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Abstract. We develop a diagrammatic categorification of the polynomial ring Z[x].
Our categorification satisfies a version of Bernstein–Gelfand–Gelfand reciprocity property
with the indecomposable projective modules corresponding to xn and standard modules
to (x− 1)n in the Grothendieck ring.

1. Introduction. Inspired by the general idea of categorification, in-
troduced by L. Crane and I. Frenkel, we construct a categorification of the
polynomial ring Z[x], including its elements (x− 1)n. This construction can
be generalized to orthogonal one-variable polynomials, including Chebyshev
polynomials of the second kind and Hermite polynomials [4].

In this paper, we interpret the ring Z[x] as the Grothendieck ring of a
suitable additive monoidal category A-pmod of (finitely-generated) projec-
tive modules over an idempotented diagrammatically defined ring A (see
Section 2). The monomials xn become indecomposable projective mod-
ules Pn, while the polynomials (x − 1)m turn into the so-called standard
modules Mm. The ring A has one more distinguished family of modules,
simple modules Ln. A remarkable feature of these three collections of mod-
ules is the Bernstein–Gelfand–Gelfand (or BGG) reciprocity property [2].
The projective modules Pn have a filtration by the standard modules Mm,
for m ≤ n, and the respective multiplicities satisfy the relation

[Pn : Mm] = [Mm : Ln].

The first examples of algebras and modules with this property are due
to J. Bernstein, I. Gelfand, and S. Gelfand, and come up in the infinite-
dimensional representation theory of simple Lie algebras. Our algebra A,
which we call the SLarc algebra, on the other hand, has a purely topological
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definition, yet satisfies the BGG property. Moreover, the standard modules
Mn have a clear diagrammatic interpretation. An additional sophistication
appears due to the nonunitality of A. Instead of the unit element 1, the
SLarc algebra A contains an infinite collection of idempotents 1n, n ≥ 0.
The projective modules Pn = A1n and the standard modulesMn are infinite-
dimensional, and the multiplicity [Mm : Ln] should be understood in the
generalized sense, as dim(1nMm), due to one-dimensionality of the simple
modules Ln. We hope that our approach will lead to a topological inter-
pretation of the BGG reciprocity in many other cases, including the ones
considered by J. Bernstein, I. Gelfand, and S. Gelfand. In the sequel [4] we
will generalize these constructions to categorify the Hermite and Chebyshev
polynomials.

2. The algebra of SLarcs and what it categorifies. In this section
we define the SLarc algebra A and introduce certain types of A-modules,
such as projective and standard modules. Then we compute the Grothen-
dieck group (ring) of an appropriate category and show how it can be iden-
tified with the ring Z[x], via sending indecomposable projective modules to
monomials. Finally, we describe various properties of this construction and
show that it satisfies the Bernstein–Gelfand–Gelfand reciprocity.
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Short arcs

Long (through) arcs

width=4

Fig. 1. A diagram in mBn

Definition 2.1. Denote by mBn the set of isotopy classes of planar
diagrams (see Figure 1) which connect k out of m points on the line x = 0
to k out of n points on the line x = 1 by k disjoint arcs called larcs (long
arcs), k ≤ min(n,m). The remaining m−k left and n−k right points extend
to short arcs or sarcs, with one endpoint on either line x = 0 or x = 1 and the
other in the interior of the strip 0 < x < 1. We require that the projection of
the resulting 1-manifold onto the x-axis has no critical points. The number
of larcs k is called the width of the diagram. Let mBn(k) and mBn(≤k)
denote the subsets of diagrams in mBn of width k and less than or equal
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to k, respectively.

The set mBn has cardinality

min(n,m)∑
k=0

(
n

k

)(
m

k

)
=

(
n+m

n

)
.

Furthermore, denote by B the set of all diagrams,

B :=
⊔

n,m≥0
mBn and Bn :=

⊔
m≥0

mBn.

Definition 2.2. The SLarc algebra A over a field k is a vector space
with basis B and multiplication generated by concatenation of elements
of B. The product is zero if the resulting diagram has an arc which is not
attached to the lines x = 0 or x = 1, called a floating arc (see Figure 2). Also,
if y ∈ mBn, z ∈ kBl and n 6= k, so that the concatenation is not defined,
then we set yz = 0. Thus, for any two elements y, z of B the product yz is
either 0 or an element of B.

  

=                    = 0

Fig. 2. Concatenation of these two diagrams equals zero since the resulting diagram con-
tains a floating arc.

Remark 2.3. Alternatively, we can avoid drawing sarcs, and instead
draw just their endpoints on the vertical lines x = 0, 1. Then the prod-
uct of two diagrams, and their corresponding elements in A, is zero if the
composition has an isolated point in the middle of the diagram.

The composition defined above induces an associative k-algebra struc-
ture on A. For each n there exists a unique diagram in nBn without sarcs.
We denote this diagram and its image in A by 1n. These elements are mini-
mal idempotents in A. Therefore, A is a nonunital associative algebra with
a system {1n}n≥0 of mutually orthogonal idempotents.

We consider left modules M over A with the property

M =
⊕
n≥0

1nM.

This property is analogous to the unitality condition 1M = M for modules
over a unital algebra. For a module M , we write Mm for the direct sum of
m copies of M .
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Definition 2.4. Let Pn = A1n be the projective A-module with a basis
consisting of all diagrams in Bn. Define Mn, called the standard module, as
the quotient of Pn by the submodule spanned by all diagrams which have
right sarcs.

Therefore, a basis of Mn is the set of diagrams in Bn with no right sarcs.
In particular, if 1mMn 6= 0 then m ≥ n. Notice that b ·a = 0 for any a ∈Mn

and every diagram b ∈ B with at least one right sarc (Figure 2).

=0=

b                                    a

Fig. 3. For any diagram a representing an element of a standard module and every diagram
b ∈ B with right sarcs the product b · a is 0 in Mn.

Definition 2.5. A left A-module M is called finitely-generated if for
some finite subset {m1, . . . ,mk} of M we have M = Am1 + · · ·+Amk.

Lemma 2.6. A left A-module M is finitely-generated if and only if it is
a quotient of a direct sum

⊕N
n=0 P

an
n for some an ≥ 0, N ∈ N.

Let A-mod be the category of finitely-generated left A-modules and
A-pmod the category of finitely-generated projective left A-modules.

Proposition 2.7. The hom space HomA(M ′,M ′′) is a finite-dimension-
al k-vector space for any M ′,M ′′ ∈ A-mod.

Proof. It is sufficient to consider the caseM ′=Pn.We have Hom(Pn,M
′′)

= 1nM
′′. But 1nM

′′ is finite-dimensional, since M ′′ is a quotient of a finite
direct sum of Pm’s, and 1nPm is finite-dimensional.

Corollary 2.8. The category A-mod is Krull–Schmidt.

Definition 2.9. Let Ln = k1n be the one-dimensional module over A
on which any element of B other than 1n acts by zero.

Lemma 2.10. Any simple A-module is isomorphic to Ln for some n ≥ 0.

Proof. Let L be a simple A-module and I the 2-sided ideal in A spanned
by all diagrams with at least one left sarc. Notice that 1nI

n+1 = 0 for all
n ≥ 0. Since IL is a submodule of L, we have either IL = L or IL = 0.
If IL = L then ImL = L for every m and 0 = 1nI

n+1L = 1nL for all n,
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a contradiction. Hence IL = 0 and every simple module L is actually an
A/I-module. The algebra A/I is directed, in the sense that

1n(A/I)1m = 0 if n > m,

1n(A/I)1n ∼= k.

Hence,
⊕

k≤n 1kL is a submodule of L for every n. With L being simple,
1nL = L for some n, and L is one-dimensional, isomorphic to Ln.

Theorem 2.11. Any finitely-generated projective left A-module P is iso-
morphic to a finite direct sum of indecomposable projective modules Pn,

P ∼=
N⊕
n=0

P ann .

The multiplicities an ∈ Z+ are invariants of P .

Proof. The module Pn is indecomposable, since its endomorphism ring
R = HomA(Pn, Pn) is local. Indeed, the diagrams in nBn other than 1n span
a two-sided ideal J in R, and JN = 0 for N sufficiently large. Therefore J
is the radical of R, R/J ∼= k, and R is local.

Take a finitely-generated projectiveA-module P and any maximal proper
submodule Q. The simple module P/Q is isomorphic to Ln for some n. The
surjections

P
p1→ Ln

p2←− Pn

lift to homomorphisms P
α→ Pn

β→ P.

P

Pn

Ln

Pn

Ln

p2

����
P Ln

p1 // //

Pn

P

β

��
P

Pn
α

55

Notice that p1βα = p1 and p2αβ = p2, which gives p2(αβ − 1) = 0. Hence
1− αβ ∈ J(End(Pn)), the Jacobson radical of the endomorphism ring, and
there exists an integer N such that (1 − αβ)N = 0. Thus, there exists an
endomorphism δ of Pn such that 1 − αβδ = 0. Hence for β′ = βδ we get
αβ′ = 1, which means

P ∼= Imβ ⊕Kerα ∼= Pn ⊕Kerα,

i.e. Pn is a direct summand of P . Proceeding by induction, we get P ∼=⊕N
n=0 P

an
n . The Krull–Schmidt property [1] implies that the multiplicities

an are invariants of P.

Next, we prove that the nonunital algebra A is Noetherian, hence the
category A-mod is abelian.
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Proposition 2.12. A submodule of a finitely-generated left A-module is
finitely-generated.

Proof. Any finitely-generated A-module is a quotient of
⊕N

i=0 P
ni
i for

some N and some n0, n1, . . . , nN , hence it suffices to show
⊕N

i=0 P
ni
i is

Noetherian. Furthermore it is enough to show that any submodule of Pn
is finitely-generated. Since Pn has a finite filtration by standard modules, it
suffices to check that any submodule of Mn is finitely-generated. The induc-
tion base case n = 0 is trivial, since M0 =

⊕
m≥0 1mM0, each term 1mM0 is

one-dimensional and generates a submodule of finite codimension in M0.

Basis elements b of Mn can be labeled by length n + 1 sequences of
nonnegative integers (a1, . . . , an+1). Here a1 is the number of sarcs below
the bottom larc and an+1 is the number of sarcs above the top larc. Each
ai, 2 ≤ i ≤ n, is the number of sarcs between the (i− 1)st and the ith larc,
counting larcs from bottom to top (Figure 4).

Fig. 4. Basis element for Mn

We call an+1 the degree deg(b) of the basis element b = (a1, . . . , an+1)
∈ Mn. The degree of an arbitrary element d =

∑
i xibi ∈ Mn, xi ∈ k∗,

is equal to deg(d) = maxi deg(bi). For d =
∑

i xibi ∈ Mn define d′ =∑
deg(bi)=deg(d) xibi ∈Mn, which is the sum of the terms of d with the highest

degree.

Fig. 5. This figure shows an element d ∈M3, the corresponding d and the element obtained
by degree shift 2 denoted by d[2]. The top larc and sarcs above it are denoted by dashed
lines. Two added sarcs in d[2] are shown as dotted lines.

Given d ∈ Mn let d ∈ Mn−1 be the element obtained by removing the
top larc and all of the sarcs above it in each of the diagrams in d. Moreover,
we define the element d[p] ∈ Mn obtained from d by adding p sarcs on top
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5 +2 +7

d'

d=

5 +7d=

Fig. 6. Highest degree summands of the element d ∈M4 are contained in the top left and
right rectangles. The bottom picture shows d.

of each diagram in d. In particular, deg(d[p]) = deg(d) + p (Figure 2). To
continue with the proof, let M be any submodule of Mn and d0 be an element
of the least degree in M . Assuming that d0, . . . , dk have already been chosen,
take dk+1 ∈M \ (d0, . . . , dk) where (d0, . . . , dk) is the submodule generated
by the elements {d0, . . . , dk}. Continuing by induction we obtain a sequence
of elements di ∈M .

Let ci := d′i ∈Mn−1 and let M denote the submodule of Mn−1 generated
by the ci’s. According to the induction hypothesis Mn−1 is Noetherian, hence
M = (c0, c1, . . .) must be finitely generated. In other words, there exists
N ∈ N such that M = (c0, c1, . . . , cN ).

Assume thatM 6= (d0, . . . , dN ). Then there exist dN+1 ∈M\(d0, . . . , dN )

and cN+1=
∑N

k=0 αkck for some αk∈A. Let d∗=
∑N

k=1 αkd
[deg(dN+1)−deg(dk)]
k .

Now dN+1 − d∗ /∈ (d0, . . . , dN ) and deg(dN+1 − d∗) < deg(dN+1), which
contradicts the minimality of deg(dN+1). Therefore M = (d0, . . . , dN ) and
Mn is Noetherian (1).

The involution of the set B which reflects a diagram about a vertical
axis takes nBm to mBn and induces an anti-involution of A. Hence the ring
A is right Noetherian as well.

Definition 2.13. The Grothendieck group K0(A) of finitely-generated
projective A-modules is the abelian group generated by symbols [P ] for
all finitely-generated projective left A-modules P , with defining relations
[P ] = [P ′] + [P ′′] if P ∼= P ′ ⊕ P ′′.

(1) This proof is analogous to the proof that k[x1, . . . , xn] is Noetherian.
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Proposition 2.14. K0(A) is a free abelian group with basis {[Pn]}n≥0.

Proposition 2.14 follows from Theorem 2.11.
Observe that the existence of the filtration (2.1) of the projective module

Pn by the standard modules Mm implies that Mm has a finite projective res-
olution P (Mm) by Pn’s, for n ≤ m. Consequently, we can view Mm as an ob-
ject of the category C(A-pmod) of bounded complexes of finitely-generated
projective A-modules. Morphisms in this category are homomorphisms of
complexes modulo zero-homotopic homomorphisms [3, 5]. The Grothendieck
groups of the categories A-pmod and C(A-pmod) are canonically isomorphic:

K0(C(A-pmod)) ∼= K0(A-pmod)

via the isomorphism taking the symbol of

Q = (· · · → P i → P i+1 → · · · ) ∈ C(A-pmod)
to

[Q] =
∑
i∈Z

(−1)i[P i] ∈ K0(A).

Hence, equality (2.2) below can be interpreted within K0(A).
The projective module Pn has a filtration by the standard modules Mm,

over m ≤ n. Specifically, consider the filtration

(2.1) Pn = Pn(≤n) ⊃ Pn(≤n−1) ⊃ · · · ⊃ Pn(≤0) = 0,

where Pn(≤m) is spanned by the diagrams in Bn of width at most m (equiv-
alently, with at least n−m right sarcs). Left multiplication by a basis vector
cannot increase the width, hence Pn(≤m) is a submodule of Pn (see Figure 8).
The quotient Pn(≤m)/Pn(≤m−1) has a basis of diagrams of width exactlym.
These diagrams can be partitioned into

(
n
m

)
classes enumerated by positions

of the n−m right sarcs. The quotient Pn(≤m)/Pn(≤m−1) is isomorphic to
the direct sum of

(
n
m

)
copies of the standard module Mm. Consequently, we

have an equality in the Grothendieck group of the additive category A-mod:

(2.2) [Pn] =

n∑
m=0

(
n

m

)
[Mm].

The transformation matrix from the basis of the symbols [Pn] of inde-
composable projective modules to the basis of the symbols [Mm] of stan-
dard modules is upper-triangular, with ones on the diagonal and nonzero
coefficients being the binomials

(
n
m

)
. The entries of the inverse matrix are

(−1)n+m
(
n
m

)
. Thus we have the following equality in K0(A):

(2.3) [Mn] =

n∑
m=0

(−1)n+m
(
n

m

)
[Pm].

We identify the projective Grothendieck group K0(A) with Z[x] by send-
ing the symbols of the projective modules [Pn] to the monomials xn and
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define an inner product on the basis {xn}n≥0 by

(2.4) (xn, xm) = dim Hom(Pn, Pm) = |nBm| =
(
n+m

m

)
.

This identification will be justified in Section 3.1 by introducing a monoidal
structure on A-pmod under which Pn ⊗ Pm ∼= Pn+m.

Under this identification, (2.3) gives

(2.5) [Mn] =
∑
m≤n

(−1)n+m
(
n

m

)
xm = (x− 1)n,

so the symbols of standard modules [Mn] correspond to (x− 1)n.
Equation (2.3) hints at the existence of a projective resolution of Mn

which starts with Pn and has
(
n
m

)
copies of Pm in the (n−m)th position:

(2.6) 0→ P0 → · · · → P
(nm)
n−m → · · · → P

(n2)
n−2 → P

(n1)
n−1 → Pn →Mn → 0.

Let us construct this resolution. Denote the diagram with n−1 larcs and
one left sarc at the ith position by ibn−1 ∈ nBn−1. The diagram obtained from
ibn−1 by reflection along the vertical axis is denoted by bin ∈ n−1Bn (Figure 7).
The product of ibn−1 or bin with an arbitrary diagram a ∈ B, when defined
and nonzero, differs from the diagram a in the following way (see Figure 8):

i

1

n

1

n-1

i-1

i

i-1

i+1

i

1

n-1

1

n

i-1

i+1

i-1

i

bi n-1 b
i

n

Fig. 7. The diagrams ibn−1 and bin used in defining differentials in projective resolution
of standard modules and resolution of simple by standard modules.

i

1

n+1

i+1

i-1

bi n-1

b
i

n

=

=

bi n-1

=

=

a

a a

a
bi n-1

bi n-1

b
i

n

bin

a
a

aa b
i

n

Fig. 8. The diagrams ibn and bin and their products with a diagram a ∈ B. The dashed
line represents the difference between them and the diagram 1n, and the dotted line in
the resulting diagram shows the difference between the diagram a we started with and
the product diagram.
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(1) a · ijbn−1 turns the ijth larc in the diagram a into a left sarc,
(2) ijbn−1 · a adds a left sarc between the ith and (i+ 1)st larcs in a,

(3) a · bijn adds a right sarc between the ith and (i+ 1)st larcs in a,

(4) b
ij
n · a turns the ijth larc in a into a right sarc.

Let Im = {i1, . . . , im} ⊆ {1, . . . , n}, i1 < · · · < im, be a subset of cardinal-

ity m ≤ n. Label the summands of the mth term P
(nm)
n−m by these subsets Im,

denoting the summand by P Imn−m. Let Im,l := Im \{il}. Removing an element
il of Im can be interpreted as composing a diagram in Bn−m on the right
with a diagram bpn−m+1, obtained in the following way. Take a diagram biln
and delete all larcs at positions labeled by elements in Im,l, resulting in
a diagram bpn−m+1, where p denotes the position of il in the ordered set
{1, . . . , n} \ Im ∪ {il} (see Figures 7 and 9).

x

x
x
x

x

x
x

x

x
x
x x

x
x

1
2

3
4

5

6
7

b
7

7

1
2

3
4

5

6
7

1
2

3
4

5

6
7

1
2

3
4

5

6
7

b
3

4
b
4

4
b
3

7

Fig. 9. The differentials d+1
{3,4,5,7} and d+4

{3,4,5,7} in the projective resolution of M7 sending

P
{3,4,5,7}
3 to P

{4,5,7}
4 and P

{3,4,5}
4 , respectively. They are determined by composing on the

right with the diagrams b34 and b44 obtained from b37 and b77 by deleting the dashed larcs
corresponding to the label sets of P

{4,5,7}
4 and P

{3,4,5}
4 .

Next, define the differential

d : P
(nm)
n−m → P

( n
m−1)

n−(m−1)

as the sum

d =
∑
Im

m∑
l=1

d+lIm

of the maps d+lIm : P Imn−m → P
Im,l
n−(m−1) sending a ∈ P Imn−m to d+lIm(a) =

(−1)l−1a · bpn−m+1, For example, Figure 9 shows how to define d+1
{3,4,5,7} and

d+4
{3,4,5,7} in the resolution of M7 sending P

{3,4,5,7}
3 to P

{4,5,7}
4 and P

{3,4,5}
4 ,

respectively.

Proposition 2.15. The complex (2.6) with the differential defined above
is exact.

Proof. The proof that d2 = 0 follows from the sign convention and the
commutative diagram in Figure 10 which shows d+s−1Im,r

· d+rIm = d+rIm,s · d
+s
Im

for r < s. The proof that (2.6) is exact uses a slight generalization of this
square. Viewed as a complex of vector spaces, (2.6) splits into the sum of
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complexes:

0→ 1kP0 → · · · → 1kP
(nm)
n−m → · · · → 1kP

(n2)
n−2 → 1kP

(n1)
n−1

→ 1kPn → 1kMn → 0,

one for each element of kBn, k ≤ n, with no left sarcs. Each of the complexes
in the sum is isomorphic to the total complex of a k-dimensional cube with
a copy of the ground field k at each vertex and each edge an isomorphism.
Hence, all complexes are contractible.

P

P

Pn-m

P

n-m+1

n-m+1

n-m+2

d

Im 

I  
m,r 

I    m

d

d

d
I      m,s 
 +r

sI   \ {i , i }   m r

+s 

+s-1
 +r

Im 

m,s I  

I  
m,r 

Fig. 10. A commutative diagram for the projective resolution of standard modules

A finite-dimensional A-module M has a finite filtration with simple mod-
ules Ln as subquotients. Due to the one-dimensionality of Ln the multiplicity
of Ln in M , denoted by [M : Ln], equals dim(1nM). A finitely-generated
A-module M is not necessarily finite-dimensional but it satisfies

dim(1nM) <∞ for n ≥ 0,

and therefore we call it locally finite-dimensional.
For a locally finite-dimensional module M we define the multiplicity of

Ln in M as:
[M : Ln] := dim(1nM).

This definition is compatible with the usual notion of multiplicity of Ln in
M as the number of times Ln appears in the composition series of M when
M is finite-dimensional.

Theorem 2.16 (SLarc BGG). The SLarc algebra satisfies the Bernstein–
Gelfand–Gelfand (BGG) reciprocity property:

(2.7) [Pn : Mm] = [Mm : Ln].

The multiplicity on the right side of (2.7) is understood in the generalized
sense, as explained above.
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Proof. Recall that the indecomposable projective module Pn has a fil-
tration by the standard modules Mm for m ≤ n with [Pn : Mm] =

(
n
m

)
.

What remains is to compute the multiplicity of a simple module Ln in a
standard module Mn:

(2.8) [Mm : Ln] = dim(1nMm) =

{(
n
m

)
if n ≥ m,

0 if n < m.

Define the Cartan matrix C(A) by

(2.9) C(A)i,j := dim Hom(Pi, Pj)

and by m(A) the multiplicity matrix m(A)i,j := [Pi : Mj ] = [Mj : Li]. Then

(2.10) C(A) = m(A)m(A)t.

Indeed,

C(A)i,j = dim Hom(Pi, Pj) = [Pi : Lj ]

=
∑
k

[Pi : Mk][Mk : Lj ] =
∑
k

m(A)i,km(A)j,k

=
∑
k

m(A)i,km(A)tk,j = (m(A)m(A)t)i,j .

Proposition 2.17. Exti(Mn,Mm) = (1n−iMm)(
n
i).

Proof. Since the map between Hom(Pk,Mm) and Hom(Pk−1,Mm) in-
duced by the differential in the projective resolution of Mn is trivial, the
proof follows from the fact that Hom(Pk,Mm) = Hom(A1k,Mm) = 1kMm.

Proposition 2.18.

Exti(Mn, Lm) ∼=
{

k( n
n−m) if m ≤ n, i = n−m,

0 otherwise.

Proof. Obviously, Exti(Mn, Lm)=0 form>n. To compute Exti(Mn, Lm)
we use the projective resolution (2.6) and get the complex

(2.11) 0←Hom(P0, Lm)←· · ·← Hom(Pn−1, Lm)⊕n← Hom(Pn, Lm)← 0.

Notice that

Hom(Pn−k, Lm) =

{
k if m = n− k,

0 otherwise.

In the case m = n − k, k ∈ Z+, the complex (2.11) will be nontrivial only

in degree n − m, and the (n − m)th homology is isomorphic to k( n
n−m) =

Extn−m(Mn, Lm). All other Ext’s are zero.

Proposition 2.19. The homological dimension of the standard module
Mn is n.
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Proof. The projective dimension of Mn is at most n, as we have con-
structed a projective resolution (2.6) of that length. For m = 0, Proposition
2.18 says that Extn(Mn, L0) = k, hence the projective dimension is equal
to n.

Next we construct a resolution of each simple module Lk by the standard
modules Mm for m ≥ k :

(2.12)
d→M

(k+mm )
k+m

d→ · · · d→M
(k+2

2 )
k+2

d→M
(k+1

1 )
k+1

d→Mk
d→ Lk → 0.

Let Im = {i1, . . . , im} be a subset of {1, . . . , n}, m ≤ n, i1 < · · · < im. Let
Im,−p denote the set obtained from Im by removing the pth element and
subtracting 1 from all subsequent elements:

(2.13) Im,−p = {i1, . . . , ip−1, ip+1 − 1, . . . , im − 1} = Im \ {ip}.

The mth term of the resolution is the direct sum M
(k+mm )
k+m of the standard

modules Mk+m. On the level of diagrams, the multiplicity
(
k+m
m

)
represents

the number of ways to add m larcs to the identity diagram 1k in Mk to
obtain a diagram in Mk+m. Let Im = {i1, . . . , im} ⊆ {1, . . . , k + m} be the
set describing the positions of the added larcs. Each summand M Im

k+m is
labeled by one of these subsets, and the differential will take the summand
labeled by Im into summands labeled by Im,−l, for 0 < l ≤ m, by composing
on the right with diagrams containing a single short right arc and no left
sarcs (see Figure 7).

More precisely, let

d−lIm : M Im
k+m

lbk+m−1−−−−−→M
Im,−l
k+m−1

send a ∈M Im
k+m to

d−lIm(a) = (−1)l a · lbk+m−1
where the diagram lbk is shown in Figure 7. The differential

d : M
(k+mm )
k+m →M

(k+m−1
m−1 )

k+m−1

is an alternating sum of these maps,

d =
∑
Im

m∑
l=1

(−1)ld−lIm .

For example, the diagrams in Figure 11 show how to define d−1{3,6,8},

d−2{3,6,8} and d−3{3,6,8} in the resolution of L5 sending M
{3,6,8}
8 into M

{5,7}
7 ,

M
{3,7}
7 , and M

{3,6}
7 . In general, for a map d−lIm , 0 < l ≤ m, sending M Im

n+1 →
Mn in the resolution of Ln+1−m, start with a diagram 1n+1, turn the arc il
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     b         1

        2

x x

x x
x x

x x
x x

x x

x x
x x

x x
x x

x x

x x
x x

x x
x x

     b         3

        2
     b         2

        2

Fig. 11. Examples of diagrams used in defining the differentials d−1
{3,6,8}, d

−2
{3,6,8} and

d−3
{3,6,8} in the resolution of a simple module L5 by standard modules: dashed lines are the

ones to be removed to obtain the appropriate diagram.

in a short left arc, then remove all long arcs labeled by numbers which are
not in Im = {i1, . . . , im}, shown as dotted lines in Figure 11.

Proposition 2.20. The complex (2.12) with the differential defined above
is exact.

Proof. The proof that d2 = 0 is the same as in Proposition 2.15, except
that the differential is defined using diagrams that lower the number of larcs
(see Figures 7 and 10).

To prove exactness, notice that the complex (2.12) splits into the sum of
complexes of vector spaces

1nM
( n
n−k)
n → 1nM

( n−1
(n−1)−k)
n−1 → · · · → 1nM

(k+1
1 )

k+1 → 1nMk

for each n > 0. In turn, each of these complexes splits into the sum of (n−k)-
dimensional cubes, corresponding to diagrams in nBn−k with k larcs, n− k
left sarcs and no right sarcs, containing a copy of the field k at each vertex.
For example, the resolution of L2 contains a summand corresponding to

M
{2,3,4}
5 represented by the total complex of a 3-dimensional cube shown

in Figure 12. Sets labeling the vertices denote positions of short arcs in the
corresponding diagrams shown to the left of the module symbol. Arrows are
labeled with positions of elements which are being removed.

Informally, at the level of Grothendieck groups we have the relation

[Ln] =

∞∑
k=0

(−1)k
(
n+ k

k

)
[Mn+k]

=
∞∑
k=0

(−1)k
(
n+ k

k

)
(x− 1)n+k =

(x− 1)n

xn+1
.

We will not try to make sense of this infinite sum.
In order to obtain a projective resolution of a simple module Ln we

construct a bicomplex (see Figure 13), with a projective resolution (2.6) of
Mn+k, k ≥ 0, lying above each copy of a standard module in the resolution
(2.12) of Ln by the standard modules Mm, m ≥ n.
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M5 
234

M4 
24

M4 
34

M4 
23

M3
 

4

M3
 

2

M3
 

3

M2

-2                                                         -3 

-1                                                         -2 

-1                                                         -2 

-1                                                          -2 

-1

-1

-1

-1

Fig. 12. A 3-dimensional cube in the resolution of the simple module L2, corresponding
to M

{2,3,4}
5 , where label {2, 3, 4} describes a diagram in B2 with three left sarcs and the

remaining two larcs shown to the left of the symbol M5. Negative labels on the arrows
specify the order of the element of the set in the superscript that is removed. For example,
M
{2,3,4}
5 is mapped to M

{3,4}
4 by an arrow labeled by −1, which means that 2 is removed

from {2, 3, 4}.

To complete the construction of the bicomplex, we define the horizontal
differential denoted by dH . Each copy of the projective module Pn+m−k in

the bicomplex shown in Figure 13 comes with a pair of labels P
Im+n,Jk
n+m−k . The

first label In+m is equal to the label of the standard module Mn+m in the
resolution of Ln, and Jk is the label of Pn+m−k in the projective resolution
of Mn+m.

The horizontal differential dH : P
(n+mm )(n+mk )
n+m−k → P

(n+m−1
m−1 )(n+m−1

k )
n+(m−1)+k is a

signed sum of maps dJkIm+n
sending a ∈ P Im+n,Jk

n+m−k to

(2.14) dJkIm+n
(a) =

n+m∑
p=0
ip /∈Jk

(−1)ip−1 a ipb ∈
n+m⊕
p=0
ip /∈Jk

P
Im+n,−p,Jk,−p
n+m−1−k

where Im+n,−p and Jk,−p are defined in (2.13).

Proposition 2.21. The diagram in Figure 13 is a bicomplex—all squares
are anticommutative.

Proof. Direct computation, see Figure 14.
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ydM

· · ·
dH−−−−−−→ P

(
n+m
m

)(
n+m
n−2

)
m−2 ydM

ydM

· · ·
dH−−−−−−→ P

(
n+m
m

)(
n+m
n−1

)
m−1

dH−−−−−−→ · · ·
dH−−−−−−→ Pn+1

0ydM

ydM

ydM

dH−−−−−−→ · · ·
dH−−−−−−→ · · ·

dH−−−−−−→ P
(n+1)2

1

dH−−−−−−→ P0ydM

ydM

ydM

ydM

· · ·
dH−−−−−−→ · · ·

dH−−−−−−→ · · ·
dH−−−−−−→ · · ·

dH−−−−−−→ · · ·ydM

ydM

ydM

ydM

· · ·
dH−−−−−−→ P

(
n+m
m

)(
n+m

1

)
n+m−1

dH−−−−−−→ · · ·
dH−−−−−−→ P

(n+1)2

n
dH−−−−−−→ Pn

n−1ydM

ydM

ydM

ydM

· · ·
dH−−−−−−→ P

(
n+m
m

)
n+m

dH−−−−−−→ · · ·
dH−−−−−−→ Pn+1

n+1

dH−−−−−−→ PnydM

ydM

ydM

ydM

· · ·
dL−−−−−−→ M

(
n+m
m

)
n+m

dL−−−−−−→ · · ·
dL−−−−−−→ Mn+1

n+1

dL−−−−−−→ Mn
dL−−−−−−→ Ln

dL−−−−−−→ 0y y y ydM

0 −−−−−−→ 0 −−−−−−→ 0 −−−−−−→ 0 −−−−−−→ 0

Fig. 13. A bicomplex whose total complex is a projective resolution of Ln

P
⊕(n+m

m )(n+m
k+1 )

n+m−(k+1)

dH−−−−→ P
⊕(n+m−1

k+1 )(n+m−1
k+1 )

n+(m−1)−(k+1)ydM

ydM

P
⊕(n+m

m )(n+m
k )

n+m−k

dH−−−−→ P
⊕(n+m−1

m−1 )(n+m−1
k )

n+(m−1)−k

Fig. 14. An anticommutative square in the bicomplex of Figure 13

The projective resolution

(2.15) P (Ln) : · · · → Cn,t → Cn,t−1 → · · · → Cn,0 → Ln → 0

of the simple module Ln is defined in the following way:

(2.16) Cn,t =
⊕

m+k=t
n+m≥k

P
(n+mm )(n+mk )
n+m−k

The total differential dt is the sum of the horizontal differential dH , and
the vertical differential dM in the projective resolution of standard modules:

dt = dH + dM .

In other words, the resolution (2.16) is the total complex of the bicomplex
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in Figure 13. Since each column in the bicomplex is exact, the following
proposition holds:

Proposition 2.22. The chain complex (2.16) is exact.

Proposition 2.23. The simple modules Ln have infinite homological
dimension.

Proof. By the resolution (2.16), it is sufficient to show that Exti(Ln,M)
is nontrivial for arbitrarily large i ∈ N and some A-module M . Recall that

Hom(Pi, Lm) =

{
k if m = i,

0 otherwise.

Cn,t contains all Pi for max(0, n− t) ≤ i < n+ t such that n+ t− i ≡ 0
(mod 2). Let M = L0 and notice that P0 ∈ Cn,t for every t ≥ n such
that n + t is even. Hence, the chain complex built out of the hom spaces
Hom(Cn,t, L0) (with the differential induced from the resolution) reduces to
the infinite chain complex having trivial groups in odd degrees and nontrivial
groups in even degrees for t ≥ n:

Extn+t(Ln, L0) ∼= Hom(Cn,t, L0) ∼=

{k if t = n,

k

(
(t+n)/2
(t−n)/2

)
if t+ n even, t > n.

Therefore, Extn+t(Ln, L0) is nontrivial for arbitrarily large t > n such that
n+ t is even.

The SLarc algebra A can be viewed as a graded algebra with the grading
defined by the total number of sarcs in a diagram. In particular, if we regard
(2.16) as a graded resolution, the differential increases the degree by 1.

Corollary 2.24. The algebra A is Koszul.

3. Functors. In this section we describe a monoidal structure on
A-pmod, justifying the identification

K0(A-pmod) ∼= Z[x].

Next, we explain how the identity functor on A-mod can be approxi-
mated. On the pre-categorified level, given a basis {vi}Ni=1 of a separable
Hilbert space H, the identity operator acting on H can be viewed as the
limit of finite sums

∑N
i=1 vi ⊗ v∗i . In Section 3.2 we explain a categorified

analogue of this construction for the case of A-modules. Notice that we are
not categorifying a Hilbert space but its small subspace

⊕∞
i=1 Zvi⊗ v∗i , and

the operator vi ⊗ v∗i should be thought of as acting on this space.
The most obvious inclusion A ↪→ A is given by adding a through (long)

line either at the top or at the bottom of each diagram in A. In Section
3.3 we investigate restriction and induction functors for this inclusion and
induced maps on Grothendieck groups. Converting each line to k parallel
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lines leads to a cabling functor, considered in Section 3.4. In Section 3.5 we
compute the derived tensor product of standard modules.

3.1. Monoidal structure. We define the tensor product bifunctor

A-pmod×A-pmod→ A-pmod

on indecomposable projective modules by Pn ⊗ Pm = Pn+m and extend it
to all objects using Theorem 2.11. Next, define the tensor functor on basic
morphisms of projective modules α : Pn → Pn′ and β : Pm → Pm′ , where
α ∈ nBn′ , β ∈ mBm′ by placing α on top of β, and extend to all morphisms
and objects using bilinearity (see Figure 15).

P3     P5 P3    P2

P6      P7

α

α β

β

⊗

Fig. 15. Tensor product defined on basic morphisms of projective modules

The tensor product extends to a bifunctor C(A-pmod)× C(A-pmod) →
C(A-pmod). Hence, A-pmod and C(A-pmod) are monoidal categories. Since
standard modules have finite projective resolutions, they can be viewed as
objects of C(A-pmod). Let P (Mn) be the projective resolution (2.6) of the
standard module Mn.

Note that in the Grothendieck group, [Mn] = (x− 1)n and

[Mn] · [Mm] = (x− 1)n+m = [Mn+m].

This equality lifts to the category A-mod or C(A-pmod).

Lemma 3.1. In C(A-pmod), P (Mn)⊗P (Mm) ∼= P (Mm+n) for m,n ≥ 0.

Proof. The pth term in the product of the projective resolutions P (Mm)
and P (Mn) is ⊕

k+l=p

P
(nk)
k ⊗ P (ml )

l
∼= P

(n+mp )
p .

This module isomorphism respects differentials and gives an isomorphism
of complexes. Notice that the isomorphism also holds in the category of
complexes before modding out by null-homotopic morphisms.
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Corollary 3.2. The following relation holds between standard modules
viewed as objects of C(A-pmod): Mn ⊗Mm

∼= Mm+n.

In the Grothendieck group the tensor product descends to multiplication
in the ring Z[x], under the isomorphism of abelian groups K0(A) ∼= Z[x].

To define the tensor product for arbitrary modules we need to construct
and tensor their projective resolutions. If modules M,N have finite filtra-
tions with successive quotients isomorphic to standard modules Mn for vari-
ous n, then the derived tensor product M ⊗̂N has cohomology only in degree
zero, and H0(M ⊗̂N) ∼=Db M ⊗̂N has a filtration by standard modules. The
derived tensor product restricts to a bifunctor on the category of modules
admitting a finite filtration by standard modules.

3.2. Approximations of the identity. Recall that B(≤k)=
⊔k
i=0B(i)

denotes the set of diagrams in B of width less than or equal to k. Let
A(≤k), k ≥ 0, denote the subspace of A spanned by diagrams in B(≤k).
This subspace is an A-subbimodule of A. Let A(k) be the quotient subbi-
module A(≤k)/A(≤k−1). Let nP denote the right projective module 1nA
and, analogously to the standard modules Mn, let nM be the quotient of nP
by the submodule spanned by all diagrams with a left sarc. One can think
of diagrams of nM as reflections along the vertical axis of diagrams in Mn.

Fig. 16. A diagram in B(4) viewed as a product of elements in M4 and 4M

Proposition 3.3. A(≤k)/A(≤k−1) ∼= Mk⊗k kM as A-bimodules (Fig-
ure 16).

For a given k ≥ 0 , define a right exact functor Fk : A-mod→ A-mod by

Fk(M) = A(≤k)⊗AM

for an A-module M. The image of the standard module Mm under Fk is

(3.1) A(≤k)⊗AMm =

{
Mm if k ≥ m,

0 otherwise.

By definition Pm = A1m, hence A(≤k)⊗APm = A(≤k)⊗AA1m = A(≤k)1m,
and this is a submodule of Pm spanned by diagrams of width less than or
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equal to k:

(3.2) Fk(Pm) = A(≤k)⊗A Pm =

{
Pm if k ≥ m,

Pm(≤k) if k < m.

Recall that in the Grothendieck group, the projective modules Pn cor-
respond to xn and the standard modules Mn to (x − 1)n. The modules
Pn(≤k) have finite homological dimension, since they admit finite filtra-
tions with successive quotients isomorphic to standard modules. Therefore,
the functor Fk descends to an operator on the Grothendieck group K0(A),
denoted by [Fk]. The action of [Fk] on [Pn] =

∑n
m=0

(
n
m

)
[Mm] is equal to

(3.3) [Fk][Pn] =


[Pn] = xn if k ≥ n,
k∑

m=0

(
n

m

)
[Mm] =

k∑
m=0

(
n

m

)
(x− 1)m if k < n.

In other words, for k ≥ n the operator [Fk] acts via the identity on [Pn],
and for k < n it approximates the identity and can be viewed as taking
the first k + 1 terms

∑k
m=0

(
n
m

)
[Mm] in the expansion of [Pn] in the basis

{(x− 1)m}m≥0.

Proposition 3.4. Higher derived functors of the functor Fk applied to
a standard module are zero:

LiFk(Mn) =

{
Mn if i = 0, k ≥ n,

0 otherwise.

Proof. The projective resolution P (Mn) has the form (2.6):

(3.4) 0→ P0 → · · · → P
(nm)
n−m → · · · → P

(n2)
n−2 → P

(n1)
n−1 → Pn → 0.

Terms in this resolution are multiples of the projective modules Pm for
m ≤ n. By (3.2), if k ≥ n, Fk acts as the identity on the resolution, implying
the proposition in this case. Assume now that k < n. The differential in (2.6)
applied to a diagram in any Pn−m preserves the width of the diagram, and
(2.6) splits, as a complex of vector spaces, into a direct sum of complexes
over all widths from 0 to n. These complexes are exact unless the width is
exactly n, in which case the summand is isomorphic to 0→Mn → 0.

Applying Fk to the resolution (3.4) produces the complex

(3.5) 0→ P0 → · · · → P
(nm)
n−m(≤k)→ · · · → P

(n1)
n−1(≤k)→ Pn(≤k)→ 0

which is exact for k ≤ n, being a direct sum of exact complexes over all
widths from 0 to k.

3.3. Restriction and induction functors and what they cate-
gorify. In this section we consider the restriction and induction functors
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coming from the specific inclusion map on the SLarc algebra and their de-
categorification.

For a unital inclusion ι : B ↪→ A of arbitrary rings the induction functor

Ind : B-mod→ A-mod

given by Ind(M) = A⊗B M is left adjoint to the restriction functor,

HomA(Ind(M), N) ∼= HomB(M,Res(N)).

If the inclusion is nonunital, i.e., ι takes the unit element of B to an idempo-
tent e 6= 1 of A, the restriction functor has to be redefined: to an A-moduleN
assign the eAe-module eN and then restrict the action to B. The induction
functor is defined as before, but now

Ind(M) = A⊗B M ∼= (Ae⊗B M)⊕ (A(1− e)⊗B M) = Ae⊗B M,

and induction is still left adjoint to restriction. A similar construction works
for nonunital B and A equipped with systems of idempotents.

We now specialize to the SLarc algebra A and the inclusion ι : A ↪→ A
induced by adding a straight through line on top of every diagram, so that a
diagram d ∈ mBn goes to ι(d) ∈ m+1Bn+1. In particular, the system {1n}n≥0
of idempotents goes to {1n+1}n≥0 missing 10. This inclusion ι gives rise to
both induction and restriction functors, with

Ind(N) ∼= A⊗ι(A) N,

Res(N) ∼= N/10N ∼=
⊕
k>0

1kN with the algebra A acting on the left via ι.

In particular, 1n−1 Res(M) ∼= 1nM .
Notice that for simple modules

Res(Ln) =

{
Ln−1 if n > 0,

0 if n = 0,

while Ind(Ln) is an infinite-dimensional module such that

1m(Ind(Ln)) =

{
k if m > n,

0 otherwise.

Proposition 3.5. Res(Mn) ∼= Mn ⊕Mn−1 for n > 0, and Res(M0) ∼=
M0.

Proof. Let ML
n and M∅n denote the spans of diagrams in Mn with the

top left point being a part of a left sarc or a larc, respectively (the diagrams
in Figure 17 can be treated as elements of standard modules if we delete
right returns). Then Res(Mn) ∼= ML

n ⊕M∅n as left A-modules. Furthermore,
M∅n
∼= Mn and ML

n
∼= Mn−1.

Proposition 3.6. Res(Pn) ∼=
⊕n

k=0 Pk for all n ≥ 0.
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Fig. 17. Decomposition of Pn as a sum of vector spaces spanned by diagrams of type (a)
where a left sarc is attached to the top left point and type (b) where the top left point is
connected by a larc to the ith point on the right. In particular, the diagram in (a) is an

element of P ∅12, and (b) belongs to P
(i)
12 .

Proof. For each i ≥ 1, let P
(i)
n denote the spans of diagrams in Pn with

top left point connected by a larc to the ith point on the right, and P ∅n the
span of diagrams such that at the top we have a left sarc (Figure 17). Each
of these spans is a direct summand of Res(Pn).

Fig. 18. P ∅n is isomorphic to the projective module Pn.

Then Res(Pn) ∼= P ∅n ⊕
⊕n

i=1 P
(i)
n as left A-modules. It is easy to see that

P ∅n
∼= Pn (Figure 18) since the top left sarc is fixed. Similarly, P

(i)
n
∼= Pn−i

since the i− 1 top right sarcs are fixed (Figure 19).

Fig. 19. P
(i)
n is isomorphic to the projective module Pn−i.
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Proposition 3.7. Ind(Pn) ∼= Pn+1 for n ≥ 0.

Proof. This follows from the definition of the induction functor (see Fig-
ure 20).

n
n+1

Fig. 20. Induction on projective modules: an element of A⊗ι(A) Pn is presented diagram-
matically by composing basis elements of A and Pn. Elements of ι(A) can be exchanged
through the vertical line.

Proposition 3.8. For n ≥ 0 there exists a short exact sequence

(3.6) 0→Mn → Ind(Mn)→Mn+1 → 0.

Fig. 21. Induction on standard modules

Proof. Notice that the right action of ι(A) fixes the top right point of
a diagram in A. Depending on whether this point has a right sarc or larc
attached to it (see Figure 21), we get a copy of Mn or Mn+1 as a submodule
or a quotient of Ind(Mn), respectively.

Proposition 3.9. Higher derived functors of the induction functor ap-
plied to a standard module are zero:

Li Ind(Mn) = 0 for every i > 0.
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Proof. The induction functor applied to the projective resolution (2.6)
gives

0→ P1 → P
(n1)
2 → · · · → P

( n
m−1)

m → · · · → P
( n
n−1)

n → Pn+1 → 0

where the differential corresponds to the one from (2.6) with a long arc
added on top of each diagram. This complex splits, as a complex of vector
spaces, into the sum of two copies of the original complex depending on
whether the top arc is a larc or right sarc.

Propositions 3.3 to 3.7 imply that at the level of the Grothendieck group,
induction sends [Pn] = xn to [Pn+1] = xn+1, [Mn] = (x − 1)n to [Mn] +
[Mn+1] = (x − 1)n + (x − 1)n+1, and restriction (always exact) acts in the
following way:

[Pn] = xn 7→
n∑
i=0

[Pi] =
n∑
i=0

xi,

[Mn] = (x− 1)n 7→
n∑
i=0

[Mi] + [Mi−1] =
n∑
i=0

(x− 1)i + (x− 1)i−1.

Corollary 3.10. In the Grothendieck group, induction corresponds to
multiplication by x, and restriction [Res] acts by sending

f(x) 7→ xf(x)−f(1)
x−1 .

3.4. Cabling functors. For every A-module M and a positive integer
k we construct the corresponding cabled module [k]M in the following way:

(3.7) 1n
[k]M = 1nkM, hence [k]M =

⊕
n≥0

1nkM.

Given a diagram y ∈ sBl, construct a diagram [k]y ∈ skBlk, called the
k-cabling of y, by taking k parallel copies of each arc (Figure 22). For ex-
ample, [k]1n = 1nk. By definition, the action of an element α ∈ A on [k]Mn

is the regular action of its k-cabling αk.

y y[2]

Fig. 22. A diagram y ∈ 11B6 and 2-cable [2]y ∈ 22B12
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What is the result of k-cabling simple, standard and projective modules?
It is easy to see that if k divides n, the k-cabling of Ln is Ln/k:

(3.8) 1m
[k]Ln = 1kmLn =

{
k if km = n,

0 otherwise.

If k does not divide n, then [k]Ln = 0.
Recall that basis elements of the standard A-modules Mn correspond to

diagrams in Bn with n through arcs and an arbitrary number of left sarcs.
Let S(n, k, i) denote the number of ways to select n numbers between 1 and
ki such that each of the sets {kj + 1, . . . , k(j + 1)}0≤j<i contains at least
one of the selected numbers.

Proposition 3.11. [k]Mn
∼=
⊕n

i=dn/keM
S(n,k,i)
i .

Proof. The proof is left to the reader following the examples shown in
Figure 23. S(n, k, i) is the sum of products

∏i
j=1

(
k
λj

)
over all possible par-

titions λ = (λ1, . . . , λi) of n into i blocks of length at most k.

2

2

2

4

6

(a)                                                                             (b)

Fig. 23. (a) 2-cabling of M3; (b) 4-cabling of M3 corresponding to the partition (2, 1):
two arcs in the same part contribute 6, hence the total contribution is 24.

We compute cabling modules of Mn for small values of n: [k]M0 = M0,

[k]M1 = Mk
1 , [k]M2 = Mk2

2 ⊕M
(k2)
1 , [k]M3 = Mk3

3 ⊕M
2(k1)(

k
2)

2 ⊕M(k3)
1 .

Studying cablings of projective modules reduces to the case of standard
modules: [k]Pn has a filtration with the ith term consisting of

(
n
i

)
[k]Mi, based

on the filtration (2.1) of Pn by Pn(i), i ≤ n.
The cabling functor [k], sending an A-module M to its k-cabled module

[k]M , is exact, and categorifies the following operator on the Grothendieck
group:

[Mn] = (x− 1)n 7→ [[k]Mn] =
n∑

i=dn/ke

S(n, k, i)(x− 1)i.

Notice that [s][k]M ∼= [ks]M functorially in M .

Proposition 3.12. The cabling functor [k] preserves finitely-generated
A-modules.
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Proof. The module [k]Mn is finitely-generated. Since Pm has a finite
filtration by standard modules (2.1), [k]Pm is finitely-generated. A finitely-
generated module M is a quotient of a finite sum of indecomposable projec-
tive modules Pm, thus [k]M is finitely-generated, and the functor [k] preserves
the category A-mod.

Another cabling functor, denoted by Lk, on the category A-pmod can
be defined on objects by Lk(Pn) = Pnk and on morphisms in the same way
as above (Figure 22), i.e. Lk(α) = [k]α for α ∈ mBn.

Given a full subcategory A ⊂ B, we say that endofunctors F : A → A
and G : B → B are weakly adjoint if

HomB(FM1,M2) ∼= HomB(M1, GM2),

functorially in M1 ∈ A and M2 ∈ B.
Proposition 3.13. The cabling functors Lk and [k] on the categories

A-pmod and A-mod, respectively, are weakly adjoint.

Proof. It is sufficient to prove the statement for Pn ∈ A-pmod and any
M ∈ A-mod. Indeed,

Hom(Lk(Pn),M) ∼= Hom(Pnk,M) ∼= 1nkM ∼= 1n
[k]M ∼= Hom(Pn,

[k]M).

3.5. Monoidal structure and standard modules. The full subcat-
egory C′ of A-pmod which consists of the objects Pn, n ≥ 0, is monoidal and
preadditive, with the unit object 1 = P0 and a single generating object P1,
since Pn = P⊗n1 . One can think of C′ as a monoidal category with generat-
ing object P1, generating morphisms a ∈ Hom(P1, P0) and b ∈ Hom(P0, P1),
and defining relation setting the value of the floating arc, viewed as an en-
domorphism of 1, to zero (see Figure 24).

P1             P0
a

P0             P1
b P1             P1

ba
P0             P0

0

a:= b:= ab:=               =0 ba:=

Fig. 24. Generating morphisms in the category C′

 0              1

a

b

Fig. 25. Quiver description of the algebra End(P0 ⊕ P1)

The algebra End(P0 ⊕ P1) admits a quiver presentation (see Figure 25)
as a quiver with two vertices, two edges, and one defining relation ab = 0.
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This is a five-dimensional algebra, which also describes regular blocks of the
category O for sl(2).

Let C′ be a monoidal k-linear category such that

Hom(P0, P0) = k, Hom(P1, P0) = kb,

Hom(P0, P1) = ka, Hom(P1, P1) = k1⊕ kba.

From this point of view, the SLarc algebra A can be viewed as the Hom
algebra of C′:

A =
⊕
n,m≥0

Hom(P⊗n1 , P⊗m1 ).

Proposition 3.14. The standard module Mn is isomorphic to the nth

derived tensor product of M1: Mn 'M ⊗̂n1 .

Proof. The minimal projective resolution of M1 is

(3.9) 0→ P0 → P1 → 0.

The nth derived tensor power M ⊗̂n1 can be computed by substituting this
resolution for each term in the tensor product M⊗n1 7→ (0 → P0 → P1

→ 0)⊗n. This tensor power will contain 2n terms of the form

Pε1 ⊗ · · · ⊗ Pεn = Pε1+···+εn

for εi ∈ {0, 1}.
The projective module Pm will appear

(
n
m

)
times in the complex, and it

is easy to match the resulting complex to the projective resolution (2.6) of
the standard module Mn.

Proposition 3.14 (see also Corollary 3.2) generalizes the observation that

[Mn] = (x− 1)n = [M1]
n.

4. A modification of the SLarc algebra A. Assuming that we work
over a field k, we have two canonical choices for the value of the floating arc:
either 0 or 1. Choosing value zero yields the above-described categorification
of the polynomial ring and, interestingly enough, value one leads to yet
another categorification of the polynomial ring. Let us denote by A+ this
modification of the SLarc algebra A. The elements 1n and the projective
modules Pn are defined as in the A algebra case.

e = 
+

e = 
-

Fig. 26. The idempotents e+ and e− in A+

However, changing the value of the floating arc from 0 to 1 produces ad-
ditional idempotents, such as the element e+ ∈ 1B

+
1 which is an idempotent
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according to the calculation shown in Figure 27, and the complementary
idempotent e− = 11 − e+ (see Figure 26).

e = 
+

2
=e 

+
= 

  1 
= 

Fig. 27. The element e+ is an idempotent in the algebra A+.

Idempotents in End(Pn) for any n > 1 can be obtained from e+ and
e− by using the monoidal structure of A+-pmod analogous to the one in
A-pmod, for which Pn ⊗ Pm = Pn+m.

Let ε = (ε1, . . . , εn), εi ∈ {+,−}, denote a sequence of pluses and mi-
nuses of length n, and (−n) the sequence containing exactly n minuses.
The corresponding idempotents are denoted by eε and e(−n), respectively.
The natural tensor product structure on A+-pmod satisfies Pε⊗Pε′ = Pεε′ ,
where Pε = A+ε. The idempotent eε = ⊗ni=1eεi is just a tensor product of
idempotents e+ and e−’s, according to the sequence ε (see Figure 28).

e    = 
+-+

e    = 
-++

Fig. 28. Additional idempotents in the algebra A+

Notice that 1n =
∑
|ε|=n eε. Moreover, these idempotents are mutually

orthogonal, eεeε′ = δε,ε′eε. In particular, e+e− = e−e+ = 0.
In general, given a ring R and two idempotents e, f ∈ R, the projective

modules Re and Rf are isomorphic iff there exist elements a = de→f , b =
df→e ∈ R such that eafbe = e and fbeaf = f. Moreover, in this case, we
say that the elements e, f are equivalent, and write e ' f.

Lemma 4.1. If a sequence ε contains exactly m minuses then eε ' e(−m).

Proof. The equivalence is realized by maps corresponding to the follow-
ing diagrams: dε→m with n left and m right endpoints and m through arcs
connecting right endpoints to those left endpoints corresponding to the mi-
nus signs in ε, and the remaining points extended to short left arcs. b = dm→ε
is a reflection of a = dε→m along the vertical axis. We have

e(−m)dm→εeεdε→me(−m) = e(−m), eεdε→me(−m)dm→εeε = eε.

An example is shown in Figure 29.

(a)                                           (b)

Fig. 29. The maps d(−,+,−,−,+)→(−3) and d(−3)→(−,+,−,−,+)
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Lemma 4.2. If sequences ε and ε′ contain n and m minuses, respectively,
then eε ' eε′ iff m = n.

Proof. By Lemma 4.1 eε ' e(−n) and eε′ ' e(−m) and e(−n), e(−m) are
not equivalent unless m = n.

Corollary 4.3. The projective modules A+eε and A+eε′ are isomor-
phic iff the sequences ε and ε′ contain the same number of minuses.

To a sequence (−n) we assign the indecomposable projective A+-module
P(−n) = A+e(−n).

Proposition 4.4. The projective modules P(−n) are simple objects sat-
isfying the following properties:

(i) Hom(P(−m), P(−n)) =

{
k if n = m,

0 otherwise.

(ii) Pn ∼=
⊕
|ε|=n

Pε ∼=
n⊕

m=0

(
n

m

)
P(−m).

Proof. (i) follows from Proposition 4.3 since

Hom(P(−m), P(−n)) = Hom(A+e(−m), A
+e(−n)) = e(−m)A

+e(−n).

(ii) Pn = A+1n =
⊕
|ε|=nA

+eε =
⊕
|ε|=n Pε. Each Pε is equivalent to

P(−m) and there are
(
n
m

)
sequences ε of length n with exactly m minuses.

We see that the category A+-pmod of projective A+-modules is semi-
simple. The idempotented ring A is therefore semisimple and Morita equiv-
alent to an idempotented ring k⊕ k⊕ · · · , a countable sum of copies of the
field k. Let K0(A

+) denote the Grothendieck ring of the monoidal category
of finitely-generated projective A+-modules. As before, [Pn] = xn. Based
on the decomposition of the projective modules in Proposition 4.4(2) we
conclude that [P(−n)] = (x− 1)n.
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