εp)/2, so ρ(p) is at most (p− εp)/2, for all odd primes p
not dividing QD.

Throughout this chapter, we assume complete familiarity with the theorems of Section
3.2, which most of the time will be used without mention.

4.1. On former Wolstenholme congruences. Wolstenholme’s theorem [31] is a clas-
sical result of elementary number theory which states that for any prime p ≥ 5, the
sum

p−1∑
n=1

1
n

is congruent to 0 (mod p2). Several pages of [9] are devoted to this theorem. The authors
of [12] discovered an analogous phenomenon which involves sums of consecutive terms
of the type Vn/Un. Their result may be viewed as a generalization of Wolstenholme’s
theorem as we will later remark.

In this section and the next two, we present as many as seven new Wolstenholme
congruences, in the vein of the result of [12], involving ratios of our special binary recurring
sequences. Interestingly in all cases there is a proof that closely follows the proof in [12].
But we will only develop such a proof for the ratios Gn/Hn and the ratios Zn/Sn. For the
ratios Un/Vn, Hn/Gn, Yn/Tn, Sn/Zn and Tn/Yn, we provide shorter proofs that make
the results appear as corollaries of the congruences initially established.

[43]
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We begin by outlining a simple proof of the classical theorem of Wolstenholme that
differs from the one in [9], but resembles the proof used in [12].

Recall that the sum of the squares of the first n natural numbers is equal to n(n +
1)(2n + 1)/6. Therefore the sum

∑p−1
k=1 k

2 is congruent to 0 (mod p) for any prime p at
least 5. In particular, the sum of all quadratic residues is zero modulo p for any p ≥ 5.

Let w =
∑p−1
n=1 1/n, where p is a prime ≥ 5. Then

2w =
p−1∑
n=1

(
1
n

+
1

p− n

)
= p

p−1∑
n=1

1
n(p− n)

.

But
p−1∑
n=1

1
n(p− n)

≡ −
p−1∑
n=1

1
n2
≡ −

p−1∑
n=1

n2 ≡ 0 (mod p),

since p ≥ 5. Hence, w ≡ 0 (mod p2).
Kimball and Webb [12] essentially showed that for any prime p of rank ρ, ρ = p− εp,

εp = ±1, p > 3, the sum
∑ρ−1
n=1(Vn/Un) is congruent to 0 (mod p2). We next reprove their

theorem. Actually, we prove, using the same technique, a broader theorem, valid not only
for εp = ±1, but also for εp = 0, and not only on the interval (0, ρ)∩N, but on any interval
Ik(U) of the form (kρ, (k+1)ρ)∩Z, k ∈ Z. The observation that the congruence holds for
primes dividing D is a marginal improvement, but to realize that it holds on any Ik(U)
will prove to be crucial in deriving concise proofs for other Wolstenholme congruences.
Also we point out that it is not necessary to differentiate the case D = 0 from the case
D 6= 0 in proving the theorem, as was done in [12]. The identities below and the ensuing
theorem hold in particular for D = 0.

We restate here some of the classical identities mentioned in Section 2.1. They hold
for all integers m and n:

2Um+n = UmVn + UnVm, (4.1)

2Vm+n = VmVn +DUmUn, (4.2)

V 2
n −DU2

n = 4Qn. (4.3)

It is easy to deduce from (4.1) and the relations QnV−n = Vn, QnU−n = −Un that

2QnUm−n = UmVn − UnVm. (4.4)

Let p be a prime not a factor of 2Q of rank ρ. By (4.4) the ratios Vn/Un are pairwise
incongruent modulo p, for n = 1 + kρ, 2 + kρ, . . . , ρ − 1 + kρ, k a fixed integer. Also if
n is not a multiple of ρ, then from (4.3) we see that the square of the ratio Vn/Un is
well-defined and not congruent to D (mod p).

Theorem 4.1. Let p be a prime at least 5 which is not a factor of Q. Assume the rank
ρ of p is maximal, i.e., ρ = p− εp. Then

wk(V,U) :=
∑

n∈Ik(U)

Vn
Un
≡ 0 (mod p2),

where Ik(U) is the interval
(
kρ, (k + 1)ρ

)
∩ Z, and k is an integer.
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Proof. All sums appearing in the proof are taken over the interval Ik(U), and thus contain
precisely ρ− 1 terms. Denoting (2k + 1)ρ by a, we have by (4.1)

2wk(V,U) =
∑(

Vn
Un

+
Va−n
Ua−n

)
= 2

∑ Ua
UnUa−n

,

so that to prove that wk(V,U) is divisible by p2 it suffices to show that

w′1 = 2
∑ Va

UnUa−n

is divisible by p. Now, by (4.2), w′1 is equal to∑ VnVa−n
UnUa−n

+D(ρ− 1).

But∑ VnVa−n
UnUa−n

=
∑ UnUa−nVnVa−n

(UnUa−n)2
=

1
2

∑ (UnVa−n + Ua−nVn)2

(UnUa−n)2
−
∑(

Vn
Un

)2

.

In the above final expression, the numerators of the terms in the first sum are all equal
to 4U2

a by (4.1). Since p divides Ua, we find that p divides w′1 if and only if p divides

w∗1 = D(ρ− 1)−
∑(

Vn
Un

)2

.

If ρ is p + 1, then the sum
∑

(Vn/Un)2 contains all quadratic residues modulo p, where
0 occurs once and non-zero quadratic residues occur twice. Indeed, by Theorems 3.9 and
3.10, for n ∈ Ik(U), Vn/Un is 0 (mod p) iff n = ρV +kρ, where ρV = (p+ 1)/2. Thus, the
sum

∑
(Vn/Un)2 is 0 (mod p). If ρ is p, then the sum

∑
(Vn/Un)2 contains all non-zero

quadratic residues twice and p divides D so that p divides w∗1 . If ρ is p − 1, then the
sum

∑
(Vn/Un)2 contains once 0 and twice every non-zero quadratic residue modulo p,

but D, so this sum is −2D (mod p). Hence w∗1 ≡ D(ρ− 1) + 2D ≡ 0 (mod p).

Theorem 4.1 was further generalized [4] to all positive integers, not just primes, that
have, in some generalized sense, a maximal rank.

Remark 4.2. Note that given e ≥ 0, there is a k such that wk(U, V ) is divisible by pe+2.
It is enough to choose k such that 2k + 1 equals pe for then pe+1 divides Ua and, by the
proof of Theorem 4.1, pe+2 divides wk(U, V ).

Remark 4.3. The classical Wolstenholme congruence may be derived from Theorem 4.1.
Choose the U and the V Lucas sequences associated with f(x) = (x− 1)2. Then we have
Un = n and Vn = 2 for all n. Each prime p has maximal rank p. Thus, if p ≥ 5, then∑p−1
n=1 1/n = (1/2)

∑p−1
n=1 Vn/Un ≡ 0 (mod p2), by Theorem 4.1.

There is a ‘conjugate’ result to Theorem 4.1 that has not been observed yet, but which
it is natural to think of once one has read the next two sections. The inverse quotients
Un/Vn do satisfy a similar Wolstenholme congruence for a prime p of maximal rank,
provided the summation is made over a full interval of indices n, where p does not divide
any Vn.

We make a theorem of this claim.
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Theorem 4.4. Let p be a prime at least 5 which is not a factor of QD. Assume the rank
ρ of p is maximal, i.e., ρ = p− εp. Let k be an arbitrary integer and Ik(V ) be the interval(
ρV + (k − 1)ρ, ρV + kρ

)
∩ Z. Define wk(U, V ) as the sum

∑
n∈Ik(V )(Un/Vn). Then

Dwk(U, V ) ≡ w`(V,U) ≡ 0 (mod p2),

where ` = k − (p+ 1)/2.

Proof. Recall that I`(U) =
(
`ρ, (` + 1)ρ

)
. Note that ρ being even, ρV exists and is ρ/2.

It is straightforward to check that n+ pρV is in Ik(V ) if and only if n is in I`(U). Hence

wk(U, V ) =
∑

n∈I`(U)

Un+pρV

Vn+pρV

.

Thus, using both addition identities (4.1) and (4.2), we have

wk(U, V ) =
∑

n∈I`(U)

UnVpρV
+ UpρV

Vn
VnVpρV

+DUnUpρV

.

By Theorem 3.8, the law of appearance for prime powers, p2 divides Upρ. Now Upρ =
UpρV

VpρV
. Since p - UpρV

, p2 |VpρV
. Hence

wk(U, V ) ≡
∑

n∈I`(U)

UpρV
Vn

DUpρV
Un

=
1
D
w`(V,U) (mod p2),

which, by Theorem 4.1, is 0 (mod p2).

We briefly outline a proof of Theorem 4.4 that follows the template seen in Theorem
4.1.

This proof uses the same basic identities used in proving Theorem 4.1, in the same or-
der and with the same manipulations. Using identity (4.1), we deduce that twice wk(U, V )
is the sum over all n ∈ Ik(V ) of the terms 2U2kρ/(VnV2kρ−n). Since p divides U2kρ and
does not divide V2kρ, it is sufficient to prove that the previous sum, with U2kρ replaced
by V2kρ, is 0 (mod p). One expands this sum using identity (4.2) to get ρ−1 plus D times
a secondary sum, which is shown to be equal modulo p to −

∑
(Un/Vn)2. By identity

(4.3), (Un/Vn)2 6≡ 1/D (mod p) and one concludes that ρ− 1−D
∑
n∈Ik(V )(Un/Vn)2 is

divisible by p both for εp = ±1, noting again by identity (4.4) that the ratios Un/Vn are
all distinct modulo p when n runs through Ik(V ).

Remark 4.5. Note that for k = 0 the result of Theorem 4.4 is trivial since w0(U, V )
is zero, so any power of p divides w0(U, V ). Indeed, I0(V ) is symmetric about 0 and
U−n/V−n = (QnU−n)/(QnV−n) = −Un/Vn. But, note that no matter how large the
natural number e may be, there is a non-zero k such that wk(U, V ) is divisible by pe+2.
Indeed, if k is a multiple of pe then pe+1 divides U2kρ and, by the above outlined second
proof of Theorem 4.4, pe+2 divides wk(U, V ).

4.2. A Wolstenholme congruence for ratios Gn/Hn. Surprisingly, sums of consec-
utive quotients Gn/Hn over appropriate intervals of length ρ − 1, where p is a prime of
maximal rank ρ, also satisfy a Wolstenholme congruence. The proof we will provide of
this fact closely mimics the proof of Theorem 4.1.



4.2. A Wolstenholme congruence for ratios Gn/Hn 47

Instead of the three identities (4.1), (4.2) and (4.3) we use the three corresponding
identities, also valid for all integers m and n,

Vm+n = GmHn +HmGn, (4.5)

EUm+n = GmGn −HmHn, (4.6)

H2
n +G2

n = 2Qn. (4.7)

Let p be a prime not a factor of 2QE of rank ρ. Replacing n by −n in (4.6) and using
the relations QnG−n = Hn and QnH−n = Gn, we get

EQnUm−n = GmHn −GnHm, (4.8)

so that the ratios Gn/Hn are pairwise incongruent modulo p for n belonging to an interval
of the type

(
ρH +(k−1)ρ, ρH +kρ

)
∩Z, k a fixed integer. Also for n not congruent to ρH

modulo ρ, we find, by (4.7), that the square of Gn/Hn is well-defined and not congruent
to −1 (mod p). Note that in the theorem below the case εp = 0 does not occur since we
need p to not divide E.

Theorem 4.6. Let p be a prime at least 5 which is not a factor of QE. Assume the
rank ρ of p is maximal, i.e., ρ = p− εp. Let k be an integer and Ik(H) be the interval of
consecutive integers

(
ρH + (k − 1)ρ, ρH + kρ

)
∩ Z. Then

wk(G,H) :=
∑

n∈Ik(H)

Gn
Hn
≡ 0 (mod p2).

Proof. First note that 4 divides ρ = p − εp for any such prime p, so that ρH and Ik(H)
are well-defined. All sums being over all ρ − 1 indices n in Ik(H), we do not indicate
intervals of summation. For the sake of concision, we set b = 2ρH + (2k − 1)ρ. By (4.5)
we have

2wk(G,H) =
∑(

Gn
Hn

+
Gb−n
Hb−n

)
= 2

∑ Vb
HnHb−n

.

Since 2ρH is either equal to ρV , or to 3ρV = ρV + ρ, the index b = 2ρH + (2k − 1)ρ is
of the form ρV + `ρ, ` an integer, so that p divides Vb. Hence, to prove that wk(G,H) is
divisible by p2 it suffices to show that

w′2 =
∑ EUb

HnHb−n

is divisible by p. Now, by (4.6), w′2 is equal to∑ GnGb−n
HnHb−n

− (ρ− 1).

But ∑ GnGb−n
HnHb−n

=
1
2

∑ (GnHb−n +Gb−nHn)2

(HnHb−n)2
−
∑(

Gn
Hn

)2

.

The numerators of the terms in the first sum of the right-hand side of the above equation
being all equal to V 2

b , which is divisible by p2, we deduce that p divides w′2 if and only if
p divides

w∗2 =
∑(

Gn
Hn

)2

+ (ρ− 1).
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If ρ is p+ 1, then the ratios Gn/Hn appearing in the sum
∑

(Gn/Hn)2 being all distinct
modulo p, we find that

∑
(Gn/Hn)2 is congruent to

∑p−1
j=0 j

2, which is 0 (mod p) since
p > 3. Hence p divides w∗2 . If ρ is p− 1, then the sum

∑
(Gn/Hn)2 contains p− 2 terms,

which (mod p) are 0 and twice each of the (p− 3)/2 non-zero quadratic residues, except
−1 (by 4.7), so this sum is 2 (mod p). Hence w∗2 ≡ 2 + (ρ− 1) ≡ 0 (mod p).

Theorem 4.7. Let p be a prime at least 5 which is not a factor of QE. Assume the
rank ρ of p is maximal, i.e., ρ = p − εp. Let k be an integer and Ik(G) be the interval(
ρG + (k − 1)ρ, ρG + kρ

)
∩ Z. Then

wk(H,G) :=
∑

n∈Ik(G)

Hn

Gn
= w−k(G,H) ≡ 0 (mod p2).

Proof. When n runs through Ik(G), then −n runs through
(
−ρG−kρ,−ρG−(k−1)ρ

)
∩Z,

which, since ρG + ρH = ρ, is
(
ρH − (k + 1)ρ, ρH − kρ

)
∩ Z. That is, −n runs through

I−k(H).
But since QnH−n = Gn and QnG−n = Hn, we have

wk(H,G) =
∑

n∈I−k(H)

H−n
G−n

=
∑

n∈I−k(H)

Gn
Hn

= w−k(G,H),

which is congruent to 0 (mod p2) by Theorem 4.6.

4.3. Wolstenholme congruences when D = −3F 2. For such discriminants, besides
the quotients Vn/Un and Un/Vn, the quotients Zn/Sn, Yn/Tn, Sn/Zn and Tn/Yn, for
primes of maximal rank, all satisfy some Wolstenholme congruences. For quotients Zn/Sn,
we chose again a proof that follows the template of Theorems 4.1 and 4.6, whereas for
other quotients we chose instead to deduce in sequence the congruences starting from the
theorem involving the ratios Zn/Sn. That is, we follow the path indicated below:

Zn
Sn
→ Yn

Tn
→ Sn

Zn
→ Tn

Yn
.

Thus, let us start with the quotients Zn/Sn. We consider the four identities, valid for
all integral values of m and n,

2QnFUm−n = SmZn − SnZm, (4.9)

2Tm+n = SmZn + SnZm, (4.10)

2Ym+n = −ZmZn + 3SmSn, (4.11)

Z2
n + 3S2

n = 4Qn. (4.12)

Let p be a prime not a factor of 2QF of rank ρ. By identity (4.9), if m 6≡ n (mod ρ)
and p does not divide SmSn, then the ratios Zm/Sm and Zn/Sn are well-defined modulo
p and not congruent to each other modulo p. In particular, the ratios Zn/Sn are pairwise
incongruent modulo p for n belonging to an interval of the type

(
ρS+(k−1)ρ, ρS+kρ

)
∩Z,

k a fixed integer. Also for n not congruent to ρS modulo ρ, we conclude, by (4.12), that
the square of Zn/Sn is well-defined and not congruent to −3 (mod p).

Theorem 4.8. Let p be a prime at least 5 which is not a factor of QF . Assume the
rank ρ of p is maximal, i.e., ρ = p − εp. Let k be an integer and Ik(S) be the interval
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(ρS + (k − 1)ρ, ρS + kρ) ∩ Z. Then

wk(Z, S) :=
∑

n∈Ik(S)

Zn
Sn
≡ 0 (mod p2).

Proof. First note that 3 divides ρ = p− εp for any such prime p, so that ρS and Ik(S) are
well-defined. All sums being over all ρ− 1 indices n in Ik(S), we do not indicate intervals
of summation. For the sake of concision, we set c = 2ρS + (2k − 1)ρ. By (4.10) we have

2wk(Z, S) =
∑(

Zn
Sn

+
Zc−n
Sc−n

)
= 2

∑ Tc
SnSc−n

.

Since 2ρS is either equal to ρT , or equal to 4ρT (= ρT +ρ), the index c = 2ρS + (2k−1)ρ
is of the form ρT + `ρ, ` an integer, so that p divides Tc. By (2.53), p - Yc. Hence, showing
that wk(Z, S) is divisible by p2 amounts to showing that

w′3 =
∑ 2Yc

SnSc−n

is divisible by p. Now, by (4.11), w′3 is equal to

−
∑ ZnZc−n

SnSc−n
+ 3(ρ− 1).

But ∑ ZnZc−n
SnSc−n

=
1
2

∑ (ZnSc−n + Zc−nSn)2

(SnSc−n)2
−
∑(

Zn
Sn

)2

.

Since (ZnSc−n + Zc−nSn)2 is 4T 2
c , the first sum of the right-hand side of the above

equation is 0 (mod p2), and so p divides w′3 if and only if p divides

w∗3 =
∑(

Zn
Sn

)2

+ 3(ρ− 1).

If ρ is p + 1, then the ratios Zn/Sn appearing in the sum
∑

(Zn/Sn)2 being all distinct
modulo p, we find that

∑
(Zn/Sn)2 is congruent to

∑p−1
j=0 j

2, which is 0 (mod p) since
p > 3. Hence p divides w∗3 . If ρ is p− 1, then the sum

∑
(Zn/Sn)2 contains p− 2 terms,

which modulo p are 0 and twice each of the (p− 3)/2 non-zero quadratic residues, except
−3 (by 4.12), so this sum is 6 (mod p). Hence w∗3 ≡ 6 + 3(ρ− 1) ≡ 0 (mod p).

Theorem 4.9. Let p be a prime not a factor of 6QF . Assume the rank ρ of p is maximal,
i.e., ρ = p− εp. Let k be an integer and Ik(T ) := (ρT + (k − 1)ρ, ρT + kρ) ∩ Z. Then

wk(Y, T ) :=
∑

n∈Ik(T )

Yn
Tn

= w−k(Z, S) ≡ 0 (mod p2).

Proof. As n runs through Ik(T ), −n runs through (−ρT − kρ,−ρT − (k − 1)ρ) ∩ Z and
vice versa. But, since ρT +ρS = ρ, this last interval is

(
ρS− (k+1)ρ, ρS−kρ

)
∩Z, which,

using the notation of Theorem 4.8, is I−k(S).
Having in mind that QnY−n = Zn and QnT−n = Sn, we find that

wk(Y, T ) =
∑

n∈I−k(S)

Y−n
T−n

=
∑

n∈I−k(S)

Zn
Sn

= w−k(Z, S),

which is congruent to 0 (mod p2) by Theorem 4.8.
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For ratios Sn/Zn, our proof will use the same technique used in Theorem 4.4, which
enabled us to deduce the Wolstenholme congruences for ratios Un/Vn from those involving
the ratios Vn/Un. First note that by replacing m and n respectively by −m and −n and
using formulas (2.46), we can transform identities (4.10) and (4.11) into

2Sm+n = TmYn + TnYm, (4.13)

2Zm+n = −YmYn + 3TmTn. (4.14)

Let us state our result.

Theorem 4.10. Let p be a prime not dividing 6QF . Assume the rank ρ of p is maximal,
i.e., ρ = p− εp. Let k be an arbitrary integer and Ik(Z) := (ρZ + (k − 1)ρ, ρZ + kρ) ∩ Z.
Define wk(S,Z) as the sum

∑
n∈Ik(Z)(Sn/Zn). Then there is an integer ` such that

3wk(S,Z) ≡ w`(Y, T ) (mod p3). (4.15)

Thus, wk(S,Z) is congruent to 0 (mod p2).

Proof. Put m = p2ρY . Since p2 is 1 (mod ρ), m is congruent to ρY (mod ρ). Hence,
by Theorem 3.23, Ym is divisible by p, and, by lemma 3.21, νp(U6m) = νp(Ym). But
p3 divides U6p2ρY

so that p3 also divides Yp2ρY
. Now n + p2ρY ∈ Ik(Z) if and only if

n belongs to the interval
(
ρ1 + (k − 1)ρ, ρ1 + kρ

)
with ρ1 = ρZ − p2ρY . Since p2 ≡ 1

(mod ρ), ρ1 ≡ ρZ − ρY (mod ρ). By Corollary 3.24, either ρZ is ρ/6 and ρT is ρ/3, in
which case ρ1 ≡ ρZ − ρY = −4ρ/6 = −ρ + ρT ≡ ρT (mod ρ), or ρZ is 5ρ/6 and ρT is
2ρ/3, and again ρ1 ≡ ρZ − ρY = 4ρ/6 = ρT (mod ρ). Thus, there is an integer ` such
that n+ p2ρY ∈ Ik(Z) if and only if n belongs to I`(T ). Hence wk(S,Z) is equal to∑

n∈I`(T )

Sn+p2ρY

Zn+p2ρY

,

which by identities (4.13) and (4.14) is also equal to∑
n∈I`(T )

YnTp2ρY
+ Yp2ρY

Tn
−YnYp2ρY

+ 3TnTp2ρY

.

Now since p3 |Yp2ρY
and p - Tp2ρY

, the foregoing sum is congruent to

1
3

∑
n∈I`(T )

Yn
Tn

=
1
3
w`(Y, T ) (mod p3).

By Theorem 4.9, w`(Y, T ) is 0 (mod p2), so that wk(S,Z) is 0 (mod p2).

Remark 4.11. We opted to prove congruence (4.15) with the modulus p3. In fact, for
any prime power pe, e ≥ 2 and any integer k, there is an integer ` for which the same
congruence holds, albeit modulo pe. Use m = pe−1ρY for odd e, and m = εpp

e−1ρY
for even e, instead of m = p2ρY in the proof of the theorem. Thus, we could have
used m = εppρY to obtain our Wolstenholme congruence modulo p2. Indeed, for any
prime p satisfying the hypotheses of the theorem, εpp is 1 (mod 6), so that, for even e,
m = εpp

e−1ρY ≡ pe−2ρY ≡ ρY (mod ρ).

A now standard argument yields our last set of congruences.
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Theorem 4.12. Let p be a prime not dividing 6QF . Assume the rank ρ of p is maximal,
i.e., ρ = p− εp. Let k be an integer and Ik(Y ) := (ρY + (k − 1)ρ, ρY + kρ) ∩ Z. Then

wk(T, Y ) :=
∑

n∈Ik(Y )

Tn
Yn

= w−k(S,Z) ≡ 0 (mod p2).

Proof. The two intervals Ik(Y ) and I−k(Z) are symmetric of each other about 0, since
−ρY − kρ = (ρ − ρY ) − (k + 1)ρ = ρZ − (k + 1)ρ, i.e., minus the upper bound of Ik(Y )
is the lower bound of I−k(Z). Therefore, since QnT−n is Sn and QnY−n is Zn, we have

wk(T, Y ) =
∑

−n∈Ik(Y )

T−n
Y−n

=
∑

n∈I−k(Z)

Sn
Zn

= w−k(S,Z),

which is congruent to 0 (mod p2) by Theorem 4.10.

4.4. Concluding comments, results and applications. We introduce for the sake of
the upcoming discussion the set of pairs of sequencesW := {(V,U), (U, V ), (G,H), (H,G),
(Z, S), (Y, T ), (S,Z), (T, Y )}. For each such pair, we have proved congruences of the Wol-
stenholme type. In addition, Theorems 4.4, 4.6–4.10 and 4.12 may all be established with
proofs very similar to that of the Theorem of [12], or Theorem 4.1 of the present paper,
but is it true that all sums wk(x, y), for any k ∈ Z and any (x, y) ∈ W, are each simply
related to a sum of the type w`(V,U) (mod p2)? That is, do the p − εp − 1 terms they
contain yield 0 (mod p2) in essentially the same manner as the terms of a sum w`(V,U),
for some integer `?

The proof of Theorem 4.4 shows that the nth term (n = 1, . . . , ρ − 1) of the sum
wk(U, V ) is equal modulo p2 to 1/D times the nth term of the sum w`(V,U), where `
is k − (p + 1)/2. The proof of Theorem 4.7 shows that the terms of wk(G,H) are the
same rational terms as those of the sum w−k(H,G). Similarly, the proof of Theorem 4.9
shows that the sums wk(Z, S) and w−k(Y, T ) have identical terms, but so do the sums
wk(T, Y ) and w−k(S,Z) by the proof of Theorem 4.12. Also the proof of Theorem 4.10
implies that multiplying by 3 the terms of any sum wk(S,Z) yields modulo p2 the terms
of a sum w`(Y, T ), for an appropriate integer `.

We summarize below with obvious meaning the above observations:

U

V
↔ 1

D
× V

U
,

G

H
↔ H

G
,

Z

S
↔ Y

T
↔ 3× S

Z
and

S

Z
↔ T

Y
.

Thus, we now ask the natural question of whether it is possible to relate the terms of
any sum wk(x, y), (x, y) ∈ W, to the terms of a sum w`(V,U). To address this question,
all we need is relate the terms of the sums wk(S,Z) and the sums wk(H,G), say, to the
terms of a sum of type w`(V,U).

Proving two more theorems based on yet other Lucas-like identities and the method
of proof of Theorem 4.4 will be useful.

Theorem 4.13. Assume D is −3F 2, F ≥ 1. Let p be a prime not dividing 6QF with rank
ρ equal to p− εp. For all integers k, the sums Fwk(S,Z) and wk+ν(V,U), with ν = εpρT ,
share the same nth term modulo p2.
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Proof. Note that 3 divides ρ so that ρT is well-defined. Clearly n ∈ Ik−ν(S) if and only
if n+ νρ ∈ Ik(S), which, since ρT + ρS = ρ and Ik(S) =

(
ρS + (k − 1)ρ, ρS + kρ

)
, holds

whenever n+ νρ+ ρT ∈ Ik(U). Note that pν − ρT = pεpρT − ρT = εpρT (p− εp) = νρ so
that pν = νρ+ ρT .

Thus, as n runs through the interval Ik−ν(S), the ratios Vn+pν/Un+pν run through
the terms of the sum wk(V,U).

By Theorem 3.19, p divides Tpν . In fact, since 3ν is either ±ρ or ±2ρ, we see, by
Theorem 3.8, that p2 divides U3νp. By identity (2.60) and Lemma 3.5, p2 divides Tpν .
Hence, from the two identities,

2Vm+n = ZmYn +DSmTn, (4.16)

2FUm+n = SmYn − ZmTn, (4.17)

valid for all integers m and n, we find that the nth term of the sum wk(V,U), i.e.,
Vn+pν/Un+pν , satisfies

Vn+pν

Un+pν
= F

ZnYpν +DSnTpν
SnYpν − ZnTpν

≡ F Zn
Sn

(mod p2),

for any n ∈ Ik−ν(S). This proves the theorem.

Using identities (2.20) and (2.21), one can establish in a similar way the following
theorem.

Theorem 4.14. Assume D is −E2, E ≥ 1. Let p be a prime not dividing 6QE with
rank ρ equal to p − εp. For any integer k, the sums Ewk(H,G) and wk+ν(V,U), where
ν = εpρH , share the same nth term modulo p2.

Remark 4.15. The proofs of Theorems 4.13 and 4.14 could have served as alternative
proofs for showing that the sums wk(S,Z) and wk(H,G) are congruent to 0 (mod p2) for
primes of maximal rank, since they readily imply that

Fwk(S,Z) ≡ wk+ν(V,U) (mod p2), where ν = εpρT , (4.18)

Ewk(H,G) ≡ wk+ν(V,U) (mod p2), where ν = εpρH . (4.19)

The proofs of the two previous theorems show that, indeed, the set of terms of a sum
wk(S,Z) multiplied by F is, modulo p2, identical to the set of terms of a sum w`(V,U),
for an appropriate `, and that the set of terms of a sum wk(H,G) multiplied by E is,
modulo p2, identical to the set of terms of another sum of type w`(V,U), for some `.
Thus, we have another theorem.

Theorem 4.16. Let D be either of the form −E2, or −3F 2. Let p be a prime not dividing
6QD of maximal rank. Given an integer k and a pair (x, y) ∈ W, there exist an integer `
and a rational constant c of p-adic value zero such that the nth term of the sum wk(x, y)
is congruent to c times the nth term of the sum w`(V,U) (mod p2), for n = 1, . . . , ρ− 1.

That is, all sums wk(x, y) are 0 (mod p2) in essentially the same way, since these sums
use the same sets of residues modulo p2 up to a constant of p-adic value zero. Therefore,
all our theorems on Wolstenholme-like congruences may be regarded as variations of the
first theorem, Theorem 4.1.
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Note that the terms of the sums wk(V,U), as k varies in Z, can constitute no more
than p distinct sets, when these terms are taken modulo p2. Indeed, for k = 0, 1, . . . , p−1,
we have, using (4.1), (4.2) and p2 |Uλpρ, λ an integer, and n = 1, . . . , ρ− 1,

V(k+λp)ρ+n

U(k+λp)ρ+n
≡ Vkρ+n
Ukρ+n

(mod p2).

That is, the nth term in wk+λp(V,U) is equal modulo p2 to the nth term in the sum
wk(V,U). An example will show that the terms of, say, the sums w0(V,U) and w1(V,U)
may indeed sum up to 0 (mod p2) in distinct ways.

Example. Let us choose the characteristic polynomial x2 − x − 1 for which the (Un)
and the (Vn) Lucas sequences are respectively the sequence (Fn) of Fibonacci numbers
and the sequence (Ln) of Lucas numbers. For p = 7, we have ρ = 8. The terms Ln/Fn
(mod 49) of the sum w0(L,F ) are {1, 3, 2, 35, 12, 39, 6}, whereas the terms of w1(L,F ) are
{8, 45, 16, 7, 26, 32, 13}. Note that both sets sum up to 0 (mod 49), both reduce modulo 7
to the set {1, 3, 2, 0, 5, 4, 6}, and that no integer c (mod 49) exists such that multiplying
the first set by c yields the second set.

We pursue this section by providing a general way of constructing sequences that
behave, at least modulo the square of a fixed prime, as the sequences G and H, or as the
S, T , Y and Z sequences, when the recursion associated with x2−Px+Q does not have
a discriminant of the required form. Briefly, we do so in the next remark followed by an
illustrative example.

Remark 4.17. Suppose the characteristic polynomial x2−Px+Q has a discriminant D
neither of the form −E2, nor −3F 2. Assume p is a prime such that either εp = (−1 | p), or
εp = (−3 | p). In the first case, there is an integer E such that D ≡ −E2 (mod p2), while
in the second there is an integer F such that D ≡ −3F 2 (mod p2). It follows that, relative
to the prime p, there are either G and H sequences, or sequences S, T , Y and Z, which,
at least modulo p2, act as the sequences we have studied. In particular, the Wolstenholme
congruences hold.

Example. Let us illustrate the above remark with the recursion x2−x−1. Suppose p is
±1 (mod 5) and ρ(p) = p− 1. If, in addition p is 1 (mod 3), then there is an F such that
D = 5 ≡ −3F 2 (mod p2). Indeed, by hypothesis, both 5 and −3 are quadratic residues
modulo p. Hence, there is an integer f such that 5 ≡ −3f2 (mod p). Putting F = f +px,
we solve the congruence 5 ≡ −3F 2 (mod p2). This yields 6fx+ (5 + 3f2)/p ≡ 0 (mod p),
which has a solution since p - 6f . For instance, for p = 19 where ρ = 18, we may choose
F = −31. Thus, we have ρZ = 3, ρS = 12 and w0(Z, S) =

∑11
n=−5(Zn/Sn) ≡ 0 (mod 192),

where Z0 = 1, Z1 = 47, S0 = 1, S1 = −15, and Z and S have characteristic polynomial
x2 − x− 1.

Although this chapter fulfilled its duty, that is, by mixing the identities developed in
Sections 2.2 and 2.3 with the arithmetic properties of Subsections 3.2.2 and 3.2.3, we were
able to show that the pairs (G,H), (S,Z) and (T, Y ) are analogues of the pair (U, V ), at
least with regard to the generalization of the classical congruence of Wolstenholme that
Kimball and Webb discovered, it, arguably, raises numerous questions.
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For one thing, considering how similar the proofs of our Wolstenholme congruences
are from one pair of sequences to another, no doubt, there must be a common approach
to proving all the corresponding theorems at once. In retrospect, or at least partly in
retrospect, we see a common feature to all eight pairs in W. This observation may well
be key to bringing out an explanation of all our cases at once, and, in fact, to yielding
other instances of pairs of sequences with similar modulo p2 congruences. However, as
going further in this direction would lead us astray from the theme of this paper, we will
be content to state the aforementioned observation.

Observation 4.18. For all eight pairs (X,X∗) in W, up to a constant, the sequences
V ⊕ X and X∗ are equal, where ⊕ is the binary operation of the Laxton semigroup
associated with the recursion x2 − Px+Q.

Besides reading the paper of Laxton [14], one may also consult [1, p. 15], where a
brief description of this semigroup is outlined. In particular, we find there that given
two sequences x = (xn)n≥0 and y = (yn)n≥0 that satisfy recursion (1.1), the sequence
z = x⊕ y also satisfies recursion (1.1), and thus is defined by its two initial terms, which
are

z0 = x0y1 + x1y0 − Px0y0,

z1 = x1y1 −Qx0y0.

Thus, for instance, the two initial terms of V ⊕ G are (P + E) + P − 2P = E and
P (P +E)/2− 2Q = P (P +E)/2− (P 2 +E2)/2 = E(P −E)/2, so we see that, up to the
constant E, V ⊕G is H. Also, one finds, say, that V ⊕ Z is −3F times the sequence S.



5. On the set of indices n such that n |Xn

5.1. Introduction. In [25], Smyth gave an interesting general description of the set
of positive integers n such that n divides Xn, where X is either a U , or a V Lucas
sequence. His work was based on many earlier duly quoted observations and papers. But
it was worth seeing a clear, nearly graph-theoretic, step by step construction of these sets
emerge.

In this chapter, we will try to show that similar descriptions also exist, on the one
hand, for the G and H sequences, and, on the other, for the S and T sequences and the
Y and Z sequences.

Notation. Given a polynomial x2 − Px + Q ∈ Z[x], if X denotes an integral-valued
recurring sequence (Xn)n≥0 satisfying Xn+2 = PXn+1 −QXn, then we define

NX = {n ≥ 1; n |Xn}. (5.1)

Although the notion of ‘special’ primes was used in various lemmas of Section 3.1,
we remind ourselves that a prime is said to be special if it divides both P and Q. In the
following, the integer 1 is considered as a product of special primes.

We restate the two main theorems, Theorems 1 and 12, of [25] that concern the sets
NU and NV in the next two propositions. If X is a U or a V sequence and n ∈ NX , then
the set of primes p such that np is in NX is denoted by PX,n. An integer b in NX is said
to be basic, or X-basic, if it has no prime factor p such that b/p belongs to NX .

Proposition 5.1. Let x2−Px+Q ∈ Z[x] be a polynomial of discriminant D. If n divides
Un, then PU,n is the set of primes that divide DUn. Suppose n divides Vn. Then PV,n is
the set of odd primes that divide Vn, with the possible inclusion of p = 2, if n is a product
of special primes and, either P is even, or P and Q are odd and 3 divides n.

Proposition 5.2. Let P and Q be integers, Q 6= 0, and let X = X(P,Q) be either the
U or the V sequence associated with the parameters P and Q. Then every integer in NX
is equal to a product of the form bp1 · · · pk, where b is an X-basic integer, pi is prime and
bp1 · · · pi−1 belongs to NX , i.e., pi is in PX,bp1···pi−1 , for i = 1, . . . , k. The only X-basic
elements are

• 1 and 6, if X = U ; 1 only, if X = V , whenever P ≡ 3 (mod 6) and Q ≡ ±1 (mod 6);
• 1 and 12 for X = U , 1 and 6 for X = V , whenever P ≡ ±1 (mod 6) and Q ≡ −1

(mod 6);
• 1 only for X equal to either U or V , otherwise.

[55]
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We will look for comparable results when D = −E2 and X is equal to G or H, and
when D = −3F 2 and X is S, T , Y or Z. While the definition (5.1) of the sets NX is
maintained for the new sequences, the definition of the sets PX,n will differ from those
of X equal to U or V , because it seemed more natural to do so considering that these
sequences appear in pairs. Nevertheless, it will be easy to get a description of the sets of
primes p such that np |Xnp given that n |Xn, that is, of the sets PX,n with their former
definition, from our results. Suppose (X,X∗) denotes one of the six pairs (G,H), (H,G),
(S, T ), (T, S), (Y,Z) or (Z, Y ). The definition of PX,n we will work with is still that
of the set of primes p such that np |Xnp, but under the assumption that n belongs to
NX ∪NX∗ , rather than NX only. We refer to the situation where n |Xn and np |X∗np, or
n |X∗n and np |Xnp, as the cross-over case.

The description of NU given in [25] and stated in Propositions 5.1 and 5.2 above
hinged on a ‘descent’ result of Somer ([23], Theorem 5(iv)), namely

Lemma 5.3. Let U = U(P,Q) be any U Lucas sequence. Let m = np be a positive integer
with largest prime factor p. Suppose m belongs to NU . Then, unless P is odd and m is
of the form 2` · 3 with ` ≥ 1, n belongs to NU .

Smyth [25, Proposition 4] completed the result for most remaining cases by estab-
lishing

Lemma 5.4. Let U = U(P,Q) be any U Lucas sequence with P odd. Assume m is an
integer of the form 2` · 3, ` ≥ 3, which belongs to NU . Then m/2 belongs to NU .

The description of NV , restated above, also hinged on another comparable ‘descent’
result for V sequences that appeared in Somer’s paper [24], and which was also completed
by Proposition 18 of Smyth’s paper [25].

To obtain descriptions of the sets NX , for X equal to G, H, S, T , Y or Z, we will not
establish corresponding ‘descent’ results for those X, but rather resort to using, in each
case, the descent results for the U sequence, i.e., Lemmas 5.3 and 5.4.

Given the importance of Lemmas 5.3 and 5.4 in establishing the main results of this
chapter, we will reprove them at the end of this introductory section. Smyth included
himself in [25], at the bottom of p. 3, a brief idea as to why Lemma 5.3 actually holds.
Our proof will differ and use a slightly modified version of Theorem 2 of [23].

Our intention is not only to show the sequences G, H, etc, behave as the U and V

Lucas sequences, but also to establish the corresponding results by arguments that are
themselves similar to those used for the U and V sequences. Thus, we restate and reprove
some well known results concerning the U and the V sequences simply because similar
statements will be made about our sequences, and so analogies will become obvious.

Lemma 5.5. Given a positive integer n and an odd prime p, we have

Un |Unp and, for Un 6= 0, Unp/Un ≡ εpUp−1
n (mod p).

Proof. It is well known that if m = kn, then Un |Um. Indeed, if α is a double root,
then, by (1.4), Un 6= 0 and Um/Un = (mαm−1)/(nαn−1) = k(αn)k−1 = Uk(2αn, α2n) =
Uk(Vn, Qn) ∈ Z. Suppose the roots α and β are distinct. If Un 6= 0, then Um/Un =
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(αkn−βkn)/(αn−βn) = Uk(Vn, Qn) ∈ Z. If Un = 0, then αn = βn, and thus αkn = βkn.
Hence, Ukn = 0, and it remains true that Un |Ukn.

Assuming Un 6= 0, we may put m = p and n = n in the multiplication identity (2.13),
divide both sides by Un and reduce modulo p. This yields the congruence of the lemma,
since εp ≡ D(p−1)/2 (mod p).

Lemma 5.6. Let n be a positive integer. If p is an odd prime, then

Vn |Vnp and, for Vn 6= 0, Vnp/Vn ≡ V p−1
n (mod p).

Proof. See [25, Lemma 21(ii)].

Lemma 5.7. If n is a product of special primes, then n divides Qn−1.

Proof. It suffices to show that, for each prime factor p of n, pνp(n) | pn−1. But, on the one
hand, pn−1 ≥ 2n−1 ≥ n implies that n > log n/log p and, on the other, pνp(n) ≤ n implies
that νp(n) ≤ log n/log p. Hence νp(n) ≤ n− 1.

We will use another small, but handy result, which is a particular case of Theorem
5(i) of [24], and which was reproved in [25] as Corollary 17, namely

Lemma 5.8. If n ≥ 1 is a product of special primes then n divides Vn.

That Lemma 5.8 holds when n is a square-free product of special primes is straight-
forward as it is easily seen that each special prime divides all Vk, k ≥ 1. The case n is not
square-free can be readily handled by using Proposition 5.1. That is, a proof by induction
using Proposition 5.1 would be the shortest way of proving this lemma. However, Lemma
5.8 was instrumental in the proof of Proposition 5.1 in [25]. So we prefer an induction
that does not use Proposition 5.1.

Proof of Lemma 5.8. We run an induction on k = Ω(n), the number of prime factors
of n. The result holds trivially for k = 0, since 1 |V1. Suppose k = 1, i.e., n is a special
prime p. Since V1 = P , we have p |V1. Suppose p is odd. Then, by Lemma 5.6, V1 |Vp so
that p |Vp.

Note that if 2 is special, then since V0 and V1 are even, Vn is even for all n ≥ 0, by
recursion (1.1). Thus, if p = 2, then 2 |V2.

Let k ≥ 2 and assume the inductive hypothesis holds up to k−1. Let m be a product of
k special primes. If 2 is special and 2 |m, then, writing m = 2n, we know by the inductive
hypothesis that n |Vn. Also, we just saw that 2 |Vn, and that n |Qn−1 by Lemma 5.7.
Hence, V2n = V 2

n − 2Qn is divisible by 2n. So assume m is odd and write m = np, where
p is a prime ≥ 3. By Lemma 5.6, possibly applied several times, we have Vp |Vnp and
Vn |Vnp. Thus, n |Vnp and p |Vnp. Hence, np |Vnp, if p - n. If p |n and Vn 6= 0, then, by
the congruence in Lemma 5.6, p |Vnp/Vn, so that pVn and, in particular, pn divides Vnp.
If p |n and Vn = 0, then, as Vn |Vnp, Vnp = 0 and np divides trivially Vnp.

In fact, we state and prove a lemma for the U sequence similar to Lemma 5.8, both
to promote comparisons and to serve in proving the descent Lemmas 5.3 and 5.4.

Lemma 5.9. If n ≥ 1 is a product of special primes then n divides Un.
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Proof. Again we run an induction on k = Ω(n). The lemma holds for k = 0. Suppose
p is an odd special prime. Then p |D = P 2 − 4Q. Hence, εp = 0 and, for all n ≥ 1,
p divides Unp/Un, by the congruence of Lemma 5.5. Thus, if n |Un, then np |Unp. There-
fore induction only needs to be checked for powers of 2. Say m = 2k, k ≥ 1, and put
m = 2n, where 2 is assumed to be special. Then, by the inductive hypothesis, n |Un, and
2 |Vn, by the proof of Lemma 5.8. Hence, since U2n = UnVn, m divides Um.

Theorem 2 in [23] states that, given a U = U(P,Q) Lucas sequence and a positive
integer n, we have that n |Un iff the rank of each prime divisor of n, not dividing the
discriminant D, divides n. Somer points to the fact that this result was proved by Jarden,
when U is the Fibonacci sequence, and later by André-Jeannin, when gcd(P,Q) = 1. It
appears to be slightly erroneous, as stated, though. For instance, if U = U(5, 6), then
Un = 3n − 2n. If n is equal to 3k, k ≥ 1, then no prime divisor of n has a rank. Hence n
satisfies the second statement, but not the first since 3 does not divide any Um, m ≥ 1.
So we establish a replacement proposition that we will be using to prove both Lemmas
5.3 and 5.4.

We now adopt the convention that if a prime q has no rank, then ρ(q) = ∞ (see
Definition 1).

Proposition 5.10. Let U(P,Q) be a U Lucas sequence with parameters P and Q. Let
m be an integer ≥ 1. Then m |Um if and only if for any prime divisor q of m which is
not a special prime, the rank of q divides m.

Proof. Suppose m |Um. Let q be a non-special prime factor of m. If q divides Q, then q

does not divide P . Thus, by recursion (1.1), we have Un ≡ Pn−1 6≡ 0 (mod q) for any
n ≥ 1. This contradicts q |Um. Hence, q - Q. By Theorem 3.7, ρ(q) |m.

For the converse, suppose q is a prime factor of m and qk ‖m. We need to show that
qk |Um. If q is special, then, by Lemma 5.9, qk |Uqk . Since Uqk |Um, we do have qk |Um.
If q is non-special, then q - Q. Otherwise, as we saw above, q - Un for any n ≥ 1, and
thus ρ(q) = ∞, contradicting the fact that m is an integer. Thus, q has a finite rank.
Assume qaq ‖Uρ(q). By Theorem 3.6, ρ(q) is either prime to q, if q - D, or equal to q, if
q |D. That is, we have qkρ(q) |m, if q - D, or qk−1ρ(q) |m, if q |D. Hence, by Theorem
3.8, νq(Um) ≥ k − 1 + aq ≥ k, if q is odd. If Q is odd and 2` |Un for some ` ≥ 1, then
2`+1 |U2n. Indeed, by the identity V 2

n − DU2
n = 4Qn, 2` |Un implies 2 |Vn and, since

U2n = UnVn, 2`+1 |U2n. Therefore, if q = 2, then Q is odd and, from 2k−1ρ(2) |m and
2 |Uρ(2), we conclude by induction that 2k |Um.

Proposition 5.10 allows a proof of the two ‘descent’ results, Lemmas 5.3 and 5.4.

Proofs of Lemmas 5.3 and 5.4. Let U(P,Q) be a U Lucas sequence. Consider a composite
positive integer m satisfying m |Um. We first write m = np, where p is the largest prime
factor of m, and assume m is not of the form 2` · 3, ` ≥ 1 in case P is odd. We seek
to show that n |Un using the criterion of Proposition 5.10. Let q be a non-special prime
factor of n. Note that q |Um so that, by the proof of Proposition 5.10, q does not divide Q.
Suppose first q < p. Then p ≥ 3. By Theorem 3.6 and because ρ(2) is at most 3, we have
ρ(q) ≤ q + 1 ≤ p, with ρ(q) = p iff q = 2, p = 3 and ρ(2) = 3, i.e., iff q = 2, p = 3 and P

is odd, since U2 = P . If ρ(q) < p, then ρ(q) |n. Indeed, q |Um implies that ρ(q) |m = np,
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and so ρ(q) |n. If, on the contrary, ρ(q) = p, i.e., q = 2, p = 3 and P is odd, then, since m
is not of the form 2` · 3, ` ≥ 1, 32 |m. Hence, 3 = ρ(q) |n. Suppose now q = p. If ρ(p) = p,
then ρ(p) |n, since by hypothesis q = p is a factor of n. If ρ(p) 6= p, then gcd(ρ(p), p) = 1.
But ρ(p) |m = np, so we get ρ(p) |n. Hence, by Proposition 5.10, n |Un. Thus, Lemma
5.3 is proved.

Suppose P is odd and m = 2` · 3, ` ≥ 3. Write m = 2n. Let q be a non-special prime
factor of n. Again q - Q, or else q - P and q could not divide Um. It follows, since q is
either 2 or 3, that ρ(q) is 2, 3 or 4. Thus, ρ(q) |n. Hence, by Proposition 5.10, n |Un. So
Lemma 5.4 is proved.

5.2. Recursions of discriminant −E2. Given a recursion defined by a characteristic
polynomial x2−Px+Q ∈ Z[x] of discriminant −E2, we study the sets NG and NH of the
associated G and H sequences. We begin with an important result remindful of Lemmas
5.5 and 5.6.

Lemma 5.11. Let (X,X∗) stand for one of the two pairs (G,H), or (H,G). Let n be a
positive integer and p be a prime. If p ≡ 1 (mod 4), then

(i) Xn |Xnp and, if Xn 6= 0, Xnp/Xn ≡ Xp−1
n (mod p).

If p ≡ −1 (mod 4), then

(ii) Xn |X∗np and, if Xn 6= 0, X∗np/Xn ≡ Xp−1
n (mod p).

Proof. Suppose for instance that p = −1 + 4` and we wish to show that Hn divides Gnp.
Noting that ζp8 = (−1)`ζ̄8 and (ζ̄8)p = (−1)`ζ8, we find that

Gnp =
√

2
2
[
ζ̄8α

np + ζ8ᾱ
np
]

= (−1)`
√

2
2
[
ζp8α

np + (ζ̄8)pᾱnp
]

= (−1)`HnN,

where N =
∑p−1
k=0(−1)k(ζ8αn)p−1−k(ζ̄8ᾱn)k is a rational integer, since N is an algebraic

integer of Z[ζ8] invariant under both complex conjugation and the automorphism that
fixes i and sends

√
2 to −

√
2.

The congruences modulo p are obtained by putting m = p in the four identities in
(2.32) and (2.33). Staying with the case of Gnp and p = −1 + 4`, we use the second
identity of (2.33) with m = p and get

2(p−1)/2(−1)`Gnp = Hn ·
∑
k≥0

(
p

2k

)
Hp−2k−1
n G2k

n .

Dividing through by Hn and reducing the integers on both sides of the resulting equation
modulo p gives that (2 | p)(−1)`Gnp/Hn ≡ Hp−1

n (mod p). If ` is odd, then p ≡ 3 (mod 8)
and both the Legendre character (2 | p) and (−1)` are −1, whereas if ` is even, both are
+1, yielding our congruence relation. The other cases are obtained through analogous
reasoning.

We define for a positive integer n in NG ∪NH the two sets of primes PG,n and PH,n
as

PG,n = {p; np ∈ NG}, PH,n = {p; np ∈ NH}.

An integer n in NG∪NH will be said to be basic, or GH-basic, if for any prime factor
p of n, n/p is neither in NG, nor in NH .
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The next theorem that concerns G and H plays the role that Proposition 5.1 played
for U and V .

Theorem 5.12. Let (X,X∗) represent one of the two pairs of sequences (G,H) or (H,G).
Suppose n ≥ 1 divides Xn. Then for primes p ≡ 1 (mod 4), we have

• p ∈ PX,n if and only if p |Xn,
• p ∈ PX∗,n if and only if p |X∗n and n is a product of special primes.

For primes p ≡ −1 (mod 4), we have

• p ∈ PX,n if and only if p |X∗n and n is a product of special primes,
• p ∈ PX∗,n if and only if p |Xn.

The prime 2 belongs to PX,n if and only if 2n is a product of special primes, which
also occurs if and only if 2 belongs to PX∗,n.

Proof. Assume p ≡ 1 (mod 4). By the congruence in Lemma 5.11(i), if p |Xn and Xn 6= 0,
then pXn and, a fortiori, np divides Xnp. If Xn = 0, then, as Xn |Xnp, Xnp = 0 and,
trivially, np |Xnp. If p - Xn, then Xn 6= 0. Thus, by the congruence of Lemma 5.11(i)
again, Xnp ≡ Xp

n ≡ Xn (mod p), so p - Xnp, in particular, np - Xnp. Suppose now
np |X∗np. Since n |Xn and Xn |Xnp, we have n | gcd(Xnp, X

∗
np). Hence, by Lemma 3.2,

n has to be a product of special primes. By Lemma 5.8, n |Vn. But Vn = Xn + X∗n, so
that n |X∗n. But, by what we just proved, bearing in mind that X and X∗ have a dual
relationship, as n |X∗n, p ∈ PX∗,n iff p |X∗n. Thus, p |X∗n. Conversely, n being a product of
special primes, n |Vn. Since n |Xn, we have n |X∗n. We then use the equivalence p ∈ PX∗,n
iff p |X∗n in the backwards direction to conclude.

The proof for primes p ≡ −1 (mod 4) is analogous, provided one uses Lemma 5.11(ii),
so we turn to p = 2.

To fix ideas we assume n |Gn. The case n |Hn can be treated similarly. We first show
that 2 ∈ PH,n iff 2n is a product of special primes. Suppose first that 2 ∈ PH,n. By the
identity (2.27), we have

H2n = −EUnGn +Qn, (5.2)

so that n |Qn. Thus, every prime factor q of n divides Q. But then, using the recursion
Gt+2 = PGt+1 − QGt, we have Gn ≡ Pn−1G1 (mod q). Since q |Gn, either q |P and q

is special, or q |G1. If q is odd and q |G1, then P ≡ −E (mod q). But, since q |Q and
4Q = P 2 + E2 ≡ 2P 2 (mod q), q |P and q is special. By (5.2), 2 |Q since 2 |H2n and
2 |E. Thus, P being an even integer, 2 is special. Hence, 2n must indeed be a product of
special primes. But that condition also suffices to guarantee that 2 ∈ PH,n. Indeed, by
Lemma 5.7, n |Qn−1. Hence, 2n |Qn. Also 2n |EGn. Thus, by (5.2), 2n |H2n.

Note that if 2n is a product of special primes, then 2n |V2n, by Lemma 5.8. Since, as
we just proved, 2n divides H2n, 2n also divides G2n, which equals V2n − H2n. That is,
2 ∈ PG,n.

Conversely, assume 2 ∈ PG,n. Since V2n = 2GnHn, 2n divides V2n. Thus, 2n |H2n =
V2n −G2n. That is, 2 ∈ PH,n, and thus 2n is a product of special primes.
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At this point it is natural to ask whether, in general, every n ∈ NG ∪ NH may be
constructed by starting from 1 and multiplying successively by primes in the sets PG,k
and PH,k, where k |n and k ∈ NG ∪ NH . To reach a conclusion and establish a theorem
that completes Theorem 5.12, a few more lemmas are needed.

As seen in the proof of Lemma 5.5, any U Lucas sequence is a divisibility sequence in
the sense that for positive integers m and n, we have Un |Umn. Any V Lucas sequence
is nearly a divisibility sequence. That is, if 2 - m, then Vn |Vmn. The following lemma
shows precisely what divisibility property the sequences G and H obey.

Lemma 5.13. If m and n are positive integers and m is odd, then GnHn divides GmnHmn.
In fact, if m has k primes factors congruent to −1 (mod 4), then

Gn |Gmn and Hn |Hmn if k is even,

Gn |Hmn and Hn |Gmn if k is odd.

Proof. It suffices to prove the lemma for m equal to a prime p ≡ ±1 (mod 4). But, if
m = p, it is a consequence of Lemma 5.11.

Lemma 5.14. Suppose p is a special prime. Then p divides both Gn and Hn for any
integer n ≥ 1.

Proof. Since p divides both P and Q, the recursion Xt+2 = PXt+1 − QXt satisfied
by both the G and the H sequences implies that p | gcd(Gn, Hn) for all n ≥ 2. Since
P 2 − 4Q = −E2, p |E. Thus, if p is odd, clearly p | gcd(G1, H1). If p = 2 then Q is
even. But Q = (P/2)2 + (E/2)2 so P/2 and E/2 must have the same parity. Therefore,
2 | gcd(G1, H1).

Lemma 5.15. If n is a product of special primes, then n divides both Gn and Hn.

Proof. As in Lemmas 5.8 and 5.9, we proceed by induction on k = Ω(n). The result holds
trivially for k = 0. So assume k ≥ 1 and assume the inductive hypothesis holds for k− 1.
Let m be a product of k special primes and write m as np with p prime. By the inductive
hypothesis n | gcd(Gn, Hn). By Lemma 5.14, p | gcd(Gn, Hn). Thus, whether p is odd or
p = 2, Theorem 5.12 says that p ∈ PG,n ∩ PH,n. That is, m | gcd(Gm, Hm).

Lemma 5.16. Assume that 2 is not a special prime, i.e., that Q is odd. Then all terms
of the G and the H sequences are odd.

Proof. Note that, since P is even, 2 is special iff Q is even. Suppose Q is odd. Then the
conclusion is given by Theorem 3.31.

We are now ready for our second theorem concerning NG and NH , one which plays
the role that Proposition 5.2 plays with respect to U and V .

Theorem 5.17. Let m > 1 be an integer in NG∪NH . Then, we may write m as p1 · · · pk,
where, for each i = 1, . . . , k, pi is prime and p1 · · · pi belongs to NG ∪NH . In particular,
1 is the only GH-basic element.

Proof. We assume that m |Gm and write m = np, where p is the largest prime factor
of m. To prove the theorem, it suffices to show that n is in NG ∪ NH . Indeed, the case
m |Hm can be treated analogously.
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If p = 2, then m is a power of 2, and hence Gm is even. By Lemma 5.16, Q must be
even, so that 2 is special. Then n is a product of special primes and, by Lemma 5.15, n
divides both Gn and Hn.

So we now assume that p ≥ 3. By the identity (2.28), we have U4m = 2UmVmGmHm.
Hence, if 2 divides UmVmHm, then 4m divides U4m. But P being even, all terms of the V
sequence are even. So 4m |U4m, which, by Lemma 5.3, as P is even, implies that 4n |U4n.
That is, 2n |UnVnGnHn. Let ns be the largest product of special primes which divides n
and write n = ns · nt.

We claim that ns | gcd(Gn, Hn). By Lemma 5.15, ns | gcd(Gns
, Hns

). Note that nt must
be odd. Otherwise, Gm is even and, by Lemma 5.16, 2 is special and cannot divide nt. So
since nt is odd, Lemma 5.13 says that Gns

|Gn and Hns
|Hn, or Gns

|Hn and Hns
|Gn.

Hence, ns | gcd(Gn, Hn).
We next show that nt |GnHn. We have nt |UnVnGnHn. Let q be a prime factor of nt.

Then q |Gm. If q divided Un, then q would divide Um and thus be special by Lemma
3.2. But nt is free of special primes. Similarly, Vn divides Vm since p = m/n is odd. So
q cannot divide Vn, or else q would divide gcd(Gm, Vm) and be special, by Lemma 3.2.
Therefore, gcd(nt, UnVn) = 1 and nt divides GnHn.

We now wish to conclude that either n |Gn or n |Hn. Note that p is either 1 (mod 4),
or −1 (mod 4). If p ≡ 1 (mod 4), then n |Gn. Indeed, if not, there is a prime factor q
of nt which divides Hn. But by Lemma 5.11, Hn |Hm. Thus, q | gcd(Gm, Hm) and q is
special by Lemma 3.2, which contradicts q |nt.

If p ≡ −1 (mod 4), then n |Hn. Indeed, if n - Hn, then there exists a prime q dividing
nt which divides Gn. By Lemma 5.11, Gn |Hm. So q | gcd(Gm, Hm) and q is special, by
Lemma 3.2. But that cannot be since nt is free of special prime factors.

Remark. In retrospect, the absence of GH-basic elements > 1, asserted by Theorem
5.17, might well have been expected. Indeed, when D = −E2, P is even, so that, by
Proposition 5.2, the only U - and V -basic elements are 1.

Comment. Theorem 5.17 guarantees that all integers n in NG and in NH will be gen-
erated with no exception if one uses the description of PG,n and PH,n of Theorem 5.12
starting at n = 1 and incrementing one at a time the number of prime factors of those
integers already found to lie in NG∪NH . Consider, say, the recursion x2−2x+5 with dis-
criminant D = −16 and E = 4 which has no special primes. Since G1 = 3 and H1 = −1
and the prime 3 is −1 (mod 4), the only integer n in NG ∪ NH with Ω(n) = 1 is n = 3
which belongs to NH . Since H3 = −9, n = 9 ∈ NG is the only integer with Ω(n) = 2 that
belongs to NG∪NH . Now G9 = −1917 = −33×71 and both 3 and 71 being −1 (mod 4),
27 and 639 = 9 × 71, both in NH , are the only integers n in NG ∪ NH with Ω(n) = 3.
The procedure goes on likewise generating all integers in NG ∪NH . This phenomenon is
comparable to what Smyth had observed in [25] for the U and for the V sequences.

5.3. Recursions of discriminant −3F 2. Throughout this section, the recursions have
characteristic polynomial x2−Px+Q ∈ Z[x], where as usual Q 6= 0 and the discriminant
D is non-zero of the form −3F 2. We intend to study both pairs of sets, NS and NT ,
and NY and NZ , and follow the same template as in the study of the pair of sets NG
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and NH . Things should begin to seem routine! However, for recursions of discriminant
−3F 2, two primes, namely 2 and 3, have an idiosyncratic behavior, whereas for recursions
of discriminant −E2, only the prime 2 did stand out. For NS and NT , 3 will behave
much as 2 did for NG and NH . But for NY and NZ both 2 and 3 will have an anomalous
behavior.

We first state some trivial, but useful preliminary lemmas.

Lemma 5.18. If the discriminant D of x2 − Px + Q ∈ Z[x] is of the form −3F 2 and P

is odd, then Q is odd.

Proof. Suppose Q is even. Then D = P 2 − 4Q ≡ 1 (mod 8). But D = −3F 2 ≡ −3
(mod 8) as F and P have the same parity. This contradiction gives the lemma.

Lemma 5.19. Let X = (Xn) be an integral linear recurring sequence with a characteristic
polynomial x2 − Px + Q ∈ Z[x] of discriminant D = −3F 2 such that 3 - X0. If 3 is not
a special prime, then m does not divide Xm for any m divisible by 3.

Proof. Because 3 |D = −3F 2 = P 2−4Q and 3 is not special, neither P nor Q is a multiple
of 3. But 3 - Q implies that ρ(3) | 3− ε3 by Theorem 3.6. But ε3 = 0 so ρ(3) = 3. If 3 |m
and m |Xm, then by Proposition 3.11 we must have 3 |X0, since m ≡ 0 (mod ρ(3)). But
3 - X0. Hence, m - Xm for any m divisible by 3.

5.3.1. The sets NS and NT . The lemma that follows generalizes Theorem 3.29 of the
present paper and is an analogue of Lemmas 5.5, 5.6 and 5.11.

Lemma 5.20. Let n be a positive integer and p be a prime. For p ≡ 1 (mod 6) we have

(i) Sn |Snp and, assuming Sn 6= 0, Snp/Sn ≡ Sp−1
n (mod p),

(ii) Tn |Tnp and, assuming Tn 6= 0, Tnp/Tn ≡ T p−1
n (mod p),

and for p ≡ −1 (mod 3),

(iii) Tn |Snp and, if Tn 6= 0, Snp/Tn ≡ T p−1
n (mod p),

(iv) Sn |Tnp and, if Sn 6= 0, Tnp/Sn ≡ Sp−1
n (mod p).

Proof. To prove (i) observe that since p is 1 (mod 6) we have ωp = ω and ω̄p = ω̄.
Therefore,

Snp = F
(ωαn)p − (ω̄ᾱn)p

α− ᾱ
= F

ωαn − ω̄ᾱn

α− ᾱ
·N = Sn ·N,

where N =
∑p−1
k=0(ωαn)p−1−k(ω̄ᾱn)k is an algebraic integer in Z[ω] invariant by conju-

gation. Hence, N is a rational integer. Therefore, Sn divides Snp. If Sn 6= 0, then putting
m = p and n = n in the multiplication formula (2.75), dividing through by Sn and
reducing modulo p yields Spn/Sn ≡ Sp−1

n (mod p).
The rest of the lemma is obtained in similar ways. Noting that for primes p ≡ 1

(mod 6), Tnp = Tn · N ′, where N ′ =
∑p−1
k=0(ωᾱn)p−1−k(ω̄αn)k is a rational integer and

using the multiplication formula (2.77) with m = p and n = n yields (ii).
For primes p ≡ −1 (mod 6), we have ωp = ω̄ and ω̄p = ω. Thus, Snp/Tn =

−
∑p−1
k=0(ω̄αn)p−1−k(ωᾱn)k and Tnp/Sn = −

∑p−1
k=0(ω̄ᾱn)p−1−k(ωαn)k, being algebraic

integers invariant under conjugation, are indeed rational integers. Using the multiplica-
tion formulas (2.77) and (2.75) yields respectively (iii) and (iv).
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It remains to deal with p = 2, which is also a prime −1 (mod 3). By (2.56), we have
S2n/Tn = Zn and T2n/Sn = Yn. Note that S1 − Z1 = 2F and Y1 − T1 = 2F . Since
S0 = Z0 and T0 = Y0, we have Zk ≡ Sk (mod 2) and Yk ≡ Tk (mod 2) for all k ≥ 0.
Therefore, S2n/Tn ≡ S2−1

n (mod 2) and T2n/Sn ≡ T 2−1
n (mod 2), when neither Sn nor

Tn is zero.

As for the pair (G,H), given a positive integer n in NS ∪NT , we define the two sets
of primes PS,n and PT,n as

PS,n = {p; np ∈ NS}, PT,n = {p; np ∈ NT }.

An integer n in NS , or in NT , will be said to be basic, or ST -basic, if for any prime
factor p of n, n/p is neither in NS , nor in NT .

The next theorem is a close analogue of Theorem 5.12 with the prime 3 replacing the
prime 2 as the ‘odd duck’.

Theorem 5.21. Let X stand for one of the two sequences S or T , and X∗ stand for the
other one. Suppose n divides Xn. Necessary and sufficient conditions for a prime p to
belong to PX,n, or to PX∗,n, are described below.

For p ≡ 1 (mod 6), we have

• p ∈ PX,n if and only if p |Xn, while
• p ∈ PX∗,n if and only if p |X∗n and n is a product of special primes.

For p ≡ −1 (mod 3), we have

• p ∈ PX,n if and only if p |X∗n and n is a product of special primes, while
• p ∈ PX∗,n if and only if p |Xn.

The prime 3 belongs to PX,n if and only if it belongs to PX∗,n, which occurs if and
only if 3n is a product of special primes.

Proof. Assume p ≡ 1 (mod 6). If p |Xn andXn 6= 0, then, by Lemma 5.20(i)–(ii), p divides
the integer Xnp/Xn, i.e., pXn |Xnp. Since n |Xn, we get pn |Xnp, that is, p ∈ PX,n. If
Xn = 0, then, as Xn divides Xnp, Xnp = 0 and trivially np |Xnp. If, on the other hand,
p - Xn, then p - Xnp since, by Lemma 5.20(i)–(ii), Xnp ≡ Xp

n ≡ Xn (mod p). All the
more, np - Xnp and p 6∈ PX,n.

Assume now np |X∗np, i.e., p ∈ PX∗,n. Then n | gcd(Snp, Tnp), since n |Xn andXn |Xnp

imply that n |Xnp. But then, by Lemma 3.3, all prime factors of n must be special. By
Lemma 5.8, n |Vn. SinceX∗n = Vn−Xn, we conclude that n |X∗n. But, given that n |X∗n, we
have just shown that p ∈ PX∗,n iff p |X∗n. Hence, p |X∗n. Thus, by the latter equivalence,
to prove the converse it will suffice to show that n |X∗n. But n being a product of special
primes, we have n |Vn. Since, by hypothesis, n |Xn, we have n |X∗n = Vn −Xn.

We now turn to primes p ≡ −1 (mod 3). If p |Xn and Xn 6= 0, then, by Lemma
5.20(iii)–(iv), p |X∗np/Xn. Thus, pXn |X∗np and therefore pn |X∗np. The same conclusion
holds in case Xn = 0, as, then, Xnp = 0. If p - Xn, then p - X∗np, since X∗np ≡ Xp

n ≡ Xn

(mod p). Thus, np - X∗np and p does not belong to PX∗,n. Hence, p |Xn iff p ∈ PX∗,n.
Suppose that np |Xnp. Since n |Xn and Xn |X∗np, it follows that n |X∗np. Therefore,

n | gcd(Snp, Tnp). Thus, Lemma 3.3 tells us that all prime factors of n are special. By
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Lemma 5.8, n |Vn. But X∗n = Vn −Xn so n |X∗n. Thus we conclude that p |X∗n, as, given
that n |X∗n, we already know that p |X∗n iff p ∈ PX,n. Again to prove the converse it
is enough to show that n |X∗n. Now, n being a product of special primes, n divides Vn.
Hence, n |Vn −Xn = X∗n.

Let us now focus on p = 3. To ease notation assume X = S, that is, n |Sn; a similar
argumentation would hold if X were equal to T . Suppose 3 ∈ PS,n. Then, in particular,
3 |S3n, which implies that 3 is special, by Lemma 5.19, since 3 - S0. Note that the same
reasoning gives that 3 is special if 3 |T3n.

Let now q be a prime factor of n. By the identity

S3n = VnTnYn −QnSn,

q must divide VnTnYn. Hence, q |Tn, for if q |Vn, then q |Vn−Sn = Tn and if q |Yn, then
q | 2Sn − Yn = Tn. Thus, by Lemma 3.3, q is a special prime. If instead of 3 ∈ PS,n we
assume that 3 ∈ PT,n, then, by the identity T3n = VnSnZn−QnTn, q divides QTn. If q |Q,
then since SnTn = Qn −F 2U2

n, q |FUn = Sn − Tn. Hence, q |Tn. But q | gcd(Sn, Tn)⇒ q

is special, by Lemma 3.3.
It remains to see that if 3n is a product of special primes then 3n | gcd(S3n, T3n). By

Lemma 5.8, n |Vn and 3n |V3n. But by identity (2.60), i.e., U3n = 3UnSnTn, 3n |U3n.
Thus,

3n |V3n = S3n + T3n and 3n |FU3n = S3n − T3n,

which implies that 3n | 2 gcd(S3n, T3n). However, S3n = VnTnYn − QnSn and T3n =
VnSnZn −QnTn yield n | gcd(S3n, T3n), since Tn = Vn − Sn is divisible by n. Therefore,
3n | gcd(S3n, T3n).

Although not necessary to the development of this chapter, we add a remark adding
precision to Theorem 5.21 about when 2 belongs to PX,n, or to PX∗,n.

Remark 5.22. Suppose, as in Theorem 5.21, that n divides Xn, where n ≥ 1. Then
2 ∈ PX∗,n iff, by Theorem 5.21, 2 |Xn, which occurs iff either

• 2 is special, or
• P andQ are odd and n ≡ ±1 (mod 3) according to whether 2 |X1 or 2 |X∗1 , respectively.

Also, 2 ∈ PX,n iff, by Theorem 5.21, 2 |X∗n and n is a product of special primes, which
occurs iff n is a product of special primes and either

• 2 is special, or
• P and Q are odd and n ≡ ±1 (mod 6) according as 2 |X∗1 or 2 |X1, respectively.

Proof of Remark 5.22. If 2 is special, then, by Lemma 5.24, 2 |Xn. If P and Q are odd,
then, as U2 = P and U3 = P 2 −Q, ρ(2) = 3. Thus, by Proposition 3.11, 2 |Xn iff either
2 |X1 and n ≡ 1 (mod 3), or 2 |X2 and n ≡ 2 (mod 3). But S2 = T1Y1 and T2 = S1Z1

and, as we saw at the end of the proof of Lemma 5.20, T1 and Y1 share the same parity
and so do S1 and Z1. Hence, 2 |X2 iff 2 |X∗1 . To complete the case 2 ∈ PX∗,n, it remains
to see that if 2 |Xn and 2 is not special, then P and Q must be odd. But, by Lemma
5.18, Q is odd. By Theorem 3.38, the case Q odd and P even implies that all X terms
are odd, which contradicts 2 |Xn. Thus, indeed, P and Q must both be odd.
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We now examine the case 2 ∈ PX,n. Thus, n is a product of special primes and n |Xn,
and we need to show that 2 |X∗n iff either 2 is special, or, P and Q are odd and, according
as X∗1 or X1 is even, n ≡ ±1 (mod 6). If 2 is special, then, by Lemma 5.24, 2 |X∗n. If
P and Q are odd, then ρ(2) = 3, and the same analysis as above, using Proposition
3.11, leads to 2 |X∗n iff either 2 |X∗1 and n ≡ 1 (mod 3), or 2 |X1 and n ≡ −1 (mod 3).
Because n, as a product of special primes, must be odd, the congruences hold modulo 6.
For the direct implication (⇒), all that is needed is to see that, when 2 |X∗n and 2 is not
special, P and Q must be odd. By Lemma 5.18, if Q is even, then P is even. But 2 is not
special, so Q is odd. If P were even, then, by Theorem 3.38, no X∗ term would be even,
contradicting 2 |X∗n. Hence, the remark holds.

Remark. The descriptions of PS,n and PT,n simplify much if we assume that gcd(P,Q)
= 1. Suppose n |Sn. If n ≥ 2, then the set PS,n is the set of primes 1 (mod 6) that
divide Sn, while the set PT,n is the set of primes −1 (mod 6) that divide Sn. If n is 1,
PS,1 contains in addition to primes 1 (mod 6) that divide S1, primes −1 (mod 6) which
divide T1, and, if both P and Q are odd and 2 divides T1, the prime 2. The set PT,1,
besides primes −1 (mod 6) that divide S1, contains primes 1 (mod 6) which divide T1

and the prime 2 provided P and Q are odd and 2 divides S1.

Example. For the recursion determined by (P,Q) = (5, 7), where D = −3 and F = 1,
the smallest few integers in NS are 1, 2, 8, . . . and the first few in NT are 1, 4, 16 and
8 × 47 = 376 with PS,1 = {2}, PT,1 = ∅, PS,2 = ∅, PT,2 = {2}, PS,4 = {2}, PT,4 = ∅,
PS,8 = ∅ and PT,8 = {2, 47}, as can be checked by computing the first few positive terms
of S and T and using the previous remark.

In the above example, it happens that among the first eight natural numbers, those in
NS or NT are all obtained by starting at 1 and using primes in PS,1, or PT,1, and, given
an n in NS ∪ NT , by using primes in PS,n or PT,n, so the natural question is whether
this is generally the case, that is, whether there are ST -basic integers other than 1. As in
Section 5.2, at the same point, we establish a few lemmas prior to furnishing an answer.

Lemma 5.23. If m and n are positive integers and 3 - m, then SnTn |SmnTmn. More
precisely, if m has k prime factors that are −1 (mod 3), then

Sn |Smn and Tn |Tmn if k is even,

Tn |Smn and Sn |Tmn if k is odd.

Proof. Note that it suffices to prove the result for m = p a prime distinct from 3. But
for a prime p ≡ 1 (mod 6), Lemma 5.20 says that Sn |Snp and Tn |Tnp. The same lemma
gives that Sn |Tnp and Tn |Snp for primes p ≡ −1 (mod 6) and for p = 2.

Lemma 5.24. Suppose p is a special prime. Then for all integers n ≥ 1, p divides Sn
and Tn, unless p = 3, n = 1 and 3 - F .

Proof. By using inductively the recursion Xn+2 = PXn+1 − QXn and the fact that p
divides both P and Q, we find that p | gcd(Sn, Tn) for all n ≥ 2. But note that if p 6= 3,
then, since −3F 2 = P 2 − 4Q, p | gcd(P,Q) ⇒ p |F . If p ≡ ±1 (mod 6), then clearly
p | gcd(S1, T1). If p = 2, then 2 | gcd(P, F ) and Q = (P/2)2 + 3(F/2)2 is even, since 2 is
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special. Therefore P/2 and F/2 have the same parity. Thus, 2 | gcd(S1, T1). If p = 3, then
clearly 3 | gcd(S1, T1) iff 3 |F .

The next lemma is an analogue for the S and T sequences of Lemmas 5.8 and 5.9,
which concern arbitrary U and V sequences. It also provides a converse to an immediate
consequence of Lemma 3.3, which is that, if n divides Sn and n divides Tn, then n is a
product of special primes.

Lemma 5.25. If n is a product of special primes, then n divides both Sn and Tn.

Proof. We proceed by induction on k = Ω(n) the number of (special) prime factors of n.
Since 1 divides S1 and T1, assume m is a product of k special primes, where k ≥ 1, and
assume the inductive hypothesis holds for any product of special primes having less than
k prime factors.

If 3 is special and 3 |m, then, writing m = 3n, we see by the inductive hypothesis
that n |Sn. But then, by Theorem 5.21, m = 3n divides both Sm and Tm.

Otherwise, 3 - m. Then we write m = np, where p is a special prime distinct from 3.
Thus, by Lemma 5.24, p |Sn and p |Tn. But then, by Theorem 5.21, we have p ∈ PS,n ∩
PT,n, since n |Sn and n is a product of special primes. That is, m |Sm and m |Tm.

We are now ready for our second theorem concerning NS and NT . Its statement and
proof resemble those of Theorem 5.17.

Theorem 5.26. Every integer m in NS∪NT is either equal to 1, or to a product of primes
p1 · · · pk such that p1 · · · pi belongs to NS ∪NT for each i = 1, . . . , k − 1. In particular, 1
is the only ST -basic element.

Proof. Without loss of generality we assume that m |Sm, m > 1 and m is composite,
since trivially 1 |S1. The case m |Tm can be treated in an analogous way. We will use
both Lemmas 5.3 and 5.4. So we assume first that m is not of the form 2`, where ` ≥ 2.
With p the largest prime factor of m, we write m = np. We seek to show that either
n |Sn, or n |Tn. Note that p ≥ 3. Since U3m = 3UmSmTm, we have 3m |U3m. But 3m, in
case P is odd, is not of the form 2` · 3, ` ≥ 3. Also p is the largest prime factor of 3m.
Thus, by Lemma 5.3, 3n |U3n and so n |UnSnTn. Let ns be the largest factor of n which
is a product of special primes and nt be its cofactor in n, i.e., n = ns · nt. Note that
gcd(ns, nt) = 1. By Lemma 5.25, ns | gcd(Sns

, Tns
). If 3 is special, then 3 - nt. If 3 is not

special, then, by Lemma 5.19, 3 - m, since 3 - S0. In particular, 3 - nt. Hence, by Lemma
5.23, ns | gcd(Sn, Tn). If q is a prime factor of gcd(nt, Un), then q |Sm, since nt |m and
m |Sm. Also q |Un implies q |Um since Un |Um. Hence, q divides both Sm and Um, which,
by Lemma 3.5, says that q is special. This contradicts q |nt. Hence, gcd(nt, Un) = 1 and
nt |SnTn. In particular, n |SnTn.

Suppose p ≡ 1 (mod 6). Then by Lemma 5.20, Sn |Sm and Tn |Tm. If n - Sn, then
since ns |Sn, there exists a prime q dividing nt such that q |Tn. Therefore q |Tm. But
q |nt and nt |Sm so that q |Sm. We have reached a contradiction since q dividing both
Sm and Tm would be a special prime by Lemma 3.3. Hence n |Sn.

The case p ≡ −1 (mod 6) can be dealt with similarly. Indeed, in that case, Sn |Tm
and Tn |Sm by Lemma 5.20. If n - Tn, then since ns |Tn there is a prime q, q |nt, and
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q |Sn. Therefore q |Tm and, because q divides nt and nt divides m, q |Sm. Hence q is
special. But nt has no special prime factors, a contradiction. Thus, n |Tn.

If p is 3, then we saw that m |Sm and 3 |m cannot occur unless 3 is special. Thus,
m = 3n being of the form 2` · 3k, assuming nt > 1, we have nt = 2`. Since nt |SnTn and
2 is not special, 2 does not divide gcd(Sn, Tn), by Lemma 3.3. Thus, either nt |Sn and
n |Sn, or nt |Tn and n |Tn.

We now investigate the case m = 2`, ` ≥ 2. Put m = 2n. Suppose P is odd and
m = 2`, ` ≥ 3. Again m |Sm ⇒ 3m |U3m. Applying Lemma 5.4 leads to 3 ·2`−1 |U3·2`−1 =
3U2`−1S2`−1T2`−1 . That is, 2`−1 |U2`−1S2`−1T2`−1 . Note that P odd implies that Q is odd
by Lemma 5.18. The initial values of the U sequence being 0, 1, P and P 2−Q, ρ(2) = 3.
By Theorem 3.7, Un is even iff 3 |n. Hence, 2`−1 |S2`−1T2`−1 . Since 2 is not special,
2 - gcd(S2`−1 , T2`−1) by Lemma 3.3. Thus, either 2`−1 |S2`−1 , or 2`−1 |T2`−1 .

It remains to look at the cases where m = 2`, ` ≥ 2, with P even, and m = 4 with P
odd. Assume first P is even and m = 2`, ` ≥ 2. Note that Q must be even. Indeed, if Q is
odd, then, given that m is even and m |Sm, Proposition 3.11 implies that 2 must divide
S0 = 1, a contradiction. Hence, P and Q are both even. Thus, n = 2`−1 is a product of
special primes and so, by Lemma 5.25, n | gcd(Sn, Tn). Finally, if m = 4 and P is odd,
then, by Lemma 5.18, Q is odd. Since for P odd, ρ(2) = 3, we conclude by Proposition
3.11 that 4 divides S4 implies 2 |S1. But S1 − T1 = F ≡ P ≡ 1 (mod 2)⇒ 2 - T1. Hence,
T2 = PT1 −QT0 ≡ 0 (mod 2). Thus, 2 |T2.

Remark. It might have been expected that under the conditions P ≡ ±1 (mod 6) and
Q ≡ −1 (mod 6) which, by Proposition 5.2, imply that 12 is a U -basic element and
6 = 12/2 a V -basic element, 4 = 12/3 might have been an ST -basic element. However,
the conditions P ≡ ±1 (mod 6) and Q ≡ −1 (mod 6) are incompatible with D = −3F 2,
since they force D to be congruent to 5 (mod 6).

5.3.2. The sets NY and NZ . We now seek comparable theorems for the sets NY and
NZ . The Y and Z sequences obey a lemma that is very similar to Lemmas 5.5, 5.6, 5.11
and 5.20. We state this result.

Lemma 5.27. Suppose X stands for one of the sequences Y or Z and X∗ stands for the
other. Let n be a positive integer and p be a prime.

For p ≡ 1 (mod 6) we have

(i) Xn |Xnp and, if Xn 6= 0, Xnp/Xn ≡ Xp−1
n (mod p).

For p ≡ −1 (mod 6) we have

(ii) Xn |X∗np and, if Xn 6= 0, X∗np/Xn ≡ Xp−1
n (mod p).

Proof. The four divisibility relations are obtained as in Lemma 5.20. For instance for
X = Y and X∗ = Z, we have, assuming p ≡ −1 (mod 6),

Znp = ωαnp + ω̄ᾱnp = (ω̄αn)p + (ωᾱn)p = Yn ·N,

where N =
∑p−1
k=0(−1)k(ω̄αn)p−1−k(ωᾱn)k is invariant under conjugation, since (−1)k =

(−1)p−1−k for k = 0, 1, . . . , p− 1, and thus is a rational integer.
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All four modulo p congruences in the lemma are obtained by putting m = p in the
identities (2.76) and (2.78), dividing through by either Yn, or Zn, reducing them modulo p
and making use of the facts that the binomial coefficients

(
p
k

)
are all divisible by p, for

1 ≤ k ≤ p− 1, and 2p−1 ≡ 1 (mod p).

As for the G and H, or for the S and T sequences, we define for a positive integer n
in NY ∪NZ the two sets of primes PY,n and PZ,n as

PY,n = {p; np ∈ NY }, PZ,n = {p; np ∈ NZ}.

An integer n in NY ∪NT will be said to be basic, or Y Z-basic, if for any prime factor
p of n, n/p is neither in NY , nor in NZ .

The next theorem is an analogue for Y and Z of Proposition 5.1, Theorem 5.12 and
Theorem 5.21. The analogy with Theorem 5.21 and Remark 5.22 is perfect for all primes,
but 2, for which there are subtle differences. The conditions for 2 to belong to PX,n, or
PX∗,n, X = Y or Z, are more stringent in the cross-over case, where it is necessary that
n be a product of special primes.

Theorem 5.28. Suppose n divides Yn. Then for primes p ≡ 1 (mod 6), we have

• p ∈ PY,n if and only if p |Yn, while
• p ∈ PZ,n if and only if p |Zn and n is a product of special primes.

For p ≡ −1 (mod 6), we have

• p ∈ PY,n if and only if p |Zn and n is a product of special primes, while
• p ∈ PZ,n if and only if p |Yn.

The prime 3 belongs to PY,n if and only if it belongs to PZ,n, which occurs if and only
if 3n is a product of special primes.

The prime 2 belongs to either PY,n or PZ,n if and only if n is a product of special
primes and

• either 2 is special, in which case 2 belongs to both PY,n and PZ,n,
• or P and Q are odd and
→ either P ≡ F (mod 4), i.e., T1 and Y1 are even, in which case

2 ∈ PY,n if and only if n ≡ −1 (mod 6),

2 ∈ PZ,n if and only if n ≡ 1 (mod 6),

→ or P ≡ −F (mod 4), i.e., S1 and Z1 are even, in which case

2 ∈ PY,n if and only if n ≡ 1 (mod 6),

2 ∈ PZ,n if and only if n ≡ −1 (mod 6).

Suppose that, instead of n dividing Yn, n divides Zn. Then the conditions for a prime
p to belong to PZ,n, or to PY,n, are obtained by interchanging the roles of Y and Z above.
In the case p is 2 and P and Q are odd, the conditions remain identical to those stated
for the case n divides Yn.
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Proof. We take the assumption that n |Yn first.
For p ≡ ±1 (mod 6), the descriptions of the sets PY,n and PZ,n may be obtained by

imitating very closely the part of the proof of Theorem 5.21 that gives PS,n and PT,n,
only using Lemma 5.27 instead of Lemma 5.20, using Lemma 3.4 in place of Lemma 3.3
and the identity ‘Vn = Yn + Zn’ in place of ‘Vn = Sn + Tn’.

If 3 is in PY,n, then 3n |Y3n. But 3 - Y0 so, by Lemma 5.19, 3 is a special prime. Now
the relations n |Yn and V3n = VnYnZn imply that n |V3n. But n | gcd(V3n, Y3n) implies
that n is a product of special primes by Lemma 3.5. Hence 3n is a product of special
primes. A similar argument shows that if 3 is in PZ,n, then 3n is also a product of special
primes. Indeed, 3 |Z3n and 3 - Z0 imply, by Lemma 5.19, that 3 is special. Since n |V3n

and n |Z3n, n is a product of special primes by Lemma 3.5.
Conversely, if 3n is a product of special primes, then 3 |Q, n |Vn by Lemma 5.8, and

n | gcd(Sn, Tn) by Lemma 5.25. Hence 3n |Y3n, since, by identity (2.71) with m = 2n and
n = n, Y3n = 3S2nSn −QnVn. Also, as Z3n = 3T2nTn −QnVn, 3n divides Z3n.

Given that n |Yn, we now prove the necessary and sufficient conditions for 2 to belong
to PY,n.

Suppose 2 ∈ PY,n. Since Y2n = YnVn −Qn, we have n |Qn. So all prime factors of n
divide Q. Let q be a prime factor of n. If q = 2, then Q is even and, by Lemma 5.18, P is
also even. If q = 3, then, as both Q and D are multiples of 3, 3 also divides P . Suppose
q > 3. Since Y satisfies recursion (1.1) and q |Q, we have Yn ≡ Pn−1Y1 (mod q). But
q |Yn so either q |P and q is special, or q |Y1. In the latter case, P ≡ −3F (mod q). Thus,
4Q = P 2 + 3F 2 ≡ 12F 2 (mod q) so that q |F . Hence, q |P . Thus, in all cases, q is special
and n is a product of special primes.

If 2 is not special, then, by Lemma 5.18, Q must be odd. If P is even, then, by
Theorem 3.38, 2 - SkTk, for any k ≥ 1. But SkTk ≡ ZkYk (mod 2), so Yk is odd for all
k ≥ 1, contradicting 2 |Y2n. Therefore, P and Q are odd and ρ(2) = 3. If 2 |Y1 (or T1),
then 2 |Y2n iff 2n ≡ 1 (mod 3), by Proposition 3.11, that is, iff n ≡ −1 (mod 6), since n
as a product of special primes is odd. If 2 |Z1 (or S1), then, by the same reckoning, we
find that n ≡ 1 (mod 6). Conversely, if 2n is a product of special primes, then n |Qn−1,
by Lemma 5.7. Hence, 2n |Qn. Also, all V terms are even, so 2n |YnVn. Thus, 2n divides
Y2n, since Y2n = YnVn −Qn. When 2 is not special, the analysis carried out to prove the
necessity of the conditions stated in our theorem for 2 to belong to PY,n also proves their
sufficiency, as we essentially proceeded by equivalences.

We now assume n |Yn and 2 ∈ PZ,n. This is the cross-over case and it differs from
the situation where n |Sn and 2 ∈ PT,n, because there is no identity like T2n = SnZn
for Z2n. However, we have the identity

Z2n = −Y 2
n + 2Qn. (5.3)

We show that n must be a product of special primes. Let q be a prime factor of n. If q
is odd, then q |Yn and q |Z2n imply, by (5.3), that q |Q. But then Yn ≡ Pn−1Y1 (mod q)
and, if q |Y1, then P ≡ −3F (mod q). Thus, 4Q = P 2 + 3F 2 ≡ 12F 2 (mod q) so that
q divides 3F , and hence P . Therefore, q is special. If q is 2, then 4 | 2n. But Z2n being
even, Yn is even by (5.3) and 4 |Y 2

n . Thus, 2 |Q. But, by Lemma 5.18, P must also be
even. Hence, q is special.
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It cannot occur that Q be odd and P even, or else ρ(2) = 2, 2 |Z2n and 2 - Z0, yet
2n ≡ 0 (mod ρ(2)), which contradicts Proposition 3.11. By Lemma 5.18, P odd forces Q
to be odd. Thus, either 2 is special, or P and Q are both odd. In the latter case, ρ(2) = 3.
Suppose P ≡ F (mod 4). Then Z1 = (P − 3F )/2 ≡ −P (mod 2) is odd and Z2 is even.
Therefore, by Proposition 3.11, 2 |Z2n iff 2n ≡ 2 (mod 3), which occurs iff n ≡ 1 (mod 6),
since n as a product of special primes is odd. If instead P ≡ −F (mod 4), then Z1 is
even, and thus 2 |Z2n iff n ≡ −1 (mod 6).

Conversely, assume first that 2n is a product of special primes. Then, as shown earlier
in this proof, 2 ∈ PY,n. So, since Y2n = −Z2

n + 2Qn, Zn is even. By Lemma 5.8, 2n then
divides ZnVn. Also, by Lemma 5.7, 2n |Qn. Hence, by the identity Z2n = ZnVn − Qn,
2n divides Z2n and 2 ∈ PZ,n. So we now assume n to be a product of special primes
and P and Q to be odd. By Lemma 5.8, n |Vn. By Lemma 5.7, n |Qn. Thus, n |Z2n,
as Z2n = ZnVn − Qn. Note that n is odd so that 2n |Z2n iff 2 |Z2n. But we already
established above, depending on whether P ≡ ±F (mod 4), the necessary and sufficient
conditions on n for 2 to divide Z2n.

Proving the theorem under the assumption that n |Zn can be done in the exact same
manner as in the above proof only interchanging Yn and Zn, and Y2n and Z2n.

To prove a theorem analogous to Theorem 5.26 for NY and NZ , we first establish
some basic lemmas.

Lemma 5.29. If m and n are positive integers and m is prime to 6, then YnZn |YmnZmn.
More precisely, we have, k being the number of prime factors of m that are −1 (mod 6),

Yn |Ymn and Zn |Zmn if k is even,

Zn |Ymn and Yn |Zmn if k is odd.

Proof. It suffices to prove the lemma for m equal to a prime p ≡ ±1 (mod 6). But then
it is a consequence of Lemma 5.27.

Lemma 5.30. Suppose p is a special prime. Then p divides both Yn and Zn for all integers
n ≥ 1.

Proof. The proof is identical to that of Lemma 5.24 with the additional remarks that for
p = 2 and n = 1, the parity of F/2 is the same as that of 3F/2, and for p = 3, p |Y1 and
p |Z1.

Lemma 5.31. If n is a product of special primes, then n divides both Yn and Zn.

Proof. As in Lemma 5.25, we proceed by induction on k = Ω(n). The result holds trivially
for k = 0. So assume k ≥ 1 and assume the inductive hypothesis holds for k − 1. Let
m be a product of k special primes and write m as np with p prime. By the inductive
hypothesis n |Yn. If gcd(m, 6) > 1, then we may choose p to be either 2, or 3, so that,
by Theorem 5.28, m | gcd(Ym, Zm). If gcd(m, 6) = 1, then p ≡ ±1 (mod 6). By Lemma
5.30, p | gcd(Yn, Zn). Also n is a product of special primes. Thus, Theorem 5.28 yields
m | gcd(Ym, Zm).

Lemma 5.32. Suppose 2 is not a special prime. If an even integer m divides Ym or Zm,
then m is not a multiple of 4.
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Proof. Assume m is even and m |Ym. By Lemma 5.18, Q must be odd. Write m = 2`. By
identity (2.58), Y2` = −Z2

` + 2Q`. This implies that Z` is even. Hence, Y2` ≡ 2 (mod 4).
Thus, 4 - m. The case m |Zm is dealt with by the same argument but using the identity
Z2n = −Y 2

n + 2Qn.

We now prove our second theorem concerning NY and NZ .

Theorem 5.33. Every integer m in NY ∪ NZ is either equal to 1, or to a product of
primes p1 · · · pk such that p1 · · · pi is in NY ∪NZ , for each i = 1, . . . , k− 1. In particular,
1 is the only Y Z-basic element.

Proof. The general line of proof follows that of Theorems 5.17 and 5.26.
Assume m |Ym and write m = np, where p is the largest prime factor of m. Then

the theorem will hold if we can show that n divides Yn, or n divides Zn. Indeed, the
case m |Zm would lead to n |Yn, or n |Zn, in an entirely analogous way. Since 1 |Y1,
there is only something to prove if we assume that m is composite. Thus, by Lemma
5.32, unless 2 is special and m = 2`, ` ≥ 2, a case we will treat later in the proof, we
may assume that p is ≥ 3. By identity (2.61), if the product UmVmSmTmZm is even,
then 6m |U6m. If P is even, then 2 |Vm, since each term of the V sequence is even. If
P is odd, then ρ(2) = 3. Moreover, Q is odd by Lemma 5.18. Thus, 2 |Um iff 3 |m by
Theorem 3.7. Also, either T1 and S2 are even, or S1 and T2 are even. In both instances,
by Proposition 3.11, 2 |SmTm for any m congruent to ±1 (mod 3). Hence, the product
UmVmSmTmZm is always even. So using Lemma 5.3 we find that 6n |U6n. In particular,
n |UnVnSnTnYnZn. Let ns be the largest factor of n which is a product of special primes
and write n = ns · nt. By Lemma 5.31, ns | gcd(Yns

, Zns
). Note that 3 - nt. Otherwise, 3

would divide m and, by Lemma 5.19, 3 would be special. However, nt has no special prime
factors. If 2 - nt, then nt is prime to 6 and Lemma 5.29 yields ns | gcd(Yn, Zn). If 2 |nt,
then 2 is not special. By Lemma 5.32, 4 - nt. So we may apply Lemma 5.29 (with, in the
notation of the lemma, n = ns and m = nt/2) and find that ns divides gcd(Yn/2, Zn/2).
By Lemma 5.7, ns |Qns . A fortiori, we have ns |Qn/2. But since Zn = −Y 2

n/2 +2Qn/2 and
Yn = −Z2

n/2+2Qn/2, we get that ns | gcd(Yn, Zn). Therefore, in all cases, ns | gcd(Yn, Zn).
We now prove that nt |YnZn. Note that any prime factor q of nt divides Ym. So if q divides
Un, then, as Un |Um, we have q | gcd(Ym, Um), which, by Lemma 3.5, implies that q is
special. However, this contradicts q |nt. Note that because p 6= 2, Vn |Vm. Thus q does not
divide Vn, or else q, as a divisor of gcd(Ym, Vm), would be special, by Lemma 3.5. Hence
nt |SnTnYnZn. If some prime factor q of nt is > 2, then q > 3, and thus p > 3. But then,
by Lemma 5.29, SnTn |SmTm. If q |SnTn (q > 2), then either q divides gcd(Ym, Sm), or
q divides gcd(Ym, Tm). In either case, q is special, by Lemma 3.5, contradicting q |nt.
Hence, the largest odd integer factor in nt divides YnZn. Recall that for all k, Yk ≡ Tk
(mod 2) and Zk ≡ Sk (mod 2). Thus, if q = 2 and q |SnTnYnZn, then 2 |YnZn. Since, by
Lemma 5.32, 4 - nt, we have proved that nt |YnZn. In particular, since ns | gcd(Yn, Zn),
n |YnZn.

Suppose p ≡ 1 (mod 6). Then by Lemma 5.27, Yn |Ym and Zn |Zm. If n - Yn, then
there has to be a prime q dividing nt such that q |Zn. But then q | gcd(Ym, Zm). So q is
special by Lemma 3.4, which contradicts q |nt. Hence n |Yn.
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Suppose p ≡ −1 (mod 6). Then Yn |Zm and Zn |Ym by Lemma 5.27. If n - Zn, then,
since ns |Zn, there is a prime q dividing nt such that q |Yn. Thus, q | gcd(Ym, Zm) and q

is special, a contradiction. Hence, n |Zn.
Suppose now p = 3. Then, as we saw earlier from Lemma 5.19, 3 is special, since 3 |m

and 3 - Y0. Thus, by Lemma 5.32, either nt = 1, in which case n = ns divides both Yn
and Zn, or nt = 2 and then nt |YnZn implies 2 |Yn or 2 |Zn, and since gcd(nt, ns) = 1,
we get, respectively, n |Yn or n |Zn.

We have not treated the case m = 2`, ` ≥ 2, when 2 is special. In that case n = 2`−1

is a product of special primes and, by Lemma 5.31, n divides both Yn and Zn.



6. Density of prime factors

Given a set R of rational primes, we say that R has a natural or a prime density if
and only if the limit of ]R(x)/π(x) as x goes to infinity exists. Here, as is common,
π(x) denotes the number of primes less than or equal to x. It is known that any set of
rational primes defined by an Artin symbol prescription, as specified by the Chebotarev
density theorem, has a natural density ([20, Theorem 7.10∗]). The prime density δ(X)
of a quadratic integral linear recurring sequence X = (Xn) is defined, if it exists, as the
natural density of the set of primes that divide at least one of its terms. That is, δ(X) is
the limit value of the function

#{p ≤ x; p prime and p | (Xn)}/π(x),

as x goes to ∞.
In [2], the prime density of V sequences was investigated from two main points of

view, that we both wish to extend to the G and H sequences, to the S and T sequences,
and to the Z and Y sequences. However, since each sequence in each of these three pairs
shares the same prime divisors as the other sequence in the same pair, we obviously have,
assuming the existence of the densities,

δ(H) = δ(G), δ(T ) = δ(S) and δ(Y ) = δ(Z).

Consequently, throughout the chapter we only consider and mention the G, the S and
the Z sequences. We now briefly survey the two points of view developed in [2]. First, it
was shown on heuristic grounds that used only elementary arithmetic arguments and the
Dirichlet density theorem for primes in arithmetic progressions that we ought to expect
most V ’s to have a prime density of 2/3. This approach has the advantage of simplicity
and of making these densities more readily transparent. But then, we rigorously proved
that almost all V sequences have density 2/3 in a manner we recall here.

A polynomial x2 − Px+ Q ∈ Z[x], or the associated pair (P,Q) of rational integers,
or the associated U and V Lucas sequences, were said to be generic whenever none of the
three conditions below was satisfied, where as usual D denoted the discriminant P 2−4Q.

(i) Q = ±z2 or ± 2z2, z ∈ N;

(ii) D = ±z2 or ± 2z2, z ∈ N;

(iii) D = ±Qy2 or ± 2Qy2, y ∈ Q.
(6.1)

It was shown that any generic V sequence possesses a prime density equal to 2/3.
Finally, it was proved (Theorem 1 in [2]) that the set of non-generic pairs (P,Q) is

negligible. Equivalently this meant that the integral pairs (P,Q) are almost all generic,

[74]
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i.e., that the function

#{(P,Q); |P | ≤ x, |Q| ≤ x, (P,Q) is generic}/(4x2) (6.2)

tends to 1 as x→∞.
In this chapter, we first deal with the rigorous approach. The calculation of the prime

densities of the V and the G sequences is done in Section 6.1 when extra conditions
are imposed on Q. Similarly, the calculation of the prime densities of the V , S and Z

sequences occupies Section 6.2 and is performed under the assumption that Q satisfies yet
other particular conditions. In each case, it is shown that the extra conditions imposed
on Q are satisfied for ‘almost all’ recursions of discriminant −E2, or, respectively, −3F 2,
with a meaning made precise and defined in a way somewhat analogous to (6.2). Then,
in Section 6.3, we show that these prime density results could have been anticipated
via simple heuristic arguments. This third section splits naturally into two subsections
according as D = −E2 or D = −3F 2.

Meanwhile, we state and prove here a classic result about the divisor function d(·),
which will turn out to be useful in the next two sections. Recall that the divisor function
counts the number of natural divisors of an integer. For instance, d(14) = 4.

Lemma 6.1. Given an integer e ≥ 0 and a real number η > 0, we have∑
n≤x

d(ne) = o(x1+η) as x→∞,

where n represents a positive integer and d(·) is the divisor function.

Proof. By Theorem 317 of [9], for any ε > 0, d(n) < 2(1+ε) logn/log logn, for n large enough.
Thus, given ε > 0, for n large enough, d(ne) < 2e(1+ε) logn/log logn, since log log ne =
(1 + o(1)) log log n as n→∞. Therefore, there exists a C > 0 such that

d(ne) < 2C logn/log logn < nC/log logn,

for any n ≥ 3. Choosing n0 ≥ 3 such that n ≥ n0 ⇒ C/log log n < 1, we find that∑
n≤x d(ne) < Σ0 + Σ1 + Σ2, where Σ0 is the constant

∑n0−1
n=1 d(ne),

Σ1 =

√
x∑

n=n0

nC/log logn <

√
x∑

n=n0

n ≤ x

and

Σ2 =
∑

√
x<n≤x

nC/log logn <
∑

√
x<n≤x

xC/log log
√
x ≤ x · xC(1+o(1))/log log x = o(x1+η),

for any η > 0. Therefore,
∑
n≤x d(ne) < Σ0 +x+ o(x1+η) = o(x1+η), for any η > 0 (1).

(1) We could instead have used the estimate
P
n≤x d(n)e = O(x log2e−1 x), since we have

d(ne) ≤ d(n)e. But this estimate, if obvious for e = 0 and well known for e = 1, is not so well
known for e ≥ 2.
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We will borrow notation from [2], and write, for each integer j ≥ 1,

S+
j = {p; (D | p) = 1 and 2j ‖ p− 1},

D+
j (V ) = {p ∈ S+

j ; ρ(p) exists and is odd},

S−j = {p; (D | p) = −1 and 2j ‖ p+ 1},

D−j (V ) = {p ∈ S−j ; ρ(p) exists and is odd}.

Also, for each j ≥ 1, we consider the two relevant number fields Lj = Q
(
ζ2j ,
√
D, 2j√

r
)

and Kj = Lj(ζ2j+1). They are normal over Q ([2, Lemma 4]). The ratio α/ᾱ is denoted
by r. Given j ≥ 1, we write rj for a fixed 2jth root of r. As was shown in Lemma 5 of [2],
if p splits in Q(

√
D) into two ideals ππ̄, then ρ, the rank of p and order of r (mod (p)),

is also the order of r (mod π).

6.1. Prime density of the V and the G sequences. By the laws of appearance
for primes in (Vn) and in (Gn) (Theorems 3.9 and 3.13), any odd prime not dividing Q
that divides G has a rank divisible by 4, so has even rank, and thus divides V . In fact,
we can see more directly from (2.25) that the prime divisors of G form a subset of the
prime divisors of V . However, there is a partial converse to this inclusion for odd primes
p not dividing E that have Legendre character (Q | p) = −1. Note first that these primes
divide V , since, by Theorem 3.12, (Q | p) = −1 ⇒ p |V(p−εp)/2. Since D = −E2, the
assumption p - E implies that εp 6= 0, and thus that 4 divides p − εp. Therefore, using
(2.25) with n = (p − εp)/2, we have V(p−εp)/2 = 2G(p−εp)/4H(p−εp)/4. But for primes p
not dividing 2Q, we have

p |G ⇔ p |H ⇔ 4 | ρ(p),

so we conclude that primes for which Q is a quadratic non-residue divide G. That is, if Q
is not a square, then the lower prime density of G is at least 1/2. If we assume, in addition,
that Q is not twice a square, then by an elementary argument using, as Ward [27] did
for the Lucas numbers, a Pythagorean identity, here identity (2.19) G2

n +H2
n = 2Qn, we

find that the upper prime density of G is at most equal to 3/4. Indeed, suppose Q is a
quadratic residue and 2 a quadratic non-residue modulo p. If p divides G, then ρH exists.
Putting n = ρH in (2.19) yields G2

ρH
≡ 2QρH (mod p). This contradicts the quadratic

character of 2. So no prime p, having both 2 as a quadratic non-residue and Q as a
quadratic residue, divides G. This set of primes, under our hypotheses on Q, has prime
density 1/4. Therefore, the prime density of G, assuming it exists, lies between 1/2 and
3/4 if Q is neither a square nor twice a square. We will see in Theorem 6.2 below that,
under the very same hypotheses on Q, G always has a prime density of 2/3.

We introduce additional notation that will be specific to this section. For any j ≥ 1,
let

D+
j (G) = {p ∈ S+

j ; ρ(p) exists and is not divisible by 4},

D−j (G) = {p ∈ S−j ; ρ(p) exists and is not divisible by 4}.

Also, define the number fields L∗j = Q
(
ζ2j , i, 2j−1√

r
)

and K∗j = Lj(ζ2j+1).
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Theorem 6.2. Let x2 − Px + Q ∈ Z[x] be a polynomial with discriminant D = −E2,
where E is a non-zero integer, and Q is neither the square nor twice the square of an
integer. Then the prime densities of the associated V , G and H sequences exist. Their
values are

δ(V ) = 5/6 and δ(G) = δ(H) = 2/3.

Proof. We begin by establishing the prime density of the V sequence. As usual we actually
prove the existence and compute the value of the complementary set of primes, which,
up to finitely many primes, is the set of primes p with odd rank ρ = ρ(p). We focus
first on primes not dividing E that are congruent to 1 (mod 4), that is, primes such that
(D | p) = 1. Fix j ≥ 1. By Lemma 6 of [2], the density of primes in D+

j (V ) exists and is
δ+j (V ) = [Lj : Q]−1− [Kj : Q]−1. Note that since D = −E2, Lj = Q

(
ζ2j , i, 2j√

r
)
. If j = 1,

then L1 = Q
(
i,
√
r
)

= K1. Thus, δ+1 (V ) = 0. If j ≥ 2, then Lj = Q
(
ζ2j , 2j√

r
)
. Note that

α is in Q(i) so that r = α2/Q ∈ Q(ζ2j ). Hence, r is a square in Q(ζ2j ) if and only if Q is
a square in Q(ζ2j ). But since Q is positive and is not the square or twice the square of
an integer,

√
Q does not belong to Q(ζ2j ), which has at most three quadratic subfields,

namely, Q(i), Q(
√

2) and Q(
√
−2). Therefore the degree of Lj over Q is 2j−1 ·2j = 2−1 ·4j

and the degree of Kj over Q is 4j . It follows that δ+j (V ) = 4−j , if j ≥ 2. We now turn our
attention to the computation of the densities δ−j (V ) := δ

(
D−j (V )

)
, j ≥ 1. Note that we

cannot directly apply Lemma 6 of [2], since it assumes that the Galois group Γj of Kj/Q
has order 2 · 4j . But the proof of Lemma 6 in [2] shows that a prime p ≡ −1 (mod 4),
not dividing 2QE, is in D−j (V ) iff the Frobenius automorphism of every prime ideal P
of Kj lying over p is the central element τ of Γj that satisfies

τ(ζ2j+1) = −ζ−1
2j+1 and τ(rj) = r−1

j , (6.3)

provided Γj contains such an element. Any element σ of Γj must satisfy

σ(ζ2j+1) = ζa2j+1 and σ(rj) = ζb2jrνj ,

for some integers a, b and ν with a odd, 1 ≤ a ≤ 2j+1, 1 ≤ b ≤ 2j and ν = ±1. But
the non-trivial automorphism of Q(

√
D)/Q being complex conjugation, a and ν are not

independent. Indeed, raising σ(rj) = ζb2jrνj to the 2jth power gives σ(r) = rν . Since r−1

is the complex conjugate of r, we must have σ(i) = iν . Thus, we have

iν = σ(i) = σ(ζ2j+1)2
j−1

= ζa2
j−1

2j+1 = ia,

so that a ≡ ν (mod 4). Hence, we have proved that any σ ∈ Γj must satisfy

σ(ζ2j+1) = ζa2j+1 and σ(rj) = ζb2jrνj ,

where a ≡ ν (mod 4), 1 ≤ a ≤ 2j+1, 1 ≤ b ≤ 2j and ν = ±1. There are 2j−1×2j ×2 = 4j

possible such triplets (a, b, ν). Since Γj has order 4j , each element of Γj corresponds in
a one-to-one way to such an admissible triplet (a, b, ν). Now, the automorphism τ as
defined in (6.3) corresponds to the triplet (a, b, ν) = (−1 + 2j , 2j ,−1). This latter triplet
is admissible if −1+2j ≡ −1 (mod 4), that is, if j ≥ 2. Therefore, δ−1 (V ) = 0 (in fact, S−1
is empty, as can be readily checked from its definition), and by the Chebotarev density
theorem, δ−j (V ) = 4−j if j ≥ 2. Using the argument in [13, p. 454], one can legitimate
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the fact that δ(V ) exists and equals 1 minus the sum∑
j≥2

(
δ+j (V ) + δ−j (V )

)
= 2

∑
j≥2

4−j =
2
42

1
1− 1/4

=
1
6
.

That is, δ(V ) = 5/6.
To prove that G has a prime density of 2/3, we first show that each D+

j (G) and
each D−j (G) has a prime density, that is, we work with the set of non-divisors of the G
sequence. Note that for primes p - 2QE, we have p - G if and only if ρ is either odd or 2 ‖ ρ.
Since S+

1 is empty, we fix a j ≥ 2 and assume that p ∈ S+
j . Given a prime ideal π in Q(i)

above p, ρ is the order of r (mod π), so we have p - G iff the congruence r(p−1)/2j−1 ≡ 1
(mod π) holds. By Euler’s criterion, this means that the equation x2j−1−r = 0 is solvable
modulo π in Z[i]. But, by the Kummer–Dedekind theorem, this equation is solvable if
and only if p splits completely in L∗j , and not completely in K∗j , since p ∈ S+

j implies
that p 6≡ 1 (mod 2j+1). Thus, by the Chebotarev density theorem, D+

j (G) has a prime
density equal to [L∗j : Q]−1 − [K∗j : Q]−1. As seen in the proof for the V density, the fact
that Q is neither a square nor twice the square of an integer, implies that

√
r 6∈ Q(ζ2j ).

Therefore, [L∗j : Q] = 2j−1 · 2j−1 = 4j−1 and [K∗j : Q] = 2[L∗j : Q]. Hence, D+
j (G) has a

prime density of 2−1 · 4−j+1, for all j ≥ 2.
We now turn our attention to primes congruent to −1 (mod 4). Since S−1 is empty,

we fix a j ≥ 2 and a prime p ∈ S−j with p - Q. By Theorem 3.6, we find that ρ(p) divides
p+ 1. So 4 - ρ iff the congruence r(p+1)/2j−1 ≡ 1 (mod (p)) holds, which implies that r is
at least a 2j−1th power modulo (p). Reconducting the argument of Lemma 5 in [2], only
replacing Lj and Kj respectively by L∗j and K∗j , we obtain a criterion for p ∈ S−j to not
divide G, namely that p is inert from Q to Q(i), that (p) splits completely from Q(i) to
K∗j and that the congruence r(p+1)/2j−1 ≡ 1 (mod (p)) holds in Q(i). Now by the proof
of Lemma 6 in [2], one shows that p - G if and only if for any prime ideal P in K∗j lying
above p, the Frobenius automorphism ψ = ψ(P/p) satisfies

ψ(ζ2j+1) = −ζ−1
2j+1 and ψ(rj−1) = r−1

j−1. (6.4)

If the Galois group Γ∗j of K∗j /Q contains an automorphism acting as ψ, then, since ψ
is independent of the choice of P above p, ψ is a central element of Γ∗j . Therefore, by
the Chebotarev density theorem, D−j (G) has a prime density equal to [K∗j : Q]−1 =
2−1 · 4−j+1. We reiterate the counting argument used in the first part of our proof for
non-divisors of V and show that for any σ ∈ Γ∗j there is a triplet (a, b, ν) such that

σ(ζ2j+1) = ζa2j+1 and σ(rj−1) = ζb2j−1rνj−1,

where 1 ≤ a ≤ 2j+1, a ≡ ν (mod 4), 1 ≤ b ≤ 2j−1 and ν = ±1. Since there are ]Γ∗j such
triplets, Γ∗j must contain an automorphism corresponding to the admissible triplet (−1+
2j , 2j−1,−1); that is, Γ∗j contains an element ψ as defined by (6.4). The usual argument
[13, p. 454], based on the fact that S+

j \D
+
j (G) and S−j \D

−
j (G) also have prime densities,

enables us to assert that the set of prime non-divisors of G has a prime density equal to∑
j≥2

(
δ(D+

j (G)) + δ(D−j (G))
)

=
∑
j≥2

(2−1 · 4−j+1 + 2−1 · 4−j+1) =
∑
j≥1

4−j = 1/3.

That is, δ(G) = 1− 1/3 = 2/3.
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Remark. Note in passing that a trivial consequence of the hypotheses of Theorem 6.2
is that the G, the V and the U sequences are truly distinct in that they cannot be
equal up to a shift of index and/or multiplication by a rational scalar. For instance, if
(P,E) = (2, 2), then Q = 2, Gn = Vn−1 and Vn+2 = −4Un for all n, but Q is twice a
square.

We now wish to show that, in some sense, almost all recursions that have Q(i) as
root field satisfy the conditions of Theorem 6.2, and thus that the associated V and G

sequences have prime densities 5/6 and 2/3, respectively. We begin with some preliminary
definitions and remarks.

Definition. We say that a recursion x2 − Px + Q ∈ Z[x] having root field Q(i) is a
Q(i)-recursion. Now, a Q(i)-recursion x2 − Px + Q is said to be G-generic whenever Q
is not a square integer or twice a square integer.

We intend to imitate what was done in [2] in the (P,Q)-plane, but instead work in the
(P,E)-plane because Q(i)-recursions are in a 1-to-2 correspondence with pairs of even
integers (P,E), E 6= 0. Indeed, to a Q(i)-recursion x2 − Px + Q with D = −E2 we
associate the two pairs (P,E) and (P,−E). Conversely, given (P,±E), where P and E

are two even integers and E 6= 0, we associate the Q(i)-recursion x2 − Px + Q, where
4Q = P 2 + E2. We will write that a Q(i)-recursion is x-bounded if the associated P and
E parameters satisfy |P | ≤ x and |E| ≤ x. Since the number of pairs of even integers
(P,E) with E 6= 0 that are x-bounded is asymptotic to x2, we seek to show that the
number of x-bounded Q(i)-recursions that are not G-generic is o(x2). If so, we will also
say that almost all Q(i)-recursions are G-generic.

Theorem 6.3. Almost all Q(i)-recursions are G-generic. In fact, the number of ordered
pairs (P,E) of even integers bounded by x such that P 2 + E2 is the square of an integer
or twice the square of an integer, is o(x1+η) for any given η > 0, and thus is o(x2) as x
tends to ∞.

Proof. We may write any positive integer n as n1n2n3, where nj =
∏
pk, the product

being over all primes p such that pk ‖n and p ≡ j (mod 4), for j = 1, 2 and 3. The number
r(n) of representations of an integer n as a sum of two squares of integers, where both
sign and order are taken into account, is given by r(n) = 4d(n1) if n3 is a square, and by
r(n) = 0 otherwise, where d(·) is the divisor function ([9, Theorem 278, pp. 241–243]).

Let x be a large positive real number. Put y = 2x. Let N (x) denote the number of
x-bounded Q(i)-recursions that are not G-generic. We need to show that N (x) is o(x2).
For this, it suffices to prove that the number of pairs (P,E) of even integers with absolute
values bounded above by x such that Q, or equivalently 4Q, is of the form n2 or 2n2, is
o(x2). Since 4Q = P 2 + E2 ≤ 2x2 < y2, we have

N (x) ≤
y∑

n=1

r(n2) +
y∑

n=1

r(2n2) = 2
y∑

n=1

r(n2)�
y∑

n=1

d(n2).

Therefore, by Lemma 6.1 with e = 2, N (x) is o(y1+η) = o(x1+η), for any η > 0. Thus,
the set of Q(i)-recursions that are not G-generic is indeed negligible within the set of
Q(i)-recursions.
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Remark. By Lemma 2.1, the sets of prime divisors of all four sequences (Gn(±P,±E))
are identical. Thus, in counting Q(i)-recursions that are not G-generic, we could have
restricted ourselves to positive even values of P and E.

6.2. Prime densities of the V , S and Z sequences. Here, our intention is to follow
the same steps as in the previous section. That is, we find conditions on a −3F 2 recursion
that guarantee certain values for the prime densities of the V , the S and the Z sequences,
and show that, in some reasonable sense, these conditions are met for ‘amost all’ −3F 2

recursions. In order to perform this last step we will need a classical proposition about
the number of representations r∗(n) of a positive integer n as A2 + 3B2, where A and
B are integers. This proposition and its proof turn out to be useful in establishing two
lemmas that will be crucial in proving our core density theorems. For this reason, we
begin by proving this classical result.

The content and the elementary proof of this proposition mimic the proof about the
number r(n) of representations of n as a sum of two squares that appears in [9, pp.
241–43], and was also re-expressed in [8, pp. 18–19].

For n a positive integer, we write n = n0n1n2, where nj =
∏
pr, pr ‖n and p ≡ j

(mod 3), j = 0, 1 or 2. The ring Z[ω], ω = e2iπ/6, is well-known to be, as the Gaussian ring
Z[i], a euclidean ring with, in particular, unique factorization into primes. The units in
Z[ω] are the six roots of unity ωk, k = 0, 1, . . . , 5. The primes of Z[ω] are, up to associates,√
−3, all rational primes p congruent to 2 (mod 3), and all pairs of non-associate primes

a ± b
√
−3 whose product is a rational prime congruent to 1 (mod 3). Recall that all

primes congruent to 1 (mod 3) are indeed representable as a2 + 3b2, where a and b are
integers, and that 3 is −(

√
−3)2.

Proposition 6.4. For any positive integer n with 4 dividing n, we have

r∗(n) =

{
6d(n1) if n2 is a square,

0 otherwise,

where d(·) is the divisor function.

Proof. Suppose n = n0 ·n1 ·n2 = 3s ·
∏
pt ·
∏
qu, where the p’s and q’s are rational primes

with p ≡ 1 (mod 3), q ≡ 2 (mod 3), and t and u depend on p and q respectively. The
factorization of n into primes of Z[ω] has the form

(
√
−3)s(−

√
−3)s

∏
(a+ b

√
−3)t(a− b

√
−3)t

∏
qu.

Assuming n to be representable as A2 + 3B2, unique factorization in Z[ω] implies that

A+B
√
−3 = ωk(

√
−3)s

∏
(a+ b

√
−3)t1(a− b

√
−3)t2

∏
qu1 ,

A−B
√
−3 = ω5k(−

√
−3)s

∏
(a+ b

√
−3)t2(a− b

√
−3)t1

∏
qu1 ,

with t1 + t2 = t and 2u1 = u. The condition 2u1 = u entails that n2 is a square. That is,
should n2 not be a square, then r∗(n) = 0. The six choices for k may affect the values
of A and B. There are t + 1 choices for t1 and no choice for u1. Thus, there are up
to 6

∏
(t+ 1) = 6d(n1) choices of parameters which could yield distinct pairs of integers

(A,B) in the representation of n as A2 +3B2. But two distinct values of t1 between 0 and
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t must yield distinct pairs (A,B), or else A+B
√
−3 would have two essentially distinct

prime decompositions in Z[ω]. A simple verification shows that multiplying A + B
√
−3

by successive powers of ω yields six pairwise distinct pairs of integers (A,B), namely

(A,B) 7→
(
A− 3B

2
,
A+B

2

)
7→
(
−A− 3B

2
,
A−B

2

)
7→ (−A,−B),

the next two pairs being the two middle pairs above, but with opposite signs. All six
pairs are indeed pairs of integers rather than possibly half-integers. Indeed, as 4 divides n,
A and B must be two integers of the same parity. Therefore the six successive pairs are
all integral. Thus, r∗(n) is indeed 6 d(n1).

We now establish two lemmas. The first lemma shows that, given a recursion x2 −
Px+Q with discriminant −3F 2, simple conditions imposed on Q, simpler than conditions
(6.1), suffice to guarantee that the recursion is generic.

Lemma 6.5. Suppose the recursion x2 − Px + Q has discriminant D = −3F 2, where F
is an integer ≥ 1. Then Q is not twice or six times a square.

If Q is not a square or three times a square, then x2−Px+Q is a generic recursion.

Proof. If Q were an integer of the form 2n2 or 6n2, then so would 4Q. By Proposition
6.4, numbers of either of these two forms are not representable by the form x2 + 3y2. But
this contradicts the fact that 4Q = P 2 + 3F 2.

Now assume that Q is neither of the form n2 nor 3n2. We must check that none
of the conditions (i)–(iii) of (6.1) is satisfied. Because D = P 2 − 4Q < 0, we have
Q > 0. But we just saw that Q is not twice a square, and, by hypothesis, Q is not a
square. This ensures that condition (i) is not satisfied. The hypothesis D = −3F 2 is not
compatible with condition (ii) of (6.1). It remains to check that D cannot equal −Qy2 or
−2Qy2 for any rational number y. Writing y as A/B where A and B are coprime natural
numbers, D = −Qy2 implies that 3F 2B2 = QA2. But this latter equation implies that
Q = 3n2 for some n ∈ N, contradicting the hypothesis. Secondly, D = −2Qy2 implies
that 2Q = 3n2, i.e., 4Q = 6n2 for some natural number n. But, as we saw, this contradicts
Proposition 6.4.

Notation. For an integer j ≥ 1, we define the sets of primes

T+
j = {p; (D | p) = 1 and 3j ‖ p− 1},

D+
j (S) = {p ∈ T+

j ; ρ(p) exists and is not a multiple of 3},

T−j = {p; (D | p) = −1 and 3j ‖ p+ 1},

D−j (S) = {p ∈ T−j ; ρ(p) exists and is not a multiple of 3}.

Also for all j ≥ 1, we will consider the two normal number fields

Nj = Q(ζ3j , 3
j√
r), Mj = Q(ζ3j+1 , 3

j√
r).

Our second lemma is most important. In order to facilitate its proof we state and
use a proposition, which is a direct corollary of a theorem of Schinzel [22] on separable
radical field extensions. A proof of Schinzel’s theorem can also be found in [26, p. 343].
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Proposition 6.6. Let m be an integer ≥ 1, not divisible by 8. Assume F is a number
field and xm − a1, xm − a2 are irreducible polynomials in F [x]. Let α1, α2 be complex
numbers that are roots of, respectively, xm − a1 and xm − a2. If F (α1) = F (α2), then
a1 = amai2 for some integer i prime to m and some a in F .

Lemma 6.7. Suppose D = P 2 − 4Q = −3F 2, F ≥ 1 and Q is not of the form λn3
1n

2,
where λ is either 1 or 3, n1 is a positive integer whose prime factors are all congruent
to 1 (mod 3) and n is a positive integer. Let j ≥ 1. Then r = α/ᾱ is not the cube of an
element in Q(ζ3j ). Consequently, [Nj : Q] = 2 · 32j−1.

Proof. Suppose the contrary holds, that is, 3
√
r ∈ Q(ζ3j ). Since ( 3

√
r)3 = r ∈ Q(ζ3), 3

√
r

is algebraic of degree at most 6. The cyclotomic extension Q(ζ3j )/Q being cyclic, 3
√
r

must lie in the degree six number field Q(ζ9). That is, there is an x1 in Q(ζ9) such that
x3

1 = r = α/ᾱ = α2/Q = (αQ)2/Q3. Therefore, (αQ)2 and αQ are cubes in Q(ζ9), a field
of class number one. So there is an x in Q(ζ9) such that x3 = αQ. The polynomial x3−αQ
is either irreducible over Q(ζ3), or reduces completely. In case it is irreducible over Q(ζ3)
then Q( 3

√
αQ) = Q(ζ9). Applying Proposition 6.6 to the polynomials x3−αQ and x3− ζ3

and the field F = Q(ζ3) yields

αQ = a3ζi3, for some a ∈ Q(ζ3) and i = 1 or 2.

If x3 − αQ reduces over Q(ζ3), then αQ = a3, for some a ∈ Q(ζ3). Thus, in any case, we
may conclude that there exist an a ∈ Q(ζ3) and an i = 0, 1 or 2 such that

αQ = a3ζi3 = ω2ia3.

Note that αQ and a are algebraic integers in the ring Z[ω]. Also, α may be factored as

ωk(
√
−3)s ·

∏
(b+ c

√
−3)t ·

∏
qu,

where in the first product the b + c
√
−3’s are pairwise non-conjugate and non-associate

primes in Z[ω] and, in the second product, the q’s are rational primes all distinct from 3.
Since αQ = αᾱα, we have

αQ = ω2ia3 = ωk(
√
−3)s3s ·

∏
(b+ c

√
−3)2t(b− c

√
−3)t ·

∏
q3u.

Unique factorization into primes in the ring Z[ω] implies that each t equals 3t′, for some
integer t′ ≥ 1. Hence, Q has the form 3s(

∏
p)3t

′∏
q2u, where all prime factors p are 1

(mod 3). Thus, Q may be written as λn3
1n

2, where λ = 1 or 3, all prime factors of n1 are
1 (mod 3) and n is a natural number. That is, we have reached a contradiction.

By Kummer theory, the degree of the Kummer extension Nj/K is equal to the order
of r in K×/(K×)3

j

, where K = Q(ζ3j ). Thus, [Nj : Q] = [K : Q]× [Nj : K] = 2 · 3j−1 · 3j
as claimed.

Theorem 6.8. Let x2 − Px + Q ∈ Z[x] be a polynomial with discriminant D = −3F 2,
where F is a positive integer, and Q is not of the form λn3

1n
2, where λ = 1 or 3, n1 is 1

or a product of primes congruent to 1 (mod 3) and n is an integer. Then the associated
S sequence has a prime density δ(S) with

δ(S) = 3/4.
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Moreover, prime divisors of S split equally into the two arithmetic progressions ±1
(mod 3), the two subsets of primes each having density 3/8.

Proof. We essentially follow the classical method of Hasse–Lagarias as adapted in [2].
Thus, we first consider primes p that split in Q(

√
−3), that is, primes that are congruent

to 1 (mod 3). This set of primes is the disjoint union of the T+
j ’s for j ≥ 1. Note that each

T+
j being the set of primes of the form 1 +η3j (mod 3j+1), where η is either 1 or −1, has

a prime density equal to 2/ϕ(3j+1) = 3−j , by the Dirichlet density theorem for primes
in arithmetic progressions. Fix a j ≥ 1. Given p in T+

j , p - Q, we have, by Theorem 3.19,
that p - S iff p is in D+

j (S), which holds iff r(p−1)/3j ≡ 1 (mod π), where π is a prime
ideal in Z[ω] above p. This in turn holds iff the equation x3j −r = 0 is solvable modulo π,
in Q(

√
−3). Using the Kummer–Dedekind theorem, we find that primes in D+

j (S) are the
primes that split completely in Nj , but not completely in Mj . Thus, by the Chebotarev
density theorem, D+

j (S) has a prime density

δ(D+
j (S)) = [Nj : Q]−1 − [Mj : Q]−1,

which, by Lemma 6.7, is δ(D+
j (S)) = (1− 1/3)(2 · 32j−1)−1 = 9−j .

We now turn to inert primes, i.e., to primes congruent to −1 (mod 3). Let j ≥ 1. We
wish to characterize, up to finitely many exceptions, primes in T−j which do not divide
S, that is, primes in D−j (S). Given p in T−j , p - Q, let P be a prime ideal in Mj above p
and let ψ denote the Frobenius automorphism of P over p. Since p is inert in Q(

√
−3),

we have r−1 = r̄ = ψ(r) ≡ rp (mod (p)) so that the order of r (mod (p)), that is, the
rank ρ of p, is a divisor of p + 1. Thus, p ∈ D−j (S) iff ρ | (p + 1)/3j . Assuming that p
belongs to D−j (S), we necessarily have

ψ(3j√
r) ≡ (3j√

r)p = (3j√
r)−1r(p+1)/3j

≡ (3j√
r)−1 (mod P),

and if p = −1 + η · 3j (mod 3j+1), with η = ±1, then

ψ(ζ3j+1) ≡ ζp3j+1 = ζ−1+η3j

3j+1 (mod P).

Except, possibly, for finitely many primes p in D−j (S), these two congruences imply that

ψ(3j√
r) = (3j√

r)−1 and ψ(ζ3j+1) = ζ−1+η3j

3j+1 . (6.5)

But this means that the Frobenius automorphism ψ of P over p is independent of the
choice of P above p, and therefore that it must be a central element of the Galois group
of Mj/Q. (It is of order 6 as can easily be checked by verifying that p is of order six
(mod 3j+1)). Thus, if the Galois group of Mj/Q contains two automorphisms satisfying
(6.5), one for each value of η, then, by the Chebotarev density theorem, D−j (S) has a
density equal to 2× [Mj : Q]−1. By Lemma 6.7, it would mean that δ(D−j (S)) = 9−j . To
check that the Galois group of Mj/Q contains two automorphisms, as defined by (6.5), it
is sufficient to observe that any automorphism σ in this group must send ζ3j+1 to ζk3j+1 , for
some k, 1 ≤ k ≤ 3j+1, 3 - k, and send 3j√

r to ζ`3j (3j√
r)ν , for some integer `, 1 ≤ ` ≤ 3j and

ν = ±1. The number of such triplets (k, `, ν) is 3j×3j×2, which is the order of the Galois
group of Mj/Q, by Lemma 6.7. Thus, each such triplet, and in particular (kη, 3j ,−1), for
kη = −1 + η3j (mod 3j+1), η = ±1, which correspond to the automorphisms ψ in (6.5),
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represents an element of the Galois group of Mj over Q. Hence, the set of primes which
do not divide S has a density which can be argued to be∑

j≥1

δ(D+
j (S)) + δ(D−j (S)) = 2

∑
j≥1

9−j = 1/4.

Therefore, we get the existence and the value of 3/4 for the prime density of S. Since
δ(D+

j (S)) = δ(D−j (S)) for all j ≥ 1, density-wise, prime divisors of S are equally split
among the two arithmetic progressions p ≡ ±1 (mod 3), each subset having density 3/8.

Theorem 6.9. Let x2 − Px+Q ∈ Z[x] have discriminant −3F 2, where F is a non-zero
integer. Assume Q is not of the form λn3

1n
2, where n is integral, λ is 1 or 3, and n1 is

1 or a product of primes all congruent to 1 (mod 3). Then each of the five sequences V ,
S, T , Y and Z has a prime density. Their values are

δ(V ) = 2/3, δ(S) = δ(T ) = 3/4, and δ(Y ) = δ(Z) = 1/2.

In addition, the prime divisors of each of these five sequences divide equally into two
subsets of equal densities according to whether their residue class modulo 3 is ±1.

Proof. By Lemma 6.5, the conditions on Q imply that x2−Px+Q is a generic recursion.
Hence, by Theorem 1 of [2], δ(V ) exists and equals 2/3. Theorem 7 of [2] states that
the prime divisors of V are equally distributed among split and inert primes in Q(

√
D),

two classes which, when D = −3F 2, correspond to the two arithmetic progressions ±1
(mod 3). Also, since Q is not a square, Theorem 6.8 says that S and T have a prime
density equal to 3/4 and prime divisors of S are equally divided into the two progressions
±1 (mod 3).

It remains to prove that δ(Z) exists and is 1/2. By Theorem 3.22, a prime p divides
Z iff 6 | ρ(p). Because 6 | ρ iff 2 | ρ and 3 | ρ and since 1/2 = 2/3 × 3/4 = δ(V ) × δ(S), it
amounts to showing, that, in some sense, the two events ‘p |V ’ and ‘p |S’ are statistically
independent. Algebraically, this will translate into showing that the various extensions
Lj and Nk, for j and k ≥ 1, intersect as ‘simply’ as possible. We will proceed, as usual,
by studying the set of primes that do not divide Z. So let C = {p; 6 - ρ(p)}. Then
C = A ∪B, where A = {p; 2 - ρ(p)} and B = {p; 3 - ρ(p)}. Suppose we show that A ∩B
has a natural density, then it will follow that C has a natural density equal to

δ(A) + δ(B)− δ(A ∩B). (6.6)

Let us introduce notation. Given j and k ≥ 1, let I+
j,k (resp. I−j,k) be the sets of primes p

satisfying ν2(p − 1) = j and ν3(p − 1) = k (resp. ν2(p + 1) = j and ν3(p + 1) = k) that
belong to A∩B. Thus, primes p congruent to 1 (mod 3) that divide neither V nor S form
the disjoint union

⋃
j,k I

+
j,k, while primes p ≡ −1 (mod 3) dividing neither V nor S make

up the disjoint union
⋃
j,k I

−
j,k. If each I+

j,k (resp. each I−j,k) possesses a natural density,
then, because primes satisfying ν2(p− 1) = j and ν3(p− 1) = k (resp. ν2(p+ 1) = j and
ν3(p+ 1) = k) have a prime density by the Dirichlet density theorem, it follows that the
sets complementary to the I+

j,k’s (resp. to the I−j,k’s) within the sets of primes satisfying
ν2(p−1) = j and ν3(p−1) = k (resp. ν2(p+1) = j and ν3(p+1) = k) also have a density,
and the usual argument (see [13, p. 454]) will carry over and prove that δ(A ∩B) exists
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and is the sum of the series
∑
j,k(δ(I+

j,k) + δ(I−j,k)). Given two integers j and k ≥ 1, we
denote the composite field of Lj and Nk by Fj,k. Thus, Fj,k = Q(ζ2j ·3k , 2j√

r, 3k√
r).

Let us first consider primes congruent to 1 (mod 3). We fix a j ≥ 1 and a k ≥ 1.
Then, from the proofs of Lemma 5 in [2] and Theorem 6.8, we find that p ∈ I+

j,k iff p
splits completely in Fj,k, but not completely in Fj,k(ζ2j+1), or in Fj,k(ζ3k+1). Hence, by
the Chebotarev density theorem, and the Inclusion-Exclusion principle, I+

j,k has a prime
density equal to

[Fj,k : Q]−1 − [Fj,k(ζ2j+1) : Q]−1 − [Fj,k(ζ3k+1) : Q]−1 + [Fj,k(ζ2j+1·3k+1) : Q]−1. (6.7)

Now, by Lemma 6.7, since Q is not a square, the normal extension Nk/Q(
√
−3) has degree

32k−1. Therefore, the extension Fj,k/Lj is normal of degree 32k−1 (see [18, Theorem 7,
p. 263] and note that Nk/Q(

√
−3) is normal, Lj is an extension of Q(

√
−3) and Nk∩Lj =

Q(
√
−3); the latter fact can be derived from gcd([Nk : Q], [Lj : Q]) = gcd(2·32k−1, 4j) = 2

and
√
−3 ∈ Nk ∩ Lj).

By Lemma 6.5 and the hypothesis on Q, we deduce that Q is neither a square or twice
a square, nor thrice a square or six times a square. So, from the proof of Theorem 1 in [2]
with D = −3F 2, we get [Lj : Q] = 4j . Hence, [Fj,k : Q] = [Lj : Q]×[Fj,k : Lj ] = 4j ·32k−1.
Applying this result to (6.7) yields

δ(I+
j,k) = [Fj,k : Q]−1[1− 1/2− 1/3 + 1/6] = 4−j · 9−k.

We now turn to primes congruent to −1 (mod 3). Again, we fix j and k each ≥ 1.
For better legibility and till the end of our proof, ζ2j+1·3k+1 will be denoted by ζ. Also
Kj,k denotes the field extension Fj,k(ζ). Consider a prime p satisfying ν2(p+ 1) = j and
ν3(p+ 1) = k. Recall that p ∈ I−j,k iff p - V and p - S. Let P be a prime ideal in Kj,k lying
above p and let ψ designate the Frobenius automorphism of P over p. Since p ∈ I−j,k iff
2 - ρ(p) and 3 - ρ(p), we may reconduct the arguments developed in the second parts of
Lemmas 5 and 6 of [2], and of Theorem 6.8 of this paper, to find that, up to possibly
finitely many exceptional primes in I−j,k,

ψ(ζ) = −ζη3 · ζ−1, η = ±1,

ψ(2j√
r) = (2j√

r)−1, (6.8)

ψ(3k√
r) = (3k√

r)−1,

To obtain the first identity in (6.8), combine the facts that ψ(ζ3k+1) = ζ−1±3k

3k+1 = ζ±1
3 ζ−1

3k+1

and ψ(ζ2j+1) = −ζ−1
2j+1 , together with the existence of an integer `, prime to 6, such that

ζ = (ζ2j+1 · ζ3k+1)`.
We now prove that the Galois group of Kj,k/Q contains two elements ψ as defined by

(6.8), one for each value of η.
A priori, any σ in Gal(Kj,k/Q) must send

ζ 7→ ζa, 0 ≤ a < 2j+1 · 3k+1, gcd(a, 6) = 1,
2j√
r 7→ ζb2j (2j√

r)µ, 0 ≤ b < 2j , µ = ±1,
3k√
r 7→ ζc3k(3k√

r)ν , 0 ≤ c < 3k, ν = ±1.
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But any such σ either reduces to the identity automorphism of Q(
√
−3)/Q or to the

non-trivial automorphism that sends
√
−3 to −

√
−3. In the former case, σ fixes α and ᾱ,

hence r, and we necessarily have µ = ν = 1, while, in the latter case, α and ᾱ, and thus r
and r−1, are interchanged, and so µ = ν = −1. Hence, we always have µ = ν. Moreover,
since ζ3 = (−1 +

√
−3)/2 and ζ−1

3 = (−1−
√
−3)/2, we have

ζν3 = σ(ζ3) = σ(ζ2j+1·3k

) = ζa·2
j+1·3k

= ζa3 ,

implying that a ≡ ν (mod 3). Therefore, a being both odd and congruent to ν (mod 3),
there are 2j+1 ·3k+1/2·3 = 2j ·3k values that a may take. Thus, the number of ‘admissible’
quadruplets (a, b, c, ν) corresponding to automorphisms of Gal(Kj,k/Q) is at most equal
to 2j · 3k× 2j × 3k× 2 = 2 · 4j · 9k. But the number 2 · 4j · 9k is also the degree of Kj,k/Q,
since, in the first part of our proof, we showed that [Fj,k : Q] is 4j · 32k−1, and, by the
same token, that [Kj,k : Q] = 6× [Fj,k : Q] = 2 ·4j ·9k. That is, each so-called ‘admissible’
quadruplet described above does correspond to an element of Gal(Kj,k/Q).

Noting that −ζη3 · ζ−1 = ζ2j ·3k+1
ζη·2

j+1·3k

ζ−1 = ζ2j ·3k(2η+3)−1, the automorphisms ψ
in (6.8) correspond to the quadruplets(

2j · 3k(2η + 3)− 1, 0, 0,−1
)
, η = ±1.

Since 2j ·3k(2η+3)−1 is prime to 6 and congruent to ν = −1 (mod 3), these quadruplets
are admissible and the Galois group of Kj,k/Q contains such elements.

Applying the Chebotarev density theorem yields the existence and the value of the
density of I−j,k, which is

δ(I−j,k) = 2× [Kj,k : Q]−1 = 4−j · 9−k = δ(I+
j,k).

Hence, δ(A ∩ B) = 2 ·
∑
j≥1 4−j ·

∑
k≥1 9−k = 2 · 1/3 · 1/8 = 1/12. Thus δ(C) = δ(A) +

δ(B)− δ(A ∩B) = 1/3 + 1/4− 1/12 = 1/2. Hence, δ(Z) = 1− δ(C) = 1/2.
Because for each choice of j and k, δ(I−j,k) = δ(I+

j,k), primes congruent to 1 (mod 3)
in A ∩ B, and primes congruent to −1 (mod 3) in A ∩ B account each for half of the
1/12th density of A∩B. As referenced earlier, the densities δ(A) and δ(B) split each into
two equal subdensities in the two arithmetic progressions ±1 (mod 3), so that primes
1 (mod 3) and primes −1 (mod 3) account each for a half of the 1/2 density of prime
divisors of Z.

As we did in Section 6.1, our intention is to prove that the hypotheses of Theorem
6.9 are typical of almost all recursions with root field Q(

√
−3). We first indicate what we

mean by ‘almost all’.
We begin with some formal definition.

Definition. We say that x2 − Px + Q ∈ Z[x] is a Q(ω)-recursion whenever the root
field of x2−Px+Q is Q(ω). Such a recursion is said to be S-generic whenever Q cannot
be written as either a square times the cube of an integer having all its prime factors 1
(mod 3), or three times a square times such a cube.

Since there is a 1-to-2 correspondence between Q(ω)-recursions and pairs (P, F ) of
integers with P ≡ F (mod 2) and F 6= 0, where a Q(ω)-recursion x2 − Px + Q of
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discriminant −3F 2 corresponds to the two pairs (P,±F ), and since the number of x-
bounded such pairs (P, F ), i.e., for which |P | ≤ x and |F | ≤ x, is asymptotic to 2x2

as x → ∞, we define formally what the expression ‘almost all’ means within the set of
Q(ω)-recursions.

Definition. A property will be said to hold for almost all Q(ω)-recursions x2−Px+Q,
where Q = (P 2 + 3F 2)/4, if the number of pairs (P, F ) ∈ Z2, |P | ≤ x and |F | ≤ x, for
which the property is not satisfied, is o(x2) as x goes to infinity.

We are now ready to prove a theorem that shows that Theorem 6.9 is true for almost
all Q(ω)-recursions.

Theorem 6.10. Almost all Q(ω)-recursions are S-generic. In fact, the number of x-
bounded Q(ω)-recursions such that P 2 + 3F 2 is of the form λn3

1n
2, where n1 and n are

integers and λ equal to 1 or 3, is o(x5/3+η), for any η > 0.

Proof. Given η > 0, we wish to prove that N ∗(x), the number of pairs (P, F ), P ≡ F

(mod 2), |P | ≤ x, 1 ≤ |F | ≤ x such that P 2 + 3F 2 is of the form n3
1n

2 or 3n3
1n

2, is
o(x5/3+η) as x→∞. Put y = 2x. Note that P 2 + 3F 2 is ≤ 4x2 = y2. By Proposition 6.4,
r∗(n3

1n
2) = r∗(3n3

1n
2). The estimation we are about to establish is obtained regardless of

the restriction on the prime factors of n1 that characterize Q(ω)-recursions that are not
S-generic. Now, using Proposition 6.4, we have

N ∗(x) ≤ 2
∑

n3
1n

2≤y2

r∗(n3
1n

2) ≤ 12
∑

n3
1n

2≤y2

d(n3
1n

2) ≤ 12
∑

n3
1n

2≤y2

d((n1n)3)

= 12
y∑

n=1

(y/n)2/3∑
n1=1

d((n1n)3) ≤ 12
y∑

n=1

y2/3∑
t=1

d(t3) ≤ 12y
y2/3∑
t=1

d(t3),

which, by Lemma 6.1, is 12y× o(y2/3+η) = o(x5/3+η). Taking η = 1/3 shows that almost
all Q(ω)-recursions are S-generic.

6.3. Prime densities heuristically. Simple heuristic arguments could have helped us
guess at the densities of generic V and G sequences for −E2 discriminants, as well as at
densities of the generic V , S and Z sequences of −3F 2 discriminants. We briefly present
these heuristic calculations here.

6.3.1. Density heuristics for −E2 discriminants. Given an ε = ±1 and a j ≥
2, we consider the primes p in Sσj , where σ is the sign of ε. Recall that the Dirichlet
density theorem for primes in arithmetic progressions allowed us to conclude that each
Sσj possesses a prime density dσj = 2−j . Given a prime p in Sσj , the probability that
2 - ρ(p), that is, the probability that r be of odd order modulo (p) is proportional to the
number of non-zero residue classes of odd order modulo p, which is (p− ε)/2j . Note that
when ε = −1, we used the fact that ρ must divide p+ 1, so we calculated the proportion
of such residues within the subgroup of order p + 1 of the multiplicative cyclic group of
the finite field Z[i]/(p) ' Fp2 . Thus, we have Probj,ε{2 - ρ} = 2−j , which is independent



88 6. Density of prime factors

of ε (2). Similarly, the probability that 4 - ρ, i.e., that p - G, is (p − ε)/2j−1 divided by
p − ε, since there are (p − ε)/2j−1 residue classes modulo (p) whose order is either odd,
or divisible by 2, but not by 4.

Thus, the expected density of primes not dividing V is∑
j≥2
ε=±1

dσj · Probj,ε{2 - ρ} = 2
∑
j≥2

2−j · 2−j = 1/6,

so that we expect δ(V ) to be 1 − 1/6 = 5/6, which corresponds to the density of a
G-generic V sequence.

Similarly, the expected density of primes not dividing G is∑
j≥2
ε=±1

dσj · Probj,ε{4 - ρ} = 2
∑
j≥2

2−j · 2−j+1 = 1/3,

yielding accurately, according to Theorem 6.2, δ(G) = 2/3.

6.3.2. Density heuristics for the −3F 2 discriminants. Fix an ε = ±1, a j and
a k both ≥ 1. Using the notation of the proof of Theorem 6.9, we wish to evaluate
heuristically the proportion of primes in C = {p; 6 - ρ(p)}, i.e., of primes not dividing
Z, among primes in Iσj,k, where σ is the sign of ε, and Iσj,k is the set of primes p with
εp = ε, 2j ‖ p− ε and 3k ‖ p− ε. The density dσj,k of Iσj,k exists and equals 2/ϕ(2j+1 · 3k+1)
by the Dirichlet density theorem for primes in arithmetic progressions. Indeed, primes
p satisfying both 2j ‖ p− ε and 3k ‖ p− ε form two disjoint arithmetic progressions with
common difference 2j+1 · 3k+1. Thus, dσj,k = 2−j · 3−k, for each value of ε. For primes in
Iσj,k, the probability that 6 - ρ is equal to the probability that 2 - ρ plus the probability
that 3 - ρ minus the probability that neither 2 nor 3 divides ρ. We may estimate the
probabilities that 2 - ρ and 3 - ρ for primes in Iσj,k as

Probj,k,ε{2 - ρ} =
1

p− ε
· p− ε

2j
= 2−j ,

Probj,k,ε{3 - ρ} =
1

p− ε
· p− ε

3k
= 3−k.

Indeed, either ε = 1 and, except for the finitely many primes dividing Q, r belongs to
the multiplicative cyclic group of integers modulo p, or ε = −1 and, since ρ divides p+ 1,
r belongs to the subgroup of order p+ 1 of the multiplicative group of algebraic integers
of the finite field Z[ω]/(p) ' Fp2 . Thus, (p− ε)/2j , or (p− ε)/3k, represent the number of
potential residues of orders prime to 2, or, respectively, to 3, that r may take modulo p.
Therefore, assuming independence of the two events 2 - ρ and 3 - ρ, we find that

Probj,k,ε{6 - ρ} = 2−j + 3−k − 2−j · 3−k.

Note that it does not depend on ε. The weight associated with the probability Probj,k,ε{6 -ρ},
for fixed j, k and ε, should be equal to the density of primes in Iσj,k.

(2) These heuristics are not assumption-free. They are valid for a generic r. For instance
here we assume Q is not a square, or else r = α2/Q is a square in Z/p, or in Z[i]/(p) and the
probability that its order be odd would be at least 21−j .
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Thus, the density of primes p not dividing Z should be∑
j,k≥1
ε=±1

dσj,k · Probj,k,ε{6 - ρ} = 2
∑
j,k≥1

2−j · 3−k · (2−j + 3−k − 2−j · 3−k)

= 2
∑
k≥1

9−k + 2
∑
j≥1

4−j ·
∑
k≥1

3−k − 2
∑
j≥1

4−j ·
∑
k≥1

9−k

= 2×
[

1
8

+
1
3
· 1

2
− 1

3
· 1

8

]
=

1
2
.

Therefore, the expected density of the Z sequence is 1− 1/2 = 1/2.
The heuristic density for V sequences corresponding to discriminants −3F 2 would

be identical to that given in [2], i.e., 2/3, and does not need to be re-calculated. The
expected heuristic density of S sequences, with notation that should now speak up for
itself, is

δ(S) = 1−
∑
k≥1
ε=±1

dσk · Probk,ε{3 - ρ}

= 1− 2
∑
k≥1

3−k · 3−k = 1− 2
∑
k≥1

9−k = 1− 1/4 = 3/4.

These densities are those of Theorem 6.9.
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List of symbols and vocabulary

ζn denotes the complex number e2iπ/n

ω is equal to ζ6
α, ᾱ 15, 18
r is equal to α/ᾱ
Un, Vn 5
Gn, Hn 15
Sn, Tn, Yn, Zn 18, 19
D discriminant P 2 − 4Q of x2 − Px+Q
εp 6, 25
ρX , ρX(p) : rank of p in the sequence X 25
ρ, ρ(m) : rank of m 25
m | n means that m divides n
d | x, with d an integer and x a rational 10, 43
pa ‖n : pa divides n and pa+1 does not divide n
νp(n) = a means that pa ‖ n
∼p 37
:= ‘is by definition equal to’
π(x) prime counting function 74
d(·) number of divisors function
� usual Vinogradov symbol
o(f) Landau symbol, little o of f
δ(X) 74
r(·) 79
r∗(·) 80
#A cardinality of A
S+
j , D+

j (V ), S−j , D−j (V ) 76

D+
j (G), D−j (G), L∗j , K

∗
j 76

T+
j , D+

j (S), T−j , D−j (S) 81
Nj , Mj 81
special prime 23, 55
X-basic 55
cross-over 56
GH-basic 59
ST -basic 64
Y Z-basic 69
generic recursion 74
G-generic recursion 79
S-generic recursion 86
Q(i)-recursion 79
Q(ω)-recursion 86
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