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Abstract. Jorg Brendle (2003) used Hechler’s forcing notion for adding a maximal
almost disjoint family along an appropriate template forcing construction to show that
a (the minimal size of a maximal almost disjoint family) can be of countable cofinality.
The main result of the present paper is that ay, the minimal size of a maximal cofinitary
group, can be of countable cofinality. To prove this we define a natural poset for adding a
maximal cofinitary group of a given cardinality, which enjoys certain combinatorial prop-
erties allowing it to be used within a similar template forcing construction. Additionally
we find that a,, the minimal size of a maximal family of almost disjoint permutations,
and a., the minimal size of a maximal eventually different family, can be of countable
cofinality.

1. Introduction. The subject of cardinal characteristics of the real
line concerns various combinatorial properties of the reals and the possible
cardinalities of sets of reals which are characterized by such properties. An
excellent exposition can be found in [2].

The main focus of the present paper is on maximal cofinitary groups.
A subgroup of Sym(w) is said to be cofinitary if all of its non-identity el-
ements have only finitely many fixed points. A mazimal cofinitary group,
abbreviated mcg, is a cofinitary group which is not properly contained in
any other cofinitary group. The symbol a4 denotes the minimal cardinality
of a maximal cofinitary group. Clearly, if G is a cofinitary group, then the
graphs of its elements form an almost disjoint family in w X w. Recall that
the almost disjointness number a is defined as the minimal cardinality of an
infinite maximal almost disjoint family of infinite subsets of w.

Even though cofinitary groups and almost disjoint families are so closely
related, for every pair k < X of regular uncountable cardinals, it is consistent
that a = K < ag = A. Indeed, fix k < A and consider the model of a = b =
k < s =c¢= X from [5]. By [0, Theorem 2.4], non(M) < a,4, while s <
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non(M) (see [2, Theorem 5.19]), and so in the same model a = k < a; = .
Thus a and a4 can be quite different. But is it consistent that agz < a? Or is
it a ZFC theorem that a < a,? Both of these questions remain open.

Some of the longstanding open questions in the field regard the cofi-
nalities of various combinatorial cardinal characteristics of the reals: for
example it is not known if the splitting number can be singular. A major
breakthrough in this area is the appearance of Shelah’s template iteration
technique (see [9]) @

The method provides in particular the consistency of a = a4 being sin-
gular. However in models obtained by Shelah’s original template iteration
technique we have a = a4 = ¢, and so cardinalities of countable cofinality re-
main unattainable. The consistency of cof(a) = w is due to Jorg Brendle [4].
He modified Shelah’s template iteration construction to obtain a forcing no-
tion P for which Hechler’s poset Q for adding a mad family of arbitrary
size, say N, (see [7]), is a complete suborder. The poset P not only has all
the advantages of Shelah’s original template construction, namely it adds
a short scale while an isomorphism of names argument eliminates all mad
families of cardinalities p for say Ny < pu < W, but in addition the mad
family added by Q remains maximal in the P-generic extension. Adding a
scale of length Ag for some A, say No < Ay < N, implies that b =0 = \g
in the final extension, and since b < a the isomorphism of names argument
provides a = N, in the final model.

Below we state the main result of our paper.

THEOREM 1.1. Assume CH. Let \ be a singular cardinal of countable
cofinality. Then there is a ccc generic extension in which a; = \.

The problem of finding a poset which adds a maximal cofinitary group
of a desired cardinality and which can be embedded into a template forcing
construction is non-trivial. One of the pioneers in studying the possible sizes
of infinite maximal cofinitary groups, Yi Zhang [10], provides a ccc poset
which to a given cofinitary group G adds a generic permutation g such that
GU{g} generates a cofinitary group in the resulting generic extension. Thus
finite support iterations of Zhang’s poset will provide a mcg of desired size.
The main problem of using such finite support iterations within a template
iteration is the lack of an analogue of the complete embedding property (see
Lemma and Remark .

More precisely, suppose P = (Po,Qs : @ < A\, B < A) is a finite support
iteration of Zhang’s poset, where for each « the poset Q, adds a generic
permutation g, such that in VFe+1 the group G, 1 generated by G, U {ga}
is cofinitary. If we are to use this poset within a template iteration, we

(*) The technique was introduced to establish the consistency of d < a.
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will need the following: for every I C \ there is a complete suborder P([)
of P such that the reals {g;}ic; are contained in yeU ), while none of the
reals from {g;};c a7 belongs to VPU) | However classical linear finite support
iterations do not have this property. Note also that just taking finite support
products of Zhang’s poset will fail to capture the interactions of different
generic permutations, and so the generics will not necessarily generate a
cofinitary group in the resulting extension.

The original applications of template iterations seem to be very sensitive
to the precise combinatorial properties of the posets used in such construc-
tions: every time a new poset is being iterated along a template, one has to
establish all the basic properties of such a construction including the fact
that a certain recursively defined set, the intended poset, is a forcing notion
(see [3, Lemmas 1.1, 4.4, 4.8] and [4, Main Lemma]).

Taking a slightly more axiomatic approach we define two classes of forc-
ing notions which in a natural way capture the key properties in the context
of template iterations of Hechler’s poset for adding a mad family and Hech-
ler’s forcing notion for adding a dominating real, respectively. We refer to
these posets as finite function posets with the strong embedding property
(see Definitions @ and and good o-Suslin forcing notions (see Def-
initions and |3_._]B[), respectively. We generalize the template iteration
techniques of [4] so that arbitrary representatives of the above two classes
can be iterated along a template (see Definition and Lemma ,
and establish some basic combinatorial properties of this generalized itera-
tion.

Whenever T is a template, Q is a finite function poset with the strong
embedding property, and S is a good o-Suslin forcing notion, we denote by
P(7T,Q,S) the iteration of Q and S along T (see Definition [3.22]). For example
we show that whenever Q is Knaster, then the entire iteration P(7,Q,S) is
Knaster (see Lemma [3.28)).

Following standard notation, let a, and a. denote the minimal size of a
maximal family of almost disjoint permutations on w and the minimal size
of a maximal almost disjoint family of functions from w to w, respectively.
We not only show that a, can be of countable cofinality, but also obtain
(almost) for free the consistency of a, and a. being of countable cofinality.
In the more general context of our discussion of cardinal invariants, we want
to point out that even though clearly a, < a4, the consistency of a, # a, is
still open. Let Ty be the template used by Brendle in [4]. Then our results
can be summarized as follows:

THEOREM 1.2. Assume CH. Let \ be a singular cardinal of countable
cofinality and let a € {a,ap, ag,a.}. Then there are a good o-Suslin poset Sz
and a finite function poset with the strong embedding property Qg, which is
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Knaster (and so by Lemma P(7o,Qa, Sq) is Knaster), such that
VET0QaSa) g = A,

Then in particular VE(70,QaSa) cof(a) = w.

Thus the answer to the problem of finding an appropriate poset for
adding a maximal cofinitary group is a product-like forcing notion (see Def-
inition [2.4)), which, even though inspired by Zhang’s original poset, might be
considered a maximal cofinitary group analogue of Hechler’s forcing notion
for adding a mad family. The most notable property satisfied by the poset
which allows for it to be used within a template iteration construction is the
existence of strong reductions (see Definition and Remark @
We do not claim that our axiomatization is optimal, only that it is general
enough to provide a uniform proof of the consistency of cof(a) = w for each
a € {a,a4,ap,ac} While to guarantee that in the final extension there
are no mcg’s of size N; it is sufficient to add a short scale (as in Brendle’s
proof of con(cof(a) = w)), we achieve a bit more: we add a short cofinal se-
quence of slaloms, each of which localizes the corresponding ground model
reals, and so obtain a generic extension in which all invariants of the Cichon
diagram have a fixed predetermined value.

Organization of the paper. In §2, we introduce and study a forcing
notion Q4 , for adding a maximal cofinitary group with a generating set
indexed by some given uncountable set A. In §3, we introduce the classes
of good o-Suslin forcing notions and finite function posets with the strong
embedding properties. We define the template iteration P(7,Q,S) of arbi-
trary representatives S and Q of the above two classes respectively, along a
given template 7, and show that P(7,Q,S) is a forcing notion. In §4, we
establish some basic combinatorial properties of this generalized iteration.
Theorem [I.1]is proved in §5, and Theorem [1.2]in §6.

2. Maximal cofinitary groups. In this section we introduce our poset
for adding a maximal cofinitary group of arbitrary cardinality. We begin by
giving several basic definitions and fixing notation.

DEFINITION 2.1. (1) Let A be a set. We denote by W4 the set of re-
duced words in the alphabet (a’ : a € A, i € {—1,1}). The free group on
the generator set A is the group F4 we obtain by giving W4 the obvious
concatenate-and-reduce operation. When A = () then FF 4 is by definition the
trivial group. Note that A can be naturally identified with a subset of F4

(2) The existence of strong reductions implies the complete embedding property men-
tioned earlier.

(3) In fact, most of the classical applications of template iteration can be seen as
particular instances in this axiomatization.
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which generates F4, and every function p : B — G, where G is any group,
extends to a group homomorphism p: Fg — G.

(2) A word w € W4 is said to be good if either w = a™ for some a € A
and n € Z \ {0}, or w starts and ends with a different letter. In the latter
case, this means that there are u € W4, a,b € A, a # b, and i,j € {—1, 1}
such that w = a’ub’? without cancellation. Let W;; be the set of all good
words in Wy. 1>I\ote that every word w € Wy can be written as w = v~ 'w'u
for some w’ € W and u € Wy

(3) For a (partial) function f:w — w, let

fix(f)={new: f(n) =n}.

We denote by cofin(S4) the set of cofinitary permutations in S, i.e. per-
mutations o € S such that fix(o) is finite.

(4) For a group G, a cofinitary representation of G is a homomorphism
¢ : G — Sy such that im(y) C {I}U cofin(S ), where I denotes the identity
permutation. If B is aset and p : B — S, we say that p induces a cofinitary
representation of Fp if the canonical extension of p to a homomorphism
p:Fp — S is a cofinitary representation of Fg.

(5) Let A be aset andlet s C A X w X w. For a € A, let

Sq ={(n,m) €w xw: (a,n,m) € s}.

For a word w € W4, define the relation e,[s] C w x w recursively by stipu-
lating that for a € A, if w = a then (n,m) € ey[s] iff (n,m) € 54, if w = a1
then (n,m) € ey[s] iff (m,n) € s,, and if w = a’u for some word u € Wy
and ¢ € {1, —1} without cancellation then
(n,m) € ewls] & (3k) eyi[s](k,m) A ey[s](n, k).

If s, is a partial injection defined on a subset of w for all a € A, then e, ]s]
is always a partial injection defined on some subset of w, and we call e,[s]
the evaluation of w given s. By definition, let ey[s] be the identity in Sx.

(6) If s C A X w X w is such that s, is always a partial injection, and
w € Wy, then we will write e, [s](n)] when n € dom(ey[s]), and ey [s](n)T
when n ¢ dom(e,[s]).

(7) Finally, let A and B be disjoint sets and let p : B — S, be a function.
For a word w € Wyup and s € A X w X w, we define

(n,m) € ewls,p] & (n,m) € ey[sU{(b,k,1): pb)(k) =Ll}].

If s, always is a partial injection for a € A, then ey[s, p] is also a partial
injection, and we call it the evaluation of w given s and p. The notations
ewls, pli and ey [s, p|1 are defined as before.

(*) The presentation w = u™'w'u does allow cancellation.
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The following lemma is obvious from the definitions. It will be used again
and again, often without explicit mention.

LEMMA 2.2. Fix sets A and B such that AN B = 0, and a func-
tion p : B = So. Let w € Wyaup and s € A X w X w be such that
Sq 18 a partial injection for all a € A. Suppose w = wv without can-
cellation for some u,v € Wayup. Then n € dom(ey[s, p]) if and only if
n € dom(ey[s, p]) and eyls, pl(n) € dom(eyl[s, p]). If moreover w € Waus
then n € fix(ey[s, p]) if and only ey[s, pl(n) € fix(ew[s, p]). In particular,
fix(ew[s, p]) and fix(eyy[s, p]) have the same cardinality.

REMARK 2.3. Note that if w = uv with cancellation, or w ¢ /VIquB, the
above lemma may fail.

DEFINITION 2.4. Fix sets A and B such that AN B = (), and a function
p: B — Sy such that p induces a cofinitary representation p: Fp — S.
We define the forcing notion Q4 , as follows:

(1) Conditions of Q4 , are pairs (s, F') where s C A X w X w is finite and
84 is a finite injection for every a € A, and F' C W\AU B 1s finite.
(2) (5, F) <qu, (t,E) if and only if s O ¢, FF O E and for all n € w and
w € E, if eyls, p](n) = n then already e, [t, p](n)l (and clearly also
ewlt, pl(n) = n).
If B = () then we write Q4 for Qg4 ,.

REMARK 2.5. When A, B and p: B — Sy are clear from the context,
we may write < instead of <g, ,. For w € Wayp, write oc(w) for the (finite)
set of letters occurring in w, and for F' C Wuyp let oc(F) = |J,,cp oc(w).
For C C AUB and w and F as before, let occ(w) = oc(w)NC and oco(F) =
oc(F)NC. For s C AXwxwlet oc(s) ={a: (In,m € w) (a,n,m) € s}.
For p € Q4. let oc(p) = oc(s) Uoc(F).

Unless otherwise stated, we now always assume that A and B are disjoint
sets, A # () and p: B — S, induces a cofinitary representation of Fp.

LEMMA 2.6. The poset Q4 , has the Knaster property.

Proof. Suppose that ((s*, F'“) € Qa, : @ < wy) is a sequence of con-
ditions. By applying the A-system lemma [8, Theorem 1.5] repeatedly, we
may assume that there are Ay, A1 C A finite and ¢t € A X w X w finite such
that for all a # 8 we have s* N s” =t, oca(F*) Noca(F?) = Ag and

(0c(s®) Uoca(FY)) N (oc(s®) Uoca(FP)) = A;.

Note that oc(t) and Ag are subsets of Aj. Further, we may assume that
$*NA; X w X w =t, since this must be true for uncountably many « as Ay
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is finite. Note then that (s® U s®, F* U F¥) € Q4 ), and that if o # 3 then
(2.1) s*Noc(F?) x wx w Ct.

We claim that (s* U s? F* U F?) <Qa., (s?, FB). For this, suppose that
w € FP and e, [s*Us?, p](n) = n. Then bywe have e, [tUs?, p](n) = n,
and so e,[s%, p](n) = n. The proof that (s U s?, F*U F?) <Qu, (8% F%)is
similar. m

Let G be Q4 ,-generic (over V, say). We define pg : AU B — Sy by

[ pla) if v € B,
22 pale) = { Ulse - BF S Waup) (s, F) €G}  ifz € A

We will see that pg induces a cofinitary representation of A U B which
extends p. Of course, we first need to check that when G is generic then for
T €A,

sz : BF € Waug) (s, F) € G}

is a permutation. This is the content of the next lemma, which is parallel to
[10, Lemma 2.2].

LEMMA 2.7. Let A and B be disjoint sets, and p: B — So a function
inducing a cofinitary representation of Fg. Then:

(1) (“Domain extension”) For any (s,F) € Qua,p, a € A and n € w
such that n ¢ dom(s,) there are cofinitely many m € w such that (s U
{(a,n,m)}, F) < (s, F).

(2) (“Range extension”) For any (s,F) € Qa,p, a € A and m € w such
that m ¢ ran(s,) there are cofinitely many n € w such that (sU{(a,n,m)}, F)
< (s, F).

We will first prove a slightly stronger version of this, but at first only for
certain special “good” words.

DEFINITION 2.8. Let a € A and 7 > 1. A word w € Wuyp is called
a-good of rank j if it has the form

(2.3) w = afiujafitug_y - afrug,

where u; € Wa\(ayup \ {0} and k; € Z\ {0} for 1 <i < j.
LEMMA 2.9. Let s C Axw Xw be finite such that s, is a partial injection
foralla € A. Fiz a € A, and let w € Wayp be a-good of rank j for some

j = 1. Then for any n € w\ dom(s,) and C C w finite there are cofinitely
many m € w such that

(VI € w) ep[sU{(a,n,m)}, p](l) € C < eyls,pl(1)] Neywls,p](l) € C.
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Proof. Fix n and C as in the statement of the lemma. We proceed by
induction on the rank j. Let w be an a-good word of rank 1,

w = aklul.

Assume first that k; > 0. Then pick m ¢ dom(s,) and m ¢ C. Suppose
ew[s U{(a,n,m)}, p|(l) € C but eyls, p](1)T. Then there is some 0 < i < ky
such that ey, [s,p](l) = n. If i < ki — 1 then egit1,, [s U {(a,n,m)}, p|(D)T,
so we must have ¢ = k; — 1. But then ey[s U {(a,n,m)},p](l) = m ¢ C,
a contradiction.

Assume then k1 < 0. Pick m ¢ ran(e,iy, [s,p]) for all k& < i < 0. If
ew[s U {(a,n,m)}, pl(l) € C but eyls, p](1)T, then there is some k1 < i < 0
such that e,iy, [s, p] (1)1 but egi-1,, [s, p](1)T. Since ey, [s, p|(1) # m, it fol-
lows that e,i-1,,[s U {(a,n,m)}, p|T, a contradiction.

Now let w be a-good of rank j > 1, and write w = a™u;w, where w is
a-good of rank j—1. Let C" = e -1 ks, p](C). By the inductive assumption

J

k

there is Iy C w cofinite such that for all m € I,
(VI € w) eg[sU{(a,n,m)}, p](l) € C" & epls, pl() A ew[s, p](l) € C".
Let I1 C w be cofinite such that for all m € Iy,

(V1 € ) €qpuy, [ U {(a.n,m)}. p)(1) € C
& eghu, 15, PO A egrn [, p1(0) € C.

a Z’lllj
Then let m € I; N Iy, and suppose that e,[s U {(a,n,m)}, p](l) € C. Then
en[s U {(a,n,m)},p|(l) € C’, and so ezls, p](1) € C'. It follows that
€ty 15 U@, n,m)}, pl(eals, p (1) € C,
and so we have e _x; [s, pl(ex[s, p(l)) = ewls, pl(l) € C, as required. m
J

Proof of Lemma . (1) It suffices to prove this when F' = {w}. Further,
we may assume that a occurs in w, since otherwise there is nothing to show.
If w is a-good, then the statement follows from Lemma 2.9 If w is not
a-good, then write w = uva® (without cancellation), where u € Wa\{a}uBs

v is a-good, and k € Z. Let w = va*u. Then w is a-good, and so there is
I C w cofinite such that

(Vm e I) (sU{(a,n,m)},{w}) <q,, (s, {@}).

We claim that (s U {(a,n,m)},{w}) < (s,{w}) when m € I. Indeed, if
ew[s U{(a,n,m)},p](l) =l then by Lemma [2.2]it follows that

6@[8 U {(a7 n, m)}7 p] (evak [5 U {(av n, m)}v p](l)) = Cyak [S U {(av n, m)}v ,O](l),
and so

eals, Pl (evarls U{(a,n,m)}, pl(1)) = eyar[s U {(a,n,m)}, p](1).
Applying Lemma 2.2 once more, we get ey ]s, p|(l) = [.
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(2) Let (s, F) € Qa,p, a € A, and suppose mg ¢ ran(s,). As above, we
may assume that F' = {w}. Define § C A X w X w by

(x,n,m) €5 & (r#aA(x,n,m)€s)V(x=aA(z,m,n)Es).

Let w be the word in which every occurrence of a is replaced with a~*
Notice that eg[s, p] = ew[s, p], and that mg ¢ dom(s). By (1) above there
are cofinitely many n such that (§U{(a, mg,n)}, {w}) < (8, {w}), and so for
cofinitely many n we have (s U {(a,n,mo)},{w}) < (s,{w}). m

The following easy consequence of Lemma will be useful. We leave
the proof to the reader.

COROLLARY 2.10. Let w € Waup, and let Ag C A be the set of letters
from A occurring in w. For any condition (s,F) € Qu, and finite sets
Co,C1 C w there is t C Ag X w X w such that (t U s, F) < (s, F) and
dom(ey[sUt, p]) D Cy and ran(e,[sUt, p]) D Cy.

LEMMA 2.11. Let w € Waup and suppose (5,F) IFg,, ewlpcl(n) = n
for some n € w. Then eyls, p](n)] and eyls, p](n) = n.

Proof. Let G be Q4 ,-generic such that (s, F) € G. Then V[G]|Eey[pc](n)
= n. The definition of the partial order implies that there is (¢, F') € G such
that eyl[t, p](n) = n. Without loss of generality, (¢, E) < (s, F'). But then
ew(s, p](n) is defined and ey [s, p|(n) =n. =

PROPOSITION 2.12. Let G be Qa p-generic. Then pg, defined in [2.2} is
a function AU B — Ss such that pgIB = p, and pg induces a cofinitary
representation pg : Faup — Seo satisfying pa|Fp = p.

Proof. For each a € A and n € w, let
Da,” = {(S F) € QAP (Elm) (CL,TL,’/TL) € S}a
Ron={(s,F) € Qa,: (Im) (a,m,n) € s}.
For w € /I/IZ;LJB, let
Dy ={(s,F) € Qa,:we F}.
Then D,, is easily seen to be dense, and D, , and R, , are dense by Lem-
ma 2.7 Thus pg is a function AU B — S, as promised.

It remains to prove that pg induces a cofinitary representation. For this
let w € Wa_upg. Then we can find w’ € MUB and ©u € Wyyup such that
w = v~ tw'u. Since D, is dense, there is some condition (s, F') € G such
that w’ € F. Suppose then that e, [pg|(n) = n in V[G]. Then there is
some condition (t,E) <q,, (s,F) and (¢, E) € G forcing this. It follows
by Lemma that e,[t, p](n) = n. But then by the definition of <g, ,
we have e,[s, p|(n) = n, and so fix(e,[pc]) = fix(ey[s, p]), which is finite.
Finally, fix(ew[pc]) = eulpa] ™ (fix(ew [pc])), so fix(ew[ps]) is finite. m
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NOTATION. For s C Axwxw and Ay C A, write s[Ag for sNAg X w X w.
For a condition p = (s, F) € Qa,, we will write p[Ag for (s[Ao, F'), and
p|[ Ao (“strong restriction”) for (s[Ag, F'N WAOUB)‘ (So p|[Ap is a condition
of Q4,,, but p[Ap is in general still only a condition of Q4,,.)

For the notion of complete containment see Section [3.1.2

LEMMA 2.13. If Ag C A then Qyu,,, is completely contained in Q4 ,.

Proof. Let A; = A\ Ag. We may of course assume that Ay, A1 # (), since
otherwise there is nothing to show. We first note that all Q4,, , conditions
are also Q4 , conditions, and so Q4,, € Q4 ,. Clearly p <Qay, 4 implies
P <Qu, - Moreover, if p,q € Qa,, and p <g, , ¢ then clearly p|l Ao <Qaq.»

q|lAg. Hence p 1Q40.0 ¢ if and only if p L@4» ¢. It remains to see that if
q € Qa,p, then there is pg € Q4,,, such that whenever p <Qu,,, PO then
p and g are <g, -compatible. This follows from the next claim.

CraM 2.14. For every (s, F') € Qa,, there istg D s[Ag, to € Agxw X w,
such that if (t, E) <q,,, (to, F'NWaup) then (sUt, F) <q,, (s, F). Thus,
for any q € Qa,, there is pg <Quay,p p|[ Ao such that whenever p <Qay,, PO
then p is <q, ,-compatible with q.

To see this, let {wi,...,wy,} = F\ Wa,up. Then each word w; may be
written as

Wi = Uj Vi k; * Wi, 1V5,1U4,0

where u; ; € W4, and v; ; € W4, all words are non-empty except possibly
ui k, and u; 0, and each v; ; starts and ends with a letter from Ay; hence the
domain and range of e,, [s, p| are finite for every 4, j. By repeated applica-
tions of Corollaryto (s, F') and the u; j we can find t) C A xw xw with
to 2 s[Ag and dom(ey, ;[s Uto, p]) 2 ran(e,, ;[s, p]) and ran(ey, ,[s U to, p] 2
dom(ey, ;,,[s, p]) for all 4, j, and satisfying (s Uto, F) <q,, (s, F).

Suppose now (t, E) <gq,,, (to, F'N WAOUB)‘ If ey, [s Ut, p](n)] for some
n € w, then by definition of ¢y it must be the case that ey,[s U to, p](n)l.
Therefore if e, [s Ut, p](n) = n, we have ey, [s U tg, p](n) = n, and so since
(sUto, I') <q,, (s, F) it follows that ey, [s, p](n) = n. Thus (sUt, F) <g,,
(s, F') as required. =

REMARK 2.15. Note that in Claim [2.14] we in fact obtained a slightly
stronger property than stated, namely the following. Let A C dom(Q) and
p = (s, F) € Q. Then there is ty C oc(p) N A X w X w such that s[A C to,
(to, F N W:l) <Que(mna PIIA; and whenever (¢, E) <q (to, F' N WA) is such
that oc(t) N (oc(p) \ A) = oc(E) N (oc(p) \ A) = 0, then (tUs, F) < (s, F),
(tUs,E) < (t,E), and so (tUs,EUF) is a common extension of (s, F)
and (¢, E).



Template iterations 215

LEMMA 2.16. Let A= AgU Ay. If (t,E) € Q4,,, and
(t, )k, , (50, F0) <qa, . (51, 1)
then (t U so, Fo) <q,, (tUs1, F1).

Proof. Let w € F; and suppose e, [tUsg, p](n) = n. If G is Q4, p-generic
such that (¢, E) € G, then in V[G] we have ey [so, pg](n) = n, and so in V[G]
we have ey[s1, pg](n) = n, from which it follows that e, [t U si,p](n) =n. m

Let Ay C Aand A = A\ Ay. By Lemmawe have Q4,,, < Q4,,. Let
H be Qu,,,-generic. Lemma below implies in particular that in V[H]
the quotient Q4 ,/H is equal to Q 4, , Where py is the generic extension of
p given by H. This nice combinatorial representation of the quotients of Q 4,
will be of importance for establishing the maximality of the cofinitary group
added by Q4 in Theorem as well as for establishing the maximality
of the cofinitary group added by our mcg poset within a template iteration

(see Lemma [4.2)).

LEMMA 2.17. Suppose G is Q4 ,-generic over V and A = AgU Ay where
Ao, A1 # 0 and AgN Ay = 0. Then H = GNQa,,, is Qa, p-generic over
Voand K = {plA1 : p € G} = {(s[A1,F) : (s,F) € G} is Qa, p,, -generic
over VH]. Moreover, pc = (pu)k-

Proof. That H is Q4, -generic over V follows from Lemma To
see that K is Qa, ,,-generic over V[H], suppose D C Q4, ,, is dense and
D € V[H]. Define

D' ={p€Qay,:plldolrq,,, plA1 € D}
and let pg € H be a condition such that pg IFg Ao.p “D is dense”. We claim
that D’ is dense below pg (in Qa4 ,.) For this, let (s, F) = p <@, , po- Then
by Claim we can find py <q,,, p|[Ap such that for any p; <Qa,,, P05
p1 is compatible with p. Thus we can find g = (so, Fo) € Qa, p, and (¢, E)
<Qua,,, Po such that

(t,B) gy, d € DAG<q,, Pl
By Lemma we have (so Ut, Fp) <q,, (s[A1 Ut F), and therefore
(80 Ut, Fhpu E) SQA,;? (S,F).

Since clearly (sgUt, Fy U E) € D', this shows that D’ is dense below py.
Now, since pg € G it follows that there is ¢ € D' N G. In V[H| we then
have ¢’| A1 € D, which shows that K N D # ().

That (pgr)x = pc follows directly from the definition of H and K. =

Our next goal is to prove the following.
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THEOREM 2.18. Suppose p : B — So induces a cofinitary representation
of Fp. If card(A) > Yo and G is Qg p-generic over V, then im(pg) is a
mazximal cofinitary group in V[G].

The theorem is a consequence of the following lemma, which is parallel
to [10, Lemma 3.3].

LEMMA 2.19. Suppose that p : B — Ss induces a cofinitary represen-
tation p : Fp — S and that there is by € B such that p(by) # I. Let
(5, F)€Qua,p1B\{bo} and ao € A. Then there is N €w such that for alln > N,

(SU {(ao,n,p(bo)(n))},F) SQA,p[B\{bO} (S’F)'

Proof. Let wy,...,w; € F enumerate the words in F' in which ag occurs.
Then we may write each word w; in the form
Wi = Wi Gy " UG -1 T U100

where the u; m, are in Wi\ (403uB\ {5} @nd are non-empty whenever m ¢ {3;, 0}.
By Lemma [2.7| we may assume that for all u;,, with dom(ey,,,[s,p]) and
ran(ey, ,,[s, p|) finite,

dom(e ooy 5. D ran(ey, , s ).
ran(eazg(i,m s, p]) 2 dom(ew, ,[s, p])-

Let w; be the word in which every occurrence of ag in w; has been replaced
by bo. If es,[p] is totally defined, then since p induces a cofinitary represen-
tation there are at most finitely many n such that ey, [p](n) = n. For each
w; with eg,[p] totally defined and 1 < m < j; let
Wi m = ui,mbﬁ(i’m) e ui,1b§(i’1)ui,o,
and let
N; = max {e,[p](k) : ex,[p](k) =k Nv= bgign(k(i’m))pwijm
A0 <p <sign(k(z,m))k(i,m) N0 <m < jz}
Then let N € w be such that N > max{N; : i <[} and n ¢ dom(s,,) and
p(bo)(n) ¢ ran(s,,) whenever n > N. Then for any n > N, on the one hand,
if ey, [p] is not everywhere defined then

dom(ewz‘ [87 P]) = dom(ewi [8 U {(a’(]v n, p(bo)(n))}, p])v
while if ey, [p] is everywhere defined then necessarily

ew;[s U {(ao,n, p(bo)(n))}, pl(k) = k
only when ey, [s, p](k) = k. m
Proof of Theorem [2.18 Let by ¢ B U A. Suppose card(4) > Ny and

that G is Q4 ,-generic, and suppose further that there is a permutation
o € cofin(Sx)VI \ im(pg) such that ply : BU {by} — S defined by
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P !B = pa, and pg(bo) = o induces a cofinitary representation of IFp g} -
Let & be a name for o. Then there is Ag C A countable so that ¢ is a
Qa,,p-name, and so we already have o € V[H], where H = GNQy, ,. Let
Ay = A\ Ay, and let K be as in Lemma Define

Don ={(5,F) € Qa,py : (In > N) s(n) =o(n)}.
By Lemma this set is dense. Thus in V[H][K], for any ap € A\ Ao
we have (pp)K(ap)(n) = o(n) for infinitely many n. Since (pg)x = pa by

Lemma this contradicts the fact that py; induces a cofinitary represen-
tation. m

3. Iteration along a two-sided template

3.1. Preliminaries. We now recall various definitions and introduce
several notions that are needed to set up the framework in which we will
treat the iteration along a two-sided template.

3.1.1. Localization. As indicated, we are aiming to give an iterated forc-
ing construction which will provide a generic extension in which the minimal
size of a maximal cofinitary group is of countable cofinality. In order to pro-
vide a lower bound for a,, along this iteration construction cofinally often
we will force with the following partial order L, known as localization.

DEFINITION 3.1. The forcing notion L consists of pairs (o, ¢) such that
o € (<[], € “(<4[u]), 0 C b, |o(i)| = i for all i < |o], and |¢()| < |o]
for all ¢ € w. The extension relation is defined as follows: (o, ¢) < (7,%) if
and only if o end-extends 7 and (i) C ¢(i) for all i € w.

Recall that a slalom is a function ¢ : w — [w]<* such that for all n € w
we have |¢p(n)| < n. We say that a slalom localizes a real f € “w if there
is m € w such that for all n > m we have f(n) € ¢(n). The following is
well-known and follows easily from the definition of L.

LEMMA 3.2. The poset L adds a slalom which localizes all ground model
reals.

Let add(N) denote the additivity of the (Lebesgue) null ideal, and let
cof (N') denote the cofinality of the null ideal. We will use the following
well-known combinatorial characterizations of add(N') and cof(N') which
are due to Bartoszynski and Judah.

THEOREM 3.3 (Bartoszynski, Judah [I, Ch. 2]).

(1) add(N) is the least cardinality of a family F C w* such that no
slalom localizes all members of F.

(2) cof(N) is the least cardinality of a family @ of slaloms such that
every member of w* is localized by some ¢ € .
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Finally, we will need the following result due to Brendle, Spinas and
Zhang;:

THEOREM 3.4 ([6]). a; > non(M).

In our intended forcing construction cofinally often we will force with
the partial order IL, which using the above characterizations will provide a
lower bound for a.

3.1.2. Complete embeddings. Recall that if P and QQ are posets such that
P C Q, then we say that P is completely contained in Q, written P < Q, if
PCQ and

(1) if p,p’ € P and p <p p' then p <g p’;

(2) if p,p’ €ePand p Lpp/ then p Lg p';

(3) if ¢ € Q then there is r € P (called a reduction of ¢) such that for
all p € P with p <p r, the conditions p and ¢ are compatible.

We note that (3.1.2)) above may be seen to be equivalent to

(3') all maximal antichains in P are maximal in Q.

LEMMA 3.5. Let P and Q be posets, and suppose P<<Q. Letq € Q, p € P
and g <qg p. Then any reduction of q to P is compatible in P with p, and so
q has a reduction extending p.

Proof. Suppose r € P is a reduction of g and r Lp p. Let x € P, x <p r.
Then since r is a reduction of ¢, we see that x is compatible with ¢ in Q and
so there is 2/ € Q which is their common extension. But then 2/ <g z <pr
and so 2’ <g r. Also 2’ <g ¢ <@ p and hence 2/ <g p. Therefore r is
compatible with p in Q. But by assumption P<Q, andsor Lpp — 7 Lgp
must be true. Therefore r and p are compatible in IP, which is a contradiction.

To complete the proof, consider any reduction r of ¢ to P. Then r is
compatible in P with p, and so they have a common extension ry. However,
any extension of a reduction is a reduction, and so ry is a reduction of ¢
with rg <p p. =

3.1.3. Canonical projection of a name for a real

DEFINITION 3.6. Let B be a partial order and y € B. For each n>1 let B,
be a maximal antichain below y. We will say that the set {(b, s(b)) }scB,,, n>1
is a nice name for a real below y if

(1) whenever n > 1, b € B, then s(b) € "w;

(2) whenever m >n >1,b€ B,, b’ € B,, and b, b’ are compatible, then
s(b) is an initial segment of s(b').

REMARK 3.7. Whenever f is a B-name for a real, we can associate with f

a family of maximal antichains {By, },>1 and initial approximations s(b) € "w
of f for b € B, such that for all n and b, we have b IFg f[n = 35(b) and
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the collection {(b,s(b))}seB,.ncw has the above properties. Thus we can
assume that all names for reals are nice, and abusing notation we will write

f = {(b7 5(b>)}b€l3n, new-

LEMMA 3.8. Let A be a complete suborder of B, y € B and x a reduction
of y to A. Let f = {(b,5(b))}ves,.n>1 be a nice name for a real below y. Then
there is g = {(a, s(a))}acA,, n>1, an A-nice name for a real below x, such
that for all m > 1, for all a € A, there is b € B, such that a is a reduction
of b and s(a) = s(b).

REMARK 3.9. Whenever f , g are as above, we will say that ¢ is a canon-
ical projection of f below x.

Proof of Lemma 3.8. Recursively we will construct the antichains A,,.
Along this construction we will guarantee that for all a € A,, @’ € A,11
either «’ < a or a L d/, and that if a’ < a then s(a’) end-extends s(a).

First we will define A;. Let ¢ € A be an arbitrary extension of x. Since
x is a reduction of y, there is £ € B such that ¢ <g t,y. Therefore there is
b € B; such that ¢ and b are compatible with a common extension ¢. Then
in particular ¢ <g ¢, and so we can find a reduction a of ¢ extending ¢. Since
t < b, a is also a reduction of b. Define s(a) = s(b), a(t) = a. Let A; be a
maximal antichain in the dense below x set Dy = {a(t) : t < x}.

Suppose A,, has been defined. Let a € A,, and t <4 a. By the inductive
hypothesis, there is b € B, such that a is a reduction of b and s(a) = s(b).
Then t is compatible in B with b, with common extension ¢. Hence in par-
ticular ¢ <g y, and so there is b € B,y such that ¢ is compatible with b
in B with common extension . Then in particular £ < b,b, and so s(b) is
an initial segment of s(b). Since £ < ¢, it has a reduction a <, t. Define
a(t) = a, s(a) = s(b). Again since t < b, @ is also a reduction of b. Let
Apt1, be a maximal antichain in the dense below a set {a(t) : t <a a} and
let A1 = UaEAn An+1,a- [

3.1.4. Canonical projection of a name for a slalom

DEFINITION 3.10. Let B be a partial order and y € B. Let 0 € <% (<“[w])
be such that (Vi < |o|) |o(i)] = ¢, and for each n > 1 let B, be a maxi-
mal antichain below y. We will say that the pair (&, ¢) is a nice name for
an element of L below y, where ¢ = {(b,o(b))}veB,, n>1, if the following
conditions hold:

(1) whenever n > 1 and b € B, then o(b) € "(<“[w]);

(2) whenever 1 <n < |o| and b € B,,, then o(b) = o|n;

(3) whenever n>|o|, then o Co(b) and (Vi : |o|<i<n) |o(b)()|<|o|;

(4) whenever m > n > |o|, b € B, b/ € By, and b,b" are compatible,
then o(b) is an initial segment of o (b').
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REMARK 3.11. If (&, ¢), where ¢ = {(b,(b))}ves, n>1, is a nice name

for an element of L. below y, then y IF (5,¢) € L and for all n € w and
b € B, we have b lF ¢[n = &(b).

LEMMA 3.12. Let A be a complete suborder of B, y € B and x a reduction
of y to A. Let (5,¢), where ¢ = {(b,o(b ))}begn’n>1, be a nice name for an
element of L below y. Then there is an A-nice name (6,¢), where 1) =
{(a,0(a))}acA,, n>1, for an element in L below x such that for alln > 1, for
all a € Ay, there is b € By, such that a is a reduction of b and o(a) = o(b).

Proof. Similar to the proof of Lemma[3.8 =

Another forcing notion of interest for us is Hechler forcing D. Recall that
it consists of pairs (s, f) € ““w X “w such that s C f and of the extension
relation given by (s, f) < (¢, g) iff s end-extends ¢t and (Vi € w) g(i) < f(7).
Clearly, if A, B, z and y are as in the statement of Lemma [3.8] and y forces
that (3, f) is a condition in D where f is a nice name for a real below y,
then f has a canonical projection f’ below x such that z forces that (3, f! )
is a Hechler condition.

3.1.5. Suslin, o-Suslin and good o-Suslin posets. Recall that a Suslin
poset is a poset (S, <s) such that S(C w*), <g and Lg have X! definitions
(with parameters in the ground model). For a Suslin forcing S, the ordering
<s will be defined by the 31 predicate in whatever model we work in (that
has a code for <g). The key property of Suslin forcings that we need is
the following well-known fact. A detailed proof of it can be found in [5] (in
Lemma 3.13 below take A to be a P-name for S, and B to be a Q-name
for S).

LEMMA 3.13. Let PP and Q be posets and let S be a ccc Suslin poset. If
P<Q then PxS < QxS (where S denotes the name of S for the relevant
poset).

We will work with the following strengthening of the notion of Suslin
forcing:

DEFINITION 3.14. Let (S, <s) be a Suslin forcing notion, whose condi-
tions can be written in the form (s, f) where s € <“w and f € “w. We will
say that S is n-Suslin if whenever (s, f) <s (¢, ¢g) and (¢, h) is a condition in S
such that hln - |s| = g[n - |s|, then (s, f) and (¢, h) are compatible. A forcing
notion is called o-Suslin if it is n-Suslin for some n.

Clearly, if S is n-Suslin and m > n, then S is also m-Suslin. If S is
n-Suslin and (s, f) and (s,g) are conditions in S such that f[n-|s| =
n-|s|, then (s, f) and (s,g) are compatible. Thus every o-Suslin forc-
ing notion is o-linked and so has the Knaster property. Hechler forcing H is
1-Suslin, and localization L is 2-Suslin.
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DEFINITION 3.15. Let (S, <g) be a Suslin forcing notion, whose condi-
tions can be written in the form (s, f) where s €<% w and f € “w. Let B

be a partial order. The pair (8, f) is a nice name for a condition in S below
y € B if f is a nice name for a real below y and y IFg (8, f) € S.

Suppose (3, f) is a nice B-name for a condition in S below y € B, where
B is an arbitrary partial order. Let A be a complete suborder of B and let
z € A be areduction in y. By Lemmathere is a projection g off below x.
Say f = {(b,s(b))}veB,,n>1 and g = {(a,s(a))}acA,,n>1. For every a € Ay
we can choose b € By, denote it ¥ (b), such that a is a reduction of b, and so
we can define a mapping v : A1 — B1. However 1 might not be surjective,
which implies that for a B-generic filter G it very well might be the case
that f[G] # ¢[G N A]. This gives rise to the following definition.

DEFINITION 3.16. Let (S, <s) be a Suslin forcing notion, whose condi-
tions can be written in the form (s, f) where s €<“ w and f € “w.

(1) Let A, B be partial orders such that A <B. Let € A be a reduction
of y € B and let (3, f) be a nice name for a condition in S below y € B.
If g is a canonical projection off below z such that x IFg (3,9) € S,
we will say that (3, g) is a canonical projection of the nice name (3, f)
below x.

(2) S is called good if whenever A, B are partial orders, A < B, x € A,
y € B and z is a reduction of y, then every nice name for a condition

in S below y has a canonical projection below x.

An immediate corollary of Lemma [3.12] is that the localization poset L
is a good o-Suslin forcing notion. It is straightforward to verify that the
Hechler poset D is also good o-Suslin.

3.1.6. Finite function posets

DEFINITION 3.17. Let A be a fixed set and let Q be a poset of pairs
p = (s, FP) where s* C A x w X w is finite, for every a € A, sh =
{(n,m) : (a,n,m) € s} is a finite partial function and F € [/WZ;]<W. For
p € Q let oc(sP) = {a: (In,m) (a,n,m) € sP} and let oc(p) = oc(sP) U {a :
a is a letter from a word in FP}. For B C Alet p|B = (sPN B X w X w, FP),
let p|[B = (sPNB X w X w, Fpﬂ/V[%) and let dom(Q) = A. Then Q is a finite
function poset (with side conditions) if:

(i) (“Restrictions”). Whenever p and ¢ are conditions in Q, B C A
then

e p|B, p||B are conditions in Q, and p|B < p||B;
e if p < g then p[|B < ¢||B.
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(ii) (“Extensions”). Whenever p = (s, F') € Q

e and t C A X w X w is finite such that oc(p) Noc(t) = ), then
(sUt, F) < p;
e and F € [W4]<¥ contains F', then (s, E) < (s, F).

Whenever B C dom(Q), we denote by Qp the suborder {p|[B : p € Q}.
Thus in particular if Ly := dom(Q) then Qr, = Q.

DEFINITION 3.18. Let Q be a finite function poset. We say that Q has
the strong embedding property if whenever Ay C dom(Q) and p = (s, F') € Q,
then there is ¢y C (oc(p) N Ag) X w X w such that s[Ag C tg, (to, F'N /I/IZ;O)
SQoe(pna, PIIA0, and whenever (¢, E) <q (to, FﬂWAO) is such that oc(t) and
oc(F) are disjoint from oc(p) \ Ao, then (tUs, F) < (s, F) and (tUs, E) <
(t, E'). We say that (¢, Fﬂ@o) is a strong reduction of p and (sUt, EUF)
a canonical extension of (s, F) and (t, F).

REMARK 3.19. Note that if Q is a finite function poset with the strong
embedding property, then whenever A C B C dom(Q), C' € dom(Q) are
such that C N B = A, for every condition p € Qp there is pg <g, p|[A such
that oc(po) C oc(p)NA and if g is a Qc-extension of py, then g is compatible
with p. We will say that pg is a strong Q4-reduction of p. The existence of
strong reductions implies in particular that for every A C dom(Q) the poset
Q4 is a complete suborder of Q. We will refer to this property as the complete
embedding property.

LEMMA 3.20. Qa,, is a finite function poset with the strong embedding
property.

Another example of a finite function poset with the strong embedding
property is the following forcing notion D 4. Let A be a non-empty set and
let Dy be the poset of all pairs (sP, FP) where sP C A X w X 2 is a finite
set such that for all a € A, sh = {(n,m) : (a,n,m) € s} is a finite partial
function and F € [A]<“. The condition ¢ is said to extend p if s D sP,
F% > FP and for all distinct a,b € F? we have sy N sg CspN sg. If |A] > w,
then D4 adds a maximal almost disjoint family of size |A|.

3.2. Two-sided templates. If (L, <) is a linearly ordered set and
x € Lywelet Ly ={yeL:y<az}and Ly ={ye L:y <z} If
Ly C L is a distinguished subset of L and A C L, then the Lg-closure of A
is defined as

clry(A) = AU | (L2 N Lo),
€A

and we will say that A is Lo-closed if A = clp,(A). Note that clz,(A) is the
smallest set B O A with the property that if z € B then L, N Ly C B. We
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will usually drop mention of Ly when it is clear from the context, and write
“closed” instead of “Ly-closed” and cl instead of clp,,.

DEFINITION 3.21 (J. Brendle [4]). A two-sided template is a 4-tuple T =
((L,<),Z, Ly, L1) consisting of a linear ordering (L, <), a family Z C P(L),
and a decomposition L = Ly U L; into two disjoint pieces such that:

(1) Z is closed under finite intersections and unions, and 0, L € 7.

(2) If x,y € L, y € Ly and = < y then there is A € Z such that A C L,
and z € A.

(3) If AeZ,ze€ L\ A then ANL, € T.

(4) The family {ANL; : A € T} is well-founded when ordered by inclu-
sion.

(5) All A € T are Ly-closed.
Given a two-sided template 7 as above, x € L and A € Z, we define
Iao={Be€Z:BCA}, I,={Be€Zl:BCL,}

and Z4, = Z4 NZ,. Finally we define the rank function Dp : Z — ON by
letting Dp(A) = 0 for A C Ly and Dp(A) = sup{Dp(B)+1: B€ ZIABNL;
C AN Ly}. We define Rk(T), the rank of T, to be Rk(7) = Dp(L).

If A C L then Ty is the template ((A,<),Z[A, Lo N A, L1 N A), where

IIA={ANB:BeT}.

Note that if A € Z then Rk(74) = Dp(A). Moreover, if A C L is arbitrary,
then Rk(74) < Rk(T).

3.3. Iteration along a two-sided template. We are now ready to
define the iteration along a two-sided template. This definition is a gener-
alization of the definition of iterating “Hechler forcing and adding a mad
family along a template” given in [4].

DEFINITION 3.22. Let T = ((L,<),Z, Lo, L1) be a two-sided template,
@ a finite function forcing with the strong embedding property such that
Ly = dom(Q) and S a good o-Suslin forcing notion. The poset P(7,Q,S) is
defined recursively according to the following clauses:

(1) If Rk(7) = 0, then P(7,Q,S) = Qr, (= Q).

(2) Assume that for all 7 with Rk(7) < x, P(7,Q,S) has been defined
(and is a poset, see comment below). Let 7 be a two-sided template
of rank s, and for B € Z of Dp(B) < k let Pgp = P(75,Q,S). We
define P = P(7,Q,S) as follows:

(i) P consists of all pairs P = (p, FP) where p is a finite partial
function with dom(p) C L, P[Ly := (p[Lo, FP) € Q, and if
= max{dom(p) N Ly} is defined then there is B € T, (called
a witness to P € P) such that P|[L;, := (p[Ls,, FPNWp) € P,
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p(xp) = (85, f7), where sb € <“w, f£ is a Pg-name for a real and
(PIILs,.p(z,)) € P xS,

(ii) For P,Q € P, let @ <p P iff dom(p) C dom(q), (¢[Lo, F9) <g
(plLo, F?), and if x, is defined then either

ii.a) x, < x4 and there exists B € 7, such that P|[L; , Q|[Le,
€ Pp and Q”qu <rg P”L:cha or

(ii.b) x, = x4 and there exists B € Z,, witnessing P,Q € [P and
such that (Q|[Lz,,q(zq)) Sppss (P La,, p(p))-

Below we will call B as in (ii.a) or (ii.b) a witness to Q <p P.

Whenever the side condition FP is clear from the context, we will denote
the condition P = (p, FP) simply by the finite partial function p. Further-
more, for A C L, let P[A = (pl|A, FP) and P|[A = (plA, F? O/I/IZ;) Note
also that if P = (p, FP) then p[Ly C (dom(p) N Lg) X w X w. The defini-
tion is recursive and it is not clear to what extent it succeeds in defining a
poset. However this will follow from Lemma below, which establishes
not only transitivity but also a strong version of the complete embedding
property, which is necessary for this definition to succeed. This lemma is a
generalization of the Main Lemma of [4]. We note that if A € Z then it is
clear from the definition that P4 := (74, Q,S) is a subset of P(7,Q,S) and
that the relation <p, is contained in <p. The above definition also defines
P4 =P(T4,Q,S) for arbitrary A C L.

LEMMA 3.23 (Completeness of embeddings). Let T = ((L,<),Z, Lo, L1)
be a template, let Q be a finite function poset with Ly = dom(Q) which
satisfies the strong embedding property, and let S be a good o-Suslin poset.
Let B €I, and let A C B be closed. Then Pg is a partial order, Py, C Ppg
and even P4 < Pp. Furthermore, any P = (p, F?) € Pp has a reduction
Py = (po, FP°) € P4 such that

(i) dom(po) =dom(p) N A, FPOo = FPN Wi,
(i) s = sh for all x € dom(pg) N Ly,
(iii) PolLo = (polLo, FP°) is a strong Qanr,-reduction of P[Ly =
(p rLOa Fp)7

and such that whenever D € T, C C L, C is Lg-closed, B,C C D and
CNB = A, then for every Qo € Pc which extends Py there is QQ € Pp which
s a common extension of Qy and P.

We refer to the reduction Py of the condition P from Lemma [3.23] as a
canonical reduction from Pg toP4. For P € P(T,Q,S) let oc(P) = oc(P[Ly)
and let dom(P) = dom(p) Uoc(P). Also, for B C L we will write Qp for the
set Qpnr,- The lemma is proved by induction on the rank of 7. It uses the
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following lemmas, which are helpful for making simple manipulations with
the conditions of P(7,Q,S). In Lemmas [3.24] through [3.27 assume that 7T,
Q and S are as in Definition [3.22] and that the Completeness of Embeddings
Lemma [3.23] has been established for all templates of rank < Rk(7). Let
P=P(T,Q,S).

LEMMA 3.24. If P = (p,FP) and Q = (¢, F9) are conditions in P such
that dom(P) and dom(Q) are contained in L, for some x € Ly and Q <p P,
then there is B € 1, such that Q) <p, P

Proof. If x, is defined and x, = x4 (resp. z, < xg), let B’ € I, (resp.
B e T,,) be a witness to Q <p P. Using Definition find B € 7,
such that B C B and dom(P) U dom(Q) € B. Then B’ € Ip,, (resp.
B ¢ IB,) is a witness to Q <p, P. If z, is not defined and B € 7, is
such that dom(P) U dom(Q) C B, then since QLo <g, P[Lo we obtain
Q<pz P. u

LEMMA 3.25. Let P = (p, FP) and Q = (q, F9) be conditions in P and let
wo € L. Then Q|[Ly, € P, Q|I L, € P, and if Q <p P then Q|[ Ly, <p P|[Ly
and QHL;0 <p PHL;0

Proof. The proofs of Q|[L,, € P and Q|[Ly, < P|[Ls, proceed by in-
duction on ng = |[dom(gq) N Lq|. The case ny = 0 follows by Definition
Thus suppose each of those is true whenever n, < n and let ny = n. To see
that Q[[Lg, € P note that if 2, < 29 and B is a witness to @Q € P, then B
also witnesses Q|[Ly, € P. If g < x4, then NgiLy, < T and so we can use
the inductive hypothesis.

If dom(p[Lg,) C Lo, then Q| Ly, <p P|] Ly, follows from Definition [3.17]
Suppose 1,1, 7& 0 and let B be a witness to @ < P. If z, < xg, then B
also w1tnesses Q| Lyy < P|[Lyy. If 20 < 24, then Q[ Ly, <p, P|[L,, and
since <p, C <p we find that Q|[L;, <p P|[Ls,. If 20 = x, we are done,
and if zg < x4 then ngjz, < n and 0 Q| Lz, Sp P|[L,, by the inductive
hypothesis.

The L case is proved analogously. =

LEMMA 3.26. Let P = (p, FP) and Q = (q, F9) be conditions in P. If
dom(p) C dom(q), QLo <q@ P[Lo and Q|[L; <p P|[L7 , then Q <p P

Pmof. If x, is not defined, the claim is stralghtforward by Defini-
tion Thus assume x, is deﬁned Note that z, > z,. If z, = x,, then
if Bisa Wltness to Q|I L3, L <p P|[LZ , then B is also a witness to Q) <p P.
Thus suppose 4, > z, = x. Let {m]}]:1 be an increasing (in the linear
order L) enumeration of (dom(Q) N Ly) \L: (dom(g) N L1) \ L7, and
let H € T, be a witness to Q|[L; <p P|[L; . In particular z,, = zq. Slnce
(dom(Q) N Lxl) \ L, and (dom(P )ﬂLxl)\sz are finite, by Deﬁmtlon
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there is a set H; € 7, such that H, dom(Q|[ L, ) and dom(P|[L,,) are con-
tained in Hy. Then H € Ip, is a witness to Q|[ Ly, <p,, P|[Ls,. Similarly
we can find Hy € Z,, such that Hy, dom(Q||L,,) and dom(P|[L,,) are con-
tained in Hy. Then H; € Ty, », is a witness to Q|[ Ly, <pg, P|[L,,. Thus in
finitely many steps we can find an increasing sequence {H;}7_; of elements
of Z such that for all j, H; C L,;, dom(Q|[Ly,), dom(P|[L,,) are contained
in Hj, and H;_1 is a witness to Q|[ L, SIPH]- P|[Lg;. Then H,_1 is a witness
to QIl Ly, <p,, P|[Ls,,and so H, € I, is a witness to Q <p P. =

LEMMA 3.27. Let Q = (¢, F9) = Q|[L; with x = max{dom(q) N L1}
be a condition in P. Let P = (p, FP) be a condition such that (P|[L,)[Lo
is a strong Qr,nr,-reduction of P|Ly and @ <p P|[L;. Then Q X, P =
(q Xy p, FTU FP) is a common extension of QQ and P where q X, p =
qUpIL\ L7 .

Proof. Since q X, p[Lo = q[Lo Up[Lo \ L; and (P|[Ly)[Lg is a strong
Qronr,-reduction of P[Lg, we see that (Qx,P)[Lo <g P[Lg. On the other
hand dom(p[Lo \ L7) Ndom(Q) = 0 and so (Qx,P)[Ly < QI Lo.

Let ny, := [dom(p)N L1\ Ly|. Suppose n, = 0. Then z, < = 2y = T4z _p-
Since (qx;p)[Ly = q| L, and F'1 D Fpﬁ/VVLmLO (because Q|[L; < P|[L,), we
have Qx . P|lL, = Q| L,. This easily implies that @ x, P is a common exten-
sion of () and P. Now suppose that the claim is true whenever 0 < n, <n
and let P be a condition with n, = n. Then (without loss of generality)
rp, >z and @ < (P|[Lg,)|[L;. By the inductive hypothesis Qxx(P| zp)
is a condition in [P extendmg both Q@ and P|[L,, . By Lemma there is
By € I, such that Qx.(P|[Ls,) <pg, Q,PHLIP. Let By be a Witness to
P €P. Thus P||L,, € Pp, and P|[Ly, e, p(xp) € S. Then B = By U By
is in Z,,. Since x, does not belong to any of By, By and B, all of those sets
are of smaller rank than Rk(7) (see discussion right after the statement of
Lemma, and so by the inductive hypothesis Pg,, Pp, completely embed
into Pp. This implies that Qx(P|[Ls,) <p, @, P|[Ly,, and so in particular
Qx(P|[Lg,) IFpy p(zp) € S. Then B is also a witness to Qx, P <p P. Since
Ty < Tgi,p = Tp, the set By is a witness to Qx P <p Q). »

Proof of Lemma[3.23. We use recursion on the rank of the underlying
template. The Rk(75) = 0 case is clear. So assume that the lemma holds
for all templates of rank < «a, and let Rk(75) = a. Let P = Pp.

Transitivity: To see that <p is transitive, fix Py, P;, P» € P such that
Py <p Py and P, <p Pi, and assume that x,, is defined (since otherwise
there is nothing to show). Fix witnesses By € 1y, and By € I, to P <p F
and P <p Pj. Since Dp(B;UB3) < «, the inductive hypothesis implies that
PBl7PB2 < PBluBga and so Pi”prQ = PZ”Bl UBy € PBlUBQ for 0 <1 <2,
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and
PQHprQ SIF”BluBQ Pl”prg SIF"BluBQ POHLIm'

Thus by the inductive hypothesis we have P|[Ly,, <Ps,us, B[l Ly, . If
Tp, < Tp, then the definition of <p yields P» <p [y. So assume that
Tp, = Tp,. It is clear that p;(xp,) is a Pp,up,-name for 0 < i < 2. Since
Pp,,Pp, <Pp,up,, we must have Pi|[Ly,, lFpy 5, P1(Tp,) <g Po(2p,) and
B[ Ly,, g Us, p2(7p,) <g p1(xp,). But then Po|Ly, Fpp,us, P1 (7p,) <g
po(zp,), and so PgHLIP2 ||—1p>BIUB2 p2(7p,) <g po(rp,). Thus

(Poll Ly, s P2(%p2)) <py, v (BOl1 Ly, s D0(2p2)),
as required.

Suborders: Let A C B be closed, B € Z be given. We will show that
P4 C Pp. Assume R = (1, F") € Py @ Let x = z,. By the definition of
the iteration there is A € (T [A) such that R|[(ANL,) € P4 and f7 is a
P 1-name.

Note that A € Z| A means that there is By € Z such that A = By N A.
On the other hand A C B, so A C B and hence BN A = Byn BN A. But
T is closed under finite intersections and so Bg N B € Z, even BgN B € Ip.
So without loss of generality there is B € Zp (just take B = By N B) such
that A = AN B. Since A C L,, we have x ¢ B. Then by Definition (3)
BN L, € Ig. Therefore we can assume that B C L,. Thus B C B and
Dp(B) < Dp(B) = a. By the inductive hypothesis, P; C P and P4 < Pjg.
Therefore f is a Pg-name as well. Thus R|[L, € Pg and f! is a Pz-name.
That is, R € Pp.

xT

Complete embeddings: Assume P = (p, FP) € Pgp. We will construct

a canonical reduction Fy of P from Pp to P4. Let = x,. By definition
of the iteration, there is B € Zp, such that P||[L, = P € Pj and fP
is a Pg-name, where p(z) = (34, /7). Let A = AN B. Then A € T|A,
A C B and A € P(L;). Since x does not belong to A and B, the sets A
and B are of rank smaller than Rk(7"), and so by the inductive hypothesis
P4 < Pg. Therefore P = (p|Ly, FP N WLTQLO) has a canonical reduction
Py = (po, FP N /MZmL ) from P to P 5. By definition PylLo <g; (PILo)|I 4,
PofLo = (polLo, FP N W40L ) where po[Lo C (oc(plLo) ﬂA) X w X w and
pl(Lo N A) C poLo. Now consider (po[LoUplLo\ A, FP). By the definition
of strong reduction we have (po[Lo Up|Lo \ A, FP) <g, P[Lo. Now take a
strong Q4-reduction (po[Lo, FP N @QLO) of (polLoUplLo\ A, FP). Then
(pol Lo, FP°) where FP0 := FP N Wi is a strong Q4-reduction of P[Lg such

(®) Recall P4 = P(Ta,Q,S) where T4 is the template ((A,<),Z[A, Lo N A, L1 N A),
and so in particular r is a finite partial function with domain contained in A.
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that po[Lo N A D polLg. Let po[L1 N Ly = polL1 N L, and let P[)”Lx =
(po[ Lz, F?°). Then Py|[L, <p, Py, and so Py|[L, is a canonical reduction
of P. We can assume that p(x) is a nice name for a condition in S below P.
If z € A, let pg(x) be a canonical projection of p(z) below Py|[L,. With this
the construction of Py = (pg, FP°) is complete.

We will show that Py is a canonical projection of P from Pp to Py.
For this assume D € Z, C C D, Cis Lg-closed, BUC C D, A=BnC
and Dp(D) = a. Let Qo = (g0, F) <p, Py. We will construct a common
extension of )y and P.

Casel:z ¢ A. Then clearly x ¢ C.Lety = max(dom(qo)ﬁLmﬂLl) Q)
Then y < z. By Lemma [3.25, Qo||L; <p, Py|[L;, and so there is £ in
(Z1C), witnessing this fact. Usmg 3.21| find F € ZD .y such that E=FnC.
Now, let {y;}ict enumerate dom(go) N Ly \ Ly. By Definition [3.21](2), for all
i € k there exists G; € Z such that y; € G;. Then G := DN UzekG €Ipy
and dom(qo) N Ly \ Ly CG. Let D=BUFUG,C=(GNC)UEUA and
note that D € Ip 4, C € (Z|C),. Clearly C C D, CN B = A.

Note that Qg := Qo|[ Ly <p. Po|l L, with witness E (observe that £ also
belongs to (Z [C) ). Passing to an extension if necessary, we can assume that
QolLo is a strong Qa-reduction of QgLg. Since Dpzc (C) < Dpg(D) <
Dpz(D) = «a, we can apply the inductive hypothesis to A, B,C, D. Thus
there is a common extension Q = (g, F7) <p_ Qo, P|IL W1th this we are
ready to define a common extension @ = (g, F'?) of Qo and P as follows:

Let ¢ = qU{(x,p(z))}, F¢ = Flandlet Q' = (¢/, F). Then D witnesses
not only Q' € Pp, but also Q" <p,, Qo|[L. By Lemma[3.27 Q" := Q'x,Qo
is a common extension in Pp of Q' and Qq. Denote Q" = (¢”, F7 UF%) and
let p = plLo\ dom(¢"). Let ¢ = ¢" Up, F = F" U FO and let Q = (¢, F7).
Since oc(Q") N dom(p) = B, we deduce that Q = (¢" U p, F© U FP) is a
condition in P, extending @)”. Thus in particular Q < Q.

To see that Q < P, first observe that Q" [ Ly < Qo|Lo < Py[Lg, and since
by definition Py[Lg is a strong Q4-reduction of P[Lgy, we obtain (¢"[Ly U
pILo, F?) < P|Lo. But then Q[ Lo < PlLo, Q|IL;, < P|[L7, and dom(p) C
dom(q), which by Lemma gives Q < P.

CASE 2: z€ A. Then z € C. Let C€(Z|C), be a witness to Qo||L; <p.
P()HL; That is, Qo = Qo Ly S]p@ Pyl L, (< Py) and

Qol[La I “(520, f2) <g (s, f2°)".
By definition A = AN B where B € Zp ;. Also by the definition of C' € Z|C
there is C}) € Z such that C' = C4NC. Then z ¢ C}), and so by Definition[3.21]

(%) If dom(go) N L C Lo, then we do not need the witness E. The proof proceeds as
in Case 1, but take £ = F = () and pick G_E Ip,. such that dom(go) N L, C G. Then in
particular C = (GNC)UA and D = BUG.
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Co:=CyNL, €I, and C = CyN C. Passing to an extension if necessary,
we can assume that Qo [Lg is a strong Qs-reduction of Qo[ Lo.

Then AUC € ( m and since Rk(73,5) < Rk(T), we have Ps <
P 1,¢c- Therefore f is also a P 5,/-name, and so without loss of generality
we may assume that A C C' (otherwise work with AU C instead of C) This
implies A = C’QB. Note also that D := DN C GIDmandC’ DnNC.
Similarly we may also assume that B C D. Since Dpz(D) < Dpz(D) = «,
we can use the inductive hypothesis when working with A, B, C, D.

Let n be such that S is n-Suslin. Let m = |s¥|. Find Qo <p, Qo and
s’ € ™™y such that Qo I+ “f£° n-m = 3§". Let G be a Ps-generic ﬁlter such
that Qo € G. Now note that f£° is a P -name and P 5 <Pg by the inductive
hypothesis (here we use the fact that Dpﬂ@(c_‘) < Dpz(D) < a). Therefore
GNP j is Ps-generic and there is U € GNP 5 such that U IFp fre [n-m =35
Now U, POHL € G N A, so they have a common extension F/ € G N A and
E'lrp, f2In-m=4.

Since E QO are in G, they have a common extension Qo € G (and so

in Pz). Then in particular Qo < FE’, and so Qo has a reduction Qg in
P; which extends E’. Thus Qo Ip o1 -m = § and Qp < Py|IL
But then Qo is compatible in P; with some a € An.m. Here following the
notation of Lemma we assume that f£ = {(b, 5(b))}pes n>1 and f5° =
{(a,s(a))}acan,n>1-

Since a IFp fPorn-m = 5(a) and a is compatible with Q, it must be the
case that s(a) = s'. Let Iy be a common P z-extension of a and Qo. Then
P# < a and P{ is a reduction of Qq (since Q) is such a reduction; also Pg
is a reduction of Qp). By construction, a is a reduction of some condition
b € Bn.m such that s(b) = s(a), i.e. b < P and blrp, ffIn-m = §. Then
Py is compatible with b, with common extension P*. By the inductive
hypothesis P; < Pg, and so P* has a canonical reduction Pt from Pg
to P4. By Lemma Pt is compatible with P} (since Pt < P¢ and
every canonical reduction is clearly also a reduction). Therefore they have a
common extension 1’5(;r . Note that 1’5(;r < Py and PJ is a canonical reduction

of PT. Since P is a reduction of Qo onto P 1, there is Qar € Ps extending
POJF and Qg. Now using the fact that Qar < POJF and P0+ being a canonical
reduction of PT, we obtain a condition T = (¢, F*) € Pp such that T <p_
]5+ and T SPD Qa_

(7) Indeed, C = Co N C where Cp € I, and A = AN B where B € Zp,. But B€ T
andso B € Z. Then AUC = (ANB)U(ConC) = (BNCNB)U(ConC) = (BUCh)NC.

¢ ) By definition A = BN A, and so A C B, therefore A C C'N B. On the other hand,
ifzeCNBthen ze€ CNB,andso z€ A. Hence CNBC ANB = A.
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Then
T ke, “(s, f0) <g (s5°, f2°) and
(s2, fP) is such that s = s2° A fPIn-m = fE0In-m”.
Since S is n-Suslin by assumption, we have
Tlrp, (Bt(z) €5) t(z) <g qo(x), p(2).

Find Q1 < T and a nice name (5%, f) for a condition in S below @ such
that QT Ibp,, “(5%, f) <g (s, fI), (s%, f2)”. Denote Q* = (g*, FT").

With this we are ready to define a common extension @ = (g, F') of Qg
and P. Let ¢ = gt U {(z,q(z))}, F¢ = F? and Q' = (¢, F¢). Given @/,
define Q”, p and Q as in Case 1. Then following the proof of Case 1, one
concludes that @) is a common extension of Qg and P. =

3.4. Basic properties of the iteration. Having established our gen-
eralized “Main Lemma” (Lemma 3.23), we now proceed to develop the re-
maining basic tools that we need to work with the iteration along a two-sided
template. These steps are parallel to those taken in Brendle [4, pp. 2640—
2642], and we provide complete proofs only where it seems needed. For the
discussion in this section fix 7, Q and S as in Lemma [3.23

LEMMA 3.28. Suppose Q is Knaster. Then P(T,Q,S) is Knaster.

Proof. Let (Qq : @ < wy) be an arbitrary sequence of conditions in P.
Since Q is Knaster, we can assume that (Q,[Lo : o < wp) are pairwise
compatible in Q. Applying the A-system lemma and the fact that Q is
Knaster, we can assume that for all distinct a, f < wi, dom(gq) N dom(gg)
= F for some fixed finite set F' C L. Furthermore, we can assume that for
all x € FF'N Ly there are s, € ~Yw, t, € mlszly, such that if B is a witness
to QalL; € P, then Qo Ly ke, m0(ga(x)) = 82 A T1(qa(z))In - |8z] = Ls,
where my and 71 denote the projections onto the first and second coordinate
respectively.

Fix o, 8 distinct. We will show that Q., Qs are compatible in P. Let
{z;}icm enumerate (dom(g,) U dom(gg)) N Ly in <p-increasing order, and
let R = (r,F) be a common extension of QLo and Qg[Lg. Passing to
an extension if necessary, we can assume that R|[L,, is a strong QLOQLID—
reduction of R. Furthermore, there are Rjj <q Lag R|[L,, and t(z() such that
R; Far,, t(z0) < ga(wo),qs(x0). Let R* = (r*, F*) and let Ry = (1o, Fy) =
(roUi(zo, t(wo)) YUr[ L\ Ly, FfUF). Since R|[ Ly, is a strong Qr, -reduction
of R, we obtain Ry <p R. Furthermore, Ry|[L,, is a common extension of
Qall Ly, and Qg|[Lg, (in P).

Suppose for some i < m — 1 we have a condition R; = (r;, F;) <p R such
that r;[L\ Ly, = r[L\LZ,, (Ri|lLy,)|[ Lo is a strong Q, -extension of R; and
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RillLsy; <p,, QallLs;, Qp|lLy;. Then we can find an extension R} of R;|[ L,
in Pz, and a name t(zip1) such that R} IFp,  t(7it1) < qa(Tit1), qa(Tiv1)-
Let R} = (r}, F}). Since (R;|[Ls,)[Lo is a Stlzong Qr,, -reduction of R;, we
obtain R; 1 = (Ti+1, Fi-‘,—l) = (T;’(U{(.TH_L t(l‘i+1))}U’FfL\in+l,FZ-*U.FZ') <p
R; and Riy1|[ Ly, y < QallLe; s, @8l Ly, ,. Then for i = m, we conclude
that Ry, <p Qa,Qp. =

We omit the proofs of the next three lemmas since they follow very
closely the proofs of [4, Lemmas 1.3-1.5].

LEMMA 3.29. Let x € Ly, A € Z,. Then the two-step iteration P4 * S
completely embeds into P.

LEmMMA 3.30. For any p € P(T,Q,S) there is a countable set A C L
such that p € Peyay. Similarly, if T is a P-name for a real, then there is a
countable A C L such that T is a Pg4)-name.

LEMMA 3.31. Let J C T be such that Ty = ((L,<),J,Lo,L1) is a
template. Suppose J is cofinal in Z. Then P(T7,Q,S) is forcing equivalent
to P(T,Q,S).

4. a4 can be N,,. We now start working towards the main theorem of
the paper. The model in which cof(ay) = w is obtained by forcing with a
poset of the form P(7,Q,S), where Q is the poset Qr,, that adds a cofinitary
group with Lo generators, S is localization forcing, and 7T is the particular
template used by Brendle [4].

4.1. Basic estimates for a,. Before specifying 7, we prove two gen-
erally applicable lemmas, which are parallel to [4, Propositions 1.6 and 1.7].

LEMMA 4.1. Let T be a template, let Q be a finite function poset with
the complete embedding property and Lo = dom(Q), let S = L be localization
forcing, and let p be a reqular uncountable cardinal. Suppose u C Ly (as an
order), p is cofinal in L, and Lo € T for all « < p. Then P(T,Q,S) forces
that non(M) = p and ag > p.

Proof. Similarly to the classical linear iterations (finite support itera-
tions of ccc posets, or countable support iterations of proper posets of size
R over a model of CH) the proof will heavily rely on the fact that every real,
as well as every small family of reals, appears in some initial segment of the
iteration which is itself completely embedded into the entire construction.

Indeed, let G be P(T,Q, L)-generic over V' and work in V[G]. Let ¢, be
the slalom added in coordinate o < p (this makes sense by Lemma .
Since p is regular and uncountable and is cofinal in L, it is clear by Lemma
that the family (¢, : a < u) localizes all reals V[G] (since any real
must appear in some V[G NPp ] for some o < p). Thus cof(N) < p. On
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the other hand, if F' C w¥ is a family of size < p in V[G], then there must
be some « < g such that all reals of F already are in V[G NP ], and so
¢q localizes all reals in F. Thus add(N') > u. Therefore non(M) = pu, and
so by Theorem we have a; > p. =

LEMMA 4.2. Let T be a template, and let Q = Qr, be the poset for
adding a cofinitary group with Lo generators. Suppose that L has uncountable
cofinality and Lg is cofinal in L. Then P(T,Q,S) adds a mazimal cofinitary
group of size |Ly|.

Proof. Let G be P=P(T,Q,S)-generic. Let pg : Ly — S be defined as
follows: for every z € Lg let pg(z) = {sh : P € GA P|Ly = (s, FP)}. Note
that pe = J{sh : P € GNPy}, and so by Proposition [2.12|the function p¢
induces a cofinitary representation pg of Fr,. We will show that im(pg) is
a maximal cofinitary group (which then clearly has size |Lg|).

Suppose not. Then there is a permutation o € cofin(Ss) and by ¢ Lo
such that pf, : Lo U {bp} — Sec, defined by piz[Lo = pe and pi,(by) = o,
induces a cofinitary representation. Let ¢ be a P-name for ¢ in V. Then by
Lemma there is a countable set A C L such that ¢ is a Pg4)-name.
Since Lo is cofinal in L and L has uncountable cofinality, there is some
x € Lo such that cl(A) C L;, and so Pg4) < Pr,. Let Go = GNP, and
H=Gn I[DLJC .

CramM. V[H]| E “Dyn ={P € (P/H) : (3n > N) sh(n) = o(n) where
PLy = (s, FP)} is dense”.

Proof. Let Py € (P/H). Thus P|LoNL, € Hy := GNPr L, By Lemma
2.19] we have
V[Ho] E D27N7x ={p € (Qr,/Qr,n1,) : (In > N) sP(n) = o(n) is dense}.

Thus there is (¢, E) < (sP[Lg \ Ly, FP) such that (¢, E) € DY ie.
tz(n) = o(n) for some n > N. Define P, € P/H as follows: Py|Ly = Py| L,
Pl [(Lo \ LI) = (t,E), Pl rLl \Lz == Po [Ll \Lz Then in V[H] we have
P <Pyand P; € DgyN. ]

By the Claim, in V[G] there are infinitely many n such that o(n) =
0z(n), contradicting the fact that pj; induces a cofinitary representation. m

5. The isomorphism of names argument. Until the end of the paper
assume CH. We will use the template construction developed by J. Brendle
and S. Shelah to show that the minimal size of a maximal almost disjoint
family can be of countable cofinality (see [4]). Let A\ be a cardinal of count-
able cofinality, and more precisely, let A\ = |J,,c,, An, Where {A\;}nen is a
strictly increasing sequence of regular cardinals, A\g > Ra, AN = ), for all n,

and k%0 < X\, for K < \,. In the following, let ;1* denote a disjoint copy of s,
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with the reverse ordering. Let <, denote the ordering of p. We will refer to
the elements of p as positive and to those of p* as negative. If a # 5 € A*UA,
we will write o <p«_y B if either @ € A* and 8 € A, or both are in A and
a < f, or both are in A\* and o <)~ . For each n fix a partition \}, =
Ua<w, Sn» where the Si’s are co-initial in A}, and for m < n, SENA;, = S3.
Definitions 5.1, 5.2, 5.4, 5.5 and Lemma 5.6 can be found in [4].

DEFINITION 5.1. Let L = L(\) consist of all finite non-empty sequences
x such that

(1) z(0) € Ao,
(2) z(n) € Ay UN, for 0 <n < |z|—1,
(3) for |z| > 2, if z(|z| — 2) is positive, then z(|z| — 1) € A}

if z(|z| — 2) is negative, then z(|z| — 1) € A" U Ajz—1.

2 — 1 UA, and

Whenever z,y € L let x < y if and only if

(4) either = C y and y(|z|) is positive,

(5) or y C x and z(|y|) is negative,

(6) or n =min{k : z(k) # y(k)} is defined and z(n) <xux y(n).

Clearly, (L, <) is a linear order. We identify ordinals with one-element
sequences, and so Ao is a cofinal subset of L. Whenever o < )y, abusing
notation we will write Ly, for the set Ly ={z € L:z < (a)}.

DEFINITION 5.2. Let Ly ={x € L: \a:| =1lorz(|z|-1) € )‘|x|—1U>‘|x\fl}
and let Lo =L \ Ly.
REMARK 5.3. Note that x € Lo if and only if || > 2, and if z(|z| — 2)

is positive then z(|x| — 1) € [Aj;—1, ), and if z(|z| — 2) is negative then
z(|z| — 1) € (\*, Al 1J- Note also that both Lo and L are cofinal in L.

DEFINITION 5.4. Let Lo be the subset of Ly of all z such that || > 3
is odd, and z(n) € A} for odd n, x(n) € A\, for even n, z(|z| — 1) € wy, and
whenever n < m are even such that z(n),z(m) are in w;, then there are

B < a such that z(n — 1) € 8¢ ; and z(m — 1) € 551—1- We refer to the
members of L. as relevant elements.

For x € Lyo, let J, = {z € L : z[(|z] - 1) < z < z}. f x < y are
relevant, then either J,NJ, = 0 or J, C J,. In the latter case also |y| < |z],

zl(lyl =1) = yI(lyl = 1) and z(Jy[ = 1) < y(|y[ = 1).
DEFINITION 5.5. Let Z = Z(\) be the collection of all sets of the form

Lo U (xU cl(Jx)> (ILEJ c({z}) ) (U Ly mLO)

eh

where av € A\g U { o}, [1 € [Lyet] =¥ and Io, I3 are in [Ll]
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LeMMA 5.6 (4, Lemma 2.1]). T = ((L,<),Z, Lo, L1) is a two-sided
template.

Until the end of the section, let 7 be as in Lemma and let P =
P(T,Qr,,L) where Qr, is the poset for adding a cofinitary group with
Lg generators (see Definition 2.4) and L is localization forcing. A subset B
of L is a tree (recall that the elements of L are finite sequences) if it is closed
with respect to initial segments, that is, if x € B then z[n € B for all n.

LEMMA 5.7. In V¥ there is a mazimal cofinitary group of size A\ and
)\0 < Qg.

Proof. Since Ly is cofinal in L and L is of uncountable cofinality, by
Lemma 4.2 the forcing P adds a maximal cofinitary group of size |Lo| = A.
Since A\g C L is cofinal in L and L, € Z for all a < \g, by Lemma 4.1 we
have \g < ay. m

We say that a P-name ¢ is a good name for a real if there are predense
sets {pn,i}icw, where n € w, and sets of integers {k, i }icw, n € w, such that
Pn,i IF g(n) = ky; for all n,i. That is, {pn,i }icw is a predense set of conditions
deciding the value of g(n). Whenever ¢ is a good name for a real, we will
refer to |, ;. dom(pn,;) as the L-domain of ¢ and denote it dompr(g). We
can assume that all P-names for reals are good.

The following lemma is the essence of the isomorphism of names argu-
ment, due to Brendle. Its proof follows [4, pp. 2646-2648] almost identically.
We work under the cardinal arithmetic assumptions from the beginning of
this section.

LEMMA 5.8 (Brendle [4]). Let \g < k < X, and for every f € k let
B = domp,(§%) be a countable subset of L which is a tree, where §° is a
good name for a cofinitary permutation. Then there are a countable subset
B" of L and a good name for a cofinitary permutation ¢ such that

(1) IFp g5 # §° for all B < &,
(2) dompg(g~) = B",
(3) for every F € [k]|<¥ there is a < k and a partial order isomorphism

XFa ' Pcl(UﬁeF BSUB®) ]P)cl(UBGF BBUBK)
which maps §* to §* and fizes ¢° for B € F.

Proof of Theorem[I.1l Let G be a P-name for a cofinitary group of size &,
where \g < k < A, and let {gﬁ}ﬁeﬁ be an enumeration of G. For 8 < &, let
B = domp(§?). Then B? is at most a countable subset of L, and without
loss of generality it is a tree. Let B and ¢ be as in the conclusion of
Lemma applied to the families {B”} e, and {§°}se.. We will show
that H = (G U {g"}) is a cofinitary group.
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Let h € H\G and let FyU{x} be the indices of the permutations involved
in h, where Fy € [k]<“. Then by Lemma there are o < k and a partial
order isomorphism

X = XFp,a Pcl(UﬁeFO BAUB®) Pcl(UﬂeFO BSUB*)

which maps ¢® to ¢* and fixes ¢° for § € Fy. But then y~!(h) is a name
for an element of G, and so |fix(x 1 (h))| < R¢. Since both PC](UﬁeF BAUB®)
0

and PCI(UBeF psupr) are completely embedded in P, we conclude that VP E
0
‘ﬁX(h)‘ <Njy. =

6. Concluding remarks. Let 7y be the template used in the proof of
the consistency of a being of countable cofinality (see [4]), whose definition
is also stated in the previous section.

The construction presented gives also a proof of the fact that the minimal
size of a family of almost disjoint permutations, denoted a,, can be of count-
able cofinality. Let A be a generating set, and let Q4 be the poset for adding
a maximal cofinitary group defined in Section 2. Let Q4 be the suborder
consisting of all pairs (s, F') where every word in F is of the form ab~! for
some a,b € A. Then Q4 is a finite function poset with the strong embedding
property which adds a set of almost disjoint permutations of cardinality |A|,
which is maximal whenever | A| is uncountable. Then P(75, Qr,, L) provides
the consistency of cof(a,,) = w. The proof of maximality follows very closely
the maximal cofinitary group case, and the same isomorphism of names
argument shows that there are no maximal families of almost disjoint per-
mutations of intermediate cardinalities, i.e. cardinalities between A\g and .
Note also that non(M) < a,,.

Another relative of the almost disjointness number, which can be ap-
proached in the same way, is the minimal size of a maximal almost disjoint
family of functions in “w. Let A be a generating set, and let Q 4 be the poset
of all pairs (s, F'), where s C A X w X w is finite, s, defined as above is a
finite function, and F is a finite set of words of the form ab~! for a # b
in the index set A. The extension relation states that (s, F') extends (¢, F)
if s Dt, F DO E and for all w € E if e,[s](n) is defined and e,[s](n) = n
then ey [t](n) = n. Then P(75,Qr,, L) provides the consistency of a, being
of countable cofinality. Note also that to obtain a lower bound for a. in the
final generic extension, we use the fact that non(M) < a..

The consistency of cof(a) = w is due to Brendle [4]. We mention that
his proof also fits into our general framework. More precisely, as described
in Section 3 above, given an uncountable generating set A, there is a finite
function poset with the strong embedding property D4 which adds a max-
imal almost disjoint family of cardinality |A|. Then if D denotes the usual
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Hechler forcing for adding a dominating function, the iteration P(7y, Dz, D)
provides the consistency of cof(a) = w.
Thus we have obtained Theorem 1.2 of the Introduction.
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