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Abstract

We prove explicit, i.e. non-asymptotic, error bounds for Markov chain Monte Carlo methods.
The problem is to compute the expectation of a function f with respect to a measure π. Different
convergence properties of Markov chains imply different error bounds. For uniformly ergodic and
reversible Markov chains we prove a lower and an upper error bound with respect to ‖f‖2. If
there exists an L2-spectral gap, which is a weaker convergence property than uniform ergodicity,
then we show an upper error bound with respect to ‖f‖p for p > 2. Usually a burn-in period is
an efficient way to tune the algorithm. We provide and justify a recipe how to choose the burn-in
period. The error bounds are applied to the problem of integration with respect to a possibly
unnormalized density. More precise, we consider integration with respect to log-concave densities
and integration over convex bodies. By the use of the Metropolis algorithm based on a ball walk
and the hit-and-run algorithm it is shown that both problems are polynomial tractable.
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1. Introduction and results

In numerous applications one wants to compute the expectation of a function f : D → R
with respect to a probability measure π defined on a measurable space (D,D). The goal
is to approximate

S(f) =

∫
D

f(x)π(dx), (1.1)

where we assume that it is not possible to sample π directly with reasonable cost. In other
words, we assume that there is no random number generator which generates a sample
with respect to π reasonably fast. This might happen if the available information on π is
incomplete or one has a complicated measurable space. However, many applications have
in common that one knows enough about π to design a Markov chain which approximates
the desired distribution. Hence we assume that we cannot sample π directly, but we can
run a Markov chain to get close to π.

Let us briefly illustrate such problems:

• Let A ⊂ Rd be an arbitrary convex body (1). Suppose that we can sample the uniform
distribution on

A ∩ ` for an arbitrary line `.

The goal is to simulate the uniform distribution on A, say µA. For a complicated A it
might be impossible to generate a uniformly distributed sample with reasonable cost.
But the hit-and-run algorithm (see Section 4.2) provides a Markov chain which has the
limit distribution µA.

• Let D ⊂ Rd be a convex body. Suppose that f : D → R is an integrable function with
respect to π%, where % is an unnormalized positive density and

π%(A) =

∫
A
%(x) dx∫

D
%(x) dx

, A ⊂ D.

The goal is to approximate

S(f, %) =

∫
D

f(x)π%(dx) =

∫
D
f(x)%(x) dx∫
D
%(x) dx

.

By the Metropolis algorithm based on the ball walk (see Section 4.1) one can construct
a Markov chain which has the limit distribution π%. It might be impossible to sample
π% directly, in particular if % is a complicated density function.

(1) A convex body is a bounded convex set with non-empty interior.
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6 D. Rudolf

One can ask the following questions. How does the error of numerical integration based
on Markov chains behave? And, how long does the Markov chain need to get close to the
limit distribution?

The thesis deals with the first question and, because of the close relation, touches
briefly the second one. The Markov chain Monte Carlo method for approximating the
expectation plays a crucial role in computer science, in statistical physics, in statistics,
and in financial mathematics (see e.g. [GRS96, Mar99, Liu08, Dia09, BGJM11]). Suppose
that the function f : D → R is given by an oracle which provides function values of f .
The goal is to approximate S(f). The integral simplifies to a sum if the state space D is
finite, such that

S(f) =
∑
x∈D

f(x)π(x). (1.2)

We assume that the distribution π can be simulated by a Markov chain (Xn)n∈N with
transition kernel K and initial distribution ν. The distribution π is the limit distribution,
in particular it is stationary, i.e.

π(A) =

∫
D

K(x,A)π(dx), A ∈ D.

Under weak assumptions on the Markov chain we find that after sufficiently many steps
m ≥ n0, the distribution of Xm is close to π. The number n0 determines the number of
steps to get close to π; it is called the burn-in or the warm up period. Afterwards, we
approximate S(f) by

Sn,n0
(f) =

1

n

n∑
j=1

f(Xj+n0
).

It is well known that an ergodic theorem (2) holds which says that

lim
n→∞

Sn,n0(f) = lim
n→∞

1

n

n∑
j=1

f(Xj+n0) =

∫
D

f(x)π(dx) = S(f) almost surely.

This means that the algorithm is well defined but does not imply an error bound. It is
a qualitative rather than a quantitative result. We study the mean square error of Sn,n0

.
For a function f , integrable with respect to π, it is given by

eν(Sn,n0
, f) = (Eν,K |Sn,n0

(f)− S(f)|2)1/2,

where Eν,K denotes the expectation of a Markov chain with transition kernel K and
initial distribution ν.

The main topic of the thesis is the presentation of old and new explicit error bounds
for computing the expectation by Markov chain Monte Carlo. These bounds are in terms

(2) Suppose that (D,D) is countably generated. Let the Markov chain (Xn)n∈N be ϕ-
irreducible (ϕ is a non-trivial σ-finite measure, for all A ∈ D and for all x ∈ D there exists an
n ∈ N such that ϕ(A) > 0 implies Kn(x,A) > 0). We assume that π is a stationary distribution.
Furthermore for all A ∈ D and for all x ∈ D we have Pr(Xn ∈ A infinitely often | X1 = x) = 1.
Then limn→∞ Sn,n0(f) = S(f) almost surely. For a proof of this fact see [MT09, Theorem 17.1.7,
p. 427]. For a simple approach to a similar ergodic theorem we refer to [AG10]. For a central
limit theorem and fixed-width asymptotics of Markov chain Monte Carlo see [Gey92, JHCN06].
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of the ‖ · ‖p-norm of the integrand f ,

‖f‖p =


(∫

D

|f(x)|p π(dx)

)1/p

, p ∈ [2,∞),

π- ess sup
x∈D

|f(x)|, p =∞.

The kernel K of the Markov chain determines the Markov operator

Pf(x) =

∫
D

f(y)K(x, dy), x ∈ D,

and S(f) =
∫
D
f(x)π(dx) can be considered as an operator mapping into the constant

functions. If P is self-adjoint acting on L2 then the Markov chain is called reversible. The
asymptotic error is completely known if the underlying Markov chain is reversible, the
initial distribution has a bounded density with respect to π and one has ‖P j−S‖L1→L1

≤
Mαj for an α ∈ [0, 1) and M <∞ (Corollary 3.37). One obtains

lim
n→∞

n · sup
‖f‖2≤1

eν(Sn,n0
, f)2 =

1 + Λ

1− Λ
≤ 2

1− Λ
, (1.3)

and
lim

n0→∞
sup
‖f‖2≤1

eν(Sn,n0 , f)2 =
1 + Λ

n(1− Λ)
− 2Λ(1− Λn)

n2(1− Λ)2
≤ 2

n(1− Λ)
, (1.4)

where Λ = sup{α | α ∈ spec(P −S)}. Similar asymptotic estimates are shown in [Sok97,
Mat99, Bré99, Mat04, RR08]. However, we want to have explicit error bounds. The
desired error estimate should behave asymptotically as described in (1.3) and (1.4). For
Λ close to 1 the right hand sides of the equalities of the asymptotic error can be very well
estimated by 2

1−Λ and 2
n(1−Λ) . The main goal is to prove non-asymptotic, explicit error

bounds with respect to ‖f‖p of the form

sup
‖f‖p≤1

eν(Sn,n0
, f)2 ≤ 2

n(1− Λ)
+

Cν,p γ
n0

n2(1− γ)2
,

where Cν,p and γ < 1 should be known. If the initial distribution ν of the Markov chain
is the stationary one, say π, then the influence of the initial part resulting from ν should
vanish, i.e. Cν,p = 0. We give more details in the following.

First we consider the special case where the state space is finite. Let the cardinality
of D be astronomically large, say for example |D| = 1030, so that an exact computation
of the sum (1.2) might be practically impossible. Suppose that we have a Markov chain
with transition matrix P and initial distribution ν. All definitions, such as stationarity,
irreducibility, aperiodicity and all relevant facts of Markov chains on finite state spaces
are provided in Section 2.1. The Markov chain is reversible if the transition matrix P =

(p(x, y))x,y∈D is such that, for a probability measure π,

π(x)p(x, y) = π(y)p(y, x), x, y ∈ D.
If the Markov chain is reversible, then let us define

β = ‖P − S‖`2→`2 = max{β1, |β|D|−1|},
where β1 is the second largest and β|D|−1 the smallest eigenvalue of P . We consider
reversible and ergodic Markov chains, i.e. β, the second largest absolute eigenvalue of P ,
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is less than 1. Hence also β1, the second largest eigenvalue of P , is less than 1. Section 2.2
contains the first error estimate. The explicit error bound is developed with respect to
the `2-norm of the integrand f ∈ RD. For

C =
√
‖1/π‖∞ ‖ν/π − 1‖2

we find in Theorem 2.20 that

sup
‖f‖2≤1

eν(Sn,n0
, f)2 ≤ 2

n(1− β1)
+

2Cβn0

n2(1− β)2
. (1.5)

Obviously C is 0 if ν is π and the asymptotic estimates of (1.3) and (1.4) hold true.
However, the factor ‖1/π‖∞ is unsatisfactory for an extension to general state spaces.
Furthermore we also provide a lower bound of the error (see Remark 2.24). In Section 2.3
we suggest a choice of the burn-in. The main result is as follows.

Theorem 2.25. Suppose that

n0 = max

{⌈
log(

√
‖1/π‖∞ ‖ν/π − 1‖2)

log(β−1)

⌉
, 0

}
.

Then
1 + β1

n(1− β1)
− 4

n2(1− β)2
≤ sup
‖f‖2≤1

eν(Sn,n0 , f)2 ≤ 2

n(1− β)
+

2

n2(1− β)2
.

The suggestion of the burn-in is optimal in the following sense. For η > 0 let the
number of steps N = n+n0 of the Markov chain be large enough, let β = β1 and assume
that C and β obey an additional less restrictive condition. Then the burn-in nopt, which
minimizes the upper error bound of (1.5), satisfies nopt ∈ [n0, (1 + η)n0].

In many examples an estimate for β is available. In Section 2.4 we consider some
illustrating examples where all eigenvalues and eigenvectors are known, so that the exact
error is computable. Then we compare the lower and upper estimates with the exact
error. It turns out that the estimates are sharp depending on the available information
on the eigenvalues. Similar estimates can be found in [Ald87] and [NP09]. However, the
suggestion of the burn-in and the lower bound seem to be new.

After the study of Markov chains on finite state spaces let us introduce the general
state space setting. Assume that the measurable space (D,D) is given. Then the desired
expectation becomes an integral (see (1.1)). Suppose we have a Markov chain with transi-
tion kernel K and initial distribution ν. Let us recall that the transition kernel K defines
the Markov operator

Pf(x) =

∫
D

f(y)K(x,dy), x ∈ D,

and S(f) =
∫
D
f(x)π(dx) can be considered as an operator mapping into the constant

functions. It is well known that reversibility of K is equivalent to self-adjointness of P
acting on L2. In Section 3.1 we provide all definitions such as stationarity and reversibility
in detail. Furthermore it contains all relevant convergence properties of Markov chains.
Mainly the two convergence properties of Definitions 3.14 and 3.10 are essential:
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• Let α ∈ [0, 1) and M < ∞. The Markov chain is called L1-exponentially convergent
with (α,M) if

‖P j − S‖L1→L1
≤Mαj , j ∈ N.

For reversible Markov chains L1-exponential convergence with (α, 2M) is equivalent to
π-a.e. uniform ergodicity with (α,M), see Proposition 3.24.

• The Markov operator has an L2-spectral gap if

β = ‖P − S‖L2→L2 < 1,

where the gap is given by 1− β. The existence of an L2-spectral gap implies an expo-
nential convergence of P j to S with respect to the L2-operator norm for j →∞.

Section 3.2 contains the error estimates for Sn,n0
. We explain the main results in the

following. Let Λ be the largest element of the spectrum of P − S acting on L2, i.e.

Λ = sup{α | α ∈ spec(P − S)}.

Suppose that the Markov chain is reversible and L1-exponentially convergent with (α,M).
Furthermore assume that there exists a bounded density dν

dπ of the initial distribution ν
with respect to π. For

C = M

∥∥∥∥dνdπ − 1

∥∥∥∥
∞

we show in Theorem 3.34 that the error obeys

sup
‖f‖2≤1

eν(Sn,n0
, f)2 ≤ 2

n(1− Λ)
+

2Cαn0

n2(1− α)2
.

Note that the error bound is of the same form as for finite state spaces except for the fact
that the α of the L1-exponential convergence appears. If the transition kernel is reversible
one has Λ ≤ β and in Proposition 3.24 it is shown that β ≤ α. Hence one can further
estimate the leading term of the error bound by using (1 − Λ)−1 ≤ (1 − α)−1. Then a
reasonable choice of the burn-in can be obtained by the same arguments as for finite state
spaces. In Section 3.3 we also justify the choice of the burn-in by numerical experiments,
which confirm the theoretical result.

Theorem 3.45(i). Suppose that we have a Markov chain which is reversible with respect
to π and L1-exponentially convergent with (α,M). Let

n0 = max

{⌈
log(M‖ dνdπ − 1‖∞)

log(α−1)

⌉
, 0

}
.

Then

sup
‖f‖2≤1

eν(Sn,n0
, f)2 ≤ 2

n(1− α)
+

2

n2(1− α)2
.

The condition that the Markov chain is L1-exponentially convergent with (α,M) is
rather restrictive. This motivates the study of Markov chains with a weaker convergence
property, namely we assume that there is an L2-spectral gap. Let us provide the main
result.



10 D. Rudolf

Theorem 3.45(ii). Suppose that we have a Markov chain with Markov operator P which
has an L2-spectral gap, 1−β > 0. For p ∈ (2,∞] let n0(p) be the smallest natural number
(including zero) which is greater than or equal to

1

log(β−1)
·


p

2(p− 2)
log

(
32p

p− 2

∥∥∥∥dνdπ − 1

∥∥∥∥
p
p−2

)
, p ∈ (2, 4),

log

(
64

∥∥∥∥dνdπ − 1

∥∥∥∥
2

)
, p ∈ [4,∞].

Then

sup
‖f‖p≤1

eν(Sn,n0(p), f)2 ≤ 2

n(1− β)
+

2

n2(1− β)2
.

For further details we refer to Section 3.3. There we justify the choice for the burn-
in n0(p) by numerical experiments. Briefly summarized, by weakening the convergence
property we get an estimate of the error for a smaller class of functions. Namely, we prove
an error bound for integrands f which satisfy ‖f‖p <∞ where p > 2.

The last chapter deals with applications. The problem of integration with respect
to log-concave densities is the following. For a function f : D → R and a convex body
D ⊂ Rd the goal is to approximate

S(f, %) =

∫
D
f(x)%(x) dx∫
D
%(x) dx

,

where % is an unnormalized density. The problem is linear in f but not in %. Suppose
that the domain D is the d-dimensional Euclidean unit ball Bd. Furthermore assume that
% is log-concave and log % is Lipschitz continuous with Lipschitz constant L. Hence we
consider the class of densities

RL(Bd) = {% > 0 | % is log-concave, |log %(x)− log %(y)| ≤ L‖x− y‖E},

where ‖ · ‖E denotes the Euclidean norm. We analyze the Metropolis algorithm based
on a δ ball walk (see Algorithm 1 on page 80 and for the Procedure Ball-Walk see page
79). The algorithm generates the desired sample. The sample, say (Xδ

n0+1, . . . , X
δ
n0+n),

is used to compute

Sδn,n0
(f, %) =

1

n

n∑
j=1

f(Xδ
j+n0

).

For an adapted δ = min{(d + 1)−1,L−1} Mathé and Novak showed in [MN07] that the
Markov chain which is defined by the Metropolis algorithm based on a δ ball walk has
an L2-spectral gap. This result is used to get an explicit error bound. We state the result
for the unit ball and for simplicity we consider integrands f with ‖f‖3 ≤ 1. For

n0 � dLmax{d,L2}

the error obeys

sup
‖f‖3≤1, %∈RL(Bd)

e(Sδn,n0
, (f, %)) ≺

√
d

n
max{

√
d,L}+

d

n
max{d,L2},
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where d ∈ N and L ≥ 0 (3). The geometry of the unit ball is essential for the estimate
of the L2-spectral gap of [MN07], since the ball walk might get stuck on domains which
have corners. However, the results of Section 4.1 are slightly more general. There we treat
balls with arbitrary radius r > 0 and the result is with respect to ‖f‖p for p > 2. We refer
to Theorem 4.8 for the details. The number of function evaluations to obtain an error
smaller than ε is polynomially bounded in the dimension d and the Lipschitz constant L.
Hence the problem of integration with respect to a log-concave density is tractable (see
Novak and Woźniakowski [NW08, NW10]).

The problem of integration on a convex body is as follows. Let A ⊂ Rd be a convex
body. The goal is to compute

S(f,A) =
1

vold(A)

∫
A

f(A) dx,

where vold(A) denotes the d-dimensional volume of A. In other words the goal is to
approximate the expectation of f with respect to the uniform distribution, say µA, on A.
The problem is linear in f but not in A. Let Bd ⊂ A ⊂ rBd where rBd is the Euclidean
ball with radius r around 0. We assume that there is an oracle OrA(`) which returns a
uniform distributed state on A∩ ` for an arbitrary line `. Hence we consider state spaces
from the class

Sd(r) = {A ⊂ Rd convex | Bd ⊂ A ⊂ rBd}

and we assume that OrA(`) is available for any A ∈ Sd(r). We analyze the hit-and-run
algorithm, see Algorithm 2 on page 85 and for the Procedure Hit-and-Run see page 84.
It generates the desired sample, say (Xhar

n0+1, . . . , X
har
n+n0

). Afterwards we compute

Shar
n,n0

(f,A) =
1

n

n∑
j=1

f(Xhar
j+n0

).

The Markov chain generated by the hit-and-run algorithm has the right stationary distri-
bution (see Lemma 4.10 or [Smi84]). A result of Lovász and Vempala presented in [LV06]
provides an estimate of 1 − β. Hence there exists an L2-spectral gap and we can apply
the error bound of Theorem 3.45 (ii). For simplicity suppose that ‖f‖3 ≤ 1. For

n0 � d3r2 log(r)

the error obeys

sup
‖f‖3≤1, A∈Sd(r)

e(Shar
n,n0

, (f,A)) ≺ dr√
n

+
d2r2

n
.

For the general result with respect to ‖f‖p with p > 2 we refer to Theorem 4.12. The
number of function evaluations to obtain an error smaller than ε is polynomially bounded
in the dimension d and the radius r. Hence the problem of integration on a convex body
is tractable (see [NW08, NW10]).

(3) We use the notation ≺ and � as follows. Let (an)n∈N and (bn)n∈N be positive sequences.
We write an ≺ bn if there exists an absolute constant c such that an ≤ cbn for all n ∈ N. We
write an � bn if an ≺ bn and bn ≺ an.
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2. Finite state spaces

In the following we study the mean square error of Markov chain Monte Carlo methods
on finite state spaces. In Section 2.1 the basic definitions and properties of Markov chains
on finite state spaces are stated. The estimate of the mean square error is shown in
Section 2.2. We suggest and justify a recipe how to choose the burn-in. Afterwards the
error bound is applied to illustrating examples and finally we discuss how the results fit
into the published literature.

2.1. Markov chains. In this section the basics of Markov chains on finite state spaces
are provided. Let D be a finite set and P(D) the power set of D, so that the measurable
state space (D,P(D)) is given.

Definition 2.1 (Markov chain). A sequence (Xn)n∈N of random variables on a proba-
bility space (Ω,F ,Pr) mapping into (D,P(D)) is called a Markov chain with transition
matrix P = (p(x, y))x,y∈D if for all n ∈ N, all x, y ∈ D and all x1, . . . , xn−1 with

Pr(X1 = x1, . . . , Xn−1 = xn−1, Xn = x) > 0

one has

Pr(Xn+1 = y | X1 = x1, . . . , Xn−1 = xn−1, Xn = x) = Pr(Xn+1 = y | Xn = x) = p(x, y).

All entries of the transition matrix P are non-negative and the rows sum up to 1. For
x, y ∈ D the value p(x, y) is the probability of jumping from state x to state y in a single
step of the chain. The distribution

ν(x) = Pr(X1 = x), x ∈ D,

is called the initial distribution.
Suppose that we have a transition matrix P and a probability measure ν. Any tran-

sition matrix P has a random mapping representation [LPW09, Proposition 1.5, p. 7].
A random mapping representation of P on state space D is a function Φ: D× [0, 1]→ D

which satisfies
Pr(Φ(x, Z) = y) = p(x, y), x, y ∈ D,

where Z : (Ω,F ,Pr) → ([0, 1],B([0, 1])) is a uniformly distributed random variable and
B([0, 1]) denotes the Borel σ-algebra. Then a Markov chain can be constructed as follows.
If (Zn)n∈N is a sequence of i.i.d. random variables with uniform distribution, and X1 has
a distribution ν, then it is easy to see that (Xn)n∈N defined by

Xn = Φ(Xn−1, Zn), n ≥ 2,

is a Markov chain with transition matrix P and initial distribution ν.
In the following we assume that we have a Markov chain (Xn)n∈N with transition

matrix P and initial distribution ν. The expectation Eν,P is taken with respect to the
joint distribution of (Xn)n∈N, say Wν,P , which is defined on (DN, σ(A)) where

DN = {ω = (x1, x2, . . . ) | xi ∈ D for all i ≥ 1},

A =
⋃
k∈N
{A1 × · · · ×Ak ×D × · · · | Ai ∈ P(D), i = 1, . . . , k}.
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For k ∈ N one has, with A1 × · · · ×Ak ⊂ Dk,

Wν,P (A1 × · · · ×Ak ×D × · · · ) =
∑
x1∈A1

· · ·
∑
xk∈Ak

Pr(X1 = x1, . . . , Xk = xk).

If the initial distribution ν is δx, the point mass at x ∈ D, we say that the Markov chain
starts at x. By

Pf(x) =
∑
y∈D

f(y) p(x, y) =
∑
y∈D

f(y)Pr(X2 = y | X1 = x) = Eδx,P [f(X2)]

one has the expectation of f ∈ RD after a single step of the chain which starts at x ∈ D.
The probability to get from x to y in k ≥ 2 steps is

Pr(Xk+1 = y | X1 = x) =
∑
x2∈D

∑
x3∈D

· · ·
∑
xk∈D

p(x, x2)p(x2, x3) . . . p(xk, y) = pk(x, y),

where P k = (pk(x, y))x,y∈D denotes the kth power of P . Then

P kf(x) =
∑
y∈D

f(y) pk(x, y) =
∑
y∈D

f(y)Pr(Xk+1 = y | X1 = x) = Eδx,P [f(Xk+1)]

is the expectation after k steps of the Markov chain which starts at x. Similarly we
consider the application of P to a probability measure ν, i.e.

νP (x) =
∑
y∈D

p(y, x) ν(y) =
∑
y∈D

Pr(X2 = x | X1 = y) ν(y) = Pr(X2 = x).

This is the distribution which arises after a single transition where the initial state is
chosen by ν. The distribution which arises after k ≥ 1 steps is given by

νP k(x) =
∑
y∈D

pk(y, x) ν(y) =
∑
y∈D

Pr(Xk+1 = x | X1 = y) ν(y) = Pr(Xk+1 = x).

In the following we present properties of transition matrices.

Definition 2.2 (irreducibility, aperiodicity, periodicity). A transition matrix P is called
irreducible if for all x, y ∈ D there exists a k ∈ N such that

pk(x, y) > 0, where P k = (pk(x, y))x,y∈D.

A transition matrix P is called aperiodic if for all x ∈ D,

gcd({k ∈ N | pk(x, x) > 0}) = 1,

where gcd denotes the greatest common divisor. If P is not aperiodic we call it periodic.

If a transition matrix is irreducible, then one can reach every state y from every state
x in finitely many steps. Aperiodicity ensures that the number of steps to return to an
arbitrary state is not in {m, 2m, 3m, . . . } for m > 1.

Definition 2.3 (stationarity). Let π be a probability measure on D. Then π is called a
stationary distribution of a transition matrix P if

πP (x) = π(x), x ∈ D.

If the initial distribution of a Markov chain with transition matrix P is a stationary
one, say π, then after a single transition the same distribution as the initial one appears,
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i.e.
Pr(X1 = x) = π(x) = πP (x) = Pr(X2 = x), x ∈ D.

Definition 2.4 (reversibility). Let π be a probability measure on D. A transition matrix
P is called reversible with respect to π if

π(x)p(x, y) = π(y)p(y, x), x, y ∈ D.

If a transition matrix P is reversible with respect to a probability measure π, then π is
a stationary distribution (see [LPW09, Proposition 1.19, p. 14]). If the initial distribution
of a Markov chain with transition matrix P is π, then reversibility with respect to π is
equivalent to

Pr(X1 = x,X2 = y) = Pr(X1 = y,X2 = x), x, y ∈ D.

Definition 2.5 (lazy version). Let P be a transition matrix and let I be the identity
matrix. Then we call

P̃ = 1
2 (I + P )

the lazy version of P .

Let π be a stationary distribution of a transition matrix P . Then π is also stationary
with respect to P̃ . If P is irreducible, reversible with respect to π and periodic, then one
can pass over to the lazy version P̃ and find that P̃ is irreducible, reversible with respect
to π and aperiodic.

A Markov chain is called irreducible, periodic, aperiodic and reversible with respect to
π if the corresponding transition matrix is irreducible, periodic, aperiodic and reversible
with respect to π, respectively.

Let us state some well known implications of the different properties. For proofs
or more details see [Bré99, Str05, LPW09]. For every transition matrix there exists a
stationary distribution and if the matrix is irreducible then there exists a unique station-
ary distribution, which is positive ([LPW09, Proposition 1.14, p. 12 and Corollary 1.17,
p. 14]). Note that if ξ is an eigenvalue of a transition matrix P , then |ξ| ≤ 1 ([LPW09,
Lemma 12.1(i), p. 153]). Furthermore, for irreducible transition matrices 1 is a simple
eigenvalue ([LPW09, Lemma 12.1(ii), p. 153]). If the Markov chain is aperiodic and irre-
ducible, then −1 is not an eigenvalue of P ([LPW09, Lemma 12.1(iii), p. 153] or [Str05,
Theorem 5.1.14, p. 113]). These eigenvalue results are also known as consequences of the
Perron–Frobenius Theorem (see [Sen06]).

In the following we always assume that the Markov chains are irreducible, aperiodic
and reversible with respect to a probability measure π. Hence π is a stationary distribu-
tion. Aperiodicity is not essential. For a Markov chain with periodic transition matrix P
and initial distribution ν we may consider a lazy Markov chain, i.e. a chain with aperiodic
transition matrix P̃ , the lazy version of P , and initial distribution ν.

Let us define a weighted inner product for f, g ∈ RD by

〈f, g〉 =
∑
x∈D

f(x)g(x)π(x)

and let ‖f‖2 = 〈f, f〉1/2. By considering the inner product it is easy to see that reversibil-
ity is equivalent to P being self-adjoint. Applying the spectral theorem for self-adjoint
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transition matrices and the fact that the Markov chain is irreducible one finds that P
has real eigenvalues

1 = β0 > β1 ≥ · · · ≥ β|D|−1 ≥ −1.

If the transition matrix is aperiodic, then β|D|−1 > −1. There exists a basis of orthonormal
eigenfunctions (vectors) {u0, u1, . . . , u|D|−1}, i.e. for i, j ∈ {0, . . . , |D| − 1} one has

Pui = βiui, 〈ui, uj〉 = δij =

{
1, i = j,

0, i 6= j.

Clearly, u0(x) = 1 for all x ∈ D and S(ui) = 〈ui, u0〉 = 0 for i ∈ {1, . . . , |D| − 1}. By the
spectral structure of the transition matrix one has

P k = (pk(x, y))x,y∈D =

|D|−1∑
i=0

βki (ui(x)ui(y)π(y))x,y∈D (2.1)

(see [Bré99, p. 203] for details).
For p ∈ [1,∞] let

‖f‖p =


(∑
x∈D
|f(x)|pπ(x)

)1/p

, p ∈ [1,∞),

sup
x∈D
|f(x)|, p =∞.

The weighted vector space `p = `p(D,π) is defined to be the normed space (RD, ‖ · ‖p).
Furthermore let

`0p = `0p(D,π) = {f ∈ `p | S(f) = 0}.

Then

`2 = `02 ⊕ (`02)⊥ with (`02)⊥ = {f ∈ RD | f ≡ c, c ∈ R} = Eig(P, 1),

where Eig(P, 1) is the eigenspace of P with eigenvalue 1. Note that for the next well
known result it is not assumed that the transition matrix is reversible with respect to π.

Lemma 2.6. Let p ∈ [1,∞] and f ∈ RD. For any transition matrix P with stationary
distribution π one obtains

‖Pf‖p ≤ ‖f‖p and ‖P‖`p→`p = 1.

Proof. By the Jensen inequality (J) (1) and stationarity (stat.) one has∑
x∈D
|Pf(x)|pπ(x) ≤

∑
x∈D

(∑
y∈D
|f(y)|p(x, y)

)p
π(x)

≤
(J)

∑
x∈D

∑
y∈D
|f(y)|pp(x, y)π(x) =

(stat.)

∑
x∈D
|f(x)|pπ(x).

(1) Let (D,D, µ) be a probability space. For any convex function h : R → R and for any
function f : D → R that is integrable with respect to µ, the Jensen inequality is h(

∫
D
f dµ) ≤∫

D
(h ◦ f) dµ.
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If p =∞ then

‖Pf‖∞ = sup
x∈D
|Pf(x)| ≤ sup

x∈D

∑
y∈D
|f(y)|p(x, y) = ‖f‖∞.

Since ‖Pf‖p ≤ ‖f‖p and Pu0 = u0 with ‖u0‖p = 1 we have ‖P‖`p→`p = 1.

Let us briefly explain how to quantify the difference of two distributions. For any
measure ν let ∥∥∥∥νπ

∥∥∥∥
2

=

(∑
x∈D

(
ν(x)

π(x)

)2

π(x)

)1/2

.

If ν is a probability measure on D, then the quantity ‖ν/π − 1‖2 is related to the χ2-
contrast, defined as follows.

Definition 2.7 (χ2-contrast). The χ2-contrast of a distribution ν and a positive distri-
bution µ is defined by

χ2(ν, µ) =
∑
x∈D

(ν(x)− µ(x))2

µ(x)
.

The χ2-contrast is not symmetric and therefore no distance. By a simple calculation
one obtains

χ2(ν, π) =

∥∥∥∥νπ − 1

∥∥∥∥2

2

.

The functional S can be interpreted as an operator which maps into the constant
functions, so one can view

S = (π(y))x,y∈D

as a matrix. Furthermore let

β = max{β1, |β|D|−1|}

be the second largest absolute value of the eigenvalues of P . Now we state a property of
the matrix P − S.

Lemma 2.8. Let P be a reversible transition matrix with respect to π. Then

‖Pn − S‖`2→`2 = ‖Pn‖`02→`02 = βn, n ∈ N. (2.2)

Proof. The self-adjointness of P implies that ‖P‖`02→`02 = max{β1, |β|D|−1|} = β, and
consequently ‖Pn‖`02→`02 = βn. From

‖Pn − S‖`2→`2 = sup
‖f‖2≤1

‖(Pn − S)f‖2 = sup
‖f‖2≤1

‖Pn(f − S(f))‖2

≤ sup
‖g‖2≤1, S(g)=0

‖Png‖2 = ‖Pn‖`02→`02

and

‖Pn‖`02→`02 = sup
‖g‖2≤1, S(g)=0

‖Png‖2 = sup
‖g‖2≤1, S(g)=0

‖Png − S(g)‖2

≤ sup
‖f‖2≤1

‖(Pn − S)f‖2 = ‖Pn − S‖`2→`2

claim (2.2) follows.
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This section is finished by stating a well known fact which shows that νP k converges
to π for increasing k exponentially fast if β < 1.

Corollary 2.9. Let P be a transition matrix and ν a probability measure on D. Let P
be reversible with respect to π. Then∥∥∥∥νP kπ − 1

∥∥∥∥
2

≤ βk
∥∥∥∥νπ − 1

∥∥∥∥
2

, k ∈ N.

Proof. Indeed,∥∥∥∥νP kπ − 1

∥∥∥∥
2

=
(rev.)

∥∥∥∥P k(νπ
)
− 1

∥∥∥∥
2

=

∥∥∥∥P k(νπ − 1

)∥∥∥∥
2

≤ βk
∥∥∥∥νπ − 1

∥∥∥∥
2

.

2.2. Error bounds. In this section explicit error bounds are proven. Let us repeat
the idea of Markov chain Monte Carlo. Suppose we have a Markov chain (Xn)n∈N with
transition matrix P and initial distribution ν, where π is a stationary distribution, and
we compute

Sn,n0
(f) =

1

n

n∑
j=1

f(Xj+n0
)

as an approximation for S(f) =
∑
x∈D f(x)π(x). The error is measured in the mean

square sense, i.e.
eν(Sn,n0

, f) = (Eν,P |Sn,n0
(f)− S(f)|2)1/2.

Now let us present a helpful result.

Lemma 2.10. Let (Xn)n∈N be a Markov chain with transition matrix P and initial dis-
tribution ν. Then for i, j ∈ N with j ≤ i,

Eν,P [f(Xi)f(Xj)] =
∑
x∈D

P j(fP i−jf)(x) ν(x). (2.3)

Moreover, if π is a stationary distribution and ν = π then

Eπ,P [f(Xi)f(Xj)] = 〈f, P i−jf〉. (2.4)

Proof. The calculation

Eν,P [f(Xi)f(Xj)] =
∑
x1∈D

· · ·
∑
xi∈D

f(xj)f(xi) p(xi−1, xi) · · · p(x1, x2)ν(x1)

=
∑
x1∈D

· · ·
∑
xj∈D

f(xj)P
i−jf(xj) p(xj−1, xj) · · · p(x1, x2)ν(x1)

=
∑
x∈D

P j(fP i−jf)(x) ν(x)

proves (2.3) and by using πP (x) = π(x) one gets (2.4).

In the following a special case of the Sn,n0 method is considered. In this case the
initial distribution is stationary, thus, the distribution after a single transition does not
change. Hence it is not necessary to do any burn-in, i.e. n0 = 0. Afterwards the error
representation of the special case is set in relation to the error where the initial distribution
might differ from a stationary one. The techniques which are used are adapted from
[Rud09] and [Rud10].



18 D. Rudolf

In the following Sn,0 is always denoted by Sn. Let us start with a result stated in
[BD06, Proposition 2.1, p. 3].

Proposition 2.11. Let f ∈ RD and let (Xn)n∈N be a Markov chain with transition
matrix P and initial distribution π. Let P be reversible with respect to π. Then

eπ(Sn, f)2 =
1

n2

|D|−1∑
k=1

a2
kW (n, βk), (2.5)

where

ak = 〈f, uk〉 and W (n, βk) =
n(1− β2

k)− 2βk(1− βnk )

(1− βk)2
.

Proof. Let us consider g = f − S(f) ∈ RD. The error obeys

eπ(Sn, f)2 = Eπ,P

∣∣∣∣ 1n
n∑
j=1

g(Xj)

∣∣∣∣2 =
1

n2
Eπ,P

∣∣∣ n∑
j=1

g(Xj)
∣∣∣2

=
1

n2

n∑
j=1

Eπ,P [g(Xj)
2] +

2

n2

n−1∑
j=1

n∑
i=j+1

Eπ,P [g(Xj)g(Xi)].

By using the orthonormal basis {u0, u1, . . . , u|D|−1} we have g(x) =
∑|D|−1
k=1 akuk(x). For

j ≤ i one obtains

Eπ,P [g(Xi)g(Xj)] =

|D|−1∑
k=1

|D|−1∑
l=1

akalEπ,P [uk(Xi)ul(Xj)]

=
(2.4)

|D|−1∑
k=1

|D|−1∑
l=1

akal 〈uk, P i−jul〉

=

|D|−1∑
k=1

|D|−1∑
l=1

akal β
i−j
l 〈uk, ul〉 =

|D|−1∑
k=1

a2
k β

i−j
k .

The last two equalities follow from the orthonormality of the basis of the eigenvectors.
Altogether this gives

eπ(Sn, f)2 =
1

n2

|D|−1∑
k=1

a2
k

[
n+ 2

n−1∑
j=1

n∑
i=j+1

βi−jk

]

=
1

n2

|D|−1∑
k=1

a2
k

[
n+ 2

(n− 1)βk − nβ2
k + βn+1

k

(1− βk)2

]
=

1

n2

|D|−1∑
k=1

a2
kW (n, βk).

Let us consider W (n, βk) to simplify and interpret Proposition 2.11.

Lemma 2.12. For all n ∈ N and k ∈ {1, . . . , |D| − 1},

W (n, βk) ≤W (n, β1) ≤ 2n

1− β1
. (2.6)

Proof. We will show that the mapping x 7→ W (n, x) is increasing on [−1, 1), so that
W (n, βk) ≤W (n, β1). For i ∈ {0, . . . , n} we have

xn−i ≤ 1 ⇔ (1− xi)xn−i ≤ 1− xi ⇔ xn−i + xi ≤ 1 + xn.
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This implies

xj + xj+1 + xn−j−1 + xn−j ≤ 2(1 + xn), j ∈ {0, . . . , n− 1},

and

(1 + x)

n−1∑
j=0

xj =
1

2

n−1∑
j=0

(xj + xj+1 + xn−j−1 + xn−j) ≤ n(1 + xn).

Now
dW

dx
(n, x) = −2

(1 + x)
∑n−1
j=0 x

j − n(1 + xn)

(1− x)2
≥ 0

and the first inequality of the assertion is proven. Since

W (n, x) ≤


n(1 + x)− 2xn

1− x
≤ 2n

1− x
, x ∈ [−1, 0],

n(1 + x)

1− x
≤ 2n

1− x
, x ∈ (0, 1),

the proof is complete.

An explicit formula for the error is established if the initial state is chosen by a
stationary distribution. Let us consider the maximal error of Sn for f which satisfies
‖f‖2 ≤ 1.

Corollary 2.13. Let (Xn)n∈N be a Markov chain with transition matrix P and initial
distribution π. Let P be reversible with respect to π. Then

sup
‖f‖2≤1

eπ(Sn, f)2 =
1 + β1

n(1− β1)
− 2β1(1− βn1 )

n2(1− β1)2
≤ 2

n(1− β1)
. (2.7)

Proof. The individual error of f is

eπ(Sn, f)2 =
(2.5)

1

n2

|D|−1∑
k=1

a2
kW (n, βk) ≤ ‖f‖

2
2

n2
max

k=1,...,|D|−1
W (n, βk)

=
(2.6)

‖f‖22
n2

W (n, β1) =
1 + β1

n(1− β1)
‖f‖22 −

2β1(1− βn1 )

n2(1− β1)2
‖f‖22,

where ak is chosen as in Proposition 2.11 and therefore
∑|D|−1
k=1 a2

k ≤ ‖f‖22. From the
preceding analysis of the individual error we have for ‖f‖2 ≤ 1 the right upper error
bound. Now we consider f = u1, where ‖u1‖2 = 1. By applying (2.5) we have

eπ(Sn, u1)2 =
1 + β1

n(1− β1)
− 2β1(1− βn1 )

n2(1− β1)2
.

Thus the equality of (2.7) is proven, and (2.6) yields the inequality.

In Corollary 2.13 an explicit error bound with respect to ‖ · ‖2 is shown. Notice that
the first part of (2.7) is an equality, which means that the integration error is completely
known if the initial distribution is stationary.

Suppose that the distribution π can be simulated directly, i.e. we can apply a Monte
Carlo method with an i.i.d. sample. Then an i.i.d. sequence (Xn)n∈N, where every Xn is
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distributed with respect to π, is a Markov chain with transition matrix S = (π(y))x,y∈D
and initial distribution π. In this setting one has

eπ(Sn, f)2 =
1

n
‖f − S(f)‖22.

This corresponds to βi = 0 for all i > 0. In some artificial cases other Markov chain Monte
Carlo methods can do better; for example, if there is a Markov chain where βi < 0 and
the target is to approximate S(ui) or if all eigenvalues are smaller than zero. A simple
transition matrix which satisfies this eigenvalue condition is given by

P =


0 1

|D|−1 · · · 1
|D|−1

1
|D|−1 0

. . .
...

...
. . . . . . 1

|D|−1
1

|D|−1 · · · 1
|D|−1 0

 ,

where π(x) = 1/|D| for all x ∈ D (see [FHY92, Remark 3, p. 617]). It turns out that
β1 = · · · = β|D|−1 = − 1

|D|−1 . For large |D| it is unfortunately not possible to construct a
transition matrix where β1 is close to −1.

Proposition 2.14. Let P be an irreducible transition matrix. Then

β1 ≥ −
1

|D| − 1
.

Proof. Since β0 = 1 one has

1 +

|D|−1∑
i=1

βi =

|D|−1∑
i=0

βi = trace(P ) =
∑
x∈D

p(x, x) ≥ 0.

Then

−1 ≤
|D|−1∑
i=1

βi ≤ (|D| − 1)β1.

The error estimates under the assumption that the initial distribution is stationary
seem to be restrictive. If we could sample π directly we would approximate S(f) by
Monte Carlo with an i.i.d. sample. However, even if it is possible it might happen that the
sampling procedure is computationally expensive. It can be reasonable to generate only
the initial state by sampling from π and afterwards run a Markov chain with stationary
distribution π. Perfect sampling might be helpful for the construction of such direct
sampling procedures (see [PW96, Häg02]).

In the following we consider the case where the initial distribution is not necessarily
stationary. Let ν be a distribution on D and k ∈ N. Then we define

dk(x) =
∑
y∈D

ν(y)

π(y)
(pk(x, y)− π(y)) = P k

(
ν

π

)
(x)− 1 = (P k − S)

(
ν

π
− 1

)
(x), x ∈ D.

If P is reversible with respect to π, then we obtain

‖dk‖2 =

∥∥∥∥νP kπ − 1

∥∥∥∥
2

, k ∈ N,
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thus dk determines the difference between νP k and the stationary distribution π. Addi-
tionally by the spectral representation of P k (see (2.1)) one obtains

dk(x) =

|D|−1∑
i=1

βki
∑
y∈D

ui(y)ν(y)ui(x) =

|D|−1∑
i=1

βki

〈
ν

π
, ui

〉
ui(x), x ∈ D. (2.8)

The next statement gives a relation between eν(Sn,n0
, f) and eπ(Sn, f).

Proposition 2.15. Let f ∈ RD and g = f −S(f). Let (Xn)n∈N be a Markov chain with
transition matrix P and initial distribution ν. Let P be reversible with respect to π. Then

eν(Sn,n0
, f)2 = eπ(Sn, f)2 +

1

n2

n∑
j=1

Lj+n0
(g2) +

2

n2

n−1∑
j=1

n∑
k=j+1

Lj+n0
(gP k−jg), (2.9)

where

Li(h) = 〈di, h〉 =

〈
(P i − S)

(
ν

π
− 1

)
, h

〉
, h ∈ RD, i ∈ N.

Proof. It is easy to see that

Eν,P |S(f)− Sn,n0(f)|2 =
1

n2

n∑
j=1

n∑
i=1

Eν,P [g(Xn0+j)g(Xn0+i)]

=
(2.3)

1

n2

n∑
j=1

∑
x∈D

Pn0+j(g2)(x) ν(x) +
2

n2

n−1∑
j=1

n∑
k=j+1

∑
x∈D

Pn0+j(gP k−jg)(x) ν(x).

Recall that reversibility with respect to π is equivalent to self-adjointness (s-a) of P . For
every function h ∈ RD and i ∈ N the following calculation holds:∑

x∈D
(P ih)(x) ν(x) =

〈
P ih,

ν

π

〉
= 〈P ih, 1〉+

〈
P ih,

ν

π
− 1

〉
=

(s-a)
〈P ih, 1〉+

〈
P i
(
ν

π
− 1

)
, h

〉
= 〈P ih, 1〉+

〈
(P i − S)

(
ν

π
− 1

)
, h

〉
=
∑
x∈D

(P ih)(x)π(x) + 〈di, h〉.

Formula (2.9) is shown by using the previous calculation for h = g2 and h = gP k−jg.

Corollary 2.16. Under the same assumptions as in Proposition 2.15 we have, for i ∈
{1, . . . , |D| − 1},

eν(Sn,n0
, ui)

2 =
1 + βi

n(1− βi)
− 2βi(1− βni )

n2(1− βi)2
+

1

n2

n∑
j=1

1 + βi − 2βn−j+1
i

1− βi
Lj+n0

(u2
i ),

where

Lk(u2
i ) =

|D|−1∑
l=1

βkl

〈
ν

π
, ul

〉
〈ul, u2

i 〉 =

|D|−1∑
l=1

βkl 〈ul, u2
i 〉
∑
x∈D

ul(x) ν(x). (2.10)

Proof. By substituting

eπ(Sn, ui)
2 =

1 + βi
n(1− βi)

− 2βi(1− βni )

n2(1− βi)2
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and
n−1∑
j=1

n∑
k=j+1

Lj+n0
(uiP

k−jui) =

n−1∑
j=1

n∑
k=j+1

βk−ji Lj+n0
(u2
i ) =

n−1∑
j=1

Lj+n0(u2
i )(βi − β

n−j+1
i )

1− βi

into (2.9) one obtains the error formula. The equality for Lk(u2
i ) is an implication of

(2.8).

Equation (2.9) and the result of Corollary 2.16 are still exact error formulas. To get
an upper bound for the error, we estimate the functional Lk(·). This estimate depends
on the speed of convergence of νP k to π.

Lemma 2.17. Let h ∈ RD, k ∈ N and recall that β = max{β1, |β|D|−1|}. Then

|Lk(h)| ≤ βk‖ν/π − 1‖2‖h‖2 ≤ βk‖ν/π − 1‖2
√
‖1/π‖∞ ‖h‖1. (2.11)

Proof. After applying the Cauchy–Schwarz inequality (CS) to Lk(h) = 〈dk, h〉 one obtains

|Lk(h)| ≤
(CS)
‖dk‖2‖h‖2 ≤ ‖P k − S‖`2→`2‖ν/π − 1‖2‖h‖2.

By Lemma 2.8 the first inequality is proven and the rest is shown by using ‖h‖2 ≤√
‖1/π‖∞ ‖h‖1.

The last lemma ensures an exponential decay of Lk(·) for increasing k ∈ N. This fact
is used to show that there exists a constant Cν,π,β , which is independent of n and n0,
such that

|eν(Sn,n0 , f)2 − eπ(Sn, f)2| ≤ Cν,π,β ‖f‖22
βn0

n2
.

An immediate consequence of the inequality is an explicit error bound. The following two
lemmas imply such an inequality and provide Cν,π,β explicitly.

Lemma 2.18. Let (Xn)n∈N be a Markov chain with transition matrix P and initial dis-
tribution ν. Let P be reversible with respect to π. Let f ∈ RD and

U(β, n) =

n∑
j=1

βj + 2

n−1∑
j=1

n∑
k=j+1

βk.

Then

|eν(Sn,n0 , f)2 − eπ(Sn, f)2| ≤ U(β, n)
√
‖1/π‖∞ ‖ν/π − 1‖2‖f‖22

βn0

n2
. (2.12)

Proof. Let g = f − S(f). The equation (2.9) implies

|eν(Sn,n0
, f)2 − eπ(Sn, f)2| ≤ 1

n2

n∑
j=1

|Lj+n0
(g2)|+ 2

n2

n−1∑
j=1

n∑
k=j+1

|Lj+n0
(gP k−jg)|.

Then by (2.11) one gets

|Lj+n0
(g2)| ≤ βj+n0

√
‖1/π‖∞ ‖ν/π − 1‖2‖g‖22,

|Lj+n0
(gP k−jg)| ≤ βj+n0

√
‖1/π‖∞ ‖ν/π − 1‖2‖gP k−jg‖1.

By the Cauchy–Schwarz inequality (CS) and ‖P k−j‖`02→`02 = βk−j it follows that

‖gP k−jg‖1 ≤
(CS)
‖g‖2‖P k−jg‖2 ≤ ‖g‖22‖P k−j‖`02→`02 = βk−j‖g‖22.
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Let ε0 =
√
‖1/π‖∞ ‖ν/π − 1‖2βn0 . Then

n∑
j=1

|Lj+n0
(g2)|+ 2

n−1∑
j=1

n∑
k=j+1

|Lj+n0
(gP k−jg)| ≤ ε0‖g‖22

n∑
j=1

βj + 2ε0‖g‖22
n−1∑
j=1

n∑
k=j+1

βk

= ε0‖g‖22
( n∑
j=1

βj + 2

n−1∑
j=1

n∑
k=j+1

βk
)

≤ U(β, n) · ε0‖f‖22.

The last inequality follows from ‖f − S(f)‖2 ≤ ‖f‖2.

Note that one can also get a similar estimate as in (2.12) with respect to ‖f‖4 by
using the first inequality of (2.11) instead of the second one. In the resulting estimate
the factor

√
‖1/π‖∞ does not appear.

Let us consider U(β, n). If β < 1, then the mapping n 7→ U(β, n) is bounded.

Lemma 2.19. Let β < 1. For all n ∈ N we have

U(β, n) ≤ 2

(1− β)2
.

Proof. By the infinite geometric series one obtains

U(β, n) ≤
n∑
j=1

βj +
2β

1− β

n−1∑
j=1

βj ≤ 1 + β

1− β

n∑
j=1

βj ≤ 2

(1− β)2
.

From Lemmas 2.18 and 2.19 it follows that

eν(Sn,n0
, f)2 ≤ eπ(Sn, f)2 +

2βn0
√
‖1/π‖∞ ‖ν/π − 1‖2
n2(1− β)2

‖f‖22.

If the initial distribution ν is π then the error can be represented as in Proposition 2.11
and bounded as in Corollary 2.13.

The next theorem summarizes the main result of this section.

Theorem 2.20. Let f ∈ RD and let (Xn)n∈N be a Markov chain with transition matrix
P and initial distribution ν. Let P be reversible with respect to π and let β < 1. Then

eν(Sn,n0 , f)2 ≤ 2

n(1− β1)
‖f‖22 +

2βn0
√
‖1/π‖∞‖ν/π − 1‖2
n2(1− β)2

‖f‖22. (2.13)

For ak = 〈f, uk〉 one has

lim
n→∞

neν(Sn,n0 , f)2 = lim
n→∞

neπ(Sn, f)2 =

|D|−1∑
k=1

a2
k

1 + βk
1− βk

. (2.14)

Proof. By Lemma 2.18, Corollary 2.13 and Lemma 2.19 the estimate of (2.13) is proven.
By Lemmas 2.18 and 2.19 the first equality of (2.14) holds. Then, by Proposition 2.11,

lim
n→∞

neπ(Sn, f)2 =

|D|−1∑
k=1

a2
k

1 + βk
1− βk

.

Remark 2.21. The error bound (2.13) can be interpreted as follows: The burn-in n0 is
necessary to eliminate the influence of the initial distribution ν, while n must be large
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to decrease eπ(Sn, f). Unfortunately the dependence of the initial distribution on the
estimate is disillusioning for an extension to general state spaces, because of the factor√
‖1/π‖∞. One can avoid this factor if one considers error bounds with respect to ‖f‖p

with p > 2 (see Section 3.2).

Another consequence of Lemmas 2.18 and 2.19 is the following result concerning the
asymptotic error for ‖f‖2 ≤ 1.

Corollary 2.22. Under the same assumptions as in Theorem 2.20,

lim
n→∞

n sup
‖f‖2≤1

eν(Sn,n0
, f)2 =

1 + β1

1− β1

and

lim
n0→∞

sup
‖f‖2≤1

eν(Sn,n0
, f)2 =

1 + β1

n(1− β1)
− 2β1(1− βn1 )

n2(1− β1)2
.

Proof. Let us define

cn,n0 =
2βn0

√
‖1/π‖∞ ‖ν/π − 1‖2
n2(1− β)2

.

One has limn→∞ n · cn,n0
= 0 and limn0→∞ cn,n0

= 0. For ‖f‖2 ≤ 1, by Lemmas 2.18
and 2.19,

|eν(Sn,n0 , f)2 − eπ(Sn, f)2| ≤ cn,n0 .

Hence

sup
‖f‖2≤1

eπ(Sn, f)2 − cn,n0
≤ sup
‖f‖2≤1

eν(Sn,n0
, f)2 ≤ sup

‖f‖2≤1

eπ(Sn, f)2 + cn,n0
. (2.15)

By Corollary 2.13 we have

sup
‖f‖2≤1

eπ(Sn, f)2 =
1 + β1

n(1− β1)
− 2β1(1− βn1 )

n2(1− β1)2
.

Taking the limits in (2.15) yields the assertions.

Remark 2.23. The number
τ =

1 + β1

1− β1

is called the autocorrelation time of P (see [Sok97, Mat99]). If one could sample from π

then β1 = 0 so that τ = 1. Hence τ is the factor of computing time which quantifies the
asymptotic difference of Markov chain Monte Carlo compared to Monte Carlo with an
i.i.d. sample from the distribution π.

Remark 2.24. Observe that one obtains from (2.15) a lower error bound for Sn,n0
. We

have
1 + β1

n(1− β1)
− 2

n2(1− β1)2
− cn,n0 ≤ sup

‖f‖2≤1

eν(Sn,n0 , f)2 ≤ 2

n(1− β1)
+ cn,n0

with cn,n0 defined as in the proof of Corollary 2.22. For a reasonable burn-in of the
Markov chain the error can be effectively approximated by these estimates. We apply
these estimates to illustrating examples (see Section 2.4). Now let us discuss which burn-
in is reasonable.
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2.3. Burn-in. Assume that computer resources for N steps of the Markov chain are
available, i.e. N = n + n0. The goal is to choose the burn-in n0 and the number n such
that the upper error bound is as small as possible. There is obviously a trade-off between
the choice of n and n0. In the next statement the error for an explicitly given burn-in is
stated.

Theorem 2.25. Suppose that

n0 = max

{⌈
log(

√
‖1/π‖∞ ‖ν/π − 1‖2)

log(β−1)

⌉
, 0

}
.

Then
1 + β1

n(1− β1)
− 4

n2(1− β)2
≤ sup
‖f‖2≤1

eν(Sn,n0
, f)2 ≤ 2

n(1− β1)
+

2

n2(1− β)2
.

Proof. The assertion follows from Theorem 2.20 and Remark 2.24.

Note that log(β−1) = (1−β)+
∑∞
j=2

(1−β)j

j! and log(β−1) ≥ 1−β. One might use this
observation to estimate the suggested burn-in. The choice of the burn-in of Theorem 2.25
is justified by the following.

Let us define
C =

√
‖1/π‖∞ ‖ν/π − 1‖2

and assume that β1 = β. If the assumption does not hold we may estimate the error
bound of Theorem 2.20 by using (1 − β1)−1 ≤ (1 − β)−1. For ‖f‖2 ≤ 1 we want to
minimize the error estimate

est(n, n0) =

√
2

n(1− β)
+

2Cβn0

n2(1− β)2
under the constraint that N = n+ n0.

Lemma 2.26. For η > 0 let

C >

(
log(β−1)

1− β

)1/η

, (2.16)

N > (1 + η)
log(C)

log(β−1)
+ 2[log(β−1)− (1− β)]−1. (2.17)

Then there exists an

nopt ∈
[

log(C)

log(β−1)
, (1 + η)

log(C)

log(β−1)

]
,

which minimizes the mapping n0 7→ est(N − n0, n0).

If η = 10−3, then (2.16) implies for β = 0.99 that C > 152 and for C = 1030 that
β > 0.87. Hence the assumptions are not restrictive, since β is usually close to 1, C is
large (2) and the computational resources N should be sufficiently large.

Proof. Let

a = N − (1 + η)
log(C)

log(β−1)
and b = N − log(C)

log(β−1)
.

(2) The constant C might depend exponentially on additional parameters: see the example
“Random walk on the hypercube” in Section 2.4, or see Section 4.
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Note that (2.17) gives that b > a > 0. It is enough to show that there exists anmopt ∈ [a, b]

which minimizes n 7→ est2(n) given by

est2(n) = (est(n,N − n))2 =
2

n(1− β)
+

2CβN−n

n2(1− β)2
.

We have

est2(n)′ =
d

dn
est2(n) =

2

n2(1− β)

[
CβN−n

(1− β)

(
log(β−1)− 2

n

)
− 1

]
.

We will show for any ã ≤ a and b̃ ≥ b that
est2(ã)′ < 0 and est2(b̃)′ > 0,

consequently there exists an mopt ∈ [a, b] which minimizes est2(n). Let b̃ ≥ b. Then the
inequality est2(b̃)′ > 0 follows by (2.17) and

N >
log(C)

log(β−1)

(
2

log(C) +
(
1− 1−β

log(β−1)

))(
1− 1−β

log(β−1)

)
⇔ N >

(1− 1−β
log(β−1) ) log(C) + 2

log(β−1)− (1− β)

⇔ N(log(β−1)− (1− β)) + log(C)

(
1− β

log(β−1)
− 1

)
> 2

⇔
(
N − log(C)

log(β−1)

)
log(β−1)−

(
N − log(C)

log(β−1)

)
(1− β) > 2

⇔ b log(β−1)− b(1− β) > 2

⇔ log(β−1)− 2

b
> (1− β)

⇔ 1

1− β

(
log(β−1)− 2

b

)
− 1 =

CβN−b

1− β

(
log(β−1)− 2

b

)
− 1 > 0

⇒ CβN−b̃

1− β

(
log(β−1)− 2

b̃

)
− 1 > 0.

On the other hand for ã ≤ a we obtain est2(ã)′ < 0. This is shown by the following
calculation. By (2.16) one has

Cη >
(2.16)

log(β−1)

(1− β)

⇔ log(β−1)− (1− β)Cη < 0

⇒ log(β−1)− (1− β)Cη <
2

a

⇔ log(β−1)− 2

a
< (1− β)Cη

⇔ C−η

(1− β)

(
log(β−1)− 2

a

)
− 1 =

CβN−a

(1− β)

(
log(β−1)− 2

a

)
− 1 < 0

⇒ CβN−ã

(1− β)

(
log(β−1)− 2

ã

)
− 1 < 0.
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Altogether this implies that there is an

nopt ∈
[

log(C)

log(β−1)
, (1 + η)

log(C)

log(β−1)

]
which minimizes the mapping n0 7→ est(N − n0, n0).

If an error of at most ε ∈ (0, 1) is desired, then the suggested choice of the burn-in n0

is independent of the precision ε: we choose

n0 = max

{⌈
log(

√
‖1/π‖∞ ‖ν/π − 1‖2)

log(β−1)

⌉
, 0

}
and

n ≥ 1 +
√

1 + 4ε2

(1− β)ε2
to achieve eν(Sn,n0

, f) ≤ ε.

2.4. Examples. The goal is to compare the upper bounds of Theorems 2.20 and 2.25
with the exact error for a given function f ∈ RD. It is not known which f with ‖f‖2 ≤ 1

maximizes eν(Sn,n0
, f)2. But by Corollary 2.22 one has

lim
n0→∞

sup
‖f‖2≤1

eν(Sn,n0 , f)2 = eπ(Sn, u1)2,

where u1 is the eigenfunction corresponding to β1. This motivates the study of the indi-
vidual error for u1, which gives the maximal error for integrands f with ‖f‖2 ≤ 1 if n0

goes to infinity. In this section illustrating examples are considered, where the eigenval-
ues and the eigenfunctions are available. The Markov chains are very well studied in the
literature (see [Mei99, SC04, Str05, BD06, LPW09]).

Random walk on a circle. Let T ≥ 3 be an odd natural number. Let D = ZT be the
underlying state space, where ZT = Z mod T denotes the cyclic group of order T . The
T × T transition matrix of the random walk is

p(x, y) =

{
1/2, y = x± 1 mod T,

0, otherwise.

The transition matrix is reversible with respect to the uniform distribution given by
π(x) = 1/T for x ∈ D. Since T is an odd number, the transition matrix is aperiodic; for
even T it would be periodic. The eigenvalues of the transition matrix are

β0 = 1, β2j−1 = β2j = cos(2πj/T ), j = 1, . . . , (T − 1)/2,

and the orthonormal eigenfunctions {u0, u1, . . . , uT−1} are

u0(x) = 1, u2j−1(x) =
√

2 cos(2π jx/T ), u2j(x) =
√

2 sin(2π jx/T ),

where j = 1, . . . , (T − 1)/2 and x ∈ D. Clearly β = |βT−1| = cos(π/T ), thus β 6= β1.
Let us consider f = u1. The initial distribution is chosen as ν = δ0, so that the initial

state is 0 ∈ D. As (u1)2 = u0 + 1√
2
u3 we have

〈ui, (u1)2〉 = 〈ui, u0〉+
1√
2
〈ui, u3〉 =


1, i = 0,

1/
√

2, i = 3,

0, otherwise.
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Hence by (2.10) we obtain

Lk((u1)2) =

T−1∑
i=1

βki 〈ui, (u1)2〉ui(0) = βk3 .

Additionally with β1 = cos(2π/T ),

eπ(Sn, u1)2 =
1 + cos(2π/T )

n(1− cos(2π/T ))
− 2 cos(2π/T )(1− cosn(2π/T ))

n2(1− cos(2π/T ))2
.

The exact error is determined by Corollary 2.16 with β3 = cos(4π/T ) so that

eν(Sn,n0
, u1) =

(
eπ(Sn, u1)2

+
1

n2

n∑
j=1

(
1 + cos(2π/T )− 2 cosn−j+1(2π/T )

1− cos(2π/T )

)
cosj+n0(4π/T )

)1/2

. (2.18)

We apply Theorem 2.25 to get a lower error bound and (2.13) of Theorem 2.20 to get
an upper error bound, since β 6= β1. Hence the burn-in is chosen as suggested in Theo-
rem 2.25, i.e.

n0 =

⌈
1

2

log(T 2 − T )

log(cos−1(π/T ))

⌉
.

Then

eν(Sn,n0
, u1) ≤

(
2

n(1− cos(2π/T ))
+

2

n2(1− cos(π/T ))2

)1/2

(2.19)

10
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E
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lower bound (2.20)
exact error (2.18)
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Fig. 1. Random walk on a circle: Exact error and error bounds, T = 999 and n0 =

d 1
2

log(T2−T )

log(cos−1(π/T ))
e = 1396699.
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and (
1 + cos(2π/T )

n(1− cos(2π/T ))
− 4

n2(1− cos(π/T ))2

)1/2

≤ eν(Sn,n0
, u1). (2.20)

We have an explicit exact error formula (2.18), a lower error bound (2.20) and an upper
error bound (2.19).

In Figure 1 the different bounds of (2.19), (2.20) and the exact error of (2.18) are
plotted for T = 999. The curves start at N = n0, since the computational resources
must be larger than the burn-in n0 = 1396699. The lower error bound gives a non-trivial
estimate if N ≥ n0 + 1617911 = 3014610, since for n ≥ 4(1−β1)

(1+β1)(1−β)2 = 1617911 one
obtains a lower bound larger as zero.

Random walk on the hypercube. Let d be a natural number. Let D = {0, 1}d be
the state space and |x̃| =

∑d
i=1 |x̃i| for x̃ ∈ {−1, 0, 1}d. The 2d × 2d transition matrix is

given by

p(x, y) =


1/2, x = y,

1/(2d), |x− y| = 1,

0, otherwise.

The transition matrix is reversible with respect to π(x) = 2−d for x ∈ D. Furthermore, it
is aperiodic and irreducible. We use a different notation for the index of the eigenvalues
and orthonormal eigenfunctions, for z ∈ {0, 1}d one has

βz = 1− |z|/d and uz(x) = (−1)
∑d
i=1 zixi , x ∈ D.

Set [0] = (0, . . . , 0) and set [1] = (1, 0, . . . , 0) so that

β[0] = 1, u[0](x) = 1, x ∈ D,
β[1] = 1− 1/d, u[1](x) = (−1)x1 , x ∈ D.

Obviously for all indices z ∈ {0, 1}d we have βz ≥ 0 so that β[1] = β.
Let us choose the initial state of the Markov chain deterministically in (0, . . . , 0) ∈ D,

i.e. ν = δ[0]. By (u[1])
2 = u[0] one has, for z ∈ {0, 1}d,

〈uz, (u[1])
2〉 =

{
1, z = [0],

0, otherwise.

This implies
Lk((u[1])

2) = 0, k ∈ N.

The error of Sn, if the initial state is chosen according to π, obeys

eπ(Sn, u[1])
2 =

2d− 1

n
− 2(d2 − d)

n2

(
1−

(
1− 1

d

)n)
.

Then by Corollary 2.16,
eν(Sn,n0

, u[1]) = eπ(Sn, u[1]). (2.21)

The burn-in and the error bounds are determined by Theorem 2.25. One obtains

n0 =

⌈
1

2

log(22d − 2d)

log(1− 1/d)−1

⌉
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such that

eν(Sn,n0 , u[1]) ≤
√

2d

n
+

2d2

n2
, (2.22)

and √
2d− 1

n
− 4d2

n2
≤ eν(Sn,n0

, u[1]). (2.23)

In Figure 2 for d = 50 the exact error (2.21), the upper error bound (2.22) and the lower
error bound (2.23) are plotted. It can be seen that after the burn-in the curves are close to
each other. The error bounds are polynomial in d which is of the magnitude of log(|D|).
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Fig. 2. Random walk on the hypercube: Exact error and error bounds, d = 50 and n0 =

d 1
2

log(22d−2d)

log(1−1/d)−1 e = 1716.

Random walk on the star. Let T ≥ 2 be an even natural number. Let the state space
be D = {0, 1, . . . , T}. The (T + 1)× (T + 1) transition matrix is given by

p(x, y) =



θ, x = y = 0,
1− θ
T

, x = 0, y ∈ D \ {0},

1, x ∈ D \ {0}, y = 0,

0, otherwise,

with a parameter θ ∈ (0, 1). The transition graph is star shaped since every state is
connected solely to the center 0. The transition matrix is reversible with respect to π
given for x ∈ D by

π(x) =


1

2− θ
, x = 0,

1− θ
T (2− θ)

, otherwise.
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One obtains β0 = 1, βT = θ − 1 and for x ∈ D one has

u0(x) = 1, uT (x) =
√

1− θ

1, x = 0,
1

θ − 1
, otherwise.

The eigenvalue βi = 0 for i ∈ {1, . . . , T − 1} is of multiplicity T − 1. Without loss of
generality we may assume that for any x ∈ D one has

u1(x) =


0, x = 0,√

2− θ
1− θ

, x = 1, . . . , T/2,

−
√

2− θ
1− θ

, x = T/2 + 1, . . . , T.

The remaining eigenvectors u2, . . . , uT−1 are arbitrarily chosen such that we get an or-
thonormal basis {u0, u1, . . . , uT }. One has an aperiodic and irreducible transition matrix
where β1 = 0 and β = max{β1, |βT |} = 1 − θ. We consider the error for f = u1. The
initial state is the center of the star, i.e. 0. Then ν = δ0. From (u1)2 = u0− 1√

1−θ uT one
gets

〈ui, (u1)2〉 =


1, i = 0,

− 1√
1− θ

, i = T,

0, otherwise.

By (2.10) this implies

Lk((u1)2) =

T∑
i=1

βki 〈ui, (u1)2〉ui(0) = −βkT = −(θ − 1)k.

The error where the Markov chain is initialized by the stationary distribution obeys

eπ(Sn, u1)2 =
1

n
.

Then by Corollary 2.16 it follows that

eν(Sn,n0 , u1) =

(
1

n
− (θ − 1)n0+1((θ − 1)n − 1)

(θ − 2)n2

)1/2

. (2.24)

Recall that β1 6= β. However, we only use the error bounds of Theorem 2.25. The burn-in
is chosen as

n0 =

⌈
log((2− θ)T )

2 log(1− θ)−1

⌉
.

Then the upper bound is

eν(Sn,n0
, u1) ≤

√
2

θn
+

2

θ2n2
, (2.25)

and the lower bound is √
1

n
− 4

θ2n2
≤ eν(Sn,n0

, u1). (2.26)
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In Figure 3 for θ = 0.1 and T = 105 the exact error (2.24), the upper error bound (2.25)
and the lower bound (2.26) are plotted. For n ≥ 4/θ2 we get a non-trivial estimate by the

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

N = n0 +n

E
rr
or

 

 

lower bound (2.26)
exact error (2.24)
upper bound (2.25)

Fig. 3. Random walk on the star: Exact error and error bounds, θ = 0.1, T = 105 and n0 =
d log((2−θ)T )

2 log(1−θ)−1 e = 58.

lower bound. The upper error bound is shifted down since β 6= β1. One could improve this
by using (2.13) of Theorem 2.20 directly. In the present setting one loses asymptotically
a factor of

√
2/θ.

Let us summarize the important facts of this section. The error was considered for
the eigenfunction u1 corresponding to β1. If n0 goes to infinity, then u1 is the function
which maximizes the error for integrands f with ‖f‖2 ≤ 1. The bound of Theorem 2.25
applied in this setting gives tight results if β1 = β. Otherwise Theorem 2.20 achieves
the right asymptotic coefficient if β1 and β are known. For the examples considered,
one knows the eigenvalues and the eigenfunctions explicitly. In applications it is usually
difficult to estimate β1 or β, but there are different auxiliary tools, e.g. the canonical
path technique, conductance (see [JS89] and [DS91]), log-Sobolev inequalities and path
coupling (see [LPW09]). However, if the eigenvalues β1 and β|D|−1 are available, then the
error can be approximated by the lower and upper bound.

2.5. Notes and remarks. Let us comment on how the results fit into the published
literature. An elementary and powerful technique to bound the error for Sn,n0

or Sn is
based on Doeblin’s theory (see [Str05, p. 27]). Let Ak = (ak(x, y))x,y∈D be the kth Cesàro
sum given by

Ak =
1

k

k−1∑
j=0

P j .
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Assume that

∃M ∈ N \ {1}, y0 ∈ D and γ > 0 such that ∀x ∈ D : aM (x, y0) ≥ γ. (2.27)

Then for any n0 the error obeys

eν(Sn,n0
, f)2 ≤ 8(M − 1)

nγ
‖f‖2∞.

Condition (2.27) states that there is a state y0 where the expected value of visiting it, on
average, until M from any other state is uniformly bounded from below with rate γ. If
the transition matrix is irreducible then there exists anM such that AM > 0 and (2.27) is
satisfied (see for example [Beh00, Lemma 7.3, p. 50]). It is difficult to obtain γ andM . Let
us state a toy example where one can compute γ and M explicitly. Let D = {0, 1}d. We
consider a Markov chain which independently samples with respect to π with π(x) = 2−d

for x ∈ D. This is Monte Carlo with an i.i.d. sample. Consequently, we get best possible
parameters γ = 2−d−1 and M = 2. The error estimate behaves exponentially badly in
terms of d. In contrast, the estimate of Theorem 2.20 is independent of d. In general, even
if one can get γ and M , these constants are often exponentially bad in terms of some
other parameters. Usually γ is close to zero and M is huge. However, with this bound
even the periodic case is covered and reversibility is not necessary. But on the other hand
the optimal coefficient 1+β1

1−β1
of the leading term of Corollary 2.13 is not reached and the

burn-in cannot be used to tune the algorithm.
The approach to use the spectral representation of reversible transition matrices is

not new. In [BD06] the result of Proposition 2.11 is presented. By the same arguments a
slightly worse bound is shown in [Ald87, Proposition 4.1, p. 40]. It applies if β1 ≥ 0 and
gives

eπ(Sn, f)2 ≤ 2

n(1− β1)
‖f‖22 +

2 exp{−n(1− β1)}
n2(1− β1)2

‖f‖22. (2.28)

Furthermore if the initial distribution ν is not stationary, a different algorithm is consid-
ered. Namely, the burn-in n∗0 is randomly chosen, independent of (Xn)n∈N, according to
the Poisson distribution with parameter n0, and

S∗n,n0
(f) =

1

n

n∑
j=1

f(Xj+n∗0 ).

Then it is proven in [Ald87, Proposition 4.2, p. 41] that

eν(S∗n,n0
, f)2 ≤ eπ(Sn, f)2(1 + ‖1/π‖∞ exp{−n0(1− β1)}).

This bound applies also for periodic Markov chains and after applying (2.28) it gives
an estimate with respect to ‖ · ‖2. The optimal coefficient 1+β1

1−β1
of the leading term (see

Corollary 2.22) is not reached, also if Corollary 2.13 instead of (2.28) is applied. The burn-
in n∗0 is randomly chosen rather than deterministically, since then one can translate the
discrete time Markov chain into a continuous time Markov chain and avoids discussions
of negative eigenvalues. This technique is similar to the idea of considering a lazy Markov
chain.

In [NP09] an explicit error bound is given which also holds for non-reversible Markov
chains with an absolute `2-spectral gap, i.e. β = ‖P‖`02→`02 < 1. In the proof of the error
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bound the multiplicative reversibilization PP ∗ of P is used, where P ∗ is the adjoint
operator of P acting on `2. It follows from [NP09, Corollary 4.2, p. 320] that

eν(Sn,n0
, f)2 ≤ 1 + β

n(1− β)
‖f‖22 +

2β

(1− β)2n2
‖f‖22 +

2(1 + β)βn0‖ν/π − 1‖2
(1− β)n2

‖f‖∞‖f‖2.

One obtains an error bound uniformly with respect to ‖f‖2 by using ‖f‖∞ ≤ ‖ 1
π‖

1/2
∞ ‖f‖2.

The spectral gap can be implied by aperiodicity and irreducibility of the Markov chain, see
[LPW09, Lemma 12.1, p. 153]. But it is remarkable that the chain can be non-reversible.
If β = β1 then the error bound has the right coefficient of the leading term. Then it is
essentially the same bound as in Theorem 2.20.

Also confidence estimates of Sn,n0
are of interest. The goal is to achieve for given

precision ε ∈ (0, 1) and confidence parameter α ∈ (0, 1) that

Pr(|Sn,n0(f)− S(f)| ≥ ε) ≤ α. (2.29)

An estimate of the mean square error implies such confidence estimates.

Lemma 2.27. Let (Xn)n∈N be a Markov chain with transition matrix P and initial dis-
tribution ν and let ε ∈ (0, 1). Then

Pr(|Sn,n0(f)− S(f)| ≥ ε) ≤ eν(Sn,n0 , f)2

ε2
.

Proof. The result is an application of the Markov inequality.

Suppose that ‖f‖2 ≤ 1. If one applies Lemma 2.27 and the burn-in is chosen as in
Theorem 2.25 then it follows for

n0 ≥
log(

√
‖1/π‖∞ ‖ν/π − 1‖2)

log(β−1)
and n ≥ 4α−1ε−2

1− β

that (2.29) is true. Note that the burn-in is chosen independently of α. In [LPW09,
Theorem 12.19, p. 165] a similar bound is deduced by coupling arguments. It implies a
slightly worse result if the initial state is deterministically chosen. If

n0 ≥
log(2α−1‖1/π‖∞)

1− β
and n ≥ 4α−1ε−2

1− β
then (2.29) is true. The main difference is the dependence of α on the choice of the burn-
in. One can essentially boost this confidence level by using a median of independent runs
of the Markov chain Monte Carlo method. This is explained in [NP09].

However, both results presented are far away from well known Chernoff bounds. These
exponential inequalities for finite Markov chains are shown in [Gil98] for random walks
on graphs. In [Lez98], this Chernoff bound was extended and refined for Markov chains
on finite and general state spaces, furthermore for discrete and continuous time. For
irreducible and reversible Markov chains on finite D and ‖f‖∞ ≤ 1 one deduces from
[Lez98, Theorem 1.1, p. 850] that

Pr(|Sn,n0(f)− S(f)| ≥ ε) ≤ 3

∥∥∥∥νPn0

π

∥∥∥∥
2

exp

{
−n(1− β1)

ε2

12

}
. (2.30)
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In other words, if

n0 ≥
log(‖ν/π − 1‖2)

log(β−1)
and n ≥ 12ε−2 log(6α−1)

1− β1

then (2.29) holds true. This is better than using Lemma 2.27. In [LP04] Hoeffding bounds
for reversible Markov chains are presented.

Such exponential inequalities also imply an error bound of the mean square error by
the following well known formula (see for example [Kal02, Lemma 2.4, p. 26]).

Lemma 2.28. Let (Xn)n∈N be a Markov chain with transition matrix P and initial dis-
tribution ν. Then

eν(Sn,n0 , f)2 =

∫ ∞
0

Pr(|Sn,n0(f)− S(f)| ≥
√
ε) dε.

By Lemma 2.28 and by (2.30) one obtains the error bound

sup
‖f‖∞≤1

eν(Sn,n0 , f)2 ≤ 36(1 + βn0‖ν/π − 1‖2)

n(1− β1)
.

The asymptotic coefficient as described in Corollaries 2.13 and 2.22 is not reached. How-
ever, the error bound applies also for periodic Markov chains.

Let us provide a conclusion. Different explicit error bounds for finite state spaces are
known. The results presented in Section 2.2 are not entirely new. In the literature one
can find similar estimates where some of the assumptions like aperiodicity or reversibility
are weakened. The justification and discussion of the burn-in in Section 2.3 and the lower
bound of Theorem 2.25 seem to be new. In the following we will extend the results to
general state spaces.

3. General state spaces

In the following we study the mean square error of Markov chain Monte Carlo methods
on general state spaces. The state space can be countable or uncountable. In Section 3.1
we provide the basic definitions and properties of Markov chains on general state spaces.
The estimates of the mean square error are shown in Section 3.2. We suggest and justify
a recipe for choosing the burn-in in Section 3.3. Afterwards the error bound is applied
to illustrating examples and finally we discuss how the results fit into the published
literature.

3.1. Markov chains. In this section facts and definitions regarding Markov chains on
general state spaces are stated. The paper [RR04] of Rosenthal and Roberts surveys
various results about Markov chains on general state spaces. For further reading we refer
to [Rev84, Num84, MT09].

Let (D,D) be a measurable space. In most examples D is contained in Rd and D

is B(D), the Borel σ-algebra of D. We now define transition kernels and Markov chains.



36 D. Rudolf

Definition 3.1 (Markov kernel, transition kernel). The function K : D ×D → [0, 1] is
called a Markov kernel or a transition kernel if

(i) for each x ∈ D the mapping A ∈ D 7→ K(x,A) is a probability measure on (D,D),
(ii) for each A ∈ D the mapping x ∈ D 7→ K(x,A) is a D-measurable real-valued

function.

Definition 3.2 (Markov chain). A sequence of random variables (Xn)n∈N on a probabil-
ity space (Ω,F ,Pr) mapping into (D,D) is called a Markov chain with transition kernel
K if for all n ∈ N and A ∈ D one has

Pr(Xn+1 ∈ A | X1, . . . , Xn) = Pr(Xn+1 ∈ A | Xn) = K(Xn, A) almost surely.

The distribution

ν(A) = Pr(X1 ∈ A), A ∈ D,

is called the initial distribution.

Suppose that we have a transition kernel K and a probability measure ν. For simpli-
city assume that D ⊂ Rd and D = B(D). For any transition kernel there exists a random
mapping representation (see for example Kallenberg [Kal02, Lemma 2.22, p. 34]), a mea-
surable function Φ: D × [0, 1]→ D which satisfies

Pr(Φ(x, Z) ∈ A) = K(x,A), x ∈ D, A ∈ D,

where the random variable Z : (Ω,F ,Pr) → ([0, 1],B([0, 1])) is uniformly distributed.
Then a Markov chain can be constructed as follows. Let (Zn)n∈N, with Zn : (Ω,F ,Pr)→
([0, 1],B([0, 1])), be a sequence of i.i.d. random variables with uniform distribution, and
assume that X1 has distribution ν. Then one can see that (Xn)n∈N defined by

Xn = Φ(Xn−1, Zn), n ≥ 2,

is a Markov chain with transition kernel K and initial distribution ν.

The transition kernel K of a Markov chain describes the probability of getting from
state x ∈ D to A ∈ D in one step, i.e. for all k ∈ N one has

K(x,A) = Pr(Xk+1 ∈ A | Xk = x).

The n-step transition kernel is inductively given by

Kn(x,A) =

∫
D

Kn−1(y,A)K(x, dy) =

∫
D

K(y,A)Kn−1(x, dy).

The first equality above is a definition, and for a proof of the second see [Rev84, Propo-
sition 1.6, p. 11] or [MT09, Theorem 3.4.2, p. 61]. The function Kn is again a transition
kernel. The n-step transition probability from state x ∈ D to A ∈ D is

Pr(Xk+n ∈ A | Xk = x) = Kn(x,A).
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This is seen by integrating over the conditional distribution of the previous step:

Pr(Xk+1 ∈ A | Xk = x) = K(x,A),

Pr(Xk+2 ∈ A | Xk = x) =

∫
D

Pr(Xk+2 ∈ A | Xk+1 = y,Xk = x)Pr(Xk+1 ∈ dy | Xk = x)

=

∫
D

Pr(Xk+2 ∈ A | Xk+1 = y)K(x, dy) = K2(x,A),

...

Pr(Xk+n ∈ A | Xk = x) =

∫
D

Pr(Xk+n ∈ A | Xk+n−1 = y,Xk = x)

× Pr(Xk+n−1 ∈ dy | Xk = x)

=

∫
D

Pr(Xk+n ∈ A | Xk+n−1 = y)Kn−1(x, dy) = Kn(x,A).

In the following let us assume that we have a Markov chain (Xn)n∈N with transition
kernel K and initial distribution ν. The expectation Eν,K is taken with respect to the
joint distribution of (Xn)n∈N, say Wν,K , which is defined on (DN, σ(A)) where

DN = {ω = (x1, x2, . . . ) | xi ∈ D for all i ≥ 1},

A =
⋃
k∈N
{A1 × · · · ×Ak ×D × · · · | Ai ∈ D, i = 1, . . . , k}

(see [MT09, Theorem 3.4.1, p. 60] or [Rev84, Theorem 2.8, p. 17]). For k ∈ N one has,
for A1 × · · · ×Ak ⊂ Dk,

Wν,K(A1 × · · · ×Ak ×D × · · · ) = Pr(X1 ∈ A1, . . . , Xk ∈ Ak)

=

∫
A1

∫
A2

. . .

∫
Ak−1

K(xk−1, Ak)K(xk−2,dxk−1) . . .K(x1,dx2) ν(dx1). (3.1)

Now we present properties of transition kernels. These properties have finite state
space counterparts (see Section 2.1).

Denote by M(D) the set of real-valued signed measures (1) on (D,D). For any ν ∈
M(D) let us define

νPm(A) =

∫
D

Km(x,A) ν(dx), A ∈ D, m ∈ N.

Note that the mapping ν 7→ νPm defines a linear operator onM(D). If ν is a probability
measure then νPm is the distribution of Xm+1, where (Xn)n∈N is a Markov chain with
transition kernel K and initial distribution ν.

Definition 3.3 (stationarity). Let π be a probability measure on (D,D). Then π is
called a stationary distribution of a transition kernel K if

πP (A) = π(A), A ∈ D.

(1) The set function µ : D → R is a real-valued signed measure if µ(∅) = 0 and for pairwise
disjoint A1, A2, . . . with Ak ∈ D for k ∈ N, one has µ(

⋃∞
k=1Ak) =

∑∞
k=1 µ(Ak).
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Roughly speaking, this means: if we choose the initial state with respect to a stationary
distribution π, then, after a single transition the same distribution arises, i.e.

Pr(X1 ∈ A) = π(A) = πP (A) = Pr(X2 ∈ A), A ∈ D.

Definition 3.4 (reversibility). Let π be a probability measure on (D,D). A transition
kernel K is called reversible with respect to π if∫

B

K(x,A)π(dx) =

∫
A

K(x,B)π(dx), A,B ∈ D.

If a transition kernel K is reversible with respect to a distribution π, then π is a
stationary distribution of K. If the initial distribution of a Markov chain with transition
kernel K is π, then reversibility with respect to π is equivalent to

Pr(X1 ∈ A, X2 ∈ B) = Pr(X1 ∈ B, X2 ∈ A), A,B ∈ D.

A Markov chain is called reversible with respect to π if the corresponding transition
kernel is reversible with respect to π.

Definition 3.5 (lazy version). Let K be a transition kernel and let 1A(x) be the indi-
cator function of A ∈ D for x ∈ D. Then we call

K̃(x,A) = 1
2 (1A(x) +K(x,A)), x ∈ D, A ∈ D,

the lazy version of K.

If π is a stationary distribution of K, then π is also a stationary distribution of K̃.
If K is reversible with respect to π, then K̃ is also reversible with respect to π. For a
Markov chain with transition kernel K and initial distribution ν we may define a lazy
Markov chain, a Markov chain with transition kernel K̃ and initial distribution ν.

Assume that π is a stationary distribution of a transition kernel K and let f : D → R
be an integrable function with respect to π. Let us define

Pmf(x) =

∫
D

f(y)Km(x, dy), x ∈ D, m ∈ N.

We call P the Markov operator or the transition operator. If a Markov chain (Xn)n∈N
with transition kernel K and initial distribution δx, the point mass at x ∈ D, is given,
then Pmf(x) is the expectation of f(Xm+1).

Let us state some well known properties of the operator P acting on functions and
on signed measures.

Lemma 3.6. Let π be a stationary distribution of a transition kernel K and let f : D → R
be an integrable function with respect to π. Then for ν ∈M(D),∫

D

f(x) (νPm)(dx) =

∫
D

(Pmf)(x) ν(dx), m ∈ N, (3.2)

whenever one of the integrals exists. In particular

S(f) =

∫
D

f(x)π(dx) =

∫
D

(Pmf)(x)π(dx), m ∈ N. (3.3)

Proof. Equation (3.3) is an immediate consequence of (3.2) and stationarity. Hence one
has to prove (3.2). The equality holds for indicator functions and for simple functions.
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Then by the standard procedure of integration theory the equality can be extended to
positive and afterwards to integrable functions.

Note that if a Markov chain (Xn)n∈N with transition kernel K and initial distribution
ν is given, then (3.2) can be rewritten as

Eν,K [f(Xm+1)] = Eν,K [Eν,K [f(Xm+1) | X1]].

The following result is well known (see for example [LS93, equation (1.2), p. 365]).

Lemma 3.7. Let the transition kernel K be reversible with respect to π and let F :

D ×D → R. Then∫
D

∫
D

F (x, y)Km(x, dy)π(dx) =

∫
D

∫
D

F (y, x)Km(x, dy)π(dx), m ∈ N, (3.4)

whenever one of the integrals exists.

Proof. The reversibility of the transition kernel K implies reversibility of the m-step
transition kernel Km. Hence it is sufficient to show the assertion for m = 1. By using the
reversibility one has∫

D

∫
D

1A×B(x, y)K(x, dy)π(dx) =

∫
D

∫
D

1A×B(y, x)K(x,dy)π(dx), A,B ∈ D.

The equality of the integrals can be extended to arbitrary sets C ∈ D⊗D, where D⊗D

is the product σ-algebra. This is an application of Dynkin’s Theorem. Then it is straight-
forward to consider the cases where F is a simple function, a positive function and finally
an integrable one.

For p ∈ [1,∞) let us define

Lp = Lp(D,π) =

{
f : D → R

∣∣∣∣ ‖f‖pp =

∫
D

|f(x)|p π(dx) <∞
}
.

For p =∞ the essential-supremum norm with respect to π is defined by

‖f‖∞ = ess sup
y∈D

|f(y)| = inf
N∈D, π(N)=0

sup
y∈D\N

|f(y)|,

and we set
L∞ = L∞(D,π) = {f : D → R | ‖f‖∞ <∞}.

Sometimes it is convenient to consider bounded functions on D, not π-a.e. bounded ones,
thus we define

LB = LB(D) =

{
f : D → R

∣∣∣∣ |f | = sup
x∈D
|f(x)| <∞

}
.

The next result is standard (see for example [BR95, Lemma 1, p. 334]).

Lemma 3.8. Let p ∈ [1,∞]. For any transition kernel K with a stationary distribution π,

‖Pf‖p ≤ ‖f‖p and ‖P‖Lp→Lp = 1.
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Proof. If p <∞, then by the Jensen inequality (J) and (3.3) one obtains∫
D

|Pf(x)|pπ(dx) ≤
∫
D

(∫
D

|f(y)|K(x, dy)

)p
π(dx)

≤
(J)

∫
D

∫
D

|f(y)|pK(x, dy)π(dx) =
(3.3)

∫
D

|f(x)|p π(dx).

Since π is a stationary distribution of the transition kernel one has, for N ∈ D,

π(N) = 0 ⇔ K(·, N) = 0 π-a.e.

Null sets with respect to π are the same as null sets with respect to K(x, ·) for almost
all x ∈ D. Hence

|Pf(x)| ≤
∫
D

|f(y)|K(x, dy) ≤ ‖f‖∞ π-a.e.

and we have ‖Pf‖p ≤ ‖f‖p for p ∈ [1,∞]. Let u(x) = 1 for all x ∈ D. Then Pu = u with
‖u‖p = 1 and we obtain ‖P‖Lp→Lp = 1.

The closed subspace
L0
p = {f ∈ Lp | S(f) = 0}

of Lp is important. Note that L2 and L0
2 are Hilbert spaces with inner product

〈f, g〉 =

∫
D

f(x)g(x)π(dx).

Then
L2 = L0

2 ⊕ (L0
2)⊥, where (L0

2)⊥ = {f ∈ L2 | f ≡ c, c ∈ R}.

On the Hilbert spaces L2 and L0
2 there exists the adjoint operator P ∗ such that

〈Pf, g〉 = 〈f, P ∗g〉.

Furthermore

‖P‖L0
2→L0

2
= ‖P ∗‖L0

2→L0
2

and ‖P − S‖L2→L2
= ‖P ∗ − S‖L2→L2

.

The following facts about adjoint operators are helpful. Let T : Lp → Lp, with p ∈ [1,∞),
be a bounded linear operator. Then the adjoint operator T ∗ : Lq → Lq, with q ∈ (1,∞],
is defined as follows. Suppose that p and q are such that p−1 + q−1 = 1. It is well known
that Lq is isometrically isomorphic to the dual space (Lp)

′, where the isomorphism is
given by

A : Lq → (Lp)
′, A(g)(f) = 〈f, g〉, f ∈ Lp.

Then there exists the dual operator T× : (Lp)
′ → (Lp)

′ and the adjoint operator act-
ing on Lq can be defined as T ∗ = A−1T×A. This is illustrated by the diagram below.

Lq Lq

(Lp)
′ (Lp)

′

A

T×

A−1

T ∗
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Furthermore, for all f ∈ Lp and for all g ∈ Lq one has

〈f, T ∗g〉 = 〈f,A−1T×Ag〉 = A(A−1T×Ag)(f)

= (T×A)(g)(f) =
(dual operator)

A(g)(Tf) = 〈Tf, g〉.

Then

‖T‖Lp→Lp = ‖T×‖(Lp)′→(Lp)′ = sup
‖Ag‖(Lp)′≤1

‖T×Ag‖(Lp)′

= sup
‖g‖q≤1

‖A−1T×Ag‖q = ‖T ∗‖Lq→Lq .

If T = P − S, then it follows that

‖P − S‖Lp→Lp = ‖P ∗ − S‖Lq→Lq .

Let ν ∈ M(D). If there exists a density of ν with respect to π then we denote it by dν
dπ

and for q ∈ [1,∞] let

‖ν‖q =


∥∥∥∥dνdπ

∥∥∥∥
q

, ν � π,

∞, otherwise.

Set
Mq =Mq(D,π) = {ν ∈M(D) | ‖ν‖q <∞}.

The function space Lq is isometrically isomorphic to the space Mq of signed measures,
in symbols Lq ∼=Mq. The spaceM2 of signed measures is a Hilbert space and the inner
product is the L2 inner product of the densities:

〈ν, µ〉 =

∫
D

dν

dπ
(x)

dµ

dπ
(x)π(dx) =

〈
dν

dπ
,
dµ

dπ

〉
, ν, µ ∈M2.

Furthermore set
M0

q = {ν ∈Mq | ν(D) = 0}.

Then
M2 =M0

2 ⊕ (M0
2)⊥, where (M0

2)⊥ = {ν ∈M2 | ν = cπ, c ∈ R}.

Clearly,M0
2 is also a Hilbert space. We have L0

2
∼=M0

2 and (L0
2)⊥ ∼= (M0

2)⊥. Let us recall
that the transition kernel applies to signed measures ν ∈Mq as

νP (A) =

∫
D

K(x,A) ν(dx), A ∈ D.

Lemma 3.9. Let K be a transition kernel and let π be a stationary distribution of K.

(i) Let q ∈ (1,∞] and ν ∈Mq. Then

d(νP )

dπ
(x) = P ∗

(
dν

dπ

)
(x) π-a.e.

and
‖P‖L0

2→L0
2

= ‖P‖M0
2→M0

2
.
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(ii) Reversibility with respect to π is equivalent to P being self-adjoint acting on L2 and
M2, i.e.

〈Pf, g〉 = 〈f, Pg〉 and 〈νP, µ〉 = 〈ν, µP 〉.

Proof. (i) For all f ∈ Lp with p chosen such that p−1 + q−1 = 1 one has〈
f,
d(νP )

dπ

〉
=

∫
D

f(x) (νP )(dx) =
(3.2)

∫
D

(Pf)(x) ν(dx) =

〈
Pf,

dν

dπ

〉
=

〈
f, P ∗

(
dν

dπ

)〉
.

Hence π-a.e.,
d(νP )

dπ
(x) = P ∗

(
dν

dπ

)
(x).

By using the previous equation one obtains

‖P‖M0
2→M0

2
= sup
‖ dµdπ ‖2=1, µ(D)=0

∥∥∥∥d(µP )

dπ

∥∥∥∥
2

= sup
‖ dµdπ ‖2=1, S( dµdπ )=0

∥∥∥∥P ∗(dµdπ
)∥∥∥∥

2

= ‖P ∗‖L0
2→L0

2
= ‖P‖L0

2→L0
2
.

(ii) It is clear that self-adjointness implies reversibility. The other direction follows by

〈Pf, g〉 =

∫
D

∫
D

f(y)g(x)K(x, dy)π(dx) =
(3.4)

∫
D

∫
D

f(x)g(y)K(x,dy)π(dx) = 〈f, Pg〉.

The result with respect toM2 is shown by using (i) and the self-adjointness of P on L2.

In the following we introduce several convergence properties of a Markov chain
(Xn)n∈N with transition kernel K and initial distribution ν. We assume that π is a
stationary distribution of K. The goal is to quantify the speed of convergence of νPm to
π for increasing m ∈ N. For further details let us refer to [RR97a], [RR04] or [Che05].

Definition 3.10 (L2-spectral gap). Let P be the Markov operator with corresponding
transition kernel K. Then there exists an (absolute) L2-spectral gap if

β = ‖P‖L0
2→L0

2
< 1,

and the value of the L2-spectral gap is 1− β.

Let us briefly explain what this means for a reversible transition kernel. If the transi-
tion kernel K is reversible with respect to π, then let spec(P |L2) be the spectrum of the
self-adjoint operator P acting on L2 and spec(P |L0

2) be the spectrum of P acting on L0
2.

Since ‖P‖L2→L2
≤ 1 the spectrum spec(P |L2) is contained in [−1, 1]. Let us define

λ = inf{α | α ∈ spec(P |L0
2)} and Λ = sup{α | α ∈ spec(P |L0

2)}.

Since P is self-adjoint, it is well known that

λ = inf
‖g‖2=1, g∈L0

2

〈Pg, g〉 and Λ = sup
‖g‖2=1, g∈L0

2

〈Pg, g〉.

Then we have

spec(P |L0
2) ⊂ [λ,Λ] and β = ‖P‖L0

2→L0
2

= max{Λ, |λ|}.

The existence of an L2-spectral gap implies that −1 < λ ≤ Λ < 1, so there is a gap
between 1 ∈ spec (P |L2) and β, the second largest absolute value of spec(P |L2).
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Definition 3.11 (L2-geometric ergodicity). A transition kernel K with stationary dis-
tribution π is called L2-geometrically ergodic if for all probability measures ν ∈M2 there
exist α ∈ [0, 1) and Cν <∞ such that

‖νPn − π‖2 ≤ Cν αn, n ∈ N.

An L2-spectral gap implies L2-geometric ergodicity.

Proposition 3.12. Let K be a transition kernel with stationary distribution π. Assume
that the Markov operator P has an L2-spectral gap, i.e. 1 − β > 0. Then the transition
kernel K is L2-geometrically ergodic.

Proof. If ν ∈ M2 and ν(D) = 1, then one obtains (ν − π)(D) = 0 and the proof is
completed by

‖νPn − π‖2 = ‖(ν − π)Pn‖2 ≤ ‖P‖nM0
2→M0

2
‖ν − π‖2 = βn‖ν − π‖2.

If the transition kernel is reversible with respect to π, then L2-geometric ergodicity and
the existence of an L2-spectral gap are equivalent:

Proposition 3.13 ([RR97a, Theorem 2.1, p. 17]). Let the transition kernel K be re-
versible with respect to π. Then the following statements are equivalent:

(i) The transition kernel is L2-geometrically ergodic.
(ii) The Markov operator P has an L2-spectral gap.

For further details and more equivalents of L2-geometric ergodicity, see [RR97a,
RT01]. The next definition is similar to Lp-exponential convergence in [Che05].

Definition 3.14 (Lp-exponential convergence). Let p ∈ [1,∞], let α ∈ [0, 1) andM<∞.
Then the transition kernel K with stationary distribution π is called Lp-exponentially
convergent with (α,M) if

‖Pn − S‖Lp→Lp ≤Mαn, n ∈ N.

The transition kernel is called Lp-exponentially convergent if there exist an M < ∞
and an α ∈ [0, 1) such that K is Lp-exponentially convergent with (α,M).

The Markov chain is called L2-geometrically ergodic or Lp-exponentially convergent
if the corresponding transition kernel K is L2-geometrically ergodic or Lp-exponentially
convergent.

Let p and q be such that p−1 + q−1 = 1. Then Lp-exponential convergence implies
convergence of νPn to the stationary distribution π inMq for increasing n ∈ N.

Corollary 3.15. Let p ∈ [1,∞) and ν ∈ Mq with p−1 + q−1 = 1. Let the transition
kernel K with stationary distribution π be Lp-exponentially convergent with (α,M). Then

‖νPn − π‖q ≤M‖ν − π‖qαn, n ∈ N.
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Proof. Indeed,

‖νPn − π‖q = ‖(ν − π)Pn‖q =

∥∥∥∥d((ν − π)Pn)

dπ

∥∥∥∥
q

=

∥∥∥∥(Pn)∗
(
dν

dπ
− 1

)∥∥∥∥
q

=

∥∥∥∥((Pn)∗ − S)

(
dν

dπ
− 1

)∥∥∥∥
q

≤ ‖(Pn − S)∗‖Lq→Lq
∥∥∥∥dνdπ − 1

∥∥∥∥
q

≤ ‖Pn − S‖Lp→Lp
∥∥∥∥dνdπ − 1

∥∥∥∥
q

≤M‖ν − π‖qαn.

In the following we consider relations between the existence of an L2-spectral gap and
Lp-exponential convergence. First, let us add some helpful inequalities.

Lemma 3.16. Let π be a stationary distribution of a transition kernel K. Then

‖Pn‖L0
2→L0

2
= ‖Pn − S‖L2→L2 ≤ βn, n ∈ N. (3.5)

If p ∈ [1,∞] then

‖Pn‖L0
p→L0

p
≤ ‖Pn − S‖Lp→Lp ≤ 2‖Pn‖L0

p→L0
p
, n ∈ N. (3.6)

Proof. Note that if P is a normal operator, i.e. PP ∗ = P ∗P , then ‖Pn‖L0
2→L0

2
= βn,

otherwise one has ‖Pn‖L0
2→L0

2
≤ ‖P‖n

L0
2→L0

2
= βn. From

‖Pn − S‖L2→L2
= sup
‖f‖2≤1

‖(Pn − S)f‖2 = sup
‖f‖2≤1

‖Pn(f − S(f))‖2

≤ sup
‖g‖2≤1, S(g)=0

‖Png‖2 = ‖Pn‖L0
2→L0

2

and

‖Pn‖L0
p→L0

p
= sup
‖g‖p≤1, S(g)=0

‖Png‖p = sup
‖g‖p≤1, S(g)=0

‖Png − S(g)‖p

≤ sup
‖f‖p≤1

‖(Pn − S)f‖p = ‖Pn − S‖Lp→Lp

claim (3.5) and the first part of (3.6) follow. Furthermore one obtains

‖Pn − S‖Lp→Lp = sup
‖f‖p≤1

‖Pnf − Sf‖p = 2 sup
‖f‖p≤1

∥∥∥∥Pn(1

2
(f − Sf)

)∥∥∥∥
p

≤ 2 sup
‖g‖p≤1, S(g)=0

‖Png‖p = 2‖Pn‖L0
p→L0

p
,

which finishes the proof.

In a general setting it follows that an L2-spectral gap implies Lp-exponential conver-
gence for all p ∈ (1,∞).

Proposition 3.17. Let p ∈ (1,∞). Let π be a stationary distribution of a transition
kernel K and n ∈ N. The existence of an L2-spectral gap, 1−β > 0, implies Lp-exponential
convergence. We have

‖Pn − S‖Lp→Lp ≤

{
22/p β2n(p−1)/p, p ∈ (1, 2),

22(p−1)/p β2n/p, p ∈ [2,∞).
(3.7)
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Proof. Let p ∈ (1, 2). Lemma 3.16 gives

‖Pn − S‖L2→L2
≤ βn and ‖Pn − S‖L1→L1

≤ 2.

We apply Proposition A.4 (Riesz–Thorin Interpolation Theorem), where T = Pn−S and
q1 = 2, q2 = 1 such that θ = (2− p)/p. The case where p ∈ (2,∞) follows by the same
interpolation argument, since by Lemma 3.16 one has

‖Pn − S‖L2→L2
≤ βn and ‖Pn − S‖L∞→L∞ ≤ 2.

From Proposition 3.17 and actually already from (3.5) it follows that an L2-spectral
gap implies L2-exponential convergence. With the additional assumption of normality of
P one can prove the converse.

Proposition 3.18. Let π be a stationary distribution of the transition kernel K. Let
the Markov operator P be normal, i.e. PP ∗ = P ∗P . Then the following statements are
equivalent:

(i) There exists an L2-spectral gap, i.e. 1− β > 0.
(ii) There exist α∈ [0, 1) andM<∞ such that the transition kernel K is L2-exponentially

convergent with (α,M).

In particular (ii) implies
β = ‖P − S‖L2→L2

≤ α,

so that
β = min{α | ∃M <∞with ‖Pn − S‖L2→L2

≤Mαn, n ∈ N}.

Proof. By (3.5), (i) implies (ii) with (α,M) = (β, 1). Now we show that (ii) implies (i).
One has

‖P‖2L0
2→L0

2
= ‖PP ∗‖L0

2→L0
2
,

where PP ∗ is self-adjoint and (P ∗)n = (Pn)∗ for all n ∈ N. Then

‖Pn − S‖2L2→L2
= ‖Pn‖2L0

2→L0
2

= ‖Pn(Pn)∗‖L0
2→L0

2

= ‖Pn(P ∗)n‖L0
2→L0

2
=

(normality)
‖(PP ∗)n‖L0

2→L0
2
,

so that
‖Pn − S‖L2→L2 ≤Mαn ⇔ ‖(PP ∗)n‖L0

2→L0
2
≤M2α2n. (3.8)

By the spectral radius formula and the self-adjointness (s-a) of PP ∗ one obtains

‖P‖2L0
2→L0

2
= ‖PP ∗‖L0

2→L0
2

=
(s-a)

r[PP ∗]

= lim
n→∞

(‖(PP ∗)n‖L0
2→L0

2
)1/n ≤

(3.8)
α2 lim

n→∞
(M2)1/n ≤ α2.

Hence the proof is complete.

By an interpolation argument we deduce that L∞-exponential convergence or L1-
exponential convergence imply an L2-spectral gap if the Markov operator is normal.

Proposition 3.19. Let π be a stationary distribution of the transition kernel K. Let K
be L1-exponentially convergent or L∞-exponentially convergent with (α,M). Suppose that
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the Markov operator P is normal, i.e. PP ∗ = P ∗P . Then there exists an L2-spectral gap,
in particular

β = ‖P − S‖L2→L2
≤
√
α. (3.9)

Proof. We show that L1-exponential convergence with (α,M) implies β ≤
√
α. For L∞-

exponentially convergent Markov chains the claim follows by the same arguments, where
the roles of L∞ and L1 are interchanged.

By the assumptions of the proposition and Lemma 3.16 one has

‖Pn − S‖L1→L1 ≤ αnM and ‖Pn − S‖L∞→L∞ ≤ 2.

By Proposition A.4 (Riesz–Thorin Interpolation Theorem), where T = Pn−S and q1 = 1,
q2 = ∞, θ = 1/2 one obtains L2-exponential convergence with (

√
α, 23/2M1/2). Then

Proposition 3.18 implies β ≤
√
α, completing the proof.

Another way to measure the convergence of νPn to π for increasing n ∈ N is by using
the total variation distance, defined as follows.

Definition 3.20 (total variation distance). The total variation distance between two
probability measures ν, µ ∈M(D) is defined by

‖ν − µ‖tv = sup
A∈D
|ν(A)− µ(A)|.

The total variation distance can be considered as an L1-norm.

Lemma 3.21 ([RR04, Proposition 3, p. 28]). Let ν, µ ∈ M(D) be probability measures.
Then

‖ν − µ‖tv =
1

2
sup
|f |≤1

∣∣∣∣ ∫
D

f(x) (ν(dx)− µ(dx))

∣∣∣∣, (3.10)

where |f | = supx∈D |f(x)|. If ν, µ ∈M1, then ‖ν − µ‖tv = 1
2‖ν − µ‖1.

Now we can define uniform ergodicity of a transition kernel K.

Definition 3.22 (uniform ergodicity, π-a.e. uniform ergodicity). Let M < ∞ and α ∈
[0, 1). Then the transition kernel K with stationary distribution π is called uniformly
ergodic with (α,M) if for all x ∈ D,

‖Kn(x, ·)− π‖tv ≤Mαn, n ∈ N. (3.11)

If the inequality of (3.11) holds π-a.e., rather than for all x ∈ D, then the transition
kernel K is called π-a.e. uniformly ergodic with (α,M). A Markov chain with transition
kernel K is called uniformly ergodic or π-a.e. uniformly ergodic if there exist M < ∞
and α ∈ [0, 1) such that K is uniformly ergodic or π-a.e uniformly ergodic with (α,M).

Obviously, if the transition kernel is uniformly ergodic then it is also π-a.e. uniformly
ergodic. Note that in other references, e.g. [Che05], uniform ergodicity is called strong
ergodicity.

Uniform ergodicity is closely related to L∞-exponential convergence. An important
relation is presented in the following proposition. Recall that LB = LB(D) denotes the
class of bounded functions on D.
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Proposition 3.23. Let α ∈ [0, 1) and M <∞. Let π be a stationary distribution of the
transition kernel K. Then the following statements are equivalent:

(i′) The transition kernel K is uniformly ergodic with (α,M).
(ii′) The transition operator P satisfies

‖Pn − S‖LB→LB ≤ 2M αn, n ∈ N.

Furthermore (i′) and (ii′) imply the following equivalent statements:

(i) K is π-a.e. uniformly ergodic with (α,M).
(ii) K is L∞-exponentially convergent with (α, 2M).

Proof. Lemma 3.21 yields the equivalence of (i′) and (ii′). To prove the equivalence of (i)
and (ii), let us first show that π-a.e.

sup
‖f‖∞≤1

|Pnf(x)− S(f)| = sup
|f |≤1

|Pnf(x)− S(f)|.

Note that
π(N) = 0 ⇔ Kn(·, N) = 0 π-a.e.

for all N ∈ D and n ∈ N, since π is the stationary distribution. Suppose that f ∈ L∞.
Obviously, if N ∈ D and π(N) = 0 then π-a.e.

|Pnf(x)− S(f)| = |Pn(1Ncf)(x)− S(1Ncf)|.

Let ‖f‖∞ ≤ 1, i.e. π({x ∈ D : f(x) > 1}) = 0. Define

g(x) =

{
f(x), f(x) ≤ 1,

1, f(x) > 1,

so that f(x) = g(x) π-a.e. and |g| ≤ 1. Thus, π-a.e.

|Pnf(x)− S(f)| = |Png(x)− S(g)| ≤ sup
|g|≤1

|Png(x)− S(g)|,

so that π-a.e.
sup
‖f‖∞≤1

|Pnf(x)− S(f)| ≤ sup
|g|≤1

|Png(x)− S(g)|.

The inequality in the other direction is clearly also correct, i.e. π-a.e.

sup
‖f‖∞≤1

|Pnf(x)− S(f)| = sup
|g|≤1

|Png(x)− S(g)|.

By applying the essential supremum on both sides of the previous equation and (3.10)
one obtains

‖Pn − S‖L∞→L∞ = 2 ess sup
x∈D

‖Kn(x, ·)− π‖tv.

This completes the proof.

It is known that there are transition kernels where the Markov operators have an
L2-spectral gap and the transition kernels are not uniformly ergodic (see [MT96]). Fur-
thermore, uniform ergodicity implies an L2-spectral gap (see [RR97a]). In this sense
uniform ergodicity is a stronger property than the existence of an L2-spectral gap.
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Proposition 3.24. Let α ∈ [0, 1) and M <∞. Let the transition kernel K be reversible
with respect to π. Then the following statements are equivalent:

(i) K is L1-exponentially convergent with (α, 2M).
(ii) K is L∞-exponentially convergent with (α, 2M).
(iii) K is π-a.e. uniformly ergodic with (α,M).

Each of these conditions implies that the Markov operator has an L2-spectral gap. We
have

β = ‖P‖L0
2→L0

2
≤ α.

Proof. First we prove the equivalence of (i) and (ii). By reversibility one can see for
f ∈ L1 and h ∈ L∞ that

〈(Pn − S)f, h〉 =
(3.4)
〈f, (Pn − S)h〉.

The adjoint operator of Pn − S acting on L1 is Pn − S acting on L∞. Since

‖Pn − S‖L1→L1
= ‖Pn − S‖L∞→L∞ ,

the equivalence is obvious.
By Proposition 3.23, (ii) is equivalent to (iii).
The last implication follows by an interpolation argument. Proposition A.4 (Riesz–

Thorin Theorem) with q1 =∞, q2 = 1 and θ = 1/2 is applied. Then

‖Pn‖L0
2→L0

2
=

(3.5)
‖Pn − S‖L2→L2

≤ 4Mαn, n ∈ N. (3.12)

Because of the self-adjointness (s-a) of P one can apply the spectral radius formula to
obtain

β = ‖P‖L0
2→L0

2
=

(s-a)
r[P ] = lim

n→∞
‖Pn‖1/n

L0
2→L0

2
≤

(3.12)
α lim
n→∞

(4M)1/n = α.

In Figure 1 we present a survey of the discussed relations between various convergence
and ergodicity notions.

L2-spectral
gap

π-a.e. uniform
ergodicity

L∞-exp.
convergence

L1-exp.
convergence

L2-geometric
ergodicity

uniform
ergodicity

L2-exp.
convergence

Fig. 1. Ergodicity notions and their relations. Solid lines represent implications without any
assumption of reversibility. Dashed lines represent implications under the assumption of re-
versibility.
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3.2. Error bounds. In this section we prove error bounds on general state spaces.
We assume that we have a Markov chain (Xn)n∈N with transition kernel K and initial
distribution ν, where π is a stationary distribution, and compute

Sn,n0(f) =
1

n

n∑
j=1

f(Xj+n0)

as approximation to S(f) =
∫
D
f(x)π(dx). The error is measured in the mean square

sense, i.e.
eν(Sn,n0

, f) = (Eν,K |Sn,n0
(f)− S(f)|2)1/2.

Now let us present a helpful result.

Lemma 3.25. Let (Xn)n∈N be a Markov chain with transition kernel K and initial dis-
tribution ν. Then for i, j ∈ N with j ≤ i,

Eν,K [f(Xi)f(Xj)] =

∫
D

P j(fP i−jf)(x) ν(dx). (3.13)

Moreover, if π is a stationary distribution and ν = π then

Eπ,K [f(Xi)f(Xj)] = 〈f, P i−jf〉. (3.14)

Proof. The calculation

Eν,K [f(Xi)f(Xj)] =

∫
D

. . .

∫
D︸ ︷︷ ︸

i times

f(xi)f(xj)K(xi−1,dxi) . . .K(x1,dx2) ν(dx1)

=

∫
D

. . .

∫
D︸ ︷︷ ︸

j times

f(xj)P
i−jf(xj)K(xj−1,dxj) . . .K(x1,dx2) ν(dx1)

=

∫
D

P j(fP i−jf)(x) ν(dx)

proves (3.13), and by (3.3) one can see (3.14).

First we assume that the initial distribution of the Markov chain is stationary. Hence
it is not necessary to do any burn-in, i.e. n0 = 0. The resulting method is denoted by
Sn instead of Sn,0. Afterwards we turn to the general method Sn,n0

where the initial
distribution might differ from a stationary one.

In the next statement we assume that the transition kernel is reversible with respect
to π. Then we can apply the spectral theorem for self-adjoint bounded linear operators
(see Theorem A.2).

Proposition 3.26. Let f ∈ L2 and g = f − S(f). Let (Xn)n∈N be a Markov chain with
transition kernel K and initial distribution π, let K be reversible with respect to π and
let

λ = inf{α | α ∈ spec(P |L0
2)}, Λ = sup{α | α ∈ spec(P |L0

2)}.

Suppose that Λ < 1. Then

eπ(Sn, f)2 =
1

n2

∫ Λ

λ

W (n, α) d〈E{α}g, g〉 =
1

n2
〈W (n, P )g, g〉, (3.15)
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where E denotes the spectral measure (2) which corresponds to P : L0
2 → L0

2 and recall
that

W (n, α) =
n(1− α2)− 2α(1− αn)

(1− α)2
, α ∈ [−1, 1).

Proof. Since f ∈ L2 we have g ∈ L0
2. The error obeys

eπ(Sn, f)2 = Eπ,K

∣∣∣∣ 1n
n∑
j=1

g(Xj)

∣∣∣∣2 =
1

n2
Eπ,K

∣∣∣ n∑
j=1

g(Xj)
∣∣∣2

=
1

n2

n∑
j=1

Eπ,K [g(Xj)
2] +

2

n2

n−1∑
j=1

n∑
i=j+1

Eπ,K [g(Xj)g(Xi)].

For i, j ∈ N with j ≤ i we obtain

Eπ,K [g(Xi)g(Xj)] =
(3.14)

〈g, P i−jg〉 =

∫ Λ

λ

αi−j d〈E{α}g, g〉,

where the last equality is an application of Theorem A.2. Altogether this gives

eπ(Sn, f)2 =
1

n2

∫ Λ

λ

[
n+ 2

n−1∑
j=1

n∑
i=j+1

αi−j
]
d〈E{α}g, g〉

=
1

n2

∫ Λ

λ

[
n+ 2

(n− 1)α− nα2 + αn+1

(1− α)2

]
d〈E{α}g, g〉

=
1

n2

∫ Λ

λ

W (n, α) d〈E{α}g, g〉 =
1

n2
〈W (n, P )g, g〉.

By the spectral theorem we have a representation of the error depending on the
Markov operator P . In this setting one can show a relation between the operator norm of
W (n, P ) : L0

2 → L0
2 and the maximal error of Sn for integrands f which satisfy ‖f‖2 ≤ 1:

Corollary 3.27. Let (Xn)n∈N be a Markov chain with transition kernel K and initial
distribution π, let K be reversible with respect to π and suppose that Λ < 1. Then

sup
‖f‖2≤1

eπ(Sn, f)2 =
1

n2
‖W (n, P )‖L0

2→L0
2

=
1 + Λ

n(1− Λ)
− 2Λ(1− Λn)

n2(1− Λ)2
≤ 2

n(1− Λ)
.

Proof. The last inequality follows by Lemma 2.12. The mapping α 7→W (n, α) of Propo-
sition 3.26 is increasing (see also Lemma 2.12). For g = f − S(f) we have

eπ(Sn, f)2 =
1

n2

∫ Λ

λ

W (n, α) d〈E{α}g, g〉 ≤
1

n2
W (n,Λ)

∫ Λ

λ

d〈E{α}g, g〉

=
1

n2
W (n,Λ)〈g, g〉 =

(
1 + Λ

n(1− Λ)
− 2Λ(1− Λn)

n2(1− Λ)2

)
‖g‖22.

(2) The definition of a spectral measure and the spectral theorem for linear, bounded self-
adjoint operators are stated in Section A.1.
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The assertion is proven by

W (n,Λ) = max
α∈spec(P |L0

2)
|W (n, α)| = ‖W (n, P )‖L0

2→L0
2

= sup
‖g‖2≤1, g∈L0

2

〈W (n, P )g, g〉

= sup
‖g‖2≤1, g∈L0

2

n2 · eπ(Sn, g)2 ≤ n2 sup
‖f‖2≤1

eπ(Sn, f)2.

If the transition kernel K is reversible with respect to π and the Markov operator has
an L2-spectral gap, then

β = ‖P‖L0
2→L0

2
= max{Λ, |λ|} < 1.

Note that Proposition 3.26 holds already if Λ < 1. Hence an L2-spectral gap is not
necessary. If the transition kernel K is not reversible but one has an L2-spectral gap,
then the following error bound can be shown.

Proposition 3.28. Let (Xn)n∈N be a Markov chain with transition kernel K and initial
distribution π. Let π be a stationary distribution of K. Let f ∈ L2 and assume that there
exists an L2-spectral gap 1− β > 0. Then

eπ(Sn, f)2 ≤ 2

n(1− β)
‖f‖22. (3.16)

Proof. Let g = f − S(f). The error obeys

eπ(Sn, f)2 =
1

n2

n∑
j=1

Eπ,K [g(Xj)
2] +

2

n2

n−1∑
j=1

n∑
i=j+1

Eπ,K [g(Xj)g(Xi)].

For i, j ∈ N with j ≤ i, by the Cauchy–Schwarz inequality (CS) we have

Eπ,K [g(Xi)g(Xj)] = 〈g, P i−jg〉 ≤
(CS)
‖P i−j‖L0

2→L0
2
‖g‖22.

Then with W (n, β) from Proposition 3.26 one has

eπ(Sn, f)2 ≤ W (n, β)

n2
‖g‖22 ≤

(2.6)

2

n(1− β)
‖f‖22.

The estimates of the error under the assumption that the initial distribution is sta-
tionary seem to be restrictive. If we could sample π directly we would approximate S(f)

by Monte Carlo with an i.i.d. sample. However, even if this is possible it might happen
that the direct sampling procedure is computationally expensive, so it is reasonable to
generate only the initial state by sampling from π and afterwards run a Markov chain
with stationary distribution π.

The error of a Markov chain Monte Carlo method with stationary initial distribution
is related to the error with a not necessarily stationary initial distribution.

Proposition 3.29. Let r ∈ [1, 2], let f ∈ L2r and let ν ∈ Mr/(r−1) be a probability
measure. Let (Xn)n∈N be a Markov chain with transition kernel K and initial distribution
ν and let π be a stationary distribution of K. Then

eν(Sn,n0 , f)2 = eπ(Sn, f)2 +
1

n2

n∑
j=1

Lj+n0(g2) +
2

n2

n−1∑
j=1

n∑
k=j+1

Lj+n0(gP k−jg), (3.17)
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where g = f − S(f) and

Li(h) =

〈
(P i − S)h,

dν

dπ
− 1

〉
, h ∈ Lr, i ∈ N.

Proof. The proof is adapted from [Rud09, Lemma 6, p. 17]. One has

Eν,K |S(f)− Sn,n0
(f)|2 =

1

n2

n∑
j=1

n∑
i=1

Eν,K [g(Xn0+j)g(Xn0+i)]

=
1

n2

n∑
j=1

∫
D

Pn0+j(g2)(x) ν(dx) +
2

n2

n−1∑
j=1

n∑
k=j+1

∫
D

Pn0+j(gP k−jg)(x) ν(dx).

For h ∈ Lr and ν ∈Mr/(r−1) we see for all i ∈ N that dν
dπ ·P

ih is integrable with respect
to π. Then∫

D

(P ih)(x) ν(dx) =

〈
P ih,

dν

dπ

〉
= 〈P ih, 1〉+

〈
P ih,

dν

dπ
− 1

〉
= 〈P ih, 1〉+

〈
P ih,

dν

dπ
− 1

〉
−
〈
h, S

(
dν

dπ
− 1

)〉
︸ ︷︷ ︸

=0

= 〈P ih, 1〉+

〈
(P i − S)h,

dν

dπ
− 1

〉
=

∫
D

(P ih)(x)π(dx) +

〈
(P i − S)h,

dν

dπ
− 1

〉
.

Formula (3.17) is shown by using this calculation for h = g2 and h = gP k−jg.

Equation (3.17) is still an exact error formula. The next lemma provides an estimate
of the functional Lk(·) for k ∈ N.

Lemma 3.30. Let r ∈ [1, 2], ν ∈Mr/(r−1) and h ∈ Lr. Recall that β = ‖P‖L0
2→L0

2
.

(i) If r ∈ (1, 2], then

|Lk(h)| ≤ 22/rβ2k r−1
r

∥∥∥∥dνdπ − 1

∥∥∥∥
r
r−1

‖h‖r, k ∈ N. (3.18)

(ii) If r = 1 and the transition kernel is L1-exponentially convergent with (α,M), then

|Lk(h)| ≤Mαk
∥∥∥∥dνdπ − 1

∥∥∥∥
∞
‖h‖1, k ∈ N. (3.19)

Proof. After applying Hölder’s inequality (HI) with conjugate parameter r and s = r
r−1

to Lk(h) = 〈(P k − S)h, dν/dπ − 1〉 one has

|Lk(h)| ≤
(HI)
‖(P k − S)h‖r

∥∥∥∥dνdπ − 1

∥∥∥∥
s

≤ ‖P k − S‖Lr→Lr
∥∥∥∥dνdπ − 1

∥∥∥∥
s

‖h‖r.

By equation (3.7) the claim of (i) is proven and by the L1-exponential convergence the
inequality of (ii) holds.

Note that if r = 2 then |Lk(h)| ≤ βk‖dν/dπ− 1‖2‖h‖2 (see (3.5)). This is better than
(3.18) by a factor of two, but not essentially different.
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In Lemma 3.30 we have seen that under suitable assumptions one can ensure ex-
ponential decay of Lk(·) for increasing k ∈ N. This fact is used to show for reversible
Markov chains which are L1-exponentially ergodic with (α,M) that there exists a con-
stant Cν,α,M , independent of n and n0, such that

|eν(Sn,n0
, f)2 − eπ(Sn, f)2| ≤ Cν,α,M‖f‖22

αn0

n2
.

An immediate consequence of this inequality is an explicit error bound. The following
lemma and remark imply such an inequality and provide Cν,α,M explicitly.

Lemma 3.31. Let (Xn)n∈N be a Markov chain with transition kernel K and initial dis-
tribution ν, where ν ∈ M∞. Let K be reversible with respect to π and L1-exponentially
convergent with (α,M). Let f ∈ L2 and

U(α, n) =

n∑
j=1

αj + 2

n−1∑
j=1

n∑
k=j+1

αk.

Then

|eν(Sn,n0
, f)2 − eπ(Sn, f)2| ≤ U(α, n)

n2
M

∥∥∥∥dνdπ − 1

∥∥∥∥
∞
αn0‖f‖22. (3.20)

Proof. Let g = f − S(f). Equation (3.17) implies

|eν(Sn,n0
, f)2 − eπ(Sn, f)2| ≤ 1

n2

n∑
j=1

|Lj+n0
(g2)|+ 2

n2

n−1∑
j=1

n∑
k=j+1

|Lj+n0
(gP k−jg)|.

By (3.19) of Lemma 3.30 one obtains

|Lj+n0
(g2)| ≤Mαj+n0

∥∥∥∥dνdπ − 1

∥∥∥∥
∞
‖g‖22,

|Lj+n0
(gP k−jg)| ≤Mαj+n0

∥∥∥∥dνdπ − 1

∥∥∥∥
∞
‖gP k−jg‖1.

By the reversibility and L1-exponential convergence of K we see from Proposition 3.24
that β = ‖P‖L0

2→L0
2
≤ α. Then by the Cauchy–Schwarz inequality (CS),

‖gP k−jg‖1 ≤
(CS)
‖g‖2‖P k−jg‖2 ≤ ‖g‖22‖P k−j‖L0

2→L0
2
≤ αk−j‖g‖22.

Let ε0 = αn0M
∥∥dν/dπ − 1

∥∥
∞. Then

n∑
j=1

|Lj+n0(g2)|+ 2

n−1∑
j=1

n∑
k=j+1

|Lj+n0(gP k−jg)|

≤ ε0‖g‖22
n∑
j=1

αj + 2ε0‖g‖22
n−1∑
j=1

n∑
k=j+1

αk

= ε0‖g‖22
( n∑
j=1

αj + 2

n−1∑
j=1

n∑
k=j+1

αk
)

= ε0 · U(α, n) · ‖g‖22 ≤ ε0 · U(α, n) · ‖f‖22.
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Remark 3.32. The function U(α, n) has already been studied in Lemma 2.19. Let us
repeat the result. For all n ∈ N we have

U(α, n) ≤ 2

(1− α)2
.

Then from Lemma 3.31 it follows that

eν(Sn,n0
, f)2 ≤ eπ(Sn, f)2 +

2M
∥∥ dν
dπ − 1

∥∥
∞α

n0

n2(1− α)2
‖f‖22.

If the initial distribution ν is π then one has the error formula of Proposition 3.26.

Remark 3.33. Note that in Lemma 3.31 reversibility of K was essentially used to apply
Proposition 3.24. If the Markov operator is normal, i.e. PP ∗ = P ∗P , then by Proposi-
tion 3.19, β = ‖P‖L0

2→L0
2
≤
√
α. By this observation we get a very similar estimate to

that in Lemma 3.31 for normal Markov operators which are not necessarily reversible.
The only difference with (3.20) is that α has to be replaced by

√
α. Then

U(
√
α, n) ≤ 2

(1−
√
α)2
≤ 8

(1− α)2
.

The last inequality follows from 1 − αr ≥ r(1 − α) for r ∈ [0, 1], which is a consequence
of the Bernoulli inequality with a real exponent (3) .

The next theorem summarizes the main result for a Markov chain with a reversible
and L1-exponentially convergent transition kernel.

Theorem 3.34. Let (Xn)n∈N be a Markov chain with transition kernel K and initial
distribution ν. Let K be reversible with respect to π and L1-exponentially convergent with
(α,M). Let f ∈ L2 and assume that ν ∈M∞. Then

eν(Sn,n0 , f)2 ≤ 2

n(1− Λ)
‖f‖22 +

2M
∥∥ dν
dπ − 1

∥∥
∞α

n0

n2(1− α)2
‖f‖22 (3.21)

and for g = f − S(f) we have

lim
n→∞

neν(Sn,n0
, f)2 = lim

n→∞
neπ(Sn, f)2 = 〈(I + P )(I − P )−1g, g〉. (3.22)

Proof. By Lemmas 3.31 and 2.19 the first equality of (3.22) holds true. By the reversibility
of the transition kernel Proposition 3.26 applies, so that

lim
n→∞

neπ(Sn, f)2 = lim
n→∞

1

n
〈W (n, P )g, g〉 = 〈(I + P )(I − P )−1g, g〉.

The rest follows via Lemma 3.31, Corollary 3.27 and Lemma 2.19.

Remark 3.35. Under the assumptions of Theorem 3.34, Proposition 3.24 shows that
π-a.e. uniform ergodicity with (α, M̃) is equivalent to L1-exponential convergence with
(α, 2M̃). Hence one can restate Theorem 3.34 for uniformly ergodic Markov chains and
obtains the same result with M = 2M̃ . This is the general state space counterpart to
Theorem 2.20, where M̃ is of the magnitude of ‖1/π‖∞ and β = α.

(3) The Bernoulli inequality with real exponent r ∈ [0, 1] states for any real number x > −1
that (1 + x)r ≤ 1 + rx.
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Furthermore note that if the Markov operator is normal and not necessarily reversible,
then one can get a similar error bound by using Remark 3.33.

Remark 3.36. The error bound of (3.21) might be interpreted as follows: The burn-
in n0 is reasonable to eliminate the influence of the initial distribution, while n has to
decrease eπ(Sn, f). For large n the error behaves exactly as the error where one started
with the stationary distribution. Hence the bias of the initial distribution disappears after
sufficiently many steps. If the initial distribution falls together with the stationary one,
then the bias of the initial part vanishes completely.

Another consequence of Lemmas 3.31 and 2.19 is the following result concerning the
asymptotic error for ‖f‖2 ≤ 1.

Corollary 3.37. Under the same assumptions as in Theorem 3.34,

lim
n→∞

n sup
‖f‖2≤1

eν(Sn,n0
, f)2 =

1 + Λ

1− Λ

and
lim

n0→∞
sup
‖f‖2≤1

eν(Sn,n0
, f)2 =

1 + Λ

n(1− Λ)
− 2Λ(1− Λn)

n2(1− Λ)2
.

Proof. Let us define

cn,n0 =
2αn0M‖ dνdπ − 1‖∞

n2(1− α)2
.

One has limn→∞ ncn,n0
= 0 and limn0→∞ cn,n0

= 0. For ‖f‖2 ≤ 1 Lemmas 3.31 and 2.19
yield

|eν(Sn,n0
, f)2 − eπ(Sn, f)2| ≤ cn,n0

.

Hence

sup
‖f‖2≤1

eπ(Sn, f)2 − cn,n0
≤ sup
‖f‖2≤1

eν(Sn,n0
, f)2 ≤ sup

‖f‖2≤1

eπ(Sn, f)2 + cn,n0
. (3.23)

Recall that Λ = sup{α | α ∈ spec(P |L0
2)}. Then by Corollary 3.27 we have

sup
‖f‖2≤1

eπ(Sn, f)2 =
1 + Λ

n(1− Λ)
− 2Λ(1− Λn)

n2(1− Λ)2
.

Taking the limits in (3.23) yields the assertions.

In many examples it is known that the transition kernel is L1-exponentially conver-
gent or π-a.e. uniformly ergodic, but it is difficult to obtain reasonable values of (α,M)

explicitly. Then at least the asymptotic result can be used. This is similar to results of
[Sok97, Bré99, Mat99].

Remark 3.38. Observe that we have a lower and an upper bound of the error of Sn,n0
.

Exactly as in Remark 2.24 one deduces by (3.23) that
1 + Λ

n(1− Λ)
− 2

n2(1− Λ)2
− cn,n0 ≤ sup

‖f‖2≤1

eν(Sn,n0 , f)2 ≤ 2

n(1− Λ)
+ cn,n0 .

We showed an error bound of Sn,n0
with respect to ‖ · ‖2 for Markov chains which are

reversible and L1-exponentially convergent. The condition of L1-exponential convergence
is rather restrictive. This motivates the study of Markov chains which satisfy a weaker



56 D. Rudolf

convergence property, namely we assume that there is an L2-spectral gap, i.e. 1− β > 0.
This is enough to obtain error bounds for integrands f ∈ Lp with p ∈ (2,∞]. The following
lemmas lead to show that there exists a constant Cν,β,p, independent of n0 and n, such
that

|eν(Sn,n0 , f)2 − eπ(Sn, f)2| ≤ Cν,β,p‖f‖2p
βn0

n2
.

Note that it is not assumed that the Markov chain is reversible with respect to π.

Lemma 3.39. Let (Xn)n∈N be a Markov chain with transition kernel K and initial dis-
tribution ν. Let π be a stationary distribution of K. Let f ∈ Lp, let ν ∈Mmax{2,p/(p−2)}
with p ∈ (2,∞] and

V (β, n, p) = 4


24/p

n∑
j=1

β2j p−2
p + 2

3p+2
p

n−1∑
j=1

β2j p−3
p

n∑
k=j+1

β2k/p, p ∈ (2, 4),

2

n∑
j=1

βj + 2
3p+2
p

n−1∑
j=1

β2j/p
n∑

k=j+1

βk
p−2
p , p ∈ [4,∞].

(i) If p ∈ (2, 4), then

|eν(Sn,n0 , f)2 − eπ(Sn, f)2| ≤ V (β, n, p)

n2
β2n0

p−2
p

∥∥∥∥dνdπ − 1

∥∥∥∥
p
p−2

‖f‖2p.

(ii) If p ∈ [4,∞], then

|eν(Sn,n0 , f)2 − eπ(Sn, f)2| ≤ V (β, n, p)

n2
βn0

∥∥∥∥dνdπ − 1

∥∥∥∥
2

‖f‖2p.

Proof. First, let g = f − S(f) and observe that for p ≥ 1 one obtains

‖g‖p ≤ ‖f‖p + |S(f)| ≤ ‖f‖p + ‖f‖1 ≤ 2‖f‖p. (3.24)

Equation (3.17) implies

|eν(Sn,n0
, f)2 − eπ(Sn, f)2|

≤ 1

n2

n∑
j=1

|Lj+n0
(g2)|+ 2

n2

n−1∑
j=1

n∑
k=j+1

|Lj+n0
(gP k−jg)|. (3.25)

Let p ∈ (2, 4). Then it follows by (3.18) with r = p
2 and r/(r − 1) = p

p−2 that

|Lj+n0(g2)| ≤ 24/pβ2j p−2
p β2n0

p−2
p

∥∥∥∥dνdπ − 1

∥∥∥∥
p
p−2

‖g‖2p,

|Lj+n0
(gP k−jg)| ≤ 24/pβ2j p−2

p β2n0
p−2
p

∥∥∥∥dνdπ − 1

∥∥∥∥
p
p−2

‖gP k−jg‖p/2.

By applying the Cauchy–Schwarz inequality (CS) and (3.7) one obtains

‖gP k−jg‖p/2 ≤
(CS)
‖g‖p‖P k−jg‖p ≤ ‖g‖2p‖P k−j‖L0

p→L0
p
≤

(3.7)
22 p−1

p β2 k−jp ‖g‖2p.
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Let ε0(p) = β2n0
p−2
p ‖dν/dπ − 1‖ p

p−2
. Then

n∑
j=1

|Lj+n0
(g2)|+ 2

n−1∑
j=1

n∑
k=j+1

|Lj+n0
(gP k−jg)|

≤ 24/pε0(p)‖g‖2p
n∑
j=1

β2j p−2
p + 2

3p+2
p ε0(p)‖g‖2p

n−1∑
j=1

β2j p−3
p

n∑
k=j+1

β2k/p

= ε0(p)‖g‖2p
(

24/p
n∑
j=1

β2j p−2
p + 2

3p+2
p

n−1∑
j=1

β2j p−3
p

n∑
k=j+1

β2k/p
)

≤
(3.24)

V (β, n, p) · ε0(p)‖f‖2p.

Thus, claim (i) is proved.
Let us turn to (ii), i.e. p ∈ [4,∞]. Equation (3.18) with r = 2 is used to get

|Lj+n0
(g2)| ≤ 2βj+n0

∥∥∥∥dνdπ − 1

∥∥∥∥
2

‖g‖24,

|Lj+n0
(gP k−jg)| ≤ 2βj+n0

∥∥∥∥dνdπ − 1

∥∥∥∥
2

‖gP k−jg‖2.

By Hölder’s inequality (HI) with conjugate parameters p
2 and p

p−2 one obtains

‖gP k−jg‖2 ≤
(HI)
‖g‖p‖P k−jg‖ 2p

p−2
≤ ‖P k−j‖L0

2p/(p−2)
→L0

2p/(p−2)
‖g‖p‖g‖ 2p

p−2

≤ ‖P k−j‖L0
2p/(p−2)

→L0
2p/(p−2)

‖g‖2p ≤
(3.7)

2
p+2
p β(k−j) p−2

p ‖g‖2p.

Note that in the third inequality above it was essential that p ∈ [4,∞] for using ‖g‖ 2p
p−2
≤

‖g‖p. Thus, for ε0 = βn0‖ dνdπ − 1‖2 one has

n∑
j=1

|Lj+n0
(g2)|+ 2

n−1∑
j=1

n∑
k=j+1

|Lj+n0
(gP k−jg)|

≤ ε0‖g‖242

n∑
j=1

βj + ε0‖g‖2p2
2+ p+2

p

n−1∑
j=1

β2j/p
n∑

k=j+1

βk
p−2
p

≤ ε0‖g‖2p
(

2

n∑
j=1

βj + 2
3p+2
p

n−1∑
j=1

β2j/p
n∑

k=j+1

βk
p−2
p

)
≤

(3.24)
V (β, n, p) · ε0‖f‖2p.

Finally, substituting this in (3.25) completes the proof.

Let us consider V (β, n, p). If p ∈ (2,∞] and 1−β > 0, then we show that the mapping
n 7→ V (β, n, p) is bounded.

Lemma 3.40. Let p ∈ (2,∞] and 1− β > 0. For all n ∈ N,

V (β, n, p) ≤ 64p

(p− 2)(1− β)2
. (3.26)
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Proof. The inequalities indicated by (?) below follow from 1−βr ≥ r(1−β) for r ∈ [0, 1].
First, let p ∈ (2, 4). By the geometric series one can estimate

V (β, n, p)

4
= 24/p

n∑
j=1

β2j p−2
p + 2

3p+2
p

n−1∑
j=1

β2j p−3
p

n∑
k=j+1

β2k/p

= 24/p
n∑
j=1

β2j p−2
p + 2

3p+2
p β2/p

n−1∑
j=1

β2j p−2
p

n−j−1∑
k=0

β2k/p

≤ 24/p
n∑
j=1

β2j p−2
p +

2
3p+2
p β2/p

1− β2/p

n−1∑
j=1

β2j p−2
p

≤ 24/p + β2/p24/p(23−2/p − 1)

1− β2/p

n∑
j=1

β2j p−2
p ≤ 23+2/p

1− β2/p

n∑
j=1

β2j p−2
p

≤
p∈(2,4)

16

(1− β2/p)(1− β2(p−2)/p)
≤
(?)

4p2

(p− 2)(1− β)2
≤

p∈(2,4)

16p

(p− 2)(1− β)2
.

For p ∈ [4,∞], again by the geometric series, we can estimate

V (β, n, p)

4
= 2

n∑
j=1

βj + 2
3p+2
p

n−1∑
j=1

β2j/p
n∑

k=j+1

βk
p−2
p

= 2

n∑
j=1

βj + 2
3p+2
p β

p−2
p

n−1∑
j=1

βj
n−j−1∑
k=0

βk
p−2
p

≤
(

2 +
2

3p+2
p β

p−2
p

1− β
p−2
p

) n∑
j=1

βj ≤ 2 + β
p−2
p (2

3p+2
p − 2)

1− β
p−2
p

n∑
j=1

βj

≤
p∈[4,∞]

8
√

2

1− β
p−2
p

n∑
j=1

βj ≤ 8
√

2

(1− β)(1− β
p−2
p )
≤
(?)

8
√

2 p

(p− 2)(1− β)2
.

The main error bound of Sn,n0
for Markov chains with an L2-spectral gap is presented

in the next theorem.

Theorem 3.41. Let (Xn)n∈N be a Markov chain with transition kernel K and initial
distribution ν. Let π be a stationary distribution of K. For p ∈ (2,∞] let f ∈ Lp and ν ∈
Mmax{2,p/(p−2)}. Suppose that the Markov operator has an L2-spectral gap, i.e. 1−β > 0.
Then

eν(Sn,n0 , f)2 ≤ eπ(Sn, f)2 +
64p‖f‖2p

n2(p− 2)(1− β)2


β2n0

p−2
p

∥∥∥∥dνdπ − 1

∥∥∥∥
p
p−2

, p ∈ (2, 4),

βn0

∥∥∥∥dνdπ − 1

∥∥∥∥
2

, p ∈ [4,∞],

where

eπ(Sn, f)2 ≤


2

n(1− Λ)
‖f‖p if K is reversible with respect to π,

2

n(1− β)
‖f‖p otherwise.
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Furthermore

lim
n→∞

neν(Sn,n0
, f)2 = lim

n→∞
neπ(Sn, f)2 (3.27)

and if K is reversible with respect to π then (3.27) is equal to

〈(I + P )(I − P )−1g, g〉, where g = f − S(f).

Proof. By Lemmas 3.39 and 3.40 the equality in (3.27) is true. If the transition kernel is
reversible, then by Proposition 3.26 the asymptotic result holds since

lim
n→∞

neπ(Sn, f)2 = lim
n→∞

1

n
〈W (n, P )g, g〉 = 〈(I + P )(I − P )−1g, g〉.

By Lemmas 3.39 and 3.40 one obtains the estimate of eν(Sn,n0 , f)2. The estimate of
eπ(Sn, f)2 follows by Proposition 3.28 and for a reversible transition kernel by Corol-
lary 3.27.

Remark 3.42. A large burn-in n0 guarantees that the influence of the initial distribu-
tion disappears and a large n makes eπ(Sn, f) small. The condition of L1-exponential
convergence could be replaced by the existence of an L2-spectral gap by paying the price
of considering error bounds in terms of Lp-norms of the integrand for p ∈ (2,∞]. If p
converges to 2, then the bound goes to infinity. However, for p > 2 one has an explicit
error bound. If the initial and stationary distribution is the same, then the influence of
the initial part vanishes for all p ∈ (2,∞].

Remark 3.43. Let

cn,n0
(p) =

64p

n2(p− 2)(1− β)2


β2n0

p−2
p

∥∥∥∥dνdπ − 1

∥∥∥∥
p
p−2

, p ∈ (2, 4),

βn0

∥∥∥∥dνdπ − 1

∥∥∥∥
2

, p ∈ [4,∞].

For ‖f‖p ≤ 1 we have, by Lemmas 3.39 and 3.40,

|eν(Sn,n0 , f)2 − eπ(Sn, f)2| ≤ cn,n0(p).

Observe that this implies a lower error bound for Sn,n0
. We do not use it because of the

lack of a general lower bound of sup‖f‖p≤1 eπ(Sn, f)2 for p ∈ (2,∞].

Remark 3.44. Let K be a transition kernel which is reversible with respect to π. We
use the notation βK = β and ΛK = Λ to indicate the transition kernel. The lazy version
of K is given by K̃. Then

βK̃ = ΛK̃ = 1
2 (1 + ΛK).

If one has an estimate of ΛK , then one also has an estimate of βK̃ and one can apply
Theorem 3.41. There are some techniques, e.g. canonical paths (see [Yue00]) and the con-
ductance concept (see [LS88, LS93] and [JS89, DS91]), which are helpful to estimate ΛK .
However, in general it is a challenging task.

3.3. Burn-in. Assume that computational resources for N = n+n0 steps of the Markov
chain are available. The burn-in n0 and the sample size n should be chosen such that the
error bound is as small as possible. One encounters the same trade-off as for finite state
spaces. In the next statement the error bound for an explicit burn-in is stated.
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Theorem 3.45.

(i) Suppose that we have a Markov chain which is reversible with respect to π and L1-
exponentially convergent with (α,M). Let

n0 = max

{⌈
log(M

∥∥ dν
dπ − 1

∥∥
∞)

log(α−1)

⌉
, 0

}
.

Then

sup
‖f‖2≤1

eν(Sn,n0 , f)2 ≤ 2

n(1− β)
+

2

n2(1− α)2
≤ 2

n(1− α)
+

2

n2(1− α)2
.

(ii) Suppose that we have a Markov chain with Markov operator P which has an L2-
spectral gap 1 − β > 0. For p ∈ (2,∞] let n0(p) be the smallest natural number
(including zero) which is greater than or equal to

1

log(β−1)


p

2(p− 2)
log

(
32p

p− 2

∥∥∥∥dνdπ − 1

∥∥∥∥
p
p−2

)
, p ∈ (2, 4),

log

(
64

∥∥∥∥dνdπ − 1

∥∥∥∥
2

)
, p ∈ [4,∞].

Then
sup
‖f‖p≤1

eν(Sn,n0(p), f)2 ≤ 2

n(1− β)
+

2

n2(1− β)2
.

Proof. Assertion (i) follows from Theorem 3.34 and Proposition 3.24. Claim (ii) is an
application of Theorem 3.41.

Note that log(β−1) = (1− β) +
∑∞
j=2 (1− β)j/j! and log(β−1) ≥ 1− β. This can be

used to estimate the suggested burn-in. Now we justify the choice of the burn-in.
For simplicity we assume that α = β. Let us define

C(p) =



M

∥∥∥∥dνdπ − 1

∥∥∥∥
∞
, p = 2,

32p

p− 2

∥∥∥∥dνdπ − 1

∥∥∥∥
p
p−2

, p ∈ (2, 4),

64

∥∥∥∥dνdπ − 1

∥∥∥∥
2

, p ∈ [4,∞].

We consider numerical experiments under the following conditions. Suppose that

• the computational resources are either N = 105 or N = 106.
• β = 0.9 or β = 0.99 or β = 0.999.
• C = C(p) = 1030, independent of p.

Then the suggested burn-in in Theorem 3.45 for p = 2 and p ∈ [4,∞] has the form

n
{2}∪[4,∞)
0 =

⌈
log(C)

log(β−1)

⌉
,

whereas for p ∈ (2, 4) it still depends on p,

n
(2,4)
0 =

⌈
p

2(p− 2)

log(C)

log(β−1)

⌉
.
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The error for ‖f‖p ≤ 1 where p ∈ {2} ∪ [4,∞) is bounded by

est{2}∪[4,∞)(n, n0) =

√
2

n(1− β)
+

2Cβn0

n2(1− β)2
,

whereas for p ∈ (2, 4) we have the upper estimate

est(2,4)(n, n0) =

√
2

n(1− β)
+

2Cβ2n0
p−2
p

n2(1− β)2
.

With the restriction N = n+ n0 one can numerically compute a burn-in, which approx-
imates the minimal upper error bound. This is a 1-dimensional minimization problem
with different parameters. Let us denote the numerically computed values of the burn-in
by n{2}∪[4,∞)

opt for p ∈ {2} ∪ [4,∞) and n(2,4)
opt for p ∈ (2, 4) respectively.

Table 1. For C = 1030 and p = 2.1. The numerically computed value nInt
opt which approximately

minimizes the mapping n0 7→ estInt(N − n0, n0), with either Int = {2} ∪ [4,∞) or Int = (2, 4).

N β n
{2}∪[4,∞)
opt n

{2}∪[4,∞)
0 = d log(C)

log(β−1)
e n

(2,4)
opt n

(2,4)
0 = d p

2(p−2)
log(C)

log(β−1)
e

(by Maple) (suggested above) (by Maple) (suggested above, p = 2.1)

105 0.9 656 656 6655 6885
106 0.9 656 656 6655 6885
105 0.99 6873 6874 69642 72169
106 0.99 6874 6874 69715 72169
105 0.999 68977 69043 79011 724952
106 0.999 69041 69043 699520 724952

Table 1 gives a collection of n{2}∪[4,∞)
opt and n

(2,4)
opt where p = 2.1. The suggested

n0 of Theorem 3.45 is close to the numerically computed values of the burn-in, which
approximately minimize the error bound. For N = 105 and β = 0.999 the difference
between n(2,4)

opt and n(2,4)
0 is large. In this situation Theorem 3.41 gives an error smaller

than 1 for no choice of n and n0 with N = 105. The available resources N = n + n0

are too small for the suggested burn-in to be reached. If the computational resources are
large enough, then the computed values n{2}∪[4,∞)

opt and n(2,4)
opt are of the same magnitude

as the suggested n{2}∪[4,∞)
0 and n(2,4)

0 .
If an error of at most ε ∈ (0, 1) is desired, then the suggested choice n{2}∪[4,∞)

0 or
n

(2,4)
0 , depending on p, of the burn-in is independent of the precision ε. We choose n0 as

suggested in Theorem 3.45 and

n ≥ 1 +
√

1 + 4ε2

(1− β)ε2
to achieve eν(Sn,n0

, f) ≤ ε.

Let the Markov chain be reversible with respect to π and let Λ = β. For different
fixed values n0 a plot of

est{2}∪[4,∞)(N − n0, n0) and sup
‖f‖2≤1

eπ(SN , f) =

√
1 + Λ

N(1− Λ)
− 2Λ(1− ΛN )

N2(1− Λ)2
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is presented in Figure 2. Roughly speaking, one can see that if the burn-in is chosen too
small a vertical shifting takes place and if the burn-in is chosen too large a horizontal
shifting appears. Summarizing one can say that if β, C and p are given, then one should

10
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5

10
−2

10
−1

10
0

N = n0 + n

E
rr
o
r
b
o
u
n
d

 

 

n0 = log(C)
log(β−1)

n0 = 0.88 log(C)
log(β−1)

n0 = 3 log(C)
log(β−1)

n0 = 0, init by π

Fig. 2. For β = Λ = 0.99 and C = 1030 the mapping N 7→ est{2}∪[4,∞)(N −n0, n0) is plotted for
different values of n0. The dotted curve is the graph of the mapping N 7→ sup‖f‖2≤1 eπ(SN , f).
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n0 = log(C)
log(β−1)

n0 = N
2 , n = N

2

n0 = 0, init by π

Fig. 3. For β = Λ = 0.99 and C = 1030 the mapping N 7→ est{2}∪[4,∞)(N −n0, n0) is plotted for
different values of n0. The dotted curve is the graph of the mapping N 7→ sup‖f‖2≤1 eπ(SN , f).

choose the burn-in as suggested above. If there is an estimate of log(C)/ log(β−1), then
one should ensure that it is not smaller than the real quotient. As seen in Figure 2, if it
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is slightly smaller there is already a strong influence. By choosing the burn-in too large
the influence is less heavy.

If nothing is known about β or C another strategy is to choose n = n0 = N/2 for
even N . This has the advantage that no information about β or C is needed. In Figure 3
we plotted

est{2}∪[4,∞)(N/2, N/2), est{2}∪[4,∞)(N − n
{2}∪[4,∞)
0 , n

{2}∪[4,∞)
0 ) and sup

‖f‖2≤1

eπ(SN , f)

whereN ∈ [104, 105]. Asymptotically the price of a factor of
√

2 is paid, i.e. asymptotically
the error is

√
2 times worse than sup‖f‖2≤1 eπ(SN , f) (see Figure 3). This strategy works

well and reaches the same rate of convergence as in Theorem 3.45.

3.4. Examples. For the examples in Section 2.4 one can provide all eigenfunctions and
eigenvalues. Usually it is a challenging task to obtain the necessary information on the
spectral structure of the Markov operator, in particular on general state spaces. This
section contains examples to illustrate the error bounds. The literature provides some
tools which can be applied to estimate the quantities of interest, e.g. Λ, β. These tools
are briefly introduced. For further details we refer to the literature. Note that the initial
distributions of the Markov chains of the following examples are to demonstrate the error
bounds and not to minimize the burn-in.

Bounded state spaces. Suppose that the state space D is a measurable subset of Rd.
The σ-algebra D is given by B(D). We say a transition kernel K has a transition density
with respect to a positive measure µ if there is a function k : D ×D → [0,∞] such that

K(x,A) =

∫
A

k(x, y)µ(dy), x ∈ D, A ∈ B(D).

We write kn for the transition density of Kn.
Let D be a bounded set and let % : D → [0,∞] be integrable with respect to the

Lebesgue measure, with
∫
D
%(x) dx > 0. Then

π%(A) =

∫
A
%(x) dx∫

D
%(x) dx

, A ∈ B(D),

is a probability measure on (D,B(D)). We say % is an unnormalized density with respect
to the Lebesgue measure if

∫
D
%(x) dx 6= 1. Let K be a transition kernel with transition

density k with respect to the Lebesgue measure and assume that π% is a stationary
distribution of K. Furthermore, let s ∈ [0, 1] and define

Ks(x,A) = (1− s)K(x,A) + s1A(x), x ∈ D, A ∈ B(D).

The transition kernel Ks is called the s-modified transition kernel of K. If s = 1/2 then
the lazy version of K is given and if s = 0 then one has K. For all s ∈ [0, 1], π% is a
stationary distribution of Ks. The goal is to approximate

S(f) =

∫
D

f(x)π%(dx).
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One finds for n ∈ N that

Kn
s (x,A) =

n∑
i=1

sn−i(1− s)i
(
n

i

)
Ki(x,A) + sn1A(x), x ∈ D, A ∈ B(D). (3.28)

The case s = 0 is reasonable if we define 00 = 1. The following lemma gives a condi-
tion which implies L1-exponential convergence of the s-modified transition kernel. For
simplicity let us assume that

∫
D
%(x) dx = 1.

Lemma 3.46. If there exist α ∈ [0, 1) and M <∞ such that

2sn +

∫
D

ess sup
y∈D

∣∣∣∣ n∑
i=1

sn−i(1− s)i
(
n

i

)
ki(x, y)

%(y)
− (1− sn)

∣∣∣∣%(x) dx ≤ αnM, n ∈ N,

then the transition kernel Ks is L1-exponentially convergent with (α,M).

Proof. The Markov operator of Ks is denoted by Ps. Then

‖(Pns − S)f‖1 =

∫
D

∣∣∣∣ ∫
D

f(y)

( n∑
i=1

sn−i(1− s)i
(
n

i

)
ki(x, y) dy

)
+ snf(x)− S(f)

∣∣∣∣%(x) dx

≤
∫
D

∫
D

|f(y)|
∣∣∣∣ n∑
i=1

sn−i(1− s)i
(
n

i

)
ki(x, y)

%(y)
− (1− sn)

∣∣∣∣%(y) dy %(x) dx

+ sn
∫
D

|f(x)− S(f)|%(x) dx

≤ ‖f‖1
∫
D

ess sup
y∈D

∣∣∣∣ n∑
i=1

sn−i(1− s)i
(
n

i

)
ki(x, y)

%(y)
− (1− sn)

∣∣∣∣%(x) dx

+ sn‖f − S(f)‖1

≤ ‖f‖1
(

2sn +

∫
D

ess sup
y∈D

∣∣∣∣ n∑
i=1

sn−i(1− s)i
(
n

i

)
ki(x, y)

%(y)
− (1− sn)

∣∣∣∣%(x) dx

)
,

which proves the assertion.

For n = 1 and s = 0 one has a criterion for L1-exponential convergence with (α, 1)

for the transition kernel K.

Corollary 3.47. If there exists an α ∈ [0, 1) such that∫
D

ess sup
y∈D

∣∣∣∣k(x, y)

%(y)
− 1

∣∣∣∣%(x) dx ≤ α,

then the transition kernel K is L1-exponentially convergent with (α, 1).

Example 1. Let us present an easy example borrowed from [Ros95, p. 402]. Let D =

[0, 1] and D = B([0, 1]). The transition kernel is defined by

K(x,A) =

∫
A

1 + x+ y

x+ 3/2
dy, x ∈ [0, 1], A ∈ B([0, 1]).

The stationary distribution is given by

π(A) =
1

2

∫
A

(x+ 3/2) dx, A ∈ B([0, 1]).
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The transition kernel K is reversible with respect to π. These properties can be checked
straightforwardly. We have∫ 1

0

ess sup
y∈[0,1]

∣∣∣∣k(x, y)

%(y)
− 1

∣∣∣∣ %(x) dx =

∫ 1

0

ess sup
y∈[0,1]

|x+ y − 2xy − 1/2|
2(y + 3/2)(x+ 3/2)

%(x) dx

=

∫ 1

0

ess sup
y∈[0,1]

|x+ y − 2xy − 1/2|
4(y + 3/2)

dx =
1

6

∫ 1

0

|x− 1/2|dx =
1

24
.

Hence Corollary 3.47 gives that the transition kernel is L1-exponentially convergent with
(1/24, 1). Because of the reversibility one can apply Proposition 3.24 to find that the
transition kernel is π-a.e. uniformly ergodic with (1/24, 1/2). Furthermore there exists an
L2-spectral gap: one has β ≤ α = 1/24.

Let δ ∈ (0, 2/3) and let the initial distribution ν be given by

ν(A) =
1

δ

∫
A

1[0,δ](x) dx, A ∈ B([0, 1]).

Hence the initial state is uniformly distributed in [0, δ]. Then∥∥∥∥ dνdπ% − 1

∥∥∥∥
∞

= ess sup
x∈[0,1]

∣∣∣∣4 · 1[0,δ](x)

δ(2x+ 3)
− 1

∣∣∣∣ =
4

3δ
− 1.

Theorem 3.45 (i) suggests the choice

n0 =

⌈
log( 4

3δ − 1)

log(24)

⌉
such that

sup
‖f‖2≤1

eν(Sn,n0
, f)2 ≤ 48

23n
+

1152

529n2
<

5

n
.

Example 2. It is taken from [Ros03, p. 172]. Let D = [−1, 1] and D = B([−1, 1]). The
transition kernel is defined by

K(x,A) =

∫
A

(1[−1,0](x)1(0,1](y) + 1(0,1](x)1[−1,0](y)) dy, x ∈ [−1, 1], A ∈ B([−1, 1]).

For x ∈ [−1, 0] the next state is uniformly distributed in (0, 1] and for x ∈ (0, 1] the next
state is uniformly distributed in [−1, 0]. The transition kernel is reversible with respect
to the uniform distribution on D, thus π% is given by %(x) = 1/2 for x ∈ D. For n ∈ N
we have

Kn(x,A) =

{
K(x,A), n odd,
K2(x,A), n even,

where

K2(x,A) =

∫
A

(1[−1,0](x)1[−1,0](y) + 1(0,1](x)1(0,1](y)) dy, x ∈ [−1, 1], A ∈ B([−1, 1]).

The spectrum of P is completely known: spec(P |L2) = {1, 0,−1} with
Eig(P, 1) = {f ∈ L2 | f ≡ c, c ∈ R} = (L0

2)⊥,

Eig(P, 0) =

{
f ∈ L2

∣∣∣∣ ∫ 0

−1

f(x)dx =

∫ 1

0

f(x)dx = 0

}
,

Eig(P,−1) = {f ∈ L2 | f(x) = c (1[−1,0](x)− 1(0,1](x)), c ∈ R},
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where Eig(P, λ) denotes the eigenspace of the eigenvalue λ. Clearly spec(P |L0
2) = {0,−1}.

To apply the error bounds one has to pass over to K̃, the lazy version of K. Let P̃ be the
transition operator which corresponds to K̃. We write β = βK̃ and Λ = ΛK̃ to indicate
the transition kernel K̃. We have spec(P̃ |L2) = {1, 1/2, 0} and spec(P̃ |L0

2) = {1/2, 0}.
The operator P̃ has an L2-spectral gap, one obtains

βK̃ = ΛK̃ = ‖P̃‖L0
2→L0

2
= 1/2.

Note that K̃ = K1/2. By the special structure of Kn one finds for x, y ∈ D that

1

2n

n∑
i=1

(
n

i

)
ki(x, y)

%(y)
=

1

2n−1



(n−1)/2∑
i=0

(
n

2i+ 1

)
k(x, y) +

(n−1)/2∑
i=1

(
n

2i

)
k2(x, y), n odd,

n/2−1∑
i=0

(
n

2i+ 1

)
k(x, y) +

n/2−1∑
i=1

(
n

2i

)
k2(x, y), n even,

= (k(x, y) + k2(x, y))− k2(x, y)

2n−1
= 1− k2(x, y)

2n−1
.

It follows that∫ 1

−1

ess sup
y∈[−1,1]

∣∣∣∣ 1

2n

n∑
i=1

(
n

i

)
ki(x, y)

%(y)
− 1 +

1

2n

∣∣∣∣%(x) dx

=

∫ 1

−1

ess sup
y∈[−1,1]

∣∣∣∣ 1

2n
− k2(x, y)

2n−1

∣∣∣∣12 dx =
1

2n
.

By Lemma 3.46 with s = 1/2 we see that the kernel K̃ is L1-exponentially convergent
with (1/2, 3), i.e.

‖P̃n − S‖L1→L1 ≤
3

2n
, n ∈ N.

The parameter α = 1/2 of L1-exponential convergence is optimal, since βK̃ = 1/2 and in
general for reversible, L1-exponentially convergent transition kernel with (α,M) one has
β ≤ α.

Let δ ∈ (0, 1). Assume that the initial distribution is given by

ν(A) =
1

δ

∫
A

1[0,δ](x) dx, A ∈ B([−1, 1]),

i.e. the initial state is chosen with respect to the uniform distribution in [0, δ]. Then∥∥∥∥ dνdπ% − 1

∥∥∥∥
∞

= ess sup
x∈[−1,1]

∣∣∣∣2 · 1[0,δ](x)

δ
− 1

∣∣∣∣ =
2

δ
− 1.

Theorem 3.45(i) suggests the choice

n0 =

⌈
log(3(2/δ − 1))

log(2)

⌉
such that for Sn,n0

, which uses a Markov chain with transition kernel K̃ and initial
distribution ν, one has

sup
‖f‖2≤1

eν(Sn,n0 , f) ≤
√

4

n
+

8

n2
. (3.29)
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By Remark 3.38, by the L1-exponential convergence of K̃ with (1/2, 3) and ΛK̃ = βK̃
one obtains the lower bound√

3

n
− 16

n2
≤ sup
‖f‖2≤1

eν(Sn,n0
, f). (3.30)

By Corollary 3.37, for all u ∈ Eig(P̃ , 1
2 ) = Eig(P, 0) with ‖u‖2 = 1,

eπ(Sn, u)2 = sup
‖f‖2≤1

eπ(Sn, f)2 = lim
n0→∞

sup
‖f‖2≤1

eν(Sn,n0
, f)2.

This motivates the comparison of the lower error bound, the upper error bound and the
exact error for a specific u ∈ Eig(P̃ , 1/2). Namely, let

u(x) =

{
−1, x ∈ [−1,−1/2] ∪ [0, 1/2),

1, x ∈ (−1/2, 0] ∪ (1/2, 1].

Since u2 = 1 we get

Lj(u
2) = 0 and Lj(uP

ku) =
1

2k
Lj(u

2) = 0, for j, k ∈ N.

Hence by Proposition 3.29 one has

eν(Sn,n0 , u) = eπ(Sn, u) =

√
3

n
− 4(1− 2−n)

n2
. (3.31)

10
1

10
2

10
−1

10
0

N = n0 +n

E
rr
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lower bound (3.30)
exact error (3.31)
upper bound (3.29)

Fig. 4. Example 2: Exact error and error bounds, δ = 10−3 and n0 = d log(3(2/δ−1))
log(2)

e = 13.

In Figure 4 for δ = 10−3 the exact error (3.31), the upper error bound (3.29) and
the lower bound (3.30) are plotted. The lower bound leads to a non-trivial estimate if
N ≥ n0 + 6 = 19. The curve of the upper error estimate is shifted down, because the
coefficient of the leading term is worse than the coefficient of the leading term of the
exact error eν(Sn,n0

, u).
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Lemma 3.46 provides a tool which can be used to show L1-exponential convergence
for several examples. Unfortunately it is rather difficult to apply for more sophisticated
applications. Next let us present the Metropolis–Hastings algorithm.

Metropolis–Hastings algorithm. The Metropolis–Hastings algorithm, suggested in
[MR+53] and extended in [Has70], is widely used in applications. The following intro-
duction is based on Mengersen and Tweedie [MT96]. Suppose that the state space D is
contained in Rd and equipped with B(D). Let π% be a probability measure on (D,B(D))

given by a possibly unnormalized density % with respect to the Lebesgue measure:

π%(A) =

∫
A
%(x) dx∫

D
%(x) dx

, A ∈ B(D).

Let q : D × D → [0,∞] be such that q(x, ·) is integrable with respect to the Lebesgue
measure for all x ∈ D and assume that

Q(x,A) =

∫
A

q(x, y) dy + 1A(x)

(
1−

∫
D

q(x, y) dy

)
, x ∈ D, A ∈ B(D),

is a transition kernel. It might happen that for some x ∈ D one has Q(x, {x}) > 0. If
Q(x, {x}) = 0 for all x ∈ D then q is a transition density of Q. The question is how to
modify Q to get a transition kernel with stationary distribution π%. For x, y ∈ D let

θ(x, y) =

min

{
%(y)q(y, x)

%(x)q(x, y)
, 1

}
, %(x)q(x, y) > 0,

1, %(x)q(x, y) = 0,

be the acceptance probability. Then the Metropolis–Hastings transition kernel K% is de-
fined by

K%(x,A) =

∫
A

θ(x, y)Q(x, dy) + 1A(x)

(∫
D

(1− θ(x, y))Q(x, dy)

)
=

∫
A

θ(x, y)q(x, y) dy + 1A(x)

(∫
D

(1− θ(x, y))q(x, y) dy +Q(x, {x})
)
,

where x ∈ D and A ∈ B(D). In this setting Q is called the proposal transition kernel
of K%. If q(x, y) = q(y, x) for all x, y ∈ D, then we call K% the Metropolis transition
kernel. By the construction one can see that the transition kernel K% is reversible with
respect to π%, thus one has the desired stationary distribution.

Lemma 3.48. The Metropolis–Hastings transition kernel K% is reversible with respect
to π%.

Proof. It is enough to show that∫
A

K%(x,B)π%(dx) =

∫
B

K%(x,A)π%(dx)

for disjoint A,B ∈ B(D). Then the assertion follows by the symmetry θ(x, y)q(x, y)%(x) =

θ(y, x)q(y, x)%(y) and Fubini’s Theorem.

The Metropolis–Hastings algorithm, which simulates a transition of the Metropolis-
Hastings transition kernel, goes as follows: Let x ∈ D be the current state. Choose a
proposal state y with respect to Q(x, ·). Toss a coin whose “head” probability is θ(x, y).
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If “head” then accept the proposal state, i.e. return y. Otherwise reject the proposal, i.e.
return x. Schematically, a single step of the Metropolis–Hastings algorithm is presented
in the Procedure Metropolis-Step(x,Q, %).

Procedure Metropolis-Step(x,Q,%)

input: current state x, proposal kernel Q, unnormalized density %.
output: next state y.

Choose y with respect to Q(x, ·);

Compute

θ(x, y) =

{
min{ %(y)q(y,x)

%(x)q(x,y) , 1}, %(x)q(x, y) > 0,

1, %(x)q(x, y) = 0;

if rand() ≥ θ(x, y) then
y := x;

end
Return y.

If q̃(y) = q(x, y) for all x, y ∈ D then the proposal transition kernel samples indepen-
dently of x. In this situation one can apply the following result.

Theorem 3.49 (see [MT96, Theorem 2.1, p. 105]). Let q̃ : D → [0,∞] be a function with∫
D
q̃(x) dx = 1. Let the proposal transition kernel of the Metropolis–Hastings transition

kernel K% be Q(x,A) =
∫
A
q̃(y) dy for x ∈ D and A ∈ B(D). If there exists a γ > 0 such

that
q̃(y)

%(y)
≥ γ, y ∈ D,

then K% is uniformly ergodic, and

‖Kn
% (x, ·)− π‖tv ≤ (1− γ)n, x ∈ D, n ∈ N.

Remark 3.50. The proof is based on the well known equivalence that a transition kernel
K is uniformly ergodic iff the whole state space D is a small set. A set R ∈ B(D) is called
small if there exists a γ > 0, an m ∈ N and a probability measure ψ such that

Km(x,A) ≥ γψ(A), x ∈ R, A ∈ B(D).

The result of Theorem 3.49 will be demonstrated for a toy example, stated in [MT96,
p. 107].

Let D = R and D = B(R). Note that the state space is unbounded. The desired
distribution is given by the density

%(y) =
1√
2π

exp

(
−y

2

2

)
, y ∈ R,

i.e. π% is an N(0, 1) distribution. By N(µ, ξ2) we denote the normal distribution with
mean µ and variance ξ2. Furthermore, assume that the proposal transition kernel samples
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independently from N(0, ξ2) so that

q̃(y) =
1√
2πξ

exp

(
− y2

2ξ2

)
, y ∈ R.

Let ξ2 > 1. Then
q̃(x)

%(x)
≥ ξ−1,

which implies that

‖Kn
% (x, ·)− π%‖tv ≤ (1− ξ−1)n, x ∈ D, n ∈ N.

By the reversibility with respect to π% of the Metropolis–Hastings transition kernel, an
immediate consequence is that uniform ergodicity implies L1-exponential convergence,
since π-a.e. uniform ergodicity is equivalent to L1-exponential convergence. Hence we
have a transition kernel which is L1-exponentially convergent with (1 − ξ−1, 1). This
implies that the Markov operator P which corresponds to the transition kernel K% has
an L2-spectral gap: we have 1− β ≥ ξ−1.

Let δ ∈ (0, 1) and x0 ∈ [0,∞). The initial state is chosen uniformly distributed in
[x0 − δ, x0 + δ]. Then

dν

dπ
(x) =

√
π

2
·
1[x0−δ,x0+δ](x)

δ
exp

(
x2

2

)
, x ∈ D.

We obtain∥∥∥∥dνdπ − 1

∥∥∥∥
∞

=

√
π

2
· exp((x0 + δ)2/2)

δ
− 1 ≤

√
π

2
· exp((x0 + δ)2/2)

δ
.

The method Sn,n0 uses a Markov chain with transition kernel K% and initial distribu-
tion ν. The burn-in is almost chosen as suggested in Theorem 3.45(i). We use log(1−ξ−1)

≥ ξ−1 to estimate the burn-in, so we set

n0 = dξ(log(δ−1) + (x0 + δ)2/2 + 0.23)e.

Then

sup
‖f‖2≤1

eν(Sn,n0 , f)2 ≤ 2ξ

n
+

2ξ2

n2
.

Contracting normals. The next example is described in [Bax05]; see also [RR97b,
RT99]. Let D = R, D = B(R) and θ ∈ (−1, 1). Note that the state space is unbounded.
The transition kernel is given by

K(x,A) =
1√

2π(1− θ2)

∫
A

exp

(
− (θx− y)2

2(1− θ2)

)
dy, x ∈ R, A ∈ B(R),

so that K(x, ·) is an N(θx, 1− θ2) distribution. By some elementary calculation one can
see that a stationary distribution is

π(A) =
1√
2π

∫
A

exp

(
−y

2

2

)
dy, A ∈ B(R),

i.e. π is an N(0, 1) distribution. The transition kernel K is reversible with respect
to π. Suppose that θ ∈ (0, 1). Then the Markov operator is positive semi-definite, i.e.
〈Pf, f〉 ≥ 0 for all f ∈ L2. The next result is an application of [Bax05, Theorem 1.3,
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p. 702] where the Markov operator is self-adjoint and positive semi-definite. The same
example is considered in [Bax05, p. 728] and [ŁN11, p. 33].

Lemma 3.51 (see [Bax05, Theorem 1.3, pp. 702 and 728]). Let θ ∈ (0, 1), c ∈ (1,∞) and
set

λ = θ2 +
2(1− θ2)

1 + c2
,

K = 2 + θ2(c2 − 1),

B = 2

[
Φ

(
(1 + θ)c√

1− θ2

)
− Φ

(
θc√

1− θ2

)]
, where Φ(z) =

1√
2π

∫ z

−∞
exp

(
−y

2

2

)
dy,

α = 1 +
log
(
K−B
1−B

)
log(λ−1)

,

β̂ = max{λ, (1−B)1/α} < 1.

Then
β = ‖P‖L0

2→L0
2
≤ β̂.

Let us illustrate the last lemma. For any fixed θ one can numerically minimize the
upper estimate β̂ of β, depending on c. For example let θ = 0.5. Then one gets β̂ = 0.8946

for c = 1.6041.
There exists an L2-spectral gap, so we can apply Theorem 3.45 for p ∈ (2,∞]. Let δ ∈

(0, 1) and x0 ∈ [0,∞). The initial state is chosen uniformly distributed on [x0− δ, x0 + δ].
The density of the initial distribution with respect to π is given by

dν

dπ
(x) =

√
π

2
·
1[x0−δ,x0+δ](x)

δ
exp

(
x2

2

)
.

Then for all q ∈ [1,∞] it follows that∥∥∥∥dνdπ − 1

∥∥∥∥
q

≤
∥∥∥∥dνdπ − 1

∥∥∥∥
∞

=

√
π

2
· exp((x0 + δ)2/2)

δ
− 1 ≤

√
π

2
· exp((x0 + δ)2/2)

δ
.

The burn-in is chosen as suggested in Theorem 3.45, where we use the previously stated
estimate of ‖dν/dπ− 1‖q. Suppose that the burn-in n0(p) is the smallest natural number
(including zero) which is greater than or equal to

1

log(β̂−1)


p

2(p− 2)

[
log

(
16p

p− 2

)
+ log(

√
2π δ−1) + (x0 + δ)2/2

]
, p ∈ (2, 4),

log(δ−1) + (x0 + δ)2/2 + 4.39, p ∈ [4,∞].

Then
sup
‖f‖p≤1

eν(Sn,n0 , f)2 ≤ 2

n(1− β̂)
+

2

n2(1− β̂)2
.

In Table 2 one can see how much resources N are sufficient to obtain an error less than
ε = 0.01.

3.5. Notes and remarks. In the last decades explicit error bounds and confidence
estimates of Markov chain Monte Carlo methods on general state spaces attracted more
and more attention. Let us present how our results fit into the published literature.
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Table 2. Contracting Normals: The initial distribution ν is chosen with x0 = 0 and δ = 0.1.
The burn-in of Theorem 3.45 is computed for p = 2.1 and n is such that one obtains an error
less than ε = 0.01. The estimate β̂ of β is computed by a minimizing procedure of Maple for
c ≥ 1.01.

θ c β̂ n0 n N
(for p = 2.1) (for precision ε = 0.01)

0.91 1.12845 0.999664 2.82241 · 105 5.94614 · 107 5.97437 · 107

0.92 1.11691 0.999816 5.16275 · 105 1.08759 · 108 1.09275 · 108

0.93 1.10499 0.999912 1.08257 · 106 2.28043 · 108 2.29126 · 108

0.94 1.09260 0.999966 2.76738 · 106 5.82923 · 108 5.85690 · 108

0.95 1.07964 0.999990 9.60536 · 106 2.02337 · 109 2.03297 · 109

0.96 1.06599 0.999998 5.58578 · 107 1.17624 · 1010 1.18183 · 1010

In the seminal work of Lovász and Simonovits [LS93] an estimate of eπ(Sn, f)2 is
shown. The paper deals with the computation of the volume of a convex body by a
randomized algorithm based on Markov chains. Let us explain the result of [LS93, The-
orem 1.9, p. 375] in detail. Let (Xn)n∈N be a Markov chain with transition kernel K and
initial distribution ν and let K be reversible with respect to a probability measure π.
Then let us define the conductance as

ϕ(K,π) = inf
0<π(A)≤1/2

∫
A
K(x,Ac)π(dx)

π(A)
.

Assume that the Markov operator is positive semi-definite, i.e. 〈Pf, f〉 ≥ 0 for all f ∈ L2.
Then

eπ(Sn, f)2 ≤ 4

ϕ(K,π)2 · n
‖f‖22. (3.32)

This result is slightly worse than Proposition 3.26. In Proposition 3.26 one has an exact
error formula for eπ(Sn, f)2. Mainly the spectral structure of the Markov operator is
used. In Corollary 3.27 this exact error formula is further estimated and one obtains

eπ(Sn, f)2 ≤ 2

(1− Λ)n
‖f‖22, where Λ = sup{α | α ∈ spec(P |L0

2)}. (3.33)

The Cheeger inequality 1 − Λ ≥ ϕ(K,π)2/2 (see Section A.3) provides a relation be-
tween Λ and ϕ(K,π), so that (3.33) implies (3.32). Note that in Proposition 3.26 and
Corollary 3.27 it is not assumed that the Markov operator is positive semi-definite, so
the assumptions are slightly less restrictive. But if one has a transition kernel K which
determines a not necessarily positive semi-definite transition operator, then one can pass
over to the lazy version of K to obtain positive semi-definiteness. However, the estimate
of (3.32) covers the important facts and it seems that the refinement of Proposition 3.26
is well known.

The paper of Mathé [Mat99] contains results concerning the asymptotic integration
error for uniformly ergodic Markov chains which are reversible with respect to π. For
example it is shown that for any initial distribution ν ∈M∞ one has

lim
n→∞

n sup
‖f‖2≤1

eν(Sn,n0 , f)2 =
1 + Λ

1− Λ
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and for f ∈ L2 it is proven that

lim
n→∞

neν(Sn,n0
, f)2 = 〈(I − P )−1(I + P )g, g〉, where g = f − S(f).

The same result is part of Corollary 3.37 and for individual f part of Theorem 3.34.
In [Mat04] the asymptotic integration error is studied for Markov chains not necessarily
reversible and not necessarily uniformly ergodic. It is assumed that the transition kernel
is V -uniformly ergodic (see (3.36)). For further details we refer to [Mat04].

In [Rud09, Theorem 8, p. 19] an explicit upper error bound of eν(Sn,n0 , f)2 for general
state spaces is provided. The result is based on [LS93, Theorem 1.9, p. 375] and the
assumptions are the same. Namely, the transition kernel K is reversible with respect to
π and the transition operator P is positive semi-definite. After a burn-in

n0 ≥
log(‖ dνdπ‖∞)

ϕ(K,π)2
the error obeys eν(Sn,n0

, f)2 ≤ 100

ϕ(K,π)2 · n
‖f‖2∞. (3.34)

The proof is based on Proposition 3.29 which provides the crucial relation between
eν(Sn,n0

, f)2 and eπ(Sn,n0
, f)2. By Theorems 3.41 and 3.45 one obtains a refined error

estimate and a refined recipe for the choice of n0. Note that positive semi-definiteness and
reversibility are not needed in Theorem 3.41. It is enough that there exists an L2-spectral
gap, i.e. 1− β > 0.

Independently of [Rud09, Theorem 8, p. 19] in the work of Belloni and Chernozhukov
[BC09, Theorem 3, p. 2031] a similar error bound for Sn,n0

is proven. It is also based
on [LS93, Theorem 1.9, p. 375], so that again the transition kernel is assumed to be
reversible with respect to π and the Markov operator must be positive semi-definite.
Then it is shown that

eν(Sn,n0 , f)2 ≤ eπ(Sn, f)2 + 8‖f‖2∞‖νPn0 − π‖tv.

Let the initial distribution ν be R-warm, i.e. supA∈D, π(A)>0 ν(A)/π(A) ≤ R. Then by
[LS93, Corollary 1.5, p. 372] one obtains

‖νPn0 − π‖tv ≤
√
R

(
1− ϕ(K,π)2

2

)n0

.

Hence by [LS93, Theorem 1.9, p. 375] one has

eν(Sn,n0
, f)2 ≤ 4

ϕ(K,π)2 · n
‖f‖22 + 8

√
R

(
1− ϕ(K,π)2

2

)n0

‖f‖2∞. (3.35)

The explicit error bound for Sn,n0
, when the initial distribution is not the stationary one,

is the same as in [Rud09, Theorem 8, p. 19]. Note that the burn-in depends on the desired
precision. We can choose R = ‖dν/dπ‖∞ and if one uses ‖f‖2 ≤ ‖f‖∞, then the upper
bound of (3.35) can be further estimated and one obtains an estimate with respect to
‖ · ‖∞.

Another result is due to Łatuszyński and Niemiro [ŁN11]. The integration error for
V -uniformly ergodic Markov chains is estimated, where V : D → [1,∞) is a drift function.
The weighted class of functions

LV = LV (D) =

{
f : D → R

∣∣∣∣ |f |V = sup
x∈D

|f(x)|
V (x)

<∞
}



74 D. Rudolf

is studied. Let α ∈ [0, 1) andM <∞. A transition kernel K is called V -uniformly ergodic
with (α,M) if

‖Pn − S‖LV→LV ≤Mαn, n ∈ N. (3.36)

One can replace the drift function V by V 1/r for all r ≥ 1. Then there exist an α(r) ∈ [0, 1)

and an M(r) <∞ such that

‖Pn − S‖L
V 1/r→LV 1/r

≤M(r)α(r)n, n ∈ N

(see for example [Mat04] or [Bax05]). Now let us state a less general version of the main
result of [ŁN11, Theorem 3.1, p. 28]. For r = 2 and g = f − S(f) one has

eν(Sn,n0
, f)2 ≤ |g

2|V
n

(
1 +

2M(2)α(2)

1− α(2)

)(
‖V ‖1 +

M2αn0‖ν − π‖V
n(1− α)

)
, (3.37)

where ‖ν − π‖V = sup|g|V ≤1 |
∫
D
g(x)(ν(dx) − π(dx))|. This seems to be the first ex-

plicit error bound of Sn,n0 for integrands f which belong to LV . If the transition kernel
is reversible, then V -uniform ergodicity with (α,M) is equivalent to the existence of
an L2-spectral gap (see [RR97a, RT01]). Furthermore if V ∈ Lp for some p > 2 then
LV ⊂ Lp and the error bound of Theorem 3.41 can also be applied. However, in general
Theorem 3.41 cannot be used in this setting.

The paper of Joulin and Ollivier [JO10] based on [Oll09] follows a new idea. Let
(D,dist) be a metric, complete, separable state space, with metric dist, and let K be a
transition kernel with stationary distribution π on (D,B(D)). Let Pdist(D) be the set of
probability measures µ on (D,B(D)) for which there exists an x0 ∈ D such that∫

D

dist(x0, y)µ(dy) <∞.

Then we define the Wasserstein distance between µ1, µ2 ∈ Pdist(D) by

W1(µ1, µ2) = inf
ξ∈Π(µ1,µ2)

∫
D

∫
D

dist(x, y) ξ(dx, dy),

where Π(µ1, µ2) is the set of probability measures ξ on (D2,B(D2)) with marginals µ1

and µ2. If there exists a κ > 0 such that

W1(K(x, ·),K(y, ·)) ≤ (1− κ)dist(x, y), x, y ∈ D, (3.38)

then we say that the transition kernel K has positive Ricci curvature κ. Let the function
f : D → R be integrable with respect to π and let

‖f‖Lip = sup
x,y∈D, x6=y

|f(x)− f(y)|
dist(x, y)

.

The coarse diffusion constant σ(x) for x ∈ D of the transition kernel is defined by

σ(x)2 =
1

2

∫
D

∫
D

dist(y, z)2K(x, dy)K(x, dz),

and the local dimension nx for x ∈ D is defined by

nx = inf
‖f‖Lip=1

2σ(x)2∫
D

∫
D
|f(y)− f(z)|2K(x, dz)K(x, dy)

.
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If the transition kernel has positive Ricci curvature, then by [JO10, Proposition 1, p. 2423,
and Theorem 2, p. 2424] one obtains

eδx(Sn,n0 , f)2 ≤
(

1

κ2n
+

1

κ3n2

)
‖f‖2Lip sup

x∈D

σ(x)2

nx

+
(1− κ)2(n0+1)

κ4n2
‖f‖2Lip

(∫
D

dist(x, y)K(x, dy)

)2

.

The estimate is reasonable for any deterministic initial state x ∈ D, the initial distribution
is δx. For further estimates and details we refer to [JO10]. Let p ∈ (2,∞], ‖f‖Lip < ∞
and assume that there exists an x0 ∈ D such that ‖dist(·, x0)‖p < ∞. Then f ∈ Lp, in
particular

‖f‖p ≤ 2
p−1
p (‖f‖Lip‖dist(·, x0)‖p + |f(x0)|).

If the transition kernel is reversible with respect to π and ‖σ‖2 <∞, then one can show
that a positive Ricci curvature κ > 0 of K implies an L2-spectral gap of P , namely
1 − β ≥ κ (see [Oll09, Proposition 30, p. 831]). In this setting Theorem 3.41 can be
applied when the initial distribution ν belongs toMmax{2,p/(p−2)}.

A regenerative Markov chain Monte Carlo algorithm for the approximation of S(f)

is studied in [ŁMN09]. Roughly speaking, if one has information on a certain small set,
then one can explicitly estimate the mean square error of this regenerative estimator for
uniformly and V -uniformly ergodic Markov chains (see [ŁMN09] for details).

The literature also provides confidence estimates for Sn,n0
. One can apply Lemma 2.27

if an upper bound of eν(Sn,n0
, f)2 is available. These estimates can be boosted by a

median trick explained in [NP09] and applied in [ŁN11]. However, exponential inequalities
such as Hoeffding or Chernoff bounds for Markov chain Monte Carlo are better (see
[Krü98, Lez01, GO02, JO10, Mia10]). Asymptotic confidence estimates are discussed in
[FJ11].

Let us provide a conclusion. There are different explicit error bounds of the mean
square error for Sn,n0 on general state spaces. In some situations these estimates could
be improved. It seems that the error bound with respect to ‖ · ‖2 is not known so far.
Let us recall that we assumed that the Markov chain considered is L1-exponentially
convergent and reversible with respect to π. If we only assume that the Markov chain has
an L2-spectral gap, then we showed an estimate of the error that is uniform with respect
to ‖ · ‖p for p ∈ (2,∞]. Upper error bounds with respect to ‖ · ‖∞ are known but with
respect to ‖ · ‖p seem to be new. In this setting it is not assumed that the Markov chain
is reversible with respect to π, but we require that π is the stationary distribution. The
suggested burn-in n0 of Theorem 3.45 works well and also appears to be new. All error
bounds hold for bounded and unbounded state spaces whenever estimates of the crucial
parameters, for example Λ, β or (α,M), are available.
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4. Applications

In numerous applications one wants to compute for D ⊂ Rd an integral of the form∫
D

f(x) · c%(x) dx, (4.1)

with density c%, where the number c is unknown. Of course c can be defined by
1

c
=

∫
D

%(x) dx.

However, it is desirable to have algorithms that are able to compute (4.1) without any pre-
computation of c. Let F(D) be a class of tuples of the form (f, %), where % : D → [0,∞)

is a possibly unnormalized density with
∫
D
%(x) dx > 0 and f ·% is integrable with respect

to the Lebesgue measure. Then the goal is to compute

S(f, %) =

∫
D
f(x)%(x) dx∫
D
%(x) dx

for (f, %) ∈ F(D). (4.2)

The solution operator S is linear in f but not in %. Hence S is a nonlinear functional.
We assume that there are two procedures, Orf and Or%, which provide information

on f and %, respectively. These procedures are considered as “black boxes” and we call
them oracles. Let Orf be a procedure which returns for an input x ∈ D the function value
f(x), i.e. Orf (x) = f(x). Unless stated otherwise we also assume that Or%(x) = %(x) for
x ∈ D. We assume that an oracle call is much more expensive than arithmetic operations.
Hence we count the total number of oracle calls which are needed to approximate S(f, %).

Let Algn be the class of all randomized algorithms which use at most n calls to the
oracle Orf and n calls to the oracle Or%. More precisely An ∈ Algn is a mapping described
by a function ϕ2n : R2n → R such that

An(f, %) = ϕ2n(Orf (X1), . . . ,Orf (Xn),Or%(X1), . . . ,Or%(Xn)).

The sample (X1, . . . , Xn) ∈ Dn is determined as follows: Let ω = (ω1, . . . , ωn) be a
random element with some distribution W . Then

X1 = X1(ω1),

Xi = Xi(Orf (X1), . . . ,Orf (Xi−1),Or%(X1), . . . ,Or%(Xi−1), ωi), i = 2, . . . , n.

The individual error of An ∈ Algn applied to (f, %) ∈ F(D) is, as in the previous
chapters, measured in the mean square sense:

e(An, (f, %)) = (E|S(f, %)−An(f, %)|2)1/2,

where the expectation is taken with respect to W . The overall error on F(D) is

e(An,F(D)) = sup
(f,%)∈F(D)

e(An, (f, %)).

The complexity of the problem (4.2) on F(D) is given by

comp(ε, d,F(D)) = min{n | there existsAn ∈ Algn with e(An,F(D)) ≤ ε}.

Note that d is the dimension of the domain D. We want to quantify the complexity of
a problem with respect to the dimension d. The integration problem (4.2) for the class
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F(D) is called polynomially tractable if there exist non-negative numbers c, q1 and q2

such that
comp(ε, d,F(D)) ≤ c ε−q1dq2 for all d ∈ N, ε ∈ (0, 1).

Roughly speaking, this says that the complexity of computing (4.2) increases at most
polynomially in the precision ε−1 and the dimension d. For details of the concept of
tractability we refer to Novak and Woźniakowski [NW08, NW10].

Let us provide a result which motivates introducing a modified notion of tractability.
We consider the class of functions

FC(D) =

{
(f, %)

∣∣∣∣ ‖f‖∞ ≤ 1,
sup %

inf %
≤ C

}
.

In some applications C can be very large, such as C = 1020. Observe that always
S(FC(D)) = [−1, 1], hence the problem is scaled properly. In [MN07] Mathé and No-
vak proved a lower error bound (see [MN07, Theorem 1, p. 678]).

Theorem 4.1. For any An ∈ Algn,

e(An,FC(D)) ≥
√

2

6


√
C

2n
, 2n ≥ C − 1,

3C

C + 2n− 1
, 2n < C − 1.

For an upper error bound Mathé and Novak consider the simple Monte Carlo al-
gorithm: Evaluate the numerator and denominator on a common independent sample
according to the uniform distribution, say (X1, . . . , Xn) ∈ Dn, and compute

Asimple
n (f, %) =

∑n
j=1 f(Xj)%(Xj)∑n

j=1 %(Xj)
.

Note that every Xj is uniformly distributed. It is essential that one can sample according
to the uniform distribution on D. This might be a restrictive assumption. In [MN07,
Theorem 2, p. 680] the following upper error bound is proven.

Theorem 4.2. For all n ∈ N we have

e(Asimple
n ,FC(D)) ≤ 2min{1,

√
2C/n}.

From Theorems 4.1 and 4.2 one finds that the complexity comp(ε, d,FC(D)) of (4.2)
is linear in C and Asimple

n is almost optimal; moreover, for all ε ∈ (0, 1/(2
√

2)),

0.02Cε−2 ≤ comp(ε, d,FC(D)) ≤ 8Cε−2.

Hence all algorithms are bad if C = 1020. Mathé and Novak suggest considering a
smaller class of densities. The main goal is to have also tractability with respect to C
on a class of functions, say F̃C(D), where the possibly unnormalized densities satisfy
sup %/ inf % ≤ C. More precisely, the integration problem (4.2) is called tractable with
respect to C if there exist non-negative numbers c, q1, q2 and q3 such that

comp(ε, d, F̃C(D)) ≤ c ε−q1dq2 [logC]q3 (4.3)

for all ε ∈ (0, 1), d ∈ N and C > 1 (see [NW10, p. 541]).
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With Markov chain Monte Carlo algorithms one can achieve this goal on certain
classes of functions. Let (Xn)n∈N be a Markov chain with transition kernel K and initial
distribution ν. Assume that the transition kernel has stationary distribution π%, where

π%(A) =

∫
A
%(x) dx∫

D
%(x) dx

, A ∈ B(D), so that S(f, %) =

∫
D

f(x)π%(dx).

Under suitable assumptions on the Markov chain and on (f, %) ∈ F̃C(D), the algorithm

Sn,n0
(f, %) =

1

n

n∑
j=1

f(Xj+n0)

is an approximation of S(f, %). Suppose that for each step of the Markov chain we use a
single call to Or%. Then it follows that Sn,n0

needs n+n0 calls to Or% and n calls to Orf .
Consequently, Sn,n0

∈ Algn+n0
.

4.1. Integration with respect to log-concave densities. Let r > 0 and let B(x, r)

be the d-dimensional Euclidean ball with radius r around x ∈ Rd. Furthermore let Bd =

B(0, 1) and rBd = B(0, r). The goal is to compute

S(f, %) =

∫
rBd

f(x)%(x) dx∫
rBd

%(x) dx
(4.4)

for (f, %) in a certain class of functions. Let us define the class of functions on a convex
body D ⊂ Rd rather than on rBd. We assume that the state space D is equipped with
the Borel σ-algebra B(D). We consider functions (f, %) with the following properties:

• % is strictly positive and log-concave, i.e. for all x, y ∈ D and 0 < λ < 1,

%(λx+ (1− λ)y) ≥ %(x)λ · %(y)1−λ.

• The logarithm of % is Lipschitz continuous, i.e. there exists an L ≥ 0 such that

|log %(x)− log %(y)| ≤ L‖x− y‖E, x, y ∈ D,

where ‖ · ‖E denotes the Euclidean norm.
• The integrand f satisfies ‖f‖p ≤ 1.

For D = rBd one obtains sup %/ inf % ≤ e2Lr. Hence C = e2Lr and to have tractabil-
ity with respect to C (see (4.3)), the goal is to show an error bound which depends
polynomially on L r. In general one has the classes of functions

FL
p (D) = {(f, %) | % ∈ RL(D), ‖f‖p ≤ 1},

where

RL(D) = {% > 0 | % is log-concave, |log %(x)− log %(y)| ≤ L‖x− y‖E}.

The idea is to apply the Metropolis algorithm to obtain a Markov chain with stationary
distribution π% (see Section 3.4). The candidate transition kernel on (D,B(D)) is given
by the ball walk. This random walk is used in [MN07, Rud09] and studied in different
references on volume computation (see e.g. [LS93, Vem05]).
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The transition kernel of the δ ball walk is given by

Qδ(x,A) =
vold(B(x, δ) ∩A)

vold(δBd)
+

(
1− vold(B(x, δ) ∩D)

vold(δBd)

)
1A(x), x ∈ D, A ∈ B(D),

where δ > 0 and vold(A) denotes the d-dimensional Lebesgue measure of A ∈ B(D).
Schematically, a single step of the δ ball walk from state x may be viewed as in the
procedure Ball-Walk(x, δ).

Procedure Ball-Walk(x, δ)

input: current state x, radius δ.
output: next state y.

Choose y uniformly distributed in B(x, δ);
if y ∈ D then

Return y;
else

Return x;
end

Let us state some well known properties.

Lemma 4.3 (see [MN07, Proposition 1, p. 685]). The transition kernel Qδ is reversible
with respect to the uniform distribution on D.

The local conductance of the ball walk is defined by

l(x) =
vold(B(x, δ) ∩D)

vold(δBd)
, x ∈ D.

We call l a lower bound of the local conductance if l(x) ≥ l for all x ∈ D. Note that
l might be very small. For D = [0, 1]d, the d-dimensional unit cube, one finds even for
small δ that l = 2−d. However, one can show for D = rBd and δ ≤ r/

√
d+ 1 that l = 0.3

is a lower bound of the local conductance.

Lemma 4.4. Let Qδ be the transition kernel of the ball walk on D = rBd for r > 0. If
δ ≤ r/

√
d+ 1, then l = 0.3 is a lower bound of the local conductance of the ball walk.

Proof. The assertion follows by the same arguments as in [MN07, Lemma 7, p. 687] (see
also [Rud07]). The only difference is that rBd is a ball with radius r instead of being the
unit ball.

The Metropolis transition kernel based on the δ ball walk is

K%,δ(x,A) =

∫
A

θ(x, y)Qδ(x, dy) + 1A(x)

(∫
D

(1− θ(x, y))Qδ(x,dy)

)
,

where the acceptance probability is θ(x, y) = min{1, %(y)/%(x)} for x, y ∈ D and A ∈
B(D). The lazy version of K%,δ is denoted by K̃%,δ. The transition kernel K̃%,δ is reversible
with respect to π%. In Algorithm 1 we present the integration algorithm Sδn,n0

which
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uses the lazy version of the Metropolis transition kernel with the suggested transition
kernel Qδ.

Algorithm 1: Sδn,n0

input: n, n0, δ, (f, %).
output: Sδn,n0

(f, %).

Choose X1 uniformly distributed in D;
for k = 1 to n+ n0 do

if rand() > 0.5 then
Xk+1 := Xk;

else
Y :=Ball-Walk(Xk, δ);
if %(Y )/%(Xi) ≥ rand() then

Xi+1 := Y ;
else

Xi+1 := Xi;
end

end
end
Compute

Sδn,n0
(f, %) :=

1

n

n∑
i=1

f(Xi+n0
).

It is convenient to use the notation PK = P , βK = β and ΛK = Λ to indicate the
transition kernelK. The following lemma provides a lower bound of the L2-spectral gap of
PK̃%,δ . The lemma follows from a result of Mathé and Novak [MN07, Theorem 4, p. 690],
where an estimate of the conductance of K%,δ is shown.

Proposition 4.5. For r > 0 let D ⊂ Rd be a convex body with

diam(D) = sup{‖x− y‖E | x, y ∈ D} ≤ 2r.

Let l be a lower bound of the local conductance of the δ ball walk. Then, for all % ∈ RL(D),
for the lazy version of the Metropolis transition kernel based on a δ ball walk, given by
K̃%,δ, one has

1− βK̃%,δ ≥
l2e−2Lδ

256
min

{
π

8

l2δ2

r2(d+ 1)
, 1

}
.

Proof. One has βK̃%,δ = ΛK̃%,δ = 1
2 (1 + ΛK%,δ). The conductance of K%,δ is defined by

ϕ(K%,δ, π%) = inf
0<π%(A)≤1/2

∫
A
K%,δ(x,A

c)π%(dx)

π%(A)
.

One can use the Cheeger inequality (see Proposition A.7)

1− ΛK%,δ ≥ ϕ(K%,δ, π%)
2/2.
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Altogether one obtains

1− βK̃%,δ = 1/2(1− ΛK%,δ) ≥ ϕ(K%,δ, π%)
2/4. (4.5)

In [MN07, Theorem 4, p. 690] it is shown that

ϕ(K%,δ, π%) ≥
le−Lδ

8
min

{√
π

8

lδ

r
√
d+ 1

, 1

}
.

Plugging this lower bound into (4.5) proves the assertion.

In the previous result one can see that the lower bound of the local conductance is
crucial. This motivates considering D = rBd, since by Lemma 4.4 a lower bound of the
local conductance is provided. An immediate consequence of the last proposition is

Corollary 4.6. For r > 0 let D = rBd, assume that % ∈ RL(rBd) and set δ∗ =

min{1/L, r/
√
d+ 1}. Then

1− βK̃%,δ∗ ≥
1.69 · 10−6

d+ 1
min

{
1

r2 L2 ,
1

d+ 1

}
.

Proof. This follows from Proposition 4.5 and Lemma 4.4.

In particular one deduces that the lazy version of the ball walk has an L2-spectral
gap, since one can consider constant densities where L = 0.

Corollary 4.7. For r > 0 let D = rBd and δ = r/
√
d+ 1. Then the lazy version Q̃δ of

the transition kernel of the ball walk obeys

1− βQ̃δ ≥
1.69 · 10−6

(d+ 1)2
.

Now we can apply the error bounds of Section 3.2. The next theorem states an error
bound for Sδ

∗
n,n0

(f, %) where (f, %) ∈ FL
p (rBd).

Theorem 4.8. For r > 0 let D = rBd and let ν be the uniform distribution on rBd.
Let % ∈ RL(rBd) and δ∗ = min{1/L, r/

√
d+ 1}. Let (Xn)n∈N be a Markov chain with

transition kernel K̃%,δ∗ and initial distribution ν. The approximation of S(f, %) is

Sδ
∗
n,n0

(f, %) =
1

n

n∑
i=1

f(Xi+n0
).

For p ∈ (2,∞] recall that

FL
p (rBd) = {(f, %) | % ∈ RL(rBd), ‖f‖p ≤ 1}.

Let n0(p) be the smallest natural number (including zero) greater than or equal to

5.92 · 106 (d+ 1) max{r2 L2, d+ 1} ·


p

p− 2

(
L r + 0.5 log

32p

p− 2

)
, p ∈ (2, 4),

2L r + 4.16, p ∈ [4,∞].

Then

e(Sδ
∗
n,n0(p),F

L
p (rBd)) ≤ 1089√

n

√
d+ 1 max{r L,

√
d+ 1 }

+
8.38 · 105

n
(d+ 1) max{r2 L2, d+ 1}.
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Proof. The initial distribution obeys

ν(A) =
vold(A)

vold(rBd)
=

1

vold(rBd)

∫
A

∫
rBd

%(y)

%(x)
dy π%(dx), A ∈ B(rBd).

Since log % is Lipschitz continuous with Lipschitz constant L we obtain

e−2Lr ≤ %(y)

%(x)
≤ e2Lr, x, y ∈ rBd,

so that ∥∥∥∥ dνdπ% − 1

∥∥∥∥
p

≤
∥∥∥∥ dνdπ% − 1

∥∥∥∥
∞
≤ max{1, e2Lr} = e2Lr.

By Corollary 4.6 we have the crucial lower bound for the spectral gap 1 − βK̃%,δ∗ and
consequently Theorem 3.45 (ii) can be applied, which proves the assertion.

Note that p ∈ (2,∞] is necessary to apply Theorem 3.45 (ii). An essential consequence
of the last theorem is the following result concerning the tractability of (4.4).

Theorem 4.9. For the integration problem S(f, %) defined over FL
p (rBd) with r > 0 and

p > 2 we have

comp(ε, d,FL
p (rBd)) ≤ (d+ 1) max{r2 L2, d+ 1}

·

4.8 · 106 ε−2 + 1.2 · 106 ·


p

p− 2

(
L r + 0.5 log

32p

p− 2

)
, p ∈ (2, 4)

2L r + 4.16, p ∈ [4,∞]


for all ε ∈ (0, 1) and d ∈ N.

The last theorem states that the problem (4.4) is polynomially tractable. Roughly
speaking, for fixed p one obtains

comp(ε, d,FL
p (rBd)) ≺ dmax{r2 L2, d}(ε−2 + L r),

so that the dependence on L, the precision ε, dimension d and r is polynomial. We also
have tractability with respect to C = e2rL: inequality (4.3) holds with q1 = 2, q2 = 2 and
q3 = 3. For p ∈ [4,∞] the complexity can be bounded independently of p, and for fixed
p ∈ (2,∞] we showed that the integration problem on FL

p (rBd) is polynomially tractable
in the sense of (4.3).

4.2. Integration over a convex body. The goal is to compute

S(f,A) =
1

vold(A)

∫
A

f(x) dx (4.6)

for A ⊂ Rd. In other words, S(f,A) is the expectation of f with respect to the uniform
distribution, say µA, on A ⊂ Rd. The domain A and the function f are the input quanti-
ties. This fits in the class of problems described by (4.2) if we assume that A ⊂ D. Then
µA might be considered as given by a density which is an indicator function.

For some domains A it is indeed simple to generate uniformly distributed random
points, e.g. the Euclidean unit ball or the unit cube. Then one can approximate S(f,A)

by Monte Carlo methods with an i.i.d. sample. However, here A is part of the input to
the algorithm, thus the problem S(f,A) shall be solved uniformly for a class of state
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spaces, where we cannot assume that sampling with respect to the uniform distribution
is possible.

Let r ≥ 1 and let

Sd(r) = {A ⊂ Rd convex | Bd ⊂ A ⊂ rBd}.

If A ∈ Sd(r) then A is a convex bounded set with non-empty interior which contains the
origin. The class of input parameters is given by

Fp(r, d) = {(f,A) | ‖f‖p ≤ 1, A ∈ Sd(r)}.

We assume that for any A ∈ Sd(r) there exists an oracle OrA(`) which returns for an
arbitrary line ` a uniformly distributed random point on A ∩ `.

Let us comment on this assumption. Assume that we have a membership oracle of
A ∈ Sd(r) which is given by ÕrA(x) = 1A(x) for any x ∈ rBd. The oracle OrA can be
implemented by using the membership oracle. Let [x, y] = {x + ty | t ∈ [0, 1]} be the
segment of x, y ∈ Rd with Euclidean distance ‖x− y‖E. By the convexity of A it follows
that A ∩ ` is a single segment, hence there exist a1, a2 ∈ Rd such that [a1, a2] = A ∩ `.
Suppose that ` = {x̃ + tdir | t ∈ R} with x̃ ∈ A and assume that there is a positive
number ε0 such that ‖a1 − a2‖E ≥ ε0. We use that A ∈ Sd(r) and x̃ ∈ A. By a bisection
method one can find with at most 3 log(2r/ε0) + 2 calls to ÕrA a segment [b1, b2] with
b1, b2 ∈ Rd and [a1, a2] ⊂ [b1, b2] such that

1
6‖b1 − b2‖E ≤ ‖a1 − a2‖E ≤ ‖b1 − b2‖E.

Then choose a uniformly distributed random point in [b1, b2] and accept it if it is in A,
otherwise reject it and repeat the acceptance/rejection procedure. This procedure gives
a uniformly distributed random point in A ∩ ` and works reasonably fast, since the
acceptance probability is 1/6. Altogether a call to OrA requires at most an expected
number of 3 log(2r/ε0) + 8 calls to ÕrA. In the analysis of the error we count the calls to
OrA and the function evaluations of f , i.e. the calls to Orf .

Now let us provide a Markov chain on the measurable space (A,B(A)) with stationary
distribution µA. We consider the hit-and-run algorithm, also called hypersphere directions
algorithm (see [Smi84]). The algorithm is studied and analyzed in [Lov99, LV06]. The
work of Vempala [Vem05] provides an introduction to geometric random walks.

A
(0, 0)

X1 A
(0, 0)

X1

X2

A
(0, 0)

X1

X2

A
(0, 0)

X1

X2

X3

Fig. 1. Illustration of the generation of X3 and X2 by the hit-and-run algorithm given state X1

The algorithm is as follows. Suppose that the current position is Xi ∈ A with i ∈ N.
Then choose a uniformly distributed direction, say diri, and consider the line which is
defined by `(i) = {Xi + tdiri | t ∈ R}. Apply OrA(`(i)), which gives the next state Xi+1
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chosen uniformly distributed in `(i) ∩ A. Then, again, a uniformly distributed direction,
say diri+1, is generated and the next state is chosen uniformly distributed on `(i+1) ∩ A
by OrA(`(i+1)). Two consecutive steps of the hit-and-run algorithm are illustrated in
Figure 1. Recall that the Euclidean unit ball is denoted by Bd and its boundary is
denoted by ∂Bd. Schematically, a single step of the hit-and-run algorithm from x ∈ A is
presented in the Procedure Hit-and-Run(x).

Procedure Hit-and-Run(x)

input: current state x.
output: next state y.

Choose a direction dir uniformly distributed on ∂Bd;
Choose y uniformly distributed on

A ∩ {x+ tdir | t ∈ R};
Return y.

The transition kernel of the hit-and-run algorithm follows. For any x, y ∈ Rd let

Int(x, y) =

{
λ ∈ R

∣∣∣∣ x+ λ
y − x
‖y − x‖E

∈ A
}
.

Since A is convex, Int(x, y) is an interval. Let

λ1(x, y) = min{α | α ∈ Int(x, y)} and λ2(x, y) = max{α | α ∈ Int(x, y)},

which implies that Int(x, y) = [λ1(x, y), λ2(x, y)]. The length of the chord Int(x, y) is
given by `(x, y) = λ2(x, y) − λ1(x, y). Let U(x, y) be a uniformly distributed random
variable in the interval Int(x, y). Then the hit-and-run transition kernel H of the hit-
and-run algorithm is

H(x,C) =

∫
∂Bd

Pr[x+ U(x, x+ θ)θ ∈ C] dθ

vold−1(∂Bd)

=
1

vold−1(∂Bd)

∫
∂Bd

∫ λ2(x,x+θ)

λ1(x,x+θ)

1C(x+ λθ)

`(x, x+ θ)
dλ dθ

=
1

vold−1(∂Bd)

∫
∂Bd

∫ 0

λ1(x,x+θ)

1C(x+ λθ)

`(x, x+ θ)
dλ dθ

+
1

vold−1(∂Bd)

∫
∂Bd

∫ λ2(x,x+θ)

0

1C(x+ λθ)

`(x, x+ θ)
dλ dθ

=
2

vold−1(∂Bd)

∫
C

1 dy

`(x, y)‖x− y‖d−1
E

, (4.7)

where x ∈ A and C ∈ B(A). The last equality follows by the integral transformation
formula ∫

Rd
h(y) dy =

∫
∂Bd

∫ ∞
0

h(g(λ, θ))λd−1 dλ dθ
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with

h(y) =
1C(y)

`(x, y)‖x− y‖d−1
E

and either g(λ, θ) = x+ λθ or g(λ, θ) = x− λθ.

Lemma 4.10. The hit-and-run transition kernel H, given by (4.7), is reversible with
respect to µA on A.

Proof. Let k(x, y) be a symmetric transition density of a transition kernelK, i.e. k(x, y) =

k(y, x) for all x, y ∈ A. Then it follows by Fubini’s theorem that∫
B

K(x,C)µA(dx) =

∫
B

∫
C

k(x, y)µA(dy)µA(dx) =

∫
C

∫
B

k(x, y)µA(dx)µA(dy)

=

∫
C

∫
B

k(y, x)µA(dx)µA(dy) =

∫
C

K(x,B)µA(dx), B, C ∈ B(A).

Hence the transition kernel K is reversible with respect to µA. Since `(x, y) = `(y, x), the
transition kernel H has a symmetric density and this implies that it is reversible with
respect to µA.

The lazy version of H is denoted by H̃. In Algorithm 2 we present the integration
algorithm Shar

n,n0
which uses the lazy version of the hit-and-run transition kernel. We

Algorithm 2: Shar
n,n0

input: n, n0, (f , A).
output: Shar

n,n0
(f,A).

Choose X1 uniformly distributed in Bd;
for k = 1 to n+ n0 do

if rand() > 0.5 then
Xk+1 := Xk;

else
Xk+1 :=Hit-and-Run(Xk);

end
end
Compute

Shar
n,n0

(f,A) :=
1

n

n∑
i=1

f(Xi+n0
).

use the notation PK = P , βK = β and ΛK = Λ to indicate the transition kernel K.
The following lemma provides a lower bound of the L2-spectral gap of PH̃ . The lemma
is a straightforward implication of a result of Lovász and Vempala [LV06, Theorem 4.2,
p. 993]. Lovász and Vempala show an estimate of the conductance of H.
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Proposition 4.11. Let r ≥ 1. Then, for all A ∈ Sd(r), for the lazy version of the
hit-and-run transition kernel, given by H̃, one has

1− βH̃ ≥ 2−52(dr)−2.

Proof. In [LV06, Theorem 4.2, p. 993] it is proven that

ϕ(H,µA) ≥ 2−25(dr)−1.

Then one follows the same arguments as in the proof of Lemma 4.5.

Now we can apply the error bounds of Section 3.2 to obtain the following.

Theorem 4.12. Let ν be the uniform distribution on Bd. Let (Xn)n∈N be a Markov chain
with transition kernel H̃ and initial distribution ν. The approximation of S(f,A) is

Shar
n,n0

(f,A) =
1

n

n∑
i=1

f(Xi+n0).

For r ≥ 1 and p > 2 recall that
Fp(r, d) = {(f,A) | ‖f‖p ≤ 1, A ∈ Sd(r)}.

Let n0(p) be the smallest natural number (including zero) greater than or equal to

4.51 · 1015 d2 r2 ·


p

2(p− 2)

(
d log r + log

32p

p− 2

)
, p ∈ (2, 4),

d log r + 4.16, p ∈ [4,∞].

Then

e(Shar
n,n0(p),Fp(r, d)) ≤ 9.5 · 107 dr√

n
+ 6.4 · 1015 d

2 r2

n
.

Proof. Note that the initial distribution ν is well defined, since for A ∈ Sd(r) one has
Bd ⊂ A ⊂ rBd. Furthermore, it follows that

ν(C) =
1

vold(Bd)

∫
C

1Bd(x) dx =
1

vold(A)

∫
C

1Bd(x)
vold(A)

vold(Bd)
dx, C ∈ B(A).

One obtains ∥∥∥∥ dν

dµA
− 1

∥∥∥∥
p

≤
∥∥∥∥ dν

dµA
− 1

∥∥∥∥
∞

≤
r∈[1,∞)

vold(rB
d)

vold(Bd)
= rd.

By Lemma 4.11 we have the crucial lower bound for the spectral gap 1− βH̃ and conse-
quently Theorem 3.45(ii) can be applied. Hence the assertion follows.

Note that p > 2 is necessary to apply Theorem 3.45(ii). A consequence of the last
theorem is the following result concerning the tractability of the integration problem (4.6).

Theorem 4.13. For the integration problem S(f,A) defined over Fp(r, d) with r ≥ 1 and
p > 2 we have

comp(ε,Fp(r, d))

≤ d2r2

4 · 1016 ε−2 + 5 · 1015


p

2(p− 2)

(
d log r + log

32p

p− 2

)
, p ∈ (2, 4)

d log r + 4.16, p ∈ [4,∞]


for all ε ∈ (0, 1) and d ∈ N.
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The last theorem states that (4.6) is polynomially tractable. Roughly speaking, for
fixed p one obtains

comp(ε,Fp(r, d)) ≺ d2r2(ε−2 + d log r),

so that the dependence on the precision ε, dimension d and r is polynomial. For p ∈ [4,∞]

the complexity can be bounded independently of p, and for fixed p > 2 we showed that
the integration problem is polynomially tractable on Fd(r, p).

4.3. Notes and remarks. Let us briefly summarize the features of the last sections and
provide additional results from the literature. In Section 4.1 elementary state spaces were
considered, namely balls, and the distribution π% determined by % could be complicated.
In Section 4.2 the distribution of interest was simple, namely the uniform one, and the
state space was possibly complicated.

The problem of integration (4.1), stated in the form

S(f, %) =

∫
D
f(x)%(x) dx∫
D
%(x) dx

,

is formulated as in the work of Mathé and Novak [MN07]. There the authors also proved an
asymptotic error bound for the Metropolis algorithm based on the ball walk on FL

2 (Bd).
They studied the algorithm Sδ

∗
n,0 and for δ∗ = min{(d+1)−1/2,L−1} it is shown in [MN07,

Theorem 5, p. 693] that

lim
n→∞

ne(Sδ
∗
n,0,FL

2 (Bd))2 ≤ 594700 · (d+ 1) max{d+ 1,L2}.

The first non-asymptotic error bound is proven in [Rud09] for the class FL
∞(Bd). It states

that for n0 ≥ 1.28 · 106 · L(d+ 1) max{d+ 1,L2} the error obeys

e(Sδ
∗
n,n0

,FL
∞(Bd)) ≤ 8000√

n

√
d+ 1 max{

√
d+ 1,L}.

Theorem 4.8 extends this result. The integrands f belong to Lp for p > 2 and we con-
sidered the domain rBd. The constants in the error bound are of the same order of
magnitude and the dependence on the dimension d, the Lipschitz constant L and the
precision ε is the same. The problem is tractable in the sense of (4.3).

Apart from the asymptotic result of [MN07, Theorem 5, p. 693] it is always assumed
that the integrand f belongs to Lp for p > 2. The case of f ∈ L2 has not been covered so
far. To apply Theorem 3.34 it is sufficient to have a transition kernel which is reversible
with respect to the desired distribution and uniformly ergodic with (α,M). It is well
known that the ball walk, the Metropolis algorithm based on the ball walk and the hit-
and-run algorithm are uniformly ergodic (see [Smi84, KS98, MN07]). However, as far as
we know there is no estimate for the parameters α ∈ [0, 1) and M < ∞ of the uniform
ergodicity, guaranteeing polynomial tractability. We get polynomial tractability if there
exist non-negative numbers c and q such that (1− α)−1 ≤ c dq.

Let D = Bd and δ = 2/
√
d+ 1. Then the ball walk Qδ is uniformly ergodic with

(α,M), where
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α = 1− 0.15√
d+ 1((d+ 1)2d+1)

√
d+1

and M = 100.

Unfortunately the crucial quantity (1 − α)−1 is exponentially bad in d. Hence, this is
not enough to prove polynomial tractability. It is not clear if one can get a significantly
better α.

The hit-and-run algorithm is studied in various references on volume computation
and optimization. However, as far as we know it has not yet been applied to integration
problems of the form of (4.6). There is an immediate generalization of the hit-and-run
algorithm which can be used to sample a distribution given by a log-concave density (see
for example [LV06, p. 987]). This might be used to obtain further error bounds for other
classes of functions.

Appendix

Some aspects of functional analysis are fundamental for the understanding of the error
of Markov chain Monte Carlo. We present the spectral theorem for self-adjoint bounded
linear operators. Then we state the interpolation theorem of Riesz–Thorin for operators
acting on Lp. Afterwards the conductance and the Cheeger inequality are recalled.

A.1. Spectral theorem. We state the spectral theorem for self-adjoint bounded linear
operators. For further reading, proofs and details we refer to [KG82, Rud91, Tri92]. For
an introduction see [Kre89].

Let H be a real or complex Hilbert space and let L(H) be the space of all bounded
linear operators from H to H. Let B(R) be the Borel σ-algebra over R.

Definition A.1 (spectral measure). A spectral measure or a projection-valued measure
is a mapping E : B(R)→ L(H) with the following properties:

(i) for all A ∈ B(R) the operator EA is an orthogonal projection,
(ii) E∅ = 0, ER = I, where I is the identity,
(iii) for pairwise disjoint A1, A2, . . . ∈ B(R) and for any g ∈ H,

∞∑
i=1

EAi(g) = E⋃∞
i=1 Ai

(g).

If there exists a compact set K ⊂ R with EK = I, then we say that the spectral measure
has compact support.

For f, g ∈ H a signed measure is defined on (R,B(R)) by

ω(A) = 〈EAf, g〉, A ∈ B(R).

If f = g, then the measure ω is non-negative. Let P ∈ L(H) be a self-adjoint operator
and denote its spectrum by spec(P ). Furthermore let

λ = inf
‖g‖=1

〈Pg, g〉 and Λ = sup
‖g‖=1

〈Pg, g〉.
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The spectrum of P is closed and spec(P ) ⊂ [λ,Λ]. Additionally λ,Λ ∈ spec(P ), thus

λ = inf{α | α ∈ spec(P )} and Λ = sup{α | α ∈ spec(P )}.

Now we state the spectral theorem for self-adjoint bounded linear operators. It is an
analogue to the finite-dimensional spectral theorem for matrices.

Proposition A.2 (Spectral Theorem). Let P ∈ L(H) be self-adjoint and k ∈ N. Then
there exists a unique spectral measure E with support spec(P ) such that

〈P kf, g〉 =

∫ Λ

λ

αk d〈E{α}f, g〉, f, g ∈ H. (A.1)

Let F : [λ,Λ] → R be a continuous function. Then by the continuous functional calculus
one has a self-adjoint operator F (P ) ∈ L(H) with

〈F (P )f, g〉 =

∫ Λ

λ

F (α) d〈E{α}f, g〉, f, g ∈ H, (A.2)

and
‖F (P )‖H→H = max

α∈spec(P )
|F (α)|.

Remark A.3. Mostly in the literature the case where H is a complex Hilbert space is
considered. [KG82] handles both real and complex Hilbert spaces. Note that the integral
in (A.1) and (A.2) is defined with respect to a signed measure.

A.2. Interpolation theorem. We state a version of the Riesz–Thorin theorem. For a
proof and further details let us refer to [BL76, BS88]. Let Lp = Lp(D,π) for a probability
measure π on a measurable space (D,D).

Proposition A.4 (Riesz–Thorin Theorem). Let 1 ≤ p, q1, q2 ≤ ∞. Assume that θ ∈
(0, 1) and

1

p
=

1− θ
q1

+
θ

q2
.

Further let T be a linear operator from Lq1 to Lq1 and at the same time from Lq2 to Lq2
with

‖T‖Lq1→Lq1 ≤M1 and ‖T‖Lq2→Lq2 ≤M2.

Then
‖T‖Lp→Lp ≤ 2M1−θ

1 Mθ
2 .

Remark A.5. We can replace the function spaces Lp, Lq1 , Lq2 in the last proposition
by the sequence spaces `p, `q1 , `q2 and the result remains the same.

Remark A.6. Note that we consider real-valued functions. For functions which map into
the complex numbers, the same result holds true and the factor of two is not needed.

A.3. Conductance and the Cheeger inequality. Let (D,D) be a measurable space.
Assume K is a transition kernel defined on (D,D) which is reversible with respect to a
probability measure π. The conductance of the transition kernel K is defined by

ϕ(K,π) = inf
0<π(A)≤1/2

∫
A
K(x,Ac)π(dx)

π(A)
.
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Let (Xn)n∈N be a Markov chain with transition kernel K and initial distribution π. Then
the numerator of the ratio above is the probability that X1 ∈ A and X2 ∈ Ac. Hence

Pr(X2 ∈ Ac | X1 ∈ A) =

∫
A
K(x,Ac)π(dx)

π(A)
.

The conductance of K is the infimum over sets A ∈ D, with 0 < π(A) ≤ 1/2, of the
probability that X2 ∈ Ac under the condition that X1 ∈ A.

The Markov operator P given by Pf(x) =
∫
D
f(y)K(x,dy) is self-adjoint on L2 =

L2(D,π). For f ∈ L2 let S(f) =
∫
D
f(x)π(dx) and let

L0
2 = {f ∈ L2 | S(f) = 0}.

Furthermore define
Λ = sup{α | α ∈ spec(P |L0

2)}.

The Cheeger inequality provides a relation between Λ and the conductance ϕ(K,π).

Proposition A.7 (Cheeger inequality). Let the transition kernel K be reversible with
respect to the probability measure π. Then

1− Λ ≥ ϕ(K,π)2/2. (A.3)

For a proof on finite state spaces we refer to [Beh00, Theorem 11.3, p. 93]. The Cheeger
inequality for general state spaces is proven by Lawler and Sokal in [LS88, Theorem 3.5,
p. 570] and by Lovász and Simonovits in [LS93, Lemma 1.7, p. 374]. Lawler and Sokal
provide different types of inequalities for Markov chains and Markov processes.
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