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Abstract. Jörg Brendle (2003) used Hechler’s forcing notion for adding a maximal
almost disjoint family along an appropriate template forcing construction to show that
a (the minimal size of a maximal almost disjoint family) can be of countable cofinality.
The main result of the present paper is that ag, the minimal size of a maximal cofinitary
group, can be of countable cofinality. To prove this we define a natural poset for adding a
maximal cofinitary group of a given cardinality, which enjoys certain combinatorial prop-
erties allowing it to be used within a similar template forcing construction. Additionally
we find that ap, the minimal size of a maximal family of almost disjoint permutations,
and ae, the minimal size of a maximal eventually different family, can be of countable
cofinality.

1. Introduction. The subject of cardinal characteristics of the real
line concerns various combinatorial properties of the reals and the possible
cardinalities of sets of reals which are characterized by such properties. An
excellent exposition can be found in [2].

The main focus of the present paper is on maximal cofinitary groups.
A subgroup of Sym(ω) is said to be cofinitary if all of its non-identity el-
ements have only finitely many fixed points. A maximal cofinitary group,
abbreviated mcg, is a cofinitary group which is not properly contained in
any other cofinitary group. The symbol ag denotes the minimal cardinality
of a maximal cofinitary group. Clearly, if G is a cofinitary group, then the
graphs of its elements form an almost disjoint family in ω × ω. Recall that
the almost disjointness number a is defined as the minimal cardinality of an
infinite maximal almost disjoint family of infinite subsets of ω.

Even though cofinitary groups and almost disjoint families are so closely
related, for every pair κ < λ of regular uncountable cardinals, it is consistent
that a = κ < ag = λ. Indeed, fix κ < λ and consider the model of a = b =
κ < s = c = λ from [5]. By [6, Theorem 2.4], non(M) ≤ ag, while s ≤
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non(M) (see [2, Theorem 5.19]), and so in the same model a = κ < ag = λ.
Thus a and ag can be quite different. But is it consistent that ag < a? Or is
it a ZFC theorem that a ≤ ag? Both of these questions remain open.

Some of the longstanding open questions in the field regard the cofi-
nalities of various combinatorial cardinal characteristics of the reals: for
example it is not known if the splitting number can be singular. A major
breakthrough in this area is the appearance of Shelah’s template iteration
technique (see [9]) (1).

The method provides in particular the consistency of a = ag being sin-
gular. However in models obtained by Shelah’s original template iteration
technique we have a = ag = c, and so cardinalities of countable cofinality re-
main unattainable. The consistency of cof(a) = ω is due to Jörg Brendle [4].
He modified Shelah’s template iteration construction to obtain a forcing no-
tion P for which Hechler’s poset Q for adding a mad family of arbitrary
size, say ℵω (see [7]), is a complete suborder. The poset P not only has all
the advantages of Shelah’s original template construction, namely it adds
a short scale while an isomorphism of names argument eliminates all mad
families of cardinalities µ for say ℵ2 ≤ µ < ℵω, but in addition the mad
family added by Q remains maximal in the P-generic extension. Adding a
scale of length λ0 for some λ0, say ℵ2 ≤ λ0 < ℵω, implies that b = d = λ0

in the final extension, and since b ≤ a the isomorphism of names argument
provides a = ℵω in the final model.

Below we state the main result of our paper.

Theorem 1.1. Assume CH. Let λ be a singular cardinal of countable
cofinality. Then there is a ccc generic extension in which ag = λ.

The problem of finding a poset which adds a maximal cofinitary group
of a desired cardinality and which can be embedded into a template forcing
construction is non-trivial. One of the pioneers in studying the possible sizes
of infinite maximal cofinitary groups, Yi Zhang [10], provides a ccc poset
which to a given cofinitary group G adds a generic permutation g such that
G ∪{g} generates a cofinitary group in the resulting generic extension. Thus
finite support iterations of Zhang’s poset will provide a mcg of desired size.
The main problem of using such finite support iterations within a template
iteration is the lack of an analogue of the complete embedding property (see
Lemma 2.13 and Remark 3.19).

More precisely, suppose P = 〈Pα,Qβ : α ≤ λ, β < λ〉 is a finite support
iteration of Zhang’s poset, where for each α the poset Qα adds a generic
permutation gα such that in V Pα+1 the group Gα+1 generated by Gα ∪ {gα}
is cofinitary. If we are to use this poset within a template iteration, we

(1) The technique was introduced to establish the consistency of d < a.
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will need the following: for every I ⊆ λ there is a complete suborder P(I)
of P such that the reals {gi}i∈I are contained in V P(I), while none of the
reals from {gi}i∈λ\I belongs to V P(I). However classical linear finite support
iterations do not have this property. Note also that just taking finite support
products of Zhang’s poset will fail to capture the interactions of different
generic permutations, and so the generics will not necessarily generate a
cofinitary group in the resulting extension.

The original applications of template iterations seem to be very sensitive
to the precise combinatorial properties of the posets used in such construc-
tions: every time a new poset is being iterated along a template, one has to
establish all the basic properties of such a construction including the fact
that a certain recursively defined set, the intended poset, is a forcing notion
(see [3, Lemmas 1.1, 4.4, 4.8] and [4, Main Lemma]).

Taking a slightly more axiomatic approach we define two classes of forc-
ing notions which in a natural way capture the key properties in the context
of template iterations of Hechler’s poset for adding a mad family and Hech-
ler’s forcing notion for adding a dominating real, respectively. We refer to
these posets as finite function posets with the strong embedding property
(see Definitions 3.17 and 3.18) and good σ-Suslin forcing notions (see Def-
initions 3.14 and 3.15), respectively. We generalize the template iteration
techniques of [4] so that arbitrary representatives of the above two classes
can be iterated along a template (see Definition 3.22 and Lemma 3.23),
and establish some basic combinatorial properties of this generalized itera-
tion.

Whenever T is a template, Q is a finite function poset with the strong
embedding property, and S is a good σ-Suslin forcing notion, we denote by
P(T ,Q,S) the iteration of Q and S along T (see Definition 3.22). For example
we show that whenever Q is Knaster, then the entire iteration P(T ,Q,S) is
Knaster (see Lemma 3.28).

Following standard notation, let ap and ae denote the minimal size of a
maximal family of almost disjoint permutations on ω and the minimal size
of a maximal almost disjoint family of functions from ω to ω, respectively.
We not only show that ag can be of countable cofinality, but also obtain
(almost) for free the consistency of ap and ae being of countable cofinality.
In the more general context of our discussion of cardinal invariants, we want
to point out that even though clearly ap ≤ ag, the consistency of ap 6= ag is
still open. Let T0 be the template used by Brendle in [4]. Then our results
can be summarized as follows:

Theorem 1.2. Assume CH. Let λ be a singular cardinal of countable
cofinality and let ā ∈ {a, ap, ag, ae}. Then there are a good σ-Suslin poset Sā
and a finite function poset with the strong embedding property Qā, which is
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Knaster (and so by Lemma 3.28, P(T0,Qā,Sā) is Knaster), such that

V P(T0,Qā,Sā) � ā = λ.

Then in particular V P(T0,Qā,Sā) � cof(ā) = ω.

Thus the answer to the problem of finding an appropriate poset for
adding a maximal cofinitary group is a product-like forcing notion (see Def-
inition 2.4), which, even though inspired by Zhang’s original poset, might be
considered a maximal cofinitary group analogue of Hechler’s forcing notion
for adding a mad family. The most notable property satisfied by the poset
which allows for it to be used within a template iteration construction is the
existence of strong reductions (see Definition 3.18 and Remark 2.15) (2).
We do not claim that our axiomatization is optimal, only that it is general
enough to provide a uniform proof of the consistency of cof(ā) = ω for each
a ∈ {a, ag, ap, ae} (3). While to guarantee that in the final extension there
are no mcg’s of size ℵ1 it is sufficient to add a short scale (as in Brendle’s
proof of con(cof(a) = ω)), we achieve a bit more: we add a short cofinal se-
quence of slaloms, each of which localizes the corresponding ground model
reals, and so obtain a generic extension in which all invariants of the Cichoń
diagram have a fixed predetermined value.

Organization of the paper. In §2, we introduce and study a forcing
notion QA,ρ for adding a maximal cofinitary group with a generating set
indexed by some given uncountable set A. In §3, we introduce the classes
of good σ-Suslin forcing notions and finite function posets with the strong
embedding properties. We define the template iteration P(T ,Q, S) of arbi-
trary representatives S and Q of the above two classes respectively, along a
given template T , and show that P(T ,Q,S) is a forcing notion. In §4, we
establish some basic combinatorial properties of this generalized iteration.
Theorem 1.1 is proved in §5, and Theorem 1.2 in §6.

2. Maximal cofinitary groups. In this section we introduce our poset
for adding a maximal cofinitary group of arbitrary cardinality. We begin by
giving several basic definitions and fixing notation.

Definition 2.1. (1) Let A be a set. We denote by WA the set of re-
duced words in the alphabet 〈ai : a ∈ A, i ∈ {−1, 1}〉. The free group on
the generator set A is the group FA we obtain by giving WA the obvious
concatenate-and-reduce operation. When A = ∅ then FA is by definition the
trivial group. Note that A can be naturally identified with a subset of FA

(2) The existence of strong reductions implies the complete embedding property men-
tioned earlier.

(3) In fact, most of the classical applications of template iteration can be seen as
particular instances in this axiomatization.
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which generates FA, and every function ρ : B → G, where G is any group,
extends to a group homomorphism ρ̂ : FB → G.

(2) A word w ∈ WA is said to be good if either w = an for some a ∈ A
and n ∈ Z \ {0}, or w starts and ends with a different letter. In the latter
case, this means that there are u ∈ WA, a, b ∈ A, a 6= b, and i, j ∈ {−1, 1}
such that w = aiub j without cancellation. Let ŴA be the set of all good
words in WA. Note that every word w ∈WA can be written as w = u−1w′u
for some w′ ∈ ŴA and u ∈WA (4).

(3) For a (partial) function f : ω → ω, let

fix(f) = {n ∈ ω : f(n) = n}.

We denote by cofin(S∞) the set of cofinitary permutations in S∞, i.e. per-
mutations σ ∈ S∞ such that fix(σ) is finite.

(4) For a group G, a cofinitary representation of G is a homomorphism
ϕ : G→ S∞ such that im(ϕ) ⊆ {I}∪ cofin(S∞), where I denotes the identity
permutation. If B is a set and ρ : B → S∞, we say that ρ induces a cofinitary
representation of FB if the canonical extension of ρ to a homomorphism
ρ̂ : FB → S∞ is a cofinitary representation of FB.

(5) Let A be a set and let s ⊆ A× ω × ω. For a ∈ A, let

sa = {(n,m) ∈ ω × ω : (a, n,m) ∈ s}.

For a word w ∈ WA, define the relation ew[s] ⊆ ω × ω recursively by stipu-
lating that for a ∈ A, if w = a then (n,m) ∈ ew[s] iff (n,m) ∈ sa, if w = a−1

then (n,m) ∈ ew[s] iff (m,n) ∈ sa, and if w = aiu for some word u ∈ WA

and i ∈ {1,−1} without cancellation then

(n,m) ∈ ew[s] ⇔ (∃k) eai [s](k,m) ∧ eu[s](n, k).

If sa is a partial injection defined on a subset of ω for all a ∈ A, then ew[s]
is always a partial injection defined on some subset of ω, and we call ew[s]
the evaluation of w given s. By definition, let e∅[s] be the identity in S∞.

(6) If s ⊆ A × ω × ω is such that sa is always a partial injection, and
w ∈ WA, then we will write ew[s](n)↓ when n ∈ dom(ew[s]), and ew[s](n)↑
when n /∈ dom(ew[s]).

(7) Finally, let A and B be disjoint sets and let ρ : B → S∞ be a function.
For a word w ∈WA∪B and s ⊆ A× ω × ω, we define

(n,m) ∈ ew[s, ρ] ⇔ (n,m) ∈ ew[s ∪ {(b, k, l) : ρ(b)(k) = l}].

If sa always is a partial injection for a ∈ A, then ew[s, ρ] is also a partial
injection, and we call it the evaluation of w given s and ρ. The notations
ew[s, ρ]↓ and ew[s, ρ]↑ are defined as before.

(4) The presentation w = u−1w′u does allow cancellation.
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The following lemma is obvious from the definitions. It will be used again
and again, often without explicit mention.

Lemma 2.2. Fix sets A and B such that A ∩ B = ∅, and a func-
tion ρ : B → S∞. Let w ∈ WA∪B and s ⊆ A × ω × ω be such that
sa is a partial injection for all a ∈ A. Suppose w = uv without can-
cellation for some u, v ∈ WA∪B. Then n ∈ dom(ew[s, ρ]) if and only if

n ∈ dom(ev[s, ρ]) and ev[s, ρ](n) ∈ dom(eu[s, ρ]). If moreover w ∈ ŴA∪B
then n ∈ fix(ew[s, ρ]) if and only ev[s, ρ](n) ∈ fix(evu[s, ρ]). In particular,
fix(ew[s, ρ]) and fix(evu[s, ρ]) have the same cardinality.

Remark 2.3. Note that if w = uv with cancellation, or w /∈ ŴA∪B, the
above lemma may fail.

Definition 2.4. Fix sets A and B such that A∩B = ∅, and a function
ρ : B → S∞ such that ρ induces a cofinitary representation ρ̂ : FB → S∞.
We define the forcing notion QA,ρ as follows:

(1) Conditions of QA,ρ are pairs (s, F ) where s ⊆ A×ω×ω is finite and

sa is a finite injection for every a ∈ A, and F ⊆ ŴA∪B is finite.
(2) (s, F ) ≤QA,ρ (t, E) if and only if s ⊇ t, F ⊇ E and for all n ∈ ω and

w ∈ E, if ew[s, ρ](n) = n then already ew[t, ρ](n)↓ (and clearly also
ew[t, ρ](n) = n).

If B = ∅ then we write QA for QA,ρ.

Remark 2.5. When A, B and ρ : B → S∞ are clear from the context,
we may write ≤ instead of ≤QA,ρ . For w ∈WA∪B, write oc(w) for the (finite)
set of letters occurring in w, and for F ⊆ WA∪B let oc(F ) =

⋃
w∈F oc(w).

For C ⊆ A∪B and w and F as before, let ocC(w) = oc(w)∩C and ocC(F ) =
oc(F ) ∩ C. For s ⊆ A × ω × ω let oc(s) = {a : (∃n,m ∈ ω) (a, n,m) ∈ s}.
For p ∈ QA,ρ let oc(p) = oc(s) ∪ oc(F ).

Unless otherwise stated, we now always assume that A and B are disjoint
sets, A 6= ∅ and ρ : B → S∞ induces a cofinitary representation of FB.

Lemma 2.6. The poset QA,ρ has the Knaster property.

Proof. Suppose that 〈(sα, Fα) ∈ QA,ρ : α < ω1〉 is a sequence of con-
ditions. By applying the ∆-system lemma [8, Theorem 1.5] repeatedly, we
may assume that there are A0, A1 ⊆ A finite and t ⊆ A× ω × ω finite such
that for all α 6= β we have sα ∩ sβ = t, ocA(Fα) ∩ ocA(F β) = A0 and

(oc(sα) ∪ ocA(Fα)) ∩ (oc(sβ) ∪ ocA(F β)) = A1.

Note that oc(t) and A0 are subsets of A1. Further, we may assume that
sα ∩A1 × ω × ω = t, since this must be true for uncountably many α as A1
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is finite. Note then that (sα ∪ sβ, Fα ∪ F β) ∈ QA,ρ, and that if α 6= β then

(2.1) sα ∩ oc(F β)× ω × ω ⊆ t.

We claim that (sα ∪ sβ, Fα ∪ F β) ≤QA,ρ (sβ, F β). For this, suppose that

w ∈ F β and ew[sα ∪ sβ, ρ](n) = n. Then by 2.1 we have ew[t∪ sβ, ρ](n) = n,
and so ew[sβ, ρ](n) = n. The proof that (sα ∪ sβ, Fα ∪F β) ≤QA,ρ (sα, Fα) is
similar.

Let G be QA,ρ-generic (over V , say). We define ρG : A ∪B → S∞ by

(2.2) ρG(x) =

{
ρ(x) if x ∈ B,⋃
{sx : (∃F ⊆ ŴA∪B) (s, F ) ∈ G} if x ∈ A.

We will see that ρG induces a cofinitary representation of A ∪ B which
extends ρ. Of course, we first need to check that when G is generic then for
x ∈ A, ⋃

{sx : (∃F ⊆ ŴA∪B) (s, F ) ∈ G}

is a permutation. This is the content of the next lemma, which is parallel to
[10, Lemma 2.2].

Lemma 2.7. Let A and B be disjoint sets, and ρ : B → S∞ a function
inducing a cofinitary representation of FB. Then:

(1) (“Domain extension”) For any (s, F ) ∈ QA,ρ, a ∈ A and n ∈ ω
such that n /∈ dom(sa) there are cofinitely many m ∈ ω such that (s ∪
{(a, n,m)}, F ) ≤ (s, F ).

(2) (“Range extension”) For any (s, F ) ∈ QA,ρ, a ∈ A and m ∈ ω such
that m /∈ran(sa) there are cofinitely many n ∈ ω such that (s∪{(a, n,m)}, F )
≤ (s, F ).

We will first prove a slightly stronger version of this, but at first only for
certain special “good” words.

Definition 2.8. Let a ∈ A and j ≥ 1. A word w ∈ WA∪B is called
a-good of rank j if it has the form

(2.3) w = akjuja
kj−1uj−1 · · · ak1u1,

where ui ∈WA\{a}∪B \ {∅} and ki ∈ Z \ {0} for 1 ≤ i ≤ j.

Lemma 2.9. Let s ⊆ A×ω×ω be finite such that sa is a partial injection
for all a ∈ A. Fix a ∈ A, and let w ∈ WA∪B be a-good of rank j for some
j ≥ 1. Then for any n ∈ ω \ dom(sa) and C ⊆ ω finite there are cofinitely
many m ∈ ω such that

(∀l ∈ ω) ew[s ∪ {(a, n,m)}, ρ](l) ∈ C ⇔ ew[s, ρ](l)↓ ∧ ew[s, ρ](l) ∈ C.
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Proof. Fix n and C as in the statement of the lemma. We proceed by
induction on the rank j. Let w be an a-good word of rank 1,

w = ak1u1.

Assume first that k1 > 0. Then pick m /∈ dom(sa) and m /∈ C. Suppose
ew[s ∪ {(a, n,m)}, ρ](l) ∈ C but ew[s, ρ](l)↑. Then there is some 0 < i < k1

such that eaiu1
[s, ρ](l) = n. If i < k1 − 1 then eai+1u1

[s ∪ {(a, n,m)}, ρ](l)↑,
so we must have i = k1 − 1. But then ew[s ∪ {(a, n,m)}, ρ](l) = m /∈ C,
a contradiction.

Assume then k1 < 0. Pick m /∈ ran(eaiu1
[s, ρ]) for all k1 ≤ i < 0. If

ew[s ∪ {(a, n,m)}, ρ](l) ∈ C but ew[s, ρ](l)↑, then there is some k1 < i < 0
such that eaiu1

[s, ρ](l)↓ but eai−1u1
[s, ρ](l)↑. Since eaiu1

[s, ρ](l) 6= m, it fol-
lows that eai−1u1

[s ∪ {(a, n,m)}, ρ]↑, a contradiction.
Now let w be a-good of rank j > 1, and write w = akjujw̄, where w̄ is

a-good of rank j−1. Let C ′ = e
u−1
j a−kj

[s, ρ](C). By the inductive assumption

there is I0 ⊆ ω cofinite such that for all m ∈ I0,

(∀l ∈ ω) ew̄[s ∪ {(a, n,m)}, ρ](l) ∈ C ′ ⇔ ew̄[s, ρ](l)↓ ∧ ew̄[s, ρ](l) ∈ C ′.
Let I1 ⊆ ω be cofinite such that for all m ∈ I1,

(∀l ∈ ω) eakiuj [s ∪ {(a, n,m)}, ρ](l) ∈ C
⇔ eakiuj [s, ρ](l)↓ ∧ eakiuj [s, ρ](l) ∈ C.

Then let m ∈ I1 ∩ I0, and suppose that ew[s ∪ {(a, n,m)}, ρ](l) ∈ C. Then
ew̄[s ∪ {(a, n,m)}, ρ](l) ∈ C ′, and so ew̄[s, ρ](l) ∈ C ′. It follows that

e
akjuj

[s ∪ {(a, n,m)}, ρ](ew̄[s, ρ](l)) ∈ C,

and so we have e
akjuj

[s, ρ](ew̄[s, ρ](l)) = ew[s, ρ](l) ∈ C, as required.

Proof of Lemma 2.7. (1) It suffices to prove this when F = {w}. Further,
we may assume that a occurs in w, since otherwise there is nothing to show.

If w is a-good, then the statement follows from Lemma 2.9. If w is not
a-good, then write w = uvak (without cancellation), where u ∈ WA\{a}∪B,

v is a-good, and k ∈ Z. Let w̄ = vaku. Then w̄ is a-good, and so there is
I ⊆ ω cofinite such that

(∀m ∈ I) (s ∪ {(a, n,m)}, {w̄}) ≤QA,ρ (s, {w̄}).
We claim that (s ∪ {(a, n,m)}, {w}) ≤ (s, {w}) when m ∈ I. Indeed, if
ew[s ∪ {(a, n,m)}, ρ](l) = l then by Lemma 2.2 it follows that

ew̄[s ∪ {(a, n,m)}, ρ]
(
evak [s ∪ {(a, n,m)}, ρ](l)

)
= evak [s ∪ {(a, n,m)}, ρ](l),

and so

ew̄[s, ρ]
(
evak [s ∪ {(a, n,m)}, ρ](l)

)
= evak [s ∪ {(a, n,m)}, ρ](l).

Applying Lemma 2.2 once more, we get ew[s, ρ](l) = l.
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(2) Let (s, F ) ∈ QA,ρ, a ∈ A, and suppose m0 /∈ ran(sa). As above, we
may assume that F = {w}. Define s̄ ⊆ A× ω × ω by

(x, n,m) ∈ s̄ ⇔ (x 6= a ∧ (x, n,m) ∈ s) ∨ (x = a ∧ (x,m, n) ∈ s).
Let w̄ be the word in which every occurrence of a is replaced with a−1.
Notice that ew̄[s̄, ρ] = ew[s, ρ], and that m0 /∈ dom(s̄). By (1) above there
are cofinitely many n such that (s̄∪{(a,m0, n)}, {w̄}) ≤ (s̄, {w̄}), and so for
cofinitely many n we have (s ∪ {(a, n,m0)}, {w}) ≤ (s, {w}).

The following easy consequence of Lemma 2.7 will be useful. We leave
the proof to the reader.

Corollary 2.10. Let w ∈ WA∪B, and let A0 ⊆ A be the set of letters
from A occurring in w. For any condition (s, F ) ∈ QA,ρ and finite sets
C0, C1 ⊆ ω there is t ⊆ A0 × ω × ω such that (t ∪ s, F ) ≤ (s, F ) and
dom(ew[s ∪ t, ρ]) ⊃ C0 and ran(ew[s ∪ t, ρ]) ⊃ C1.

Lemma 2.11. Let w ∈ ŴA∪B and suppose (s, F ) 
QA,ρ ew[ρG](n) = n
for some n ∈ ω. Then ew[s, ρ](n)↓ and ew[s, ρ](n) = n.

Proof. Let G be QA,ρ-generic such that (s, F )∈G. Then V [G]�ew[ρG](n)
= n. The definition of the partial order implies that there is (t, E) ∈ G such
that ew[t, ρ](n) = n. Without loss of generality, (t, E) ≤ (s, F ). But then
ew[s, ρ](n) is defined and ew[s, ρ](n) = n.

Proposition 2.12. Let G be QA,ρ-generic. Then ρG, defined in 2.2, is
a function A ∪ B → S∞ such that ρG�B = ρ, and ρG induces a cofinitary
representation ρ̂G : FA∪B → S∞ satisfying ρ̂G�FB = ρ̂.

Proof. For each a ∈ A and n ∈ ω, let

Da,n = {(s, F ) ∈ QA,ρ : (∃m) (a, n,m) ∈ s},
Ra,n = {(s, F ) ∈ QA,ρ : (∃m) (a,m, n) ∈ s}.

For w ∈ ŴA∪B, let

Dw = {(s, F ) ∈ QA,ρ : w ∈ F}.
Then Dw is easily seen to be dense, and Da,n and Ra,n are dense by Lem-
ma 2.7. Thus ρG is a function A ∪B → S∞, as promised.

It remains to prove that ρG induces a cofinitary representation. For this
let w ∈ WA∪B. Then we can find w′ ∈ ŴA∪B and u ∈ WA∪B such that
w = u−1w′u. Since Dw′ is dense, there is some condition (s, F ) ∈ G such
that w′ ∈ F . Suppose then that ew′ [ρG](n) = n in V [G]. Then there is
some condition (t, E) ≤QA,ρ (s, F ) and (t, E) ∈ G forcing this. It follows
by Lemma 2.11 that ew′ [t, ρ](n) = n. But then by the definition of ≤QA,ρ
we have ew′ [s, ρ](n) = n, and so fix(ew′ [ρG]) = fix(ew′ [s, ρ]), which is finite.
Finally, fix(ew[ρG]) = eu[ρG]−1(fix(ew′ [ρG])), so fix(ew[ρG]) is finite.
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Notation. For s ⊆ A×ω×ω and A0 ⊆ A, write s�A0 for s∩A0×ω×ω.
For a condition p = (s, F ) ∈ QA,ρ, we will write p�A0 for (s�A0, F ), and

p|�A0 (“strong restriction”) for (s�A0, F ∩ ŴA0∪B). (So p|�A0 is a condition
of QA0,ρ but p�A0 is in general still only a condition of QA,ρ.)

For the notion of complete containment see Section 3.1.2.

Lemma 2.13. If A0 ⊆ A then QA0,ρ is completely contained in QA,ρ.

Proof. Let A1 = A\A0. We may of course assume that A0, A1 6= ∅, since
otherwise there is nothing to show. We first note that all QA0,ρ conditions
are also QA,ρ conditions, and so QA0,ρ ⊆ QA,ρ. Clearly p ≤QA0,ρ

q implies
p ≤QA,ρ q. Moreover, if p, q ∈ QA,ρ and p ≤QA,ρ q then clearly p|�A0 ≤QA0,ρ

q|�A0. Hence p ⊥QA0,ρ q if and only if p ⊥QA,ρ q. It remains to see that if
q ∈ QA,ρ, then there is p0 ∈ QA0,ρ such that whenever p ≤QA0,ρ

p0 then
p and q are ≤QA,ρ-compatible. This follows from the next claim.

Claim 2.14. For every (s, F ) ∈ QA,ρ there is t0 ⊇ s�A0, t0 ⊆ A0×ω×ω,

such that if (t, E) ≤QA0,ρ
(t0, F ∩ ŴA0∪B) then (s∪ t, F ) ≤QA,ρ (s, F ). Thus,

for any q ∈ QA,ρ there is p0 ≤QA0,ρ
p|�A0 such that whenever p ≤QA0,ρ

p0

then p is ≤QA,ρ-compatible with q.

To see this, let {w1, . . . , wn} = F \WA0∪B. Then each word wi may be
written as

wi = ui,kivi,ki · · ·ui,1vi,1ui,0
where ui,j ∈ WA0 and vi,j ∈ WA1 , all words are non-empty except possibly
ui,ki and ui,0, and each vi,j starts and ends with a letter from A1; hence the
domain and range of evi,j [s, ρ] are finite for every i, j. By repeated applica-
tions of Corollary 2.10 to (s, F ) and the ui,j we can find t0 ⊆ A0×ω×ω with
t0 ⊇ s�A0 and dom(eui,j [s ∪ t0, ρ]) ⊇ ran(evi,j [s, ρ]) and ran(eui,j [s ∪ t0, ρ] ⊇
dom(evi,j+1 [s, ρ]) for all i, j, and satisfying (s ∪ t0, F ) ≤QA,ρ (s, F ).

Suppose now (t, E) ≤QA0,ρ
(t0, F ∩ ŴA0∪B). If ewi [s ∪ t, ρ](n)↓ for some

n ∈ ω, then by definition of t0 it must be the case that ewi [s ∪ t0, ρ](n)↓.
Therefore if ewi [s ∪ t, ρ](n) = n, we have ewi [s ∪ t0, ρ](n) = n, and so since
(s∪ t0, F ) ≤QA,ρ (s, F ) it follows that ewi [s, ρ](n) = n. Thus (s∪ t, F ) ≤QA,ρ
(s, F ) as required.

Remark 2.15. Note that in Claim 2.14 we in fact obtained a slightly
stronger property than stated, namely the following. Let A ⊆ dom(Q) and
p = (s, F ) ∈ Q. Then there is t0 ⊆ oc(p) ∩ A × ω × ω such that s�A ⊆ t0,

(t0, F ∩ ŴA) ≤Qoc(p)∩A p|�A, and whenever (t, E) ≤Q (t0, F ∩ ŴA) is such
that oc(t) ∩ (oc(p) \ A) = oc(E) ∩ (oc(p) \ A) = ∅, then (t ∪ s, F ) ≤ (s, F ),
(t ∪ s, E) ≤ (t, E), and so (t ∪ s, E ∪ F ) is a common extension of (s, F )
and (t, E).
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Lemma 2.16. Let A = A0 ∪A1. If (t, E) ∈ QA0,ρ and

(t, E) 
QA0,ρ
(s0, F0) ≤QA1,ρĠ

(s1, F1)

then (t ∪ s0, F0) ≤QA,ρ (t ∪ s1, F1).

Proof. Let w ∈ F1 and suppose ew[t∪s0, ρ](n) = n. If G is QA0,ρ-generic
such that (t, E) ∈ G, then in V [G] we have ew[s0, ρG](n) = n, and so in V [G]
we have ew[s1, ρG](n) = n, from which it follows that ew[t ∪ s1, ρ](n) = n.

Let A0 ⊆ A and A1 = A\A0. By Lemma 2.13 we have QA0,ρ l QA,ρ. Let
H be QA0,ρ-generic. Lemma 2.17 below implies in particular that in V [H]
the quotient QA,ρ/H is equal to QA1,ρH , where ρH is the generic extension of
ρ given by H. This nice combinatorial representation of the quotients of QA,ρ

will be of importance for establishing the maximality of the cofinitary group
added by QA,ρ in Theorem 2.18, as well as for establishing the maximality
of the cofinitary group added by our mcg poset within a template iteration
(see Lemma 4.2).

Lemma 2.17. Suppose G is QA,ρ-generic over V and A = A0∪A1 where
A0, A1 6= ∅ and A0 ∩ A1 = ∅. Then H = G ∩ QA0,ρ is QA0,ρ-generic over
V and K = {p�A1 : p ∈ G} = {(s�A1, F ) : (s, F ) ∈ G} is QA1,ρH -generic
over V [H]. Moreover, ρG = (ρH)K .

Proof. That H is QA0,ρ-generic over V follows from Lemma 2.13. To
see that K is QA1,ρH -generic over V [H], suppose D ⊆ QA1,ρH is dense and
D ∈ V [H]. Define

D′ = {p ∈ QA,ρ : p|�A0 
QA0,ρ
p�A1 ∈ Ḋ}

and let p0 ∈ H be a condition such that p0 
QA0,ρ
“D is dense”. We claim

that D′ is dense below p0 (in QA,ρ.) For this, let (s, F ) = p ≤QA,ρ p0. Then
by Claim 2.14 we can find p0 ≤QA0,ρ

p|�A0 such that for any p1 ≤QA0,ρ
p0,

p1 is compatible with p. Thus we can find q = (s0, F0) ∈ QA1,ρH and (t, E)
≤QA0,ρ

p0 such that

(t, E) 
QA0,ρ
q̇ ∈ Ḋ ∧ q̇ ≤QA1,ρḢ

ṗ�A1.

By Lemma 2.16 we have (s0 ∪ t, F0) ≤QA,ρ (s�A1 ∪ t, F ), and therefore

(s0 ∪ t, F0 ∪ E) ≤QA,ρ (s, F ).

Since clearly (s0 ∪ t, F0 ∪ E) ∈ D′, this shows that D′ is dense below p0.

Now, since p0 ∈ G it follows that there is q′ ∈ D′ ∩G. In V [H] we then
have q′�A1 ∈ D, which shows that K ∩D 6= ∅.

That (ρH)K = ρG follows directly from the definition of H and K.

Our next goal is to prove the following.
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Theorem 2.18. Suppose ρ : B → S∞ induces a cofinitary representation
of FB. If card(A) > ℵ0 and G is QA,ρ-generic over V , then im(ρG) is a
maximal cofinitary group in V [G].

The theorem is a consequence of the following lemma, which is parallel
to [10, Lemma 3.3].

Lemma 2.19. Suppose that ρ : B → S∞ induces a cofinitary represen-
tation ρ̂ : FB → S∞ and that there is b0 ∈ B such that ρ(b0) 6= I. Let
(s, F )∈QA,ρ�B\{b0} and a0∈A. Then there is N ∈ω such that for all n ≥ N ,(

s ∪ {(a0, n, ρ(b0)(n))}, F
)
≤QA,ρ �B\{b0}

(s, F ).

Proof. Let w1, . . . , wl ∈ F enumerate the words in F in which a0 occurs.
Then we may write each word wi in the form

wi = ui,jia
k(i,ji)
0 ui,ji−1a

k(i,ji−1)
0 · · ·ui,1ak(i,1)

0 ui,0

where the ui,m are in WA\{a0}∪B\{b0} and are non-empty whenever m /∈{ji, 0}.
By Lemma 2.7 we may assume that for all ui,m with dom(eui,m [s, ρ]) and
ran(eui,m [s, ρ]) finite,

dom(e
a
k(i,m+1)
0

[s, ρ]) ⊇ ran(eui,m [s, ρ]),

ran(e
a
k(i,m)
0

[s, ρ]) ⊇ dom(eui,m [s, ρ]).

Let w̄i be the word in which every occurrence of a0 in wi has been replaced
by b0. If ew̄i [ρ] is totally defined, then since ρ induces a cofinitary represen-
tation there are at most finitely many n such that ew̄i [ρ](n) = n. For each
w̄i with ew̄i [ρ] totally defined and 1 ≤ m ≤ ji let

w̄i,m = ui,mb
k(i,m)
0 · · ·ui,1bk(i,1)

0 ui,0,

and let

Ni = max
{
ev[ρ](k) : ew̄i [ρ](k) = k ∧ v = b

sign(k(i,m))p
0 w̄i,m

∧ 0 ≤ p ≤ sign(k(i,m))k(i,m) ∧ 0 ≤ m ≤ ji
}
.

Then let N ∈ ω be such that N ≥ max{Ni : i ≤ l} and n /∈ dom(sa0) and
ρ(b0)(n) /∈ ran(sa0) whenever n ≥ N . Then for any n ≥ N , on the one hand,
if ew̄i [ρ] is not everywhere defined then

dom(ewi [s, ρ]) = dom
(
ewi [s ∪ {(a0, n, ρ(b0)(n))}, ρ]

)
,

while if ew̄i [ρ] is everywhere defined then necessarily

ewi [s ∪ {(a0, n, ρ(b0)(n))}, ρ](k) = k

only when ewi [s, ρ](k) = k.

Proof of Theorem 2.18. Let b0 /∈ B ∪ A. Suppose card(A) > ℵ0 and
that G is QA,ρ-generic, and suppose further that there is a permutation

σ ∈ cofin(S∞)V [G] \ im(ρG) such that ρ′G : B ∪ {b0} → S∞ defined by
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ρ′G�B = ρG, and ρ′G(b0) = σ induces a cofinitary representation of FB∪{b0}.
Let σ̇ be a name for σ. Then there is A0 ⊆ A countable so that σ̇ is a
QA0,ρ-name, and so we already have σ ∈ V [H], where H = G ∩ QA0,ρ. Let
A1 = A \A0, and let K be as in Lemma 2.17. Define

Dσ,N = {(s, F ) ∈ QA1,ρH : (∃n ≥ N) s(n) = σ(n)}.
By Lemma 2.19 this set is dense. Thus in V [H][K], for any a0 ∈ A \ A0

we have (ρH)K(a0)(n) = σ(n) for infinitely many n. Since (ρH)K = ρG by
Lemma 2.17, this contradicts the fact that ρ′G induces a cofinitary represen-
tation.

3. Iteration along a two-sided template

3.1. Preliminaries. We now recall various definitions and introduce
several notions that are needed to set up the framework in which we will
treat the iteration along a two-sided template.

3.1.1. Localization. As indicated, we are aiming to give an iterated forc-
ing construction which will provide a generic extension in which the minimal
size of a maximal cofinitary group is of countable cofinality. In order to pro-
vide a lower bound for ag, along this iteration construction cofinally often
we will force with the following partial order L, known as localization.

Definition 3.1. The forcing notion L consists of pairs (σ, φ) such that
σ ∈ <ω(<ω[ω]), φ ∈ ω(<ω[ω]), σ ⊆ φ, |σ(i)| = i for all i < |σ|, and |φ(i)| ≤ |σ|
for all i ∈ ω. The extension relation is defined as follows: (σ, φ) ≤ (τ, ψ) if
and only if σ end-extends τ and ψ(i) ⊆ φ(i) for all i ∈ ω.

Recall that a slalom is a function φ : ω → [ω]<ω such that for all n ∈ ω
we have |φ(n)| ≤ n. We say that a slalom localizes a real f ∈ ωω if there
is m ∈ ω such that for all n ≥ m we have f(n) ∈ φ(n). The following is
well-known and follows easily from the definition of L.

Lemma 3.2. The poset L adds a slalom which localizes all ground model
reals.

Let add(N ) denote the additivity of the (Lebesgue) null ideal, and let
cof(N ) denote the cofinality of the null ideal. We will use the following
well-known combinatorial characterizations of add(N ) and cof(N ) which
are due to Bartoszyński and Judah.

Theorem 3.3 (Bartoszyński, Judah [1, Ch. 2]).

(1) add(N ) is the least cardinality of a family F ⊆ ωω such that no
slalom localizes all members of F .

(2) cof(N ) is the least cardinality of a family Φ of slaloms such that
every member of ωω is localized by some φ ∈ Φ.
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Finally, we will need the following result due to Brendle, Spinas and
Zhang:

Theorem 3.4 ([6]). ag ≥ non(M).

In our intended forcing construction cofinally often we will force with
the partial order L, which using the above characterizations will provide a
lower bound for ag.

3.1.2. Complete embeddings. Recall that if P and Q are posets such that
P ⊆ Q, then we say that P is completely contained in Q, written P l Q, if
P ⊆ Q and

(1) if p, p′ ∈ P and p ≤P p
′ then p ≤Q p

′;
(2) if p, p′ ∈ P and p ⊥P p

′ then p ⊥Q p
′;

(3) if q ∈ Q then there is r ∈ P (called a reduction of q) such that for
all p ∈ P with p ≤P r, the conditions p and q are compatible.

We note that (3.1.2) above may be seen to be equivalent to

(3′) all maximal antichains in P are maximal in Q.

Lemma 3.5. Let P and Q be posets, and suppose PlQ. Let q ∈ Q, p ∈ P
and q ≤Q p. Then any reduction of q to P is compatible in P with p, and so
q has a reduction extending p.

Proof. Suppose r ∈ P is a reduction of q and r ⊥P p. Let x ∈ P, x ≤P r.
Then since r is a reduction of q, we see that x is compatible with q in Q and
so there is x′ ∈ Q which is their common extension. But then x′ ≤Q x ≤P r
and so x′ ≤Q r. Also x′ ≤Q q ≤Q p and hence x′ ≤Q p. Therefore r is
compatible with p in Q. But by assumption PlQ, and so r ⊥P p→ r ⊥Q p
must be true. Therefore r and p are compatible in P, which is a contradiction.

To complete the proof, consider any reduction r of q to P. Then r is
compatible in P with p, and so they have a common extension r0. However,
any extension of a reduction is a reduction, and so r0 is a reduction of q
with r0 ≤P p.

3.1.3. Canonical projection of a name for a real

Definition 3.6. Let B be a partial order and y∈B. For each n≥1 let Bn
be a maximal antichain below y. We will say that the set {(b, s(b))}b∈Bn, n≥1

is a nice name for a real below y if

(1) whenever n ≥ 1, b ∈ Bn then s(b) ∈ nω;
(2) whenever m > n ≥ 1, b ∈ Bn, b′ ∈ Bm and b, b′ are compatible, then

s(b) is an initial segment of s(b′).

Remark 3.7. Whenever ḟ is a B-name for a real, we can associate with ḟ
a family of maximal antichains {Bn}n≥1 and initial approximations s(b) ∈ nω
of ḟ for b ∈ Bn such that for all n and b, we have b 
B ḟ�n = š(b) and



Template iterations 219

the collection {(b, s(b))}b∈Bn, n∈ω has the above properties. Thus we can
assume that all names for reals are nice, and abusing notation we will write
ḟ = {(b, s(b))}b∈Bn, n∈ω.

Lemma 3.8. Let A be a complete suborder of B, y ∈ B and x a reduction
of y to A. Let ḟ = {(b, s(b))}b∈Bn, n≥1 be a nice name for a real below y. Then
there is ġ = {(a, s(a))}a∈An, n≥1, an A-nice name for a real below x, such
that for all n ≥ 1, for all a ∈ An, there is b ∈ Bn such that a is a reduction
of b and s(a) = s(b).

Remark 3.9. Whenever ḟ , ġ are as above, we will say that ġ is a canon-
ical projection of ḟ below x.

Proof of Lemma 3.8. Recursively we will construct the antichains An.
Along this construction we will guarantee that for all a ∈ An, a′ ∈ An+1

either a′ ≤ a or a⊥ a′, and that if a′ ≤ a then s(a′) end-extends s(a).

First we will define A1. Let t ∈ A be an arbitrary extension of x. Since
x is a reduction of y, there is t̂ ∈ B such that t̂ ≤B t, y. Therefore there is
b ∈ B1 such that t̂ and b are compatible with a common extension t̄. Then
in particular t̄ ≤B t, and so we can find a reduction a of t̄ extending t. Since
t̄ ≤ b, a is also a reduction of b. Define s(a) = s(b), a(t) = a. Let A1 be a
maximal antichain in the dense below x set D1 = {a(t) : t ≤ x}.

Suppose An has been defined. Let a ∈ An and t ≤A a. By the inductive
hypothesis, there is b ∈ Bn such that a is a reduction of b and s(a) = s(b).
Then t is compatible in B with b, with common extension t̂. Hence in par-
ticular t̂ ≤B y, and so there is b̄ ∈ Bn+1 such that t̂ is compatible with b̄
in B with common extension t̃. Then in particular t̃ ≤ b̄, b, and so s(b) is
an initial segment of s(b̄). Since t̃ ≤ t, it has a reduction ā ≤A t. Define
a(t) = ā, s(ā) = s(b̄). Again since t̃ ≤ b̄, ā is also a reduction of b̄. Let
An+1,a be a maximal antichain in the dense below a set {ā(t) : t ≤A a} and
let An+1 =

⋃
a∈An An+1,a.

3.1.4. Canonical projection of a name for a slalom

Definition 3.10. Let B be a partial order and y ∈ B. Let σ ∈ <ω(<ω[ω])
be such that (∀i < |σ|) |σ(i)| = i, and for each n ≥ 1 let Bn be a maxi-
mal antichain below y. We will say that the pair (σ̌, φ̇) is a nice name for
an element of L below y, where φ̇ = {(b, σ(b))}b∈Bn, n≥1, if the following
conditions hold:

(1) whenever n ≥ 1 and b ∈ Bn, then σ(b) ∈ n(<ω[ω]);
(2) whenever 1 ≤ n ≤ |σ| and b ∈ Bn, then σ(b) = σ�n;
(3) whenever n> |σ|, then σ⊂σ(b) and (∀i : |σ|≤ i<n) |σ(b)(i)|≤|σ|;
(4) whenever m > n ≥ |σ|, b ∈ Bn, b′ ∈ Bm and b, b′ are compatible,

then σ(b) is an initial segment of σ(b′).
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Remark 3.11. If (σ̌, φ̇), where φ̇ = {(b, σ(b))}b∈Bn, n≥1, is a nice name

for an element of L below y, then y 
 (σ̌, φ̇) ∈ L and for all n ∈ ω and
b ∈ Bn we have b 
 φ̇�n = σ̌(b).

Lemma 3.12. Let A be a complete suborder of B, y ∈ B and x a reduction
of y to A. Let (σ̌, φ̇), where φ̇ = {(b, σ(b))}b∈Bn, n≥1, be a nice name for an

element of L below y. Then there is an A-nice name (σ̌, ψ̇), where ψ̇ =
{(a, σ(a))}a∈An, n≥1, for an element in L below x such that for all n ≥ 1, for
all a ∈ An, there is b ∈ Bn such that a is a reduction of b and σ(a) = σ(b).

Proof. Similar to the proof of Lemma 3.8.

Another forcing notion of interest for us is Hechler forcing D. Recall that
it consists of pairs (s, f) ∈ <ωω × ωω such that s ⊆ f and of the extension
relation given by (s, f) ≤ (t, g) iff s end-extends t and (∀i ∈ ω) g(i) ≤ f(i).
Clearly, if A, B, x and y are as in the statement of Lemma 3.8, and y forces
that (š, ḟ) is a condition in D where ḟ is a nice name for a real below y,
then ḟ has a canonical projection ḟ ′ below x such that x forces that (š, ḟ ′)
is a Hechler condition.

3.1.5. Suslin, σ-Suslin and good σ-Suslin posets. Recall that a Suslin
poset is a poset (S,≤S) such that S(⊆ ωω), ≤S and ⊥S have Σ1

1 definitions
(with parameters in the ground model). For a Suslin forcing S, the ordering
≤S will be defined by the Σ1

1 predicate in whatever model we work in (that
has a code for ≤S). The key property of Suslin forcings that we need is
the following well-known fact. A detailed proof of it can be found in [5] (in
Lemma 3.13 below take Ȧ to be a P-name for S, and Ḃ to be a Q-name
for S).

Lemma 3.13. Let P and Q be posets and let S be a ccc Suslin poset. If
P l Q then P ∗ Ṡ l Q ∗ Ṡ (where Ṡ denotes the name of S for the relevant
poset).

We will work with the following strengthening of the notion of Suslin
forcing:

Definition 3.14. Let (S,≤S) be a Suslin forcing notion, whose condi-
tions can be written in the form (s, f) where s ∈ <ωω and f ∈ ωω. We will
say that S is n-Suslin if whenever (s, f) ≤S (t, g) and (t, h) is a condition in S
such that h�n · |s| = g�n · |s|, then (s, f) and (t, h) are compatible. A forcing
notion is called σ-Suslin if it is n-Suslin for some n.

Clearly, if S is n-Suslin and m ≥ n, then S is also m-Suslin. If S is
n-Suslin and (s, f) and (s, g) are conditions in S such that f�n · |s| =
g�n · |s|, then (s, f) and (s, g) are compatible. Thus every σ-Suslin forc-
ing notion is σ-linked and so has the Knaster property. Hechler forcing H is
1-Suslin, and localization L is 2-Suslin.
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Definition 3.15. Let (S,≤S) be a Suslin forcing notion, whose condi-
tions can be written in the form (s, f) where s ∈<ω ω and f ∈ ωω. Let B
be a partial order. The pair (š, ḟ) is a nice name for a condition in S below
y ∈ B if ḟ is a nice name for a real below y and y 
B (š, ḟ) ∈ Ṡ.

Suppose (š, ḟ) is a nice B-name for a condition in S below y ∈ B, where
B is an arbitrary partial order. Let A be a complete suborder of B and let
x ∈ A be a reduction in y. By Lemma 3.8 there is a projection ġ of ḟ below x.
Say ḟ = {(b, s(b))}b∈Bn, n≥1 and ġ = {(a, s(a))}a∈An, n≥1. For every a ∈ A1

we can choose b ∈ B1, denote it ψ(b), such that a is a reduction of b, and so
we can define a mapping ψ : A1 → B1. However ψ might not be surjective,
which implies that for a B-generic filter G it very well might be the case
that ḟ [G] 6= ġ[G ∩ A]. This gives rise to the following definition.

Definition 3.16. Let (S,≤S) be a Suslin forcing notion, whose condi-
tions can be written in the form (s, f) where s ∈<ω ω and f ∈ ωω.

(1) Let A, B be partial orders such that AlB. Let x ∈ A be a reduction
of y ∈ B and let (š, ḟ) be a nice name for a condition in S below y ∈ B.
If ġ is a canonical projection of ḟ below x such that x 
B (š, ġ) ∈ Ṡ,
we will say that (š, ġ) is a canonical projection of the nice name (š, ḟ)
below x.

(2) S is called good if whenever A, B are partial orders, A l B, x ∈ A,
y ∈ B and x is a reduction of y, then every nice name for a condition
in S below y has a canonical projection below x.

An immediate corollary of Lemma 3.12 is that the localization poset L
is a good σ-Suslin forcing notion. It is straightforward to verify that the
Hechler poset D is also good σ-Suslin.

3.1.6. Finite function posets

Definition 3.17. Let A be a fixed set and let Q be a poset of pairs
p = (sp, F p) where sp ⊆ A × ω × ω is finite, for every a ∈ A, spa =

{(n,m) : (a, n,m) ∈ s} is a finite partial function and F ∈ [ŴA]<ω. For
p ∈ Q let oc(sp) = {a : (∃n,m) (a, n,m) ∈ sp} and let oc(p) = oc(sp) ∪ {a :
a is a letter from a word in F p}. For B ⊆ A let p�B = (sp ∩B×ω×ω, F p),
let p|�B = (sp∩B×ω×ω, F p∩ ŴB) and let dom(Q) = A. Then Q is a finite
function poset (with side conditions) if:

(i) (“Restrictions”). Whenever p and q are conditions in Q, B ⊆ A
then

• p�B, p|�B are conditions in Q, and p�B ≤ p|�B;
• if p ≤ q then p|�B ≤ q|�B.
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(ii) (“Extensions”). Whenever p = (s, F ) ∈ Q
• and t ⊆ A × ω × ω is finite such that oc(p) ∩ oc(t) = ∅, then

(s ∪ t, F ) ≤ p;
• and E ∈ [ŴA]<ω contains F , then (s, E) ≤ (s, F ).

Whenever B ⊆ dom(Q), we denote by QB the suborder {p|�B : p ∈ Q}.
Thus in particular if L0 := dom(Q) then QL0 = Q.

Definition 3.18. Let Q be a finite function poset. We say that Q has
the strong embedding property if whenever A0 ⊆ dom(Q) and p = (s, F ) ∈ Q,

then there is t0 ⊆ (oc(p) ∩ A0) × ω × ω such that s�A0 ⊆ t0, (t0, F ∩ ŴA0)

≤Qoc(p)∩A0
p|�A0, and whenever (t, E) ≤Q (t0, F ∩ŴA0) is such that oc(t) and

oc(E) are disjoint from oc(p) \A0, then (t ∪ s, F ) ≤ (s, F ) and (t ∪ s, E) ≤
(t, E). We say that (t0, F ∩ ŴA0) is a strong reduction of p and (s∪ t, E ∪F )
a canonical extension of (s, F ) and (t, E).

Remark 3.19. Note that if Q is a finite function poset with the strong
embedding property, then whenever A ⊆ B ⊆ dom(Q), C ⊆ dom(Q) are
such that C ∩B = A, for every condition p ∈ QB there is p0 ≤QA p|�A such
that oc(p0) ⊆ oc(p)∩A and if q0 is a QC-extension of p0, then q0 is compatible
with p. We will say that p0 is a strong QA-reduction of p. The existence of
strong reductions implies in particular that for every A ⊆ dom(Q) the poset
QA is a complete suborder of Q. We will refer to this property as the complete
embedding property .

Lemma 3.20. QA,ρ is a finite function poset with the strong embedding
property.

Another example of a finite function poset with the strong embedding
property is the following forcing notion DA. Let A be a non-empty set and
let DA be the poset of all pairs (sp, F p) where sp ⊆ A × ω × 2 is a finite
set such that for all a ∈ A, spa = {(n,m) : (a, n,m) ∈ s} is a finite partial
function and F ∈ [A]<ω. The condition q is said to extend p if sq ⊃ sp,
F q ⊃ F p and for all distinct a, b ∈ F p we have saq ∩ sbq ⊆ sap ∩ sbp. If |A| > ω,
then DA adds a maximal almost disjoint family of size |A|.

3.2. Two-sided templates. If (L,≤) is a linearly ordered set and
x ∈ L, we let Lx = {y ∈ L : y < x} and L=

x = {y ∈ L : y ≤ x}. If
L0 ⊆ L is a distinguished subset of L and A ⊆ L, then the L0-closure of A
is defined as

clL0(A) = A ∪
⋃
x∈A

(Lx ∩ L0),

and we will say that A is L0-closed if A = clL0(A). Note that clL0(A) is the
smallest set B ⊇ A with the property that if x ∈ B then Lx ∩ L0 ⊆ B. We
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will usually drop mention of L0 when it is clear from the context, and write
“closed” instead of “L0-closed” and cl instead of clL0 .

Definition 3.21 (J. Brendle [4]). A two-sided template is a 4-tuple T =
((L,≤), I, L0, L1) consisting of a linear ordering (L,≤), a family I ⊆ P(L),
and a decomposition L = L0 ∪ L1 into two disjoint pieces such that:

(1) I is closed under finite intersections and unions, and ∅, L ∈ I.
(2) If x, y ∈ L, y ∈ L1 and x < y then there is A ∈ I such that A ⊆ Ly

and x ∈ A.
(3) If A ∈ I, x ∈ L1 \A, then A ∩ Lx ∈ I.
(4) The family {A∩L1 : A ∈ I} is well-founded when ordered by inclu-

sion.
(5) All A ∈ I are L0-closed.

Given a two-sided template T as above, x ∈ L and A ∈ I, we define

IA = {B ∈ I : B ⊂ A}, Ix = {B ∈ I : B ⊆ Lx}
and IA,x = IA ∩ Ix. Finally we define the rank function Dp : I → ON by
letting Dp(A) = 0 for A ⊆ L0 and Dp(A) = sup{Dp(B)+1 : B ∈ I ∧B∩L1

⊂ A ∩ L1}. We define Rk(T ), the rank of T , to be Rk(T ) = Dp(L).
If A ⊆ L then TA is the template ((A,≤), I�A,L0 ∩A,L1 ∩A), where

I�A = {A ∩B : B ∈ I}.
Note that if A ∈ I then Rk(TA) = Dp(A). Moreover, if A ⊆ L is arbitrary,
then Rk(TA) ≤ Rk(T ).

3.3. Iteration along a two-sided template. We are now ready to
define the iteration along a two-sided template. This definition is a gener-
alization of the definition of iterating “Hechler forcing and adding a mad
family along a template” given in [4].

Definition 3.22. Let T = ((L,≤), I, L0, L1) be a two-sided template,
Q a finite function forcing with the strong embedding property such that
L0 = dom(Q) and S a good σ-Suslin forcing notion. The poset P(T ,Q,S) is
defined recursively according to the following clauses:

(1) If Rk(T ) = 0, then P(T ,Q, S) = QL0 (= Q).
(2) Assume that for all T with Rk(T ) < κ, P(T ,Q,S) has been defined

(and is a poset, see comment below). Let T be a two-sided template
of rank κ, and for B ∈ I of Dp(B) < κ let PB = P(TB,Q, S). We
define P = P(T ,Q, S) as follows:

(i) P consists of all pairs P = (p, F p) where p is a finite partial
function with dom(p) ⊆ L, P �L0 := (p�L0, F

p) ∈ Q, and if
xp := max{dom(p)∩L1} is defined then there is B ∈ Ixp (called

a witness to P ∈ P) such that P |�Lxp := (p�Lxp , F
p ∩ ŴB) ∈ PB,
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p(xp) = (špx, ḟ
p
x), where spx ∈ <ωω, ḟpx is a PB-name for a real and

(P |�Lxp , p(xp)) ∈ PB ∗ Ṡ.
(ii) For P,Q ∈ P, let Q ≤P P iff dom(p) ⊆ dom(q), (q�L0, F

q) ≤Q
(p�L0, F

p), and if xp is defined then either

(ii.a) xp < xq and there exists B ∈ Ixq such that P |�Lxq , Q|�Lxq
∈ PB and Q|�Lxq ≤PB P |�Lxq , or

(ii.b) xp = xq and there exists B ∈ Ixq witnessing P,Q ∈ P and
such that (Q|�Lxq , q(xq)) ≤PB∗Ṡ (P |�Lxp , p(xp)).

Below we will call B as in (ii.a) or (ii.b) a witness to Q ≤P P .

Whenever the side condition F p is clear from the context, we will denote
the condition P = (p, F p) simply by the finite partial function p. Further-

more, for A ⊆ L, let P �A = (p�A,F p) and P |�A = (p�A,F p ∩ ŴA). Note
also that if P = (p, F p) then p�L0 ⊆ (dom(p) ∩ L0) × ω × ω. The defini-
tion is recursive and it is not clear to what extent it succeeds in defining a
poset. However this will follow from Lemma 3.23 below, which establishes
not only transitivity but also a strong version of the complete embedding
property, which is necessary for this definition to succeed. This lemma is a
generalization of the Main Lemma of [4]. We note that if A ∈ I then it is
clear from the definition that PA := P(TA,Q,S) is a subset of P(T ,Q,S) and
that the relation ≤PA is contained in ≤P. The above definition also defines
PA = P(TA,Q, S) for arbitrary A ⊆ L.

Lemma 3.23 (Completeness of embeddings). Let T = ((L,≤), I, L0, L1)
be a template, let Q be a finite function poset with L0 = dom(Q) which
satisfies the strong embedding property, and let S be a good σ-Suslin poset.
Let B ∈ I, and let A ⊂ B be closed. Then PB is a partial order, PA ⊂ PB
and even PA l PB. Furthermore, any P = (p, F p) ∈ PB has a reduction
P0 = (p0, F

p0) ∈ PA such that

(i) dom(p0) = dom(p) ∩A, F p0 = F p ∩ ŴA,
(ii) sp0

x = spx for all x ∈ dom(p0) ∩ L1,
(iii) P0�L0 = (p0�L0, F

p0) is a strong QA∩L0-reduction of P �L0 =
(p�L0, F

p),

and such that whenever D ∈ I, C ⊆ L, C is L0-closed, B,C ⊆ D and
C ∩B = A, then for every Q0 ∈ PC which extends P0 there is Q ∈ PD which
is a common extension of Q0 and P .

We refer to the reduction P0 of the condition P from Lemma 3.23 as a
canonical reduction from PB to PA. For P ∈ P(T ,Q,S) let oc(P ) = oc(P �L0)
and let dom(P ) = dom(p)∪oc(P ). Also, for B ⊆ L we will write QB for the
set QB∩L0 . The lemma is proved by induction on the rank of T . It uses the
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following lemmas, which are helpful for making simple manipulations with
the conditions of P(T ,Q, S). In Lemmas 3.24 through 3.27 assume that T ,
Q and S are as in Definition 3.22 and that the Completeness of Embeddings
Lemma 3.23 has been established for all templates of rank < Rk(T ). Let
P = P(T ,Q,S).

Lemma 3.24. If P = (p, FP ) and Q = (q, F q) are conditions in P such
that dom(P ) and dom(Q) are contained in Lx for some x ∈ L1 and Q ≤P P ,
then there is B ∈ Ix such that Q ≤PB P .

Proof. If xp is defined and xp = xq (resp. xp < xq), let B′ ∈ Ixp (resp.
B′ ∈ Ixq) be a witness to Q ≤P P . Using Definition 3.21, find B ∈ Ix
such that B′ ⊆ B and dom(P ) ∪ dom(Q) ⊆ B. Then B′ ∈ IB,xp (resp.
B′ ∈ IB,xq) is a witness to Q ≤PB P . If xp is not defined and B ∈ Ix is
such that dom(P ) ∪ dom(Q) ⊆ B, then since Q�L0 ≤QB P �L0 we obtain
Q ≤PB P .

Lemma 3.25. Let P = (p, F p) and Q = (q, F q) be conditions in P and let
x0 ∈ L. Then Q|�Lx0 ∈ P, Q|�L=

x0
∈ P, and if Q ≤P P then Q|�Lx0 ≤P P |�Lx0

and Q|�L=
x0
≤P P |�L=

x0
.

Proof. The proofs of Q|�Lx0 ∈ P and Q|�Lx0 ≤ P |�Lx0 proceed by in-
duction on nq = |dom(q) ∩ L1|. The case nq = 0 follows by Definition 3.17.
Thus suppose each of those is true whenever nq < n and let nq = n. To see
that Q|�Lx0 ∈ P note that if xq < x0 and B is a witness to Q ∈ P, then B
also witnesses Q|�Lx0 ∈ P. If x0 ≤ xq, then nq�Lx0

< n, and so we can use
the inductive hypothesis.

If dom(p�Lx0) ⊆ L0, then Q|�Lx0 ≤P P |�Lx0 follows from Definition 3.17.
Suppose np�Lx0

6= 0 and let B be a witness to Q ≤ P . If xq < x0, then B
also witnesses Q|�Lx0 ≤ P |�Lx0 . If x0 < xq, then Q|�Lxq ≤PB P |�Lxq , and
since ≤PB ⊆ ≤P we find that Q|�Lxq ≤P P |�Lxq . If x0 = xq we are done,
and if x0 < xq then nq�Lxq < n and so Q|�Lx0 ≤P P |�Lx0 by the inductive
hypothesis.

The L=
x case is proved analogously.

Lemma 3.26. Let P = (p, F p) and Q = (q, F q) be conditions in P. If
dom(p) ⊆ dom(q), Q�L0 ≤Q P �L0 and Q|�L=

xp ≤P P |�L=
xp, then Q ≤P P .

Proof. If xp is not defined, the claim is straightforward by Defini-
tion 3.22. Thus assume xp is defined. Note that xq ≥ xp. If xq = xp, then
if B is a witness to Q|�L=

xp ≤P P |�L=
xp , then B is also a witness to Q ≤P P .

Thus suppose xq > xp = x. Let {xj}nj=1 be an increasing (in the linear
order L) enumeration of (dom(Q) ∩ L1) \ L=

xp = (dom(q) ∩ L1) \ L=
xp , and

let H ∈ Ixp be a witness to Q|�L=
xp ≤P P |�L=

xp . In particular xn = xq. Since
(dom(Q) ∩ Lx1) \ Lxp and (dom(P )∩Lx1)\Lxp are finite, by Definition 3.21
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there is a set H1 ∈ Ix1 such that H, dom(Q|�Lx1) and dom(P |�Lx1) are con-
tained in H1. Then H ∈ IH1 is a witness to Q|�Lx1 ≤PH1

P |�Lx1 . Similarly
we can find H2 ∈ Ix2 such that H1, dom(Q|�Lx2) and dom(P |�Lx2) are con-
tained in H2. Then H1 ∈ IH2,x1 is a witness to Q|�Lx2 ≤PH2

P |�Lx2 . Thus in
finitely many steps we can find an increasing sequence {Hj}nj=1 of elements

of I such that for all j, Hj ⊆ Lxj , dom(Q|�Lxj ), dom(P |�Lxj ) are contained
in Hj , and Hj−1 is a witness to Q|�Lxj ≤PHj P |�Lxj . Then Hn−1 is a witness

to Q|�Lxn ≤PHn P |�Lxn , and so Hn ∈ Ixn is a witness to Q ≤P P .

Lemma 3.27. Let Q = (q, F q) = Q|�L=
x with x = max{dom(q) ∩ L1}

be a condition in P. Let P = (p, F p) be a condition such that (P |�Lx)�L0

is a strong QL0∩Lx-reduction of P �L0 and Q ≤P P |�L=
x . Then Q n̄x P =

(q n̄x p, F
q ∪ F p) is a common extension of Q and P where q n̄x p =

q ∪ p�L \ L=
x .

Proof. Since q n̄x p�L0 = q�L0 ∪ p�L0 \ L=
x and (P |�Lx)�L0 is a strong

QL0∩Lx-reduction of P �L0, we see that (Qn̄xP )�L0 ≤Q P �L0. On the other
hand dom(p�L0 \ L=

x ) ∩ dom(Q) = ∅ and so (Qn̄xP )�L0 ≤ Q�L0.

Let np := |dom(p)∩L1\Lx|. Suppose np = 0. Then xp < x = xq = xqn̄xp.

Since (qn̄xp)�Lx = q�Lx and F q ⊇ F p∩ŴLx∩L0 (becauseQ|�Lx ≤ P |�Lx), we
have Qn̄xP |�Lx = Q|�Lx. This easily implies that Qn̄xP is a common exten-
sion of Q and P . Now suppose that the claim is true whenever 0 ≤ np < n
and let P be a condition with np = n. Then (without loss of generality)
xp > x and Q ≤ (P |�Lxp)|�L=

x . By the inductive hypothesis Qn̄x(P |�Lxp)
is a condition in P extending both Q and P |�Lxp . By Lemma 3.24 there is
B0 ∈ Ixp such that Qn̄x(P |�Lxp) ≤PB0

Q,P |�Lxp . Let B1 be a witness to

P ∈ P. Thus P |�Lxp ∈ PB1 and P |�Lxp 
PB1
p(xp) ∈ Ṡ. Then B = B0 ∪ B1

is in Ixp . Since xp does not belong to any of B0, B1 and B, all of those sets
are of smaller rank than Rk(T ) (see discussion right after the statement of
Lemma 3.23), and so by the inductive hypothesis PB0 , PB1 completely embed
into PB. This implies that Qn̄x(P |�Lxp) ≤PB Q,P |�Lxp , and so in particular

Qn̄x(P |�Lxp) 
PB p(xp) ∈ Ṡ. Then B is also a witness to Qn̄xP ≤P P . Since
xq < xqn̄xp = xp, the set B0 is a witness to Qn̄xP ≤P Q.

Proof of Lemma 3.23. We use recursion on the rank of the underlying
template. The Rk(TB) = 0 case is clear. So assume that the lemma holds
for all templates of rank < α, and let Rk(TB) = α. Let P = PB.

Transitivity: To see that ≤P is transitive, fix P0, P1, P2 ∈ P such that
P1 ≤P P0 and P2 ≤P P1, and assume that xp0 is defined (since otherwise
there is nothing to show). Fix witnesses B1 ∈ Ixp1 and B2 ∈ Ixp2 to P1 ≤P P0

and P2 ≤P P1. Since Dp(B1∪B2) < α, the inductive hypothesis implies that
PB1 ,PB2 l PB1∪B2 , and so Pi|�Lxp2 = Pi|�B1 ∪ B2 ∈ PB1∪B2 for 0 ≤ i ≤ 2,
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and

P2|�Lxp2 ≤PB1∪B2
P1|�Lxp2 ≤PB1∪B2

P0|�Lxp2 .
Thus by the inductive hypothesis we have P2|�Lxp2 ≤PB1∪B2

P0|�Lxp2 . If
xp0 < xp2 then the definition of ≤P yields P2 ≤P P0. So assume that
xp0 = xp2 . It is clear that pi(xp2) is a PB1∪B2-name for 0 ≤ i ≤ 2. Since
PB1 ,PB2 l PB1∪B2 , we must have P1|�Lxp2 
PB1∪B2

p1(xp2) ≤Ṡ p0(xp2) and
P2|�Lxp2 
PB1∪B2

p2(xp2) ≤Ṡ p1(xp2). But then P2�Lxp2 
PB1∪B2
p1(xp2) ≤Ṡ

p0(xp2), and so P2|�Lxp2 
PB1∪B2
p2(xp2) ≤Ṡ p0(xp2). Thus

(P2|�Lxp2 , p2(xp2)) ≤PB1∪B2
∗Ṡ (P0|�Lxp2 , p0(xp2)),

as required.

Suborders: Let A ⊂ B be closed, B ∈ I be given. We will show that
PA ⊂ PB. Assume R = (r, F r) ∈ PA (5). Let x = xr. By the definition of
the iteration there is Ā ∈ (I�A)x such that R|�(A ∩ Lx) ∈ PĀ and ḟ rx is a
PĀ-name.

Note that Ā ∈ I�A means that there is B0 ∈ I such that Ā = B0 ∩ A.
On the other hand A ⊂ B, so Ā ⊂ B and hence B0 ∩A = B0 ∩B ∩A. But
I is closed under finite intersections and so B0 ∩B ∈ I, even B0 ∩B ∈ IB.
So without loss of generality there is B̄ ∈ IB (just take B̄ = B0 ∩ B) such
that Ā = A ∩ B̄. Since Ā ⊆ Lx, we have x /∈ B̄. Then by Definition 3.21(3),
B̄ ∩ Lx ∈ IB. Therefore we can assume that B̄ ⊆ Lx. Thus B̄ ⊂ B and
Dp(B̄) < Dp(B) = α. By the inductive hypothesis, PĀ ⊆ PB̄ and PĀ l PB̄.

Therefore ḟ rx is a PB̄-name as well. Thus R|�Lx ∈ PB̄ and ḟ rx is a PB̄-name.
That is, R ∈ PB.

Complete embeddings: Assume P = (p, F p) ∈ PB. We will construct
a canonical reduction P0 of P from PB to PA. Let x = xp. By definition

of the iteration, there is B̄ ∈ IB,x such that P |�Lx = P̄ ∈ PB̄ and ḟpx
is a PB̄-name, where p(x) = (špx, ḟ

p
x). Let Ā = A ∩ B̄. Then Ā ∈ I�A,

Ā ⊂ B̄ and Ā ∈ P(Lx). Since x does not belong to Ā and B̄, the sets Ā
and B̄ are of rank smaller than Rk(T ), and so by the inductive hypothesis

PĀ l PB̄. Therefore P̄ = (p�Lx, F p ∩ ŴLx∩L0) has a canonical reduction

P̄0 = (p̄0, F
p ∩ ŴĀ∩L0

) from PB̄ to PĀ. By definition P̄0�L0 ≤QĀ (P̄ �L0)|�Ā,

P̄0�L0 = (p̄0�L0, F
p ∩ ŴĀ∩L0

) where p̄0�L0 ⊆ (oc(p�L0) ∩ Ā) × ω × ω and
p�(L0 ∩ Ā) ⊆ p̄0�L0. Now consider (p̄0�L0 ∪ p�L0 \ Ā, F p). By the definition
of strong reduction we have (p̄0�L0 ∪ p�L0 \ Ā, F p) ≤QB P �L0. Now take a

strong QA-reduction (p0�L0, F
p ∩ ŴA∩L0) of (p̄0�L0 ∪ p�L0 \ Ā, F p). Then

(p0�L0, F
p0) where F p0 := F p ∩ ŴA is a strong QA-reduction of P �L0 such

(5) Recall PA = P(TA,Q, S) where TA is the template ((A,≤), I�A,L0 ∩ A,L1 ∩ A),
and so in particular r is a finite partial function with domain contained in A.
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that p0�L0 ∩ Ā ⊇ p̄0�L0. Let p0�L1 ∩ Lx = p̄0�L1 ∩ Lx and let P0|�Lx :=
(p0�Lx, F p0). Then P0|�Lx ≤PĀ P̄0, and so P0|�Lx is a canonical reduction
of P̄ . We can assume that p(x) is a nice name for a condition in S below P̄ .
If x ∈ A, let p0(x) be a canonical projection of p(x) below P0|�Lx. With this
the construction of P0 = (p0, F

p0) is complete.
We will show that P0 is a canonical projection of P from PB to PA.

For this assume D ∈ I, C ⊆ D, C is L0-closed, B ∪ C ⊆ D, A = B ∩ C
and Dp(D) = α. Let Q0 = (q0, F

q0) ≤PC P0. We will construct a common
extension of Q0 and P .

Case 1: x /∈ A. Then clearly x /∈ C. Let y = max(dom(q0)∩Lx∩L1) (6).
Then y < x. By Lemma 3.25, Q0|�L=

y ≤PC P0|�L=
y , and so there is Ē in

(I�C)y witnessing this fact. Using 3.21 find F̄ ∈ ID,y such that Ē = F̄ ∩C.
Now, let {yi}i∈k enumerate dom(q0)∩Lx \Ly. By Definition 3.21(2), for all
i ∈ k there exists Gi ∈ I such that yi ∈ Gi. Then Ḡ := D ∩

⋃
i∈kGi ∈ ID,x

and dom(q0) ∩ Lx \ Ly ⊆ Ḡ. Let D̄ = B̄ ∪ F̄ ∪ Ḡ, C̄ = (Ḡ ∩C) ∪ Ē ∪ Ā and
note that D̄ ∈ ID,x, C̄ ∈ (I�C)x. Clearly C̄ ⊆ D̄, C̄ ∩ B̄ = Ā.

Note that Q̄0 := Q0|�Lx ≤PC̄ P0|�Lx with witness Ē (observe that Ē also
belongs to (I�C̄)y). Passing to an extension if necessary, we can assume that
Q̄0�L0 is a strong QC̄-reduction of Q0�L0. Since DpI�C(C̄) ≤ DpI(D̄) <

DpI(D) = α, we can apply the inductive hypothesis to Ā, B̄, C̄, D̄. Thus
there is a common extension Q̄ = (q̄, F q̄) ≤PD̄ Q̄0, P |�Lx. With this we are
ready to define a common extension Q = (q, F q) of Q0 and P as follows:

Let q′ = q̄∪{(x, p(x))}, F q′ = F q̄ and letQ′ = (q′, F q
′
). Then D̄ witnesses

not only Q′ ∈ PD, but also Q′ ≤PD Q0|�L=
x . By Lemma 3.27, Q′′ := Q′n̄xQ0

is a common extension in PD of Q′ and Q0. Denote Q′′ = (q′′, F q
′ ∪F q0) and

let p̂ = p�L0 \ dom(q′′). Let q = q′′ ∪ p̂, F q = F q
′ ∪ F q0 and let Q = (q, F q).

Since oc(Q′′) ∩ dom(p̂) = ∅, we deduce that Q = (q′′ ∪ p̂, F q0 ∪ F p) is a
condition in P, extending Q′′. Thus in particular Q ≤ Q0.

To see that Q ≤ P , first observe that Q′′�L0 ≤ Q0�L0 ≤ P0�L0, and since
by definition P0�L0 is a strong QA-reduction of P �L0, we obtain (q′′�L0 ∪
p̂�L0, F

p) ≤ P �L0. But then Q�L0 ≤ P �L0, Q|�L=
xp ≤ P |�L

=
xp and dom(p) ⊆

dom(q), which by Lemma 3.26 gives Q ≤ P .

Case 2: x∈A. Then x ∈ C. Let C̄∈(I�C)x be a witness to Q0|�L=
x ≤PC

P0|�L=
x . That is, Q̄0 = Q0|�Lx ≤PC̄ P0|�Lx(≤ P̄0) and

Q0|�Lx 
 “(šq0x , ḟ
q0
x ) ≤Ṡ (sp0

x , ḟ
p0
x )”.

By definition Ā = A∩ B̄ where B̄ ∈ IB,x. Also by the definition of C̄ ∈ I�C
there is C ′0 ∈ I such that C̄ = C ′0∩C. Then x /∈ C ′0, and so by Definition 3.21,

(6) If dom(q0) ∩ Lx ⊆ L0, then we do not need the witness Ē. The proof proceeds as
in Case 1, but take Ē = F̄ = ∅ and pick Ḡ ∈ ID,x such that dom(q0) ∩ Lx ⊆ Ḡ. Then in
particular C̄ = (Ḡ ∩ C) ∪ Ā and D̄ = B̄ ∪ Ḡ.
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C0 := C ′0 ∩ Lx ∈ Ix and C̄ = C0 ∩ C. Passing to an extension if necessary,
we can assume that Q̄0�L0 is a strong QC̄-reduction of Q0�L0.

Then Ā ∪ C̄ ∈ (I�C)x (7), and since Rk(TĀ∪C̄) < Rk(T ), we have PC̄ l
PĀ∪C̄ . Therefore ḟ q0x is also a PĀ∪C̄-name, and so without loss of generality
we may assume that Ā ⊆ C̄ (otherwise work with Ā∪ C̄ instead of C̄). This
implies Ā = C̄ ∩ B̄ (8). Note also that D̄ := D ∩C0 ∈ ID,x and C̄ = D̄ ∩C.
Similarly we may also assume that B̄ ⊆ D̄. Since DpI(D̄) < DpI(D) = α,
we can use the inductive hypothesis when working with Ā, B̄, C̄, D̄.

Let n be such that S is n-Suslin. Let m = |sq0x |. Find Q̂0 ≤PC̄ Q̄0 and

s′ ∈ n·mω such that Q̂0 
 “ḟp0
x �n ·m = š′”. Let G be a PC̄-generic filter such

that Q̂0 ∈ G. Now note that ḟp0
x is a PĀ-name and PĀlPC̄ by the inductive

hypothesis (here we use the fact that DpI�C̄(C̄)≤DpI(D̄)<α). Therefore

G∩PĀ is PĀ-generic and there is U ∈ G∩PĀ such that U 
PĀ ḟ
p0
x �n·m = š′.

Now U,P0|�Lx ∈ G ∩ Ā, so they have a common extension E′ ∈ G ∩ Ā and
E′ 
PĀ ḟ

p0
x �n ·m = š′.

Since E′, Q̂0 are in G, they have a common extension
ˆ̂
Q0 ∈G (and so

in PB̄). Then in particular
ˆ̂
Q0 ≤ E′, and so

ˆ̂
Q0 has a reduction Q̃0 in

PĀ which extends E′. Thus Q̃0 
PĀ ḟp0
x �n · m = š′ and Q̃0 ≤ P0|�Lx.

But then Q̃0 is compatible in PĀ with some a ∈ An·m. Here following the
notation of Lemma 3.8, we assume that ḟpx = {(b, s(b))}b∈B, n≥1 and ḟp0

x =
{(a, s(a))}a∈An, n≥1.

Since a 
PĀ ḟ
p0
x �n ·m = š(a) and a is compatible with Q̃0, it must be the

case that s(a) = s′. Let P ∗0 be a common PĀ-extension of a and Q̃0. Then

P ∗0 ≤ a and P ∗0 is a reduction of
ˆ̂
Q0 (since Q̃0 is such a reduction; also P ∗0

is a reduction of Q̄0). By construction, a is a reduction of some condition
b ∈ Bn·m such that s(b) = s(a), i.e. b ≤ P̄ and b 
PB̄ ḟpx�n ·m = š′. Then

P ∗0 is compatible with b, with common extension P̄+. By the inductive

hypothesis PĀ l PB̄, and so P̄+ has a canonical reduction P̂+ from PB̄
to PĀ. By Lemma 3.5, P̂+ is compatible with P ∗0 (since P̄+ ≤ P ∗0 and
every canonical reduction is clearly also a reduction). Therefore they have a
common extension P̄+

0 . Note that P̄+
0 ≤ P ∗0 and P̄+

0 is a canonical reduction

of P̄+. Since P ∗0 is a reduction of
ˆ̂
Q0 onto PĀ, there is Q̄+

0 ∈ PC̄ extending

P̄+
0 and

ˆ̂
Q0. Now using the fact that Q̄+

0 ≤ P̄+
0 and P̄+

0 being a canonical
reduction of P̄+, we obtain a condition T = (t, F t) ∈ PD̄ such that T ≤PD̄
P̄+ and T ≤PD̄ Q̄+

0 .

(7) Indeed, C̄ = C0 ∩ C where C0 ∈ Ix and Ā = A ∩ B̄ where B̄ ∈ IB,x. But B ∈ I
and so B̄ ∈ I. Then Ā∪ C̄ = (A∩ B̄)∪ (C0 ∩C) = (B∩C ∩ B̄)∪ (C0 ∩C) = (B̄∪C0)∩C.

(8) By definition Ā = B̄ ∩A, and so Ā ⊆ B̄, therefore Ā ⊆ C̄ ∩ B̄. On the other hand,
if z ∈ C̄ ∩ B̄ then z ∈ C ∩B, and so z ∈ A. Hence C̄ ∩ B̄ ⊆ A ∩ B̄ = Ā.
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Then

T 
PD̄ “(sq0x , ḟ
q0
x ) ≤Ṡ (sp0

x , ḟ
p0
x ) and

(spx, ḟ
p
x) is such that spx = sp0

x ∧ ḟpx�n ·m = ḟp0
x �n ·m”.

Since S is n-Suslin by assumption, we have

T 
PD̄ (∃t(x) ∈ Ṡ) t(x) ≤Ṡ q0(x), p(x).

Find Q̄+ ≤ T and a nice name (šqx, ḟ
q
x) for a condition in S below Q̄+ such

that Q̄+ 
PD̄ “(šqx, ḟ
q
x) ≤Ṡ (sq0x , ḟ

q0
x ), (spx, ḟ

p
x)”. Denote Q̄+ = (q̄+, F q̄

+
).

With this we are ready to define a common extension Q = (q, F q) of Q0

and P . Let q′ = q̄+ ∪ {(x, q(x))}, F q′ = F q̄ and Q′ = (q′, F q
′
). Given Q′,

define Q′′, p̂ and Q as in Case 1. Then following the proof of Case 1, one
concludes that Q is a common extension of Q0 and P .

3.4. Basic properties of the iteration. Having established our gen-
eralized “Main Lemma” (Lemma 3.23), we now proceed to develop the re-
maining basic tools that we need to work with the iteration along a two-sided
template. These steps are parallel to those taken in Brendle [4, pp. 2640–
2642], and we provide complete proofs only where it seems needed. For the
discussion in this section fix T , Q and S as in Lemma 3.23.

Lemma 3.28. Suppose Q is Knaster. Then P(T ,Q, S) is Knaster.

Proof. Let 〈Qα : α < ω1〉 be an arbitrary sequence of conditions in P.
Since Q is Knaster, we can assume that 〈Qα�L0 : α < ω1〉 are pairwise
compatible in Q. Applying the ∆-system lemma and the fact that Q is
Knaster, we can assume that for all distinct α, β < ω1, dom(qα) ∩ dom(qβ)
= F for some fixed finite set F ⊆ L. Furthermore, we can assume that for
all x ∈ F ∩ L1 there are sx ∈ <ωω, tx ∈ n·|sx|ω such that if B is a witness
to Qα�L=

x ∈ P, then Qα�Lx 
PB π0(qα(x)) = šx ∧ π1(qα(x))�n · |sx| = ťx,
where π0 and π1 denote the projections onto the first and second coordinate
respectively.

Fix α, β distinct. We will show that Qα, Qβ are compatible in P. Let
{xi}i∈m enumerate (dom(qα) ∪ dom(qβ)) ∩ L1 in <L-increasing order, and
let R = (r, F ) be a common extension of Qα�L0 and Qβ�L0. Passing to
an extension if necessary, we can assume that R|�Lx0 is a strong QL0∩Lx0

-
reduction of R. Furthermore, there are R∗0 ≤QLx0

R|�Lx0 and t(x0) such that

R∗0 
QLx0
t(x0) ≤ qα(x0), qβ(x0). Let R∗ = (r∗, F ∗) and let R0 = (r0, F0) =

(r∗0∪{(x0, t(x0))}∪r�L\Lx0 , F
∗
0 ∪F ). Since R|�Lx0 is a strong QLx0

-reduction
of R, we obtain R0 ≤P R. Furthermore, R0|�Lx1 is a common extension of
Qα|�Lx1 and Qβ|�Lx1 (in P).

Suppose for some i < m− 1 we have a condition Ri = (ri, Fi) ≤P R such
that ri�L\L=

xi = r�L\L=
xi , (Ri|�Lxi)|�L0 is a strong QLxi

-extension of Ri and
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Ri|�Lxi ≤PLxi
Qα|�Lxi , Qβ|�Lxi . Then we can find an extension R∗i of Ri|�Lxi

in PLxi and a name t(xi+1) such that R∗i 
PLxi
t(xi+1) ≤ qα(xi+1), qβ(xi+1).

Let R∗i = (r∗i , F
∗
i ). Since (Ri|�Lxi)�L0 is a strong QLxi

-reduction of Ri, we
obtain Ri+1 = (ri+1, Fi+1) = (r∗i ∪{(xi+1, t(xi+1))}∪r�L\Lxi+1 , F

∗
i ∪Fi) ≤P

Ri and Ri+1|�Lxi+2 ≤ Qα|�Lxi+2 , Qβ|�Lxi+2 . Then for i = m, we conclude
that Rm ≤P Qα, Qβ.

We omit the proofs of the next three lemmas since they follow very
closely the proofs of [4, Lemmas 1.3–1.5].

Lemma 3.29. Let x ∈ L1, A ∈ Ix. Then the two-step iteration PA ∗ S
completely embeds into P.

Lemma 3.30. For any p ∈ P(T ,Q,S) there is a countable set A ⊆ L
such that p ∈ Pcl(A). Similarly, if τ is a P-name for a real, then there is a
countable A ⊆ L such that τ is a Pcl(A)-name.

Lemma 3.31. Let J ⊆ I be such that TJ = ((L,≤),J , L0, L1) is a
template. Suppose J is cofinal in I. Then P(TJ ,Q,S) is forcing equivalent
to P(T ,Q,S).

4. ag can be ℵω. We now start working towards the main theorem of
the paper. The model in which cof(ag) = ω is obtained by forcing with a
poset of the form P(T ,Q, S), where Q is the poset QL0 that adds a cofinitary
group with L0 generators, S is localization forcing, and T is the particular
template used by Brendle [4].

4.1. Basic estimates for ag. Before specifying T , we prove two gen-
erally applicable lemmas, which are parallel to [4, Propositions 1.6 and 1.7].

Lemma 4.1. Let T be a template, let Q be a finite function poset with
the complete embedding property and L0 = dom(Q), let S = L be localization
forcing, and let µ be a regular uncountable cardinal. Suppose µ ⊆ L1 (as an
order), µ is cofinal in L, and Lα ∈ I for all α < µ. Then P(T ,Q,S) forces
that non(M) = µ and ag ≥ µ.

Proof. Similarly to the classical linear iterations (finite support itera-
tions of ccc posets, or countable support iterations of proper posets of size
ℵ1 over a model of CH) the proof will heavily rely on the fact that every real,
as well as every small family of reals, appears in some initial segment of the
iteration which is itself completely embedded into the entire construction.

Indeed, let G be P(T ,Q,L)-generic over V and work in V [G]. Let φα be
the slalom added in coordinate α < µ (this makes sense by Lemma 3.29).
Since µ is regular and uncountable and is cofinal in L, it is clear by Lemma
3.30 that the family 〈φα : α < µ〉 localizes all reals V [G] (since any real
must appear in some V [G ∩ PLα ] for some α < µ). Thus cof(N ) ≤ µ. On
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the other hand, if F ⊆ ωω is a family of size < µ in V [G], then there must
be some α < µ such that all reals of F already are in V [G ∩ PLα ], and so
φα localizes all reals in F . Thus add(N ) ≥ µ. Therefore non(M) = µ, and
so by Theorem 3.4 we have ag ≥ µ.

Lemma 4.2. Let T be a template, and let Q = QL0 be the poset for
adding a cofinitary group with L0 generators. Suppose that L has uncountable
cofinality and L0 is cofinal in L. Then P(T ,Q,S) adds a maximal cofinitary
group of size |L0|.

Proof. Let G be P = P(T ,Q,S)-generic. Let ρG : L0 → S∞ be defined as
follows: for every x ∈ L0 let ρG(x) = {spx : P ∈ G ∧ P �L0 = (sp, F p)}. Note
that ρG =

⋃
{spx : P ∈ G∩PL0}, and so by Proposition 2.12 the function ρG

induces a cofinitary representation ρ̂G of FL0 . We will show that im(ρG) is
a maximal cofinitary group (which then clearly has size |L0|).

Suppose not. Then there is a permutation σ ∈ cofin(S∞) and b0 /∈ L0

such that ρ′G : L0 ∪ {b0} → S∞, defined by ρ′G�L0 = ρG and ρ′G(b0) = σ,
induces a cofinitary representation. Let σ̇ be a P-name for σ in V . Then by
Lemma 3.30 there is a countable set A ⊆ L such that σ̇ is a Pcl(A)-name.
Since L0 is cofinal in L and L has uncountable cofinality, there is some
x ∈ L0 such that cl(A) ⊆ Lx, and so Pcl(A) l PLx . Let G0 = G ∩ PL0 and
H = G ∩ PLx .

Claim. V [H] � “Dσ,N = {P ∈ (P/H) : (∃n ≥ N) spx(n) = σ(n) where
P �L0 = (sp, F p)} is dense”.

Proof. Let P0 ∈ (P/H). Thus P �L0∩Lx ∈ H0 := G∩PL0∩Lx . By Lemma
2.19, we have

V [H0] � D0
σ,N,x = {p ∈ (QL0/QLx∩L0) : (∃n ≥ N) spx(n) = σ(n) is dense}.

Thus there is (t, E) ≤ (sp0�L0 \ Lx, F p0) such that (t, E) ∈ D0
σ,N i.e.

tx(n) = σ(n) for some n ≥ N . Define P1 ∈ P/H as follows: P1�Lx = P0�Lx,
P1�(L0 \ Lx) = (t, E), P1�L1 \ Lx = P0�L1 \ Lx. Then in V [H] we have
P1 ≤ P0 and P1 ∈ Dσ,N .

By the Claim, in V [G] there are infinitely many n such that σ(n) =
σx(n), contradicting the fact that ρ′G induces a cofinitary representation.

5. The isomorphism of names argument. Until the end of the paper
assume CH. We will use the template construction developed by J. Brendle
and S. Shelah to show that the minimal size of a maximal almost disjoint
family can be of countable cofinality (see [4]). Let λ be a cardinal of count-
able cofinality, and more precisely, let λ =

⋃
n∈ω λn, where {λn}n∈ω is a

strictly increasing sequence of regular cardinals, λ0 ≥ ℵ2, λℵ0
n = λn for all n,

and κℵ0 < λn for κ < λn. In the following, let µ∗ denote a disjoint copy of µ,
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with the reverse ordering. Let <µ denote the ordering of µ. We will refer to
the elements of µ as positive and to those of µ∗ as negative. If α 6= β ∈ λ∗∪λ,
we will write α <λ∗∪λ β if either α ∈ λ∗ and β ∈ λ, or both are in λ and
α < β, or both are in λ∗ and α <λ∗ β. For each n fix a partition λ∗n =⋃
α<ω1

Sαn , where the Sαn ’s are co-initial in λ∗n and for m < n, Sαn ∩λ∗m = Sαm.
Definitions 5.1, 5.2, 5.4, 5.5 and Lemma 5.6 can be found in [4].

Definition 5.1. Let L = L(λ) consist of all finite non-empty sequences
x such that

(1) x(0) ∈ λ0,
(2) x(n) ∈ λ∗n ∪ λn for 0 < n < |x| − 1,
(3) for |x| ≥ 2, if x(|x| − 2) is positive, then x(|x| − 1) ∈ λ∗|x|−1 ∪ λ, and

if x(|x| − 2) is negative, then x(|x| − 1) ∈ λ∗ ∪ λ|x|−1.

Whenever x, y ∈ L let x < y if and only if

(4) either x ⊂ y and y(|x|) is positive,
(5) or y ⊂ x and x(|y|) is negative,
(6) or n = min{k : x(k) 6= y(k)} is defined and x(n) <λ∗∪λ y(n).

Clearly, (L,<) is a linear order. We identify ordinals with one-element
sequences, and so λ0 is a cofinal subset of L. Whenever α ≤ λ0, abusing
notation we will write Lα for the set L〈α〉 = {x ∈ L : x < 〈α〉}.

Definition 5.2. Let L1 = {x ∈ L : |x| = 1 or x(|x|−1) ∈ λ∗|x|−1∪λ|x|−1}
and let L0 = L \ L1.

Remark 5.3. Note that x ∈ L0 if and only if |x| ≥ 2, and if x(|x| − 2)
is positive then x(|x| − 1) ∈ [λ|x|−1, λ), and if x(|x| − 2) is negative then
x(|x| − 1) ∈ (λ∗, λ∗|x|−1]. Note also that both L0 and L1 are cofinal in L.

Definition 5.4. Let Lrel be the subset of L1 of all x such that |x| ≥ 3
is odd, and x(n) ∈ λ∗n for odd n, x(n) ∈ λn for even n, x(|x| − 1) ∈ ω1, and
whenever n < m are even such that x(n), x(m) are in ω1, then there are

β < α such that x(n − 1) ∈ Sαn−1 and x(m − 1) ∈ Sβm−1. We refer to the
members of Lrel as relevant elements.

For x ∈ Lrel, let Jx = {z ∈ L : x�(|x| − 1) ≤ z < x}. If x < y are
relevant, then either Jx∩Jy = ∅ or Jx ⊆ Jy. In the latter case also |y| ≤ |x|,
x�(|y| − 1) = y�(|y| − 1) and x(|y| − 1) ≤ y(|y| − 1).

Definition 5.5. Let I = I(λ) be the collection of all sets of the form

Lα ∪
( ⋃
x∈I1

cl(Jx)
)
∪
( ⋃
x∈I2

cl({x})
)
∪
( ⋃
x∈I3

Lx ∩ L0

)
,

where α ∈ λ0 ∪ {λ0}, I1 ∈ [Lrel]
<ω and I2, I3 are in [L1]<ω.
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Lemma 5.6 ([4, Lemma 2.1]). T = ((L,≤), I, L0, L1) is a two-sided
template.

Until the end of the section, let T be as in Lemma 5.6, and let P =
P(T ,QL0 ,L) where QL0 is the poset for adding a cofinitary group with
L0 generators (see Definition 2.4) and L is localization forcing. A subset B
of L is a tree (recall that the elements of L are finite sequences) if it is closed
with respect to initial segments, that is, if x ∈ B then x�n ∈ B for all n.

Lemma 5.7. In V P there is a maximal cofinitary group of size λ and
λ0 ≤ ag.

Proof. Since L0 is cofinal in L and L is of uncountable cofinality, by
Lemma 4.2 the forcing P adds a maximal cofinitary group of size |L0| = λ.
Since λ0 ⊆ L1 is cofinal in L and Lα ∈ I for all α < λ0, by Lemma 4.1 we
have λ0 ≤ ag.

We say that a P-name ġ is a good name for a real if there are predense
sets {pn,i}i∈ω, where n ∈ ω, and sets of integers {kn,i}i∈ω, n ∈ ω, such that
pn,i 
 ġ(n) = kn,i for all n, i. That is, {pn,i}i∈ω is a predense set of conditions
deciding the value of ġ(n). Whenever ġ is a good name for a real, we will
refer to

⋃
n,i∈ω dom(pn,i) as the L-domain of ġ and denote it domL(ġ). We

can assume that all P-names for reals are good.

The following lemma is the essence of the isomorphism of names argu-
ment, due to Brendle. Its proof follows [4, pp. 2646–2648] almost identically.
We work under the cardinal arithmetic assumptions from the beginning of
this section.

Lemma 5.8 (Brendle [4]). Let λ0 ≤ κ < λ, and for every β ∈ κ let
Bβ = domL(ġβ) be a countable subset of L which is a tree, where ġβ is a
good name for a cofinitary permutation. Then there are a countable subset
Bκ of L and a good name for a cofinitary permutation ġκ such that

(1) 
P ġ
κ 6= ġβ for all β < κ,

(2) domL(ġκ) = Bκ,
(3) for every F ∈ [κ]<ω there is α < κ and a partial order isomorphism

χF,α : Pcl(
⋃
β∈F B

β∪Bα) → Pcl(
⋃
β∈F B

β∪Bκ)

which maps ġα to ġκ and fixes ġβ for β ∈ F .

Proof of Theorem 1.1. Let G be a P-name for a cofinitary group of size κ,
where λ0 ≤ κ < λ, and let {ġβ}β∈κ be an enumeration of G. For β < κ, let
Bβ = domL(ġβ). Then Bβ is at most a countable subset of L, and without
loss of generality it is a tree. Let Bκ and ġκ be as in the conclusion of
Lemma 5.8, applied to the families {Bβ}β∈κ and {ġβ}β∈κ. We will show
that H = 〈G ∪ {ġκ}〉 is a cofinitary group.
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Let h ∈ H\G and let F0∪{κ} be the indices of the permutations involved
in h, where F0 ∈ [κ]<ω. Then by Lemma 5.8, there are α < κ and a partial
order isomorphism

χ = χF0,α : Pcl(
⋃
β∈F0

Bβ∪Bα) → Pcl(
⋃
β∈F0

Bβ∪Bκ)

which maps ġα to ġκ and fixes ġβ for β ∈ F0. But then χ−1(ḣ) is a name
for an element of G, and so |fix(χ−1(h))| < ℵ0. Since both Pcl(

⋃
β∈F0

Bβ∪Bα)

and Pcl(
⋃
β∈F0

Bβ∪Bκ) are completely embedded in P, we conclude that V P �

|fix(h)| < ℵ0.

6. Concluding remarks. Let T0 be the template used in the proof of
the consistency of a being of countable cofinality (see [4]), whose definition
is also stated in the previous section.

The construction presented gives also a proof of the fact that the minimal
size of a family of almost disjoint permutations, denoted ap, can be of count-
able cofinality. Let A be a generating set, and let QA be the poset for adding
a maximal cofinitary group defined in Section 2. Let Q̄A be the suborder
consisting of all pairs (s, F ) where every word in F is of the form ab−1 for
some a, b ∈ A. Then Q̄A is a finite function poset with the strong embedding
property which adds a set of almost disjoint permutations of cardinality |A|,
which is maximal whenever |A| is uncountable. Then P(T0, Q̄L0 ,L) provides
the consistency of cof(ap) = ω. The proof of maximality follows very closely
the maximal cofinitary group case, and the same isomorphism of names
argument shows that there are no maximal families of almost disjoint per-
mutations of intermediate cardinalities, i.e. cardinalities between λ0 and λ.
Note also that non(M) ≤ ap.

Another relative of the almost disjointness number, which can be ap-
proached in the same way, is the minimal size of a maximal almost disjoint
family of functions in ωω. Let A be a generating set, and let Q̃A be the poset
of all pairs (s, F ), where s ⊆ A × ω × ω is finite, sa defined as above is a
finite function, and F is a finite set of words of the form ab−1 for a 6= b
in the index set A. The extension relation states that (s, F ) extends (t, E)
if s ⊇ t, F ⊇ E and for all w ∈ E if ew[s](n) is defined and ew[s](n) = n
then ew[t](n) = n. Then P(T0, Q̃L0 ,L) provides the consistency of ae being
of countable cofinality. Note also that to obtain a lower bound for ae in the
final generic extension, we use the fact that non(M) ≤ ae.

The consistency of cof(a) = ω is due to Brendle [4]. We mention that
his proof also fits into our general framework. More precisely, as described
in Section 3 above, given an uncountable generating set A, there is a finite
function poset with the strong embedding property DA which adds a max-
imal almost disjoint family of cardinality |A|. Then if D denotes the usual
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Hechler forcing for adding a dominating function, the iteration P(T0,DL0 ,D)
provides the consistency of cof(a) = ω.

Thus we have obtained Theorem 1.2 of the Introduction.
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