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On the AJ conjecture for cables of twist knots
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Anh T. Tran (Dallas, TX)

Abstract. We study the AJ conjecture that relates the A-polynomial and the colored
Jones polynomial of a knot in S3. We confirm the AJ conjecture for (r, 2)-cables of the
m-twist knot, for all odd integers r satisfying{

(r + 8)(r − 8m) > 0 if m > 0,

r(r + 8m− 4) > 0 if m < 0.

1. Introduction

1.1. The colored Jones function. For a knot K in S3 and a positive
integer n, let JK(n) ∈ Z[t±1] denote the nth colored Jones polynomial of K
with framing 0. The polynomial JK(n) is the quantum link invariant, as
defined by Reshetikhin and Turaev [RT], associated to the Lie algebra sl2(C),
with the color n standing for the simple sl2(C)-representation of dimension n.
Here we use the functorial normalization, i.e. the one for which the colored
Jones polynomial of the unknot U is

JU (n) = [n] :=
t2n − t−2n

t2 − t−2
.

It is known that JK(1) = 1 and JK(2) is the ordinary Jones polynomial
[Jo]. The colored Jones polynomials of higher colors are more or less the
ordinary Jones polynomials of parallels of the knot. The color n can be
assumed to take negative integer values by setting JK(−n) = −JK(n) and
JK(0) = 0.

For a fixed knot K ⊂ S3, Garoufalidis and Le [GL] proved that the col-
ored Jones function JK : Z→ Z[t±1] satisfies a non-trivial linear recurrence

relation of the form
∑d

i=0 ai(t, t
2n)JK(n + i) = 0, where ai(u, v) ∈ C[u, v]

are polynomials with greatest common divisor 1.
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1.2. Recurrence relations and q-holonomicity. Let R := C[t±1].
Consider a function f : Z → R, and define the linear operators L and M
acting on such functions by

(Lf)(n) := f(n+ 1), (Mf)(n) := t2nf(n).

It is easy to see that LM = t2ML. The inverse operators L−1,M−1 are
well-defined. We can consider L,M as elements of the quantum torus

T := R〈L±1,M±1〉/(LM − t2ML),

which is a non-commutative ring.
The recurrence ideal of f is the left ideal Af in T that annihilates f :

Af := {P ∈ T | Pf = 0}.
We say that f is q-holonomic, or f satisfies a non-trivial linear recurrence
relation, if Af 6= 0. For example, for a fixed knot K the colored Jones
function JK is q-holonomic.

1.3. The recurrence polynomial. Suppose f : Z → R is a q-holo-
nomic function. Then Af is a non-zero left ideal of T . The ring T is not a
principal left ideal domain. However, it can be embeded into a principal left
ideal domain as follows. Let R(M) be the fractional field of the polynomial
ring R[M ]. Let T̃ be the set of all Laurent polynomials in the variable L
with coefficients in R(M):

T̃ =
{∑
i∈Z

ai(M)Li
∣∣∣ ai(M) ∈ R(M), ai = 0 almost always

}
,

and define the product in T̃ by a(M)Lk · b(M)Ll = a(M)b(t2kM)Lk+l.
Then it is known that T̃ is a principal left ideal domain, and T embeds

as a subring of T̃ (cf. [Ga2]). The ideal extension Ãf := T̃ Af of Af in T̃ is
generated by a polynomial

αf (t,M,L) =
d∑
i=0

αf,i(t,M)Li,

where the degree in L is assumed to be minimal and all the coefficients
αf,i(t,M) ∈ C[t±1,M ] are assumed to be co-prime. The polynomial αf is
defined up to a polynomial in C[t±1,M ]. We call αf the recurrence polyno-
mial of f .

When f is the colored Jones function JK of a knot K, we let AK and αK
denote the recurrence ideal AJK and the recurrence polynomial αJK of JK
respectively. We also say that AK and αK are respectively the recurrence
ideal and the recurrence polynomial of the knot K. Since JK(n) ∈ Z[t±1], we

can assume that αK(t,M,L) =
∑d

i=0 αK,i(t,M)Li where all the coefficients
αK,i ∈ Z[t±1,M ] are co-prime.
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1.4. The AJ conjecture. The colored Jones polynomials are powerful
invariants of knots, but little is known about their relationship with classical
topology invariants like the fundamental group. Motivated by the theory of
non-commutative A-ideals of Frohman, Gelca and Lofaro [FGL, Ge] and
the theory of q-holonomicity of quantum invariants of Garoufalidis and Le
[GL], Garoufalidis [Ga2] formulated the following conjecture that relates the
A-polynomial and the colored Jones polynomial of a knot in S3.

Conjecture 1 (AJ conjecture). For every knot K, αK |t=−1 is equal to
the A-polynomial, up to a factor depending on M only.

The A-polynomial of a knot was introduced by Cooper et al. [CCGLS];
it describes the SL2(C)-character variety of the knot complement as viewed
from the boundary torus. The A-polynomial carries important information
about the topology of the knot. For example, the sides of its Newton polygon
give rise to incompressible surfaces in the knot complement [CCGLS]. Here
in the definition of the A-polynomial, we also allow the factor L− 1 coming
from the abelian character variety of the knot. Hence the A-polynomial in
this paper is equal to L− 1 times the A-polynomial defined in [CCGLS].

The AJ conjecture has been verified for the trefoil and figure eight knots
[Ga2], all torus knots [Hi, Tr2], some classes of two-bridge knots and pretzel
knots [Le, LT1], the knot 74 [GK], and most cabled knots over torus knots
and the figure eight knot [RZ, Ru, Tr1].

1.5. Main result. Suppose K is a knot with framing 0, and r, s are
two integers with c their greatest common divisor. The (r, s)-cable K(r,s)

of K is the link consisting of c parallel copies of the (r/c, s/c)-curve on the
torus boundary of a tubular neighborhood of K. Here an (r/c, s/c)-curve is
a curve that is homologically equal to r/c times the meridian and s/c times
the longitude on the torus boundary. The cable K(r,s) inherits an orientation
from K, and we assume that each component of K(r,s) has framing 0. Note
that if r and s are co-prime, then K(r,s) is again a knot.

Consider the m-twist knot Km in Figure 1, where m denotes the number
of full twists; positive (resp. negative) numbers correspond to right-handed

m full twists

...

m full twists

Fig. 1. The m-twist knot Km, m ∈ Z
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(resp. left-handed) twists. Note that K−1 is the trefoil knot and K1 is the
figure eight knot.

In [RZ, Ru, Tr1] the proof of the AJ conjecture for most cabled knots
over torus knots and the figure eight knot is based on explicit formulas for
the colored Jones polynomial. In this paper, following the geometric method
in [Le, LT1] we use skein theory to study the AJ conjecture for cables of
twist knots. In particular, we will show the following.

Theorem 1. The AJ conjecture holds true for (r, 2)-cables of the
m-twist knot, for all odd integers r satisfying{

(r + 8)(r − 8m) > 0 if m > 0,

r(r + 8m− 4) > 0 if m < 0.

1.6. Plan of the paper. In Section 2 we review character varieties and
skein modules. In Section 3 we prove some properties of the colored Jones
polynomial and the recurrence polynomial of cables of a knot. We give a
proof of Theorem 1 in Section 4.

2. Character varieties and skein modules

2.1. Character varieties and the A-polynomial

2.1.1. Character varieties. The set of representations of a finitely gen-
erated group G into SL2(C) is a complex algebraic set, on which SL2(C)
acts by conjugation. The set-theoretic quotient of the representation space
by that action does not have good topological properties, because two rep-
resentations with the same character may belong to different orbits of that
action. A better quotient, the algebro-geometric quotient denoted by χ(G)
(see [CS, LM]), has the structure of an algebraic set. There is a bijection be-
tween χ(G) and the set of all characters of representations of G into SL2(C),
hence χ(G) is also called the character variety of G. For a manifold Y we
use χ(Y ) to denote χ(π1(Y )).

Suppose G = Z2, the free abelian group with 2 generators. Every pair of
generators µ, λ will define an isomorphism between χ(G) and (C∗)2/τ , where
(C∗)2 is the set of non-zero complex pairs (M,L) and τ : (C∗)2 → (C∗)2 is
the involution defined by τ(M,L) := (M−1, L−1), as follows. Every repre-
sentation is conjugate to an upper diagonal one, with M and L being the
upper left entry of µ and λ respectively. The isomorphism does not change
if we replace (µ, λ) with (µ−1, λ−1).

2.1.2. The A-polynomial. Let K be a knot in S3 and X its complement.
The boundary of X is a torus whose fundamental group is free abelian
of rank 2. An orientation of K will define a unique pair of an oriented
meridian and an oriented longitude such that the linking number between
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the longitude and the knot is 0. The pair provides an identification of χ(∂X)
and (C∗)2/τ which actually does not depend on the orientation of K.

The inclusion ∂X ↪→ X induces the restriction map

ρ : χ(X) 7→ χ(∂X) ≡ (C∗)2/τ.

Let Z be the image of ρ, and Ẑ ⊂ (C∗)2 the lift of Z under the projection
(C∗)2 → (C∗)2/τ . The Zariski closure of Ẑ ⊂ (C∗)2 ⊂ C2 in C2 is an
algebraic set consisting of components of dimension 0 or 1. The union of
all the one-dimensional components is defined by a single polynomial AK ∈
Z[M,L], whose coefficients are co-prime. Note that AK is defined up to ±1.
We call AK the A-polynomial ofK. By definition, AK does not have repeated
factors. It is known that AK is always divisible by L− 1. The A-polynomial
here is actually equal to L− 1 times the A-polynomial defined in [CCGLS].

2.1.3. The B-polynomial. For a complex algebraic set V , let C[V ] de-
note the ring of regular functions on V . For example, C[(C∗)2/τ ] = tσ, the
σ-invariant subspace of t := C[L±1,M±1], where σ(MkLl) = M−kL−l.

The map ρ in the previous subsection induces an algebra homomorphism

θ : C[χ(∂X)] ≡ tσ → C[χ(X)].

We call the kernel p of θ the classical peripheral ideal ; it is an ideal of tσ.

The ring C[χ(X)] has a tσ-module structure via the map θ: For f ∈ tσ and
g ∈ C[χ(X)], the action f ·g is defined to be θ(f)g ∈ C[χ(X)]. Since C[M±1]σ

is a subring of tσ, C[χ(X)] also has a C[M±1]σ-module structure. Extending
the map θ : tσ → C[χ(X)] from the ground ring C[M±1]

σ
to C(M), the

fractional field of C[M ], we get

(̄t
θ̄→ C[χ(X)]) := (tσ

θ→ C[χ(X)])⊗C[M±1]σ C(M).

The ring t̄ = C(M)[L±1] is a principal ideal domain. The ideal p̄ :=
ker θ̄ ⊂ t̄ is thus generated by a single polynomial BK ∈ Z[M,L] which has
co-prime coefficients and is defined up to a factor ±Mk with k ∈ Z. Again
BK can be chosen to have integer coefficients because everything can be
defined over Z. We call BK the B-polynomial of K. In [LT1, Corollary 2.3]
the following is shown.

Proposition 2.1. The polynomials AK and BK are equal, up to a factor
in Z[M ].

2.2. Skein modules and the colored Jones polynomial. The the-
ory of the Kauffman bracket skein module (KBSM) was introduced by Przy-
tycki [Pr] and Turaev [Tu] as a generalization of the Kauffman bracket [Ka]
in S3 to an arbitrary 3-manifold. The KBSM of a knot complement contains
a lot of information about its colored Jones polynomial.
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2.2.1. Skein modules. Recall that R = C[t±1]. A framed link in an
oriented 3-manifold Y is a disjoint union of embedded circles, equipped with
a non-zero normal vector field. Framed links are considered up to isotopy. Let
L be the set of isotopy classes of framed links in the manifold Y , including
the empty link. Consider the freeR-module with basis L, and factor it by the
smallest submodule containing all expressions of the form − t − t−1

and ©+ (t2 + t−2)∅, where the links in each expression are identical except
in a ball in which they look like depicted. This quotient is denoted by S(Y )
and is called the Kauffman bracket skein module, or just skein module, of Y .

For an oriented surface Σ we define S(Σ) := S(Y ), where Y = Σ× [0, 1]
is the cylinder over Σ. The skein module S(Σ) has an algebra structure
induced by the operation of gluing one cylinder on top of the other. The
operation of gluing the cylinder over ∂Y to Y induces an S(∂Y )-left module
structure on S(Y ).

2.2.2. The colored Jones polynomial. When Y = S3, the skein module
S(Y ) is free over R of rank 1, and is spanned by the empty link. Thus if
` is a framed link in S3, then its value in S(S3) is 〈`〉 times the empty link,
where 〈`〉 ∈ R is the Kauffman bracket of ` (see [Ka]) which is the Jones
polynomial of the framed link ` in a suitable normalization.

Let {Sn(z)}n∈Z be the Chebyshev polynomials defined by S0(z) = 1,
S1(z) = z and Sn+1(z) = zSn(z) − Sn−1(z) for all n ∈ Z. For a framed
knot K in S3 and an integer n > 0, we define the nth power Kn as the link
consisting of n parallel copies of K. Using these powers of a knot, Sn(K)
is defined as an element of S(S3). We define the colored Jones polynomial
JK(n) by the equation

JK(n+ 1) := (−1)n · 〈Sn(K)〉.

The (−1)n sign is added so that for the unknot U , we have JU (n) = [n]. Then
JK(1) = 1 and JK(2) = −〈K〉. We extend this definition to all integers n by
JK(−n) = −JK(n) and JK(0) = 0. In the framework of quantum invariants,
JK(n) is the sl2(C)-quantum invariant of K colored by the n-dimensional
simple representation of sl2(C).

2.2.3. The skein module of the torus. Let T2 be the torus with a fixed
pair (µ, λ) of simple closed curves intersecting at exactly one point. For
co-prime integers k and l, let λk,l be a simple closed curve on the torus
homologically equal to kµ + lλ. It is not difficult to show that the skein
algebra S(T2) of the torus is generated, as an R-algebra, by all λk,l’s. In
fact, Bullock and Przytycki [BP] showed that S(T2) is generated over R
by three elements µ, λ and λ1,1, subject to some explicit relations.

Recall that T = R〈M±1, L±1〉/(LM − t2ML) is the quantum torus. Let
σ : T → T be the involution defined by σ(MkLl) := M−kL−l. Frohman and
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Gelca [FG] showed that there is an algebra isomorphism Υ : S(T2) → T σ
given by

Υ (λk,l) := (−1)k+ltkl(MkLl +M−kL−l).

The fact that S(T2) and T σ are isomorphic algebras was also proved by
Sallenave [Sa].

2.3. Character varieties and skein modules

2.3.1. Skein modules as quantizations of character varieties. Let ε be
the map reducing t = −1. An important result of Bullock, Przytycki and
Sikora [Bu, PS] in the theory of skein modules is that ε(S(Y )) has a natural
algebra structure and, when factored by its nilradical, is canonically isomor-
phic to the character ring C[χ(Y )]. The product of two links in ε(S(Y )) is
their disjoint union, which is well-defined when t = −1. The isomorphism
between ε(S(Y ))/

√
0 and C[χ(Y )] is given by K(r) = −tr r(K), where K is

a knot in Y representing an element of π1(Y ) and r : π1(Y ) → SL2(C) is a
representation.

In many cases the nilradical of ε(S(Y )) is trivial, and hence ε(S(Y )) is
exactly equal to the character ring C[χ(Y )]. For example, this is the case
when Y is a torus, or when Y is the complement of a two-bridge knot/link
[Le, PS, LT3], or when Y is the complement of the (−2, 3, 2n + 1)-pretzel
knot/the (−2, 2m, 2n+ 1)-pretzel link [LT1, Tr3].

2.3.2. The quantum peripheral ideal. Recall that X is the complement of
a knot K in S3. There is a standard choice of a meridian µ and a longitude λ
on ∂X = T2 such that the linking number between the longitude and the
knot is 0, as in Subsection 2.1.2. We use this pair (µ, λ) and the map Υ from
the previous subsection to identify S(∂X) with T σ.

The operation of gluing the cylinder over ∂X to X induces a T σ-left
module structure on S(X): For ` ∈ T σ = S(∂X) and `′ ∈ S(X), the action
` · `′ ∈ S(X) is the disjoint union of ` and `′. In general S(X) does not have
an algebra structure, but it has the identity element: the empty link ∅. The
map

Θ : S(∂X) ≡ T σ → S(X), Θ(`) := ` · ∅,
can be considered as a quantum analog of the map θ : tσ → C[χ(X)] defined
in Subsection 2.1.3. It is T σ-linear and its kernel P := kerΘ is called the
quantum peripheral ideal, first introduced in [FGL]. In [FGL, Ge], it was
proved that every element in P gives rise to a recurrence relation for the
colored Jones polynomial. In [Ga1] the following stronger result was shown
(see also [LT1, Corollary 1.2] for an alternative proof).

Proposition 2.2. The quantum peripheral ideal is contained in the re-
currence ideal, i.e. P ⊂ AK .
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2.3.3. Localization. LetD := R[M±1] and D̄ be its localization at (1+t),
i.e.

D̄ :=

{
f

g

∣∣∣∣ f, g ∈ D, g 6∈ (1 + t)D

}
,

which is flat over D. The ring D = R[M±1] is flat over Dσ = R[M±1]σ,
where σ(M) = M−1, since it is free over R[M±1]σ. Hence D̄ is flat over Dσ.

The skein module S(X) has a T σ-module structure, hence a Dσ-module
structure since Dσ is a subring of T σ. Extending the map Θ : T σ → S(X)
introduced in the previous subsection from the ground ring Dσ to D̄ we get

(T̄ Θ̄→ S(X)) := (T σ Θ→ S(X))⊗Dσ D̄.
In [LT1], the D̄-module S(X) is called the localized skein module of the

knot complement X. The ring T̄ can be explicitly described as

T̄ =
{∑
i∈Z

ai(M)Li
∣∣∣ ai(M) ∈ D̄, ai = 0 almost always

}
,

with commutation rule a(M)Lk · b(M)Ll = a(M)b(t2kM)Lk+l.
Let P̄ := ker Θ̄ ⊂ T̄ . It can be shown that P̄ is the ideal extension of

P ⊂ T σ in T̄ . Although T̄ is not a principal left ideal domain, its ideals
(and in particular P̄) have nice descriptions which are very useful in the
approach to the AJ conjecture in [LT1].

3. Recurrence polynomials of cable knots. In this section we prove
some properties of the colored Jones polynomial and the recurrence polyno-
mial of (r, 2)-cables of a knot K, where r is an odd integer.

For n > 0, by [LT2, Section 2.1] we have

(3.1) JK(r,2)(n) = t−2r(n2−1)
n∑
i=1

(−1)r(n−i)t2ri(i−1)JK(2i− 1).

Let JK(n) := JK(2n+ 1). Then

(3.2) M r(L+ t−2rM−2r)JK(r,2) = JK ;

see [RZ, Section 6.1] or [Tr1, Lemma 2.1].
For a Laurent polynomial f(t) ∈ R, let d+[f ] and d−[f ] be respectively

the maximal and minimal degree of f in t.
For a knot diagram D, let k+(D) (resp. k−(D)) be the number of positive

(resp. negative) crossings of D, and s+(D) (resp. s−(D)) the number of
circles obtained by positively (resp. negatively) smoothing all the crossings
of D. Let k(D) = k+(D) + k−(D) be the number of crossings and w(D) =
k+(D)− k−(D) the writhe of D.

We will use the following result. For a definition of adequate knots, see
[Li, Chapter 5].
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Lemma 3.1 ([Le, Proposition 2.1]). Suppose K is a (zero-framed) knot
with an adequate diagram D. Then, for n > 0, we have

d+[JK(n)] = k(D)(n− 1)2 + 2(n− 1)s+(D)− w(D)(n2 − 1),

d−[JK(n)] = −k(D)(n− 1)2 − 2(n− 1)s−(D)− w(D)(n2 − 1).

Lemma 3.2. Suppose K is a non-trivial knot with an adequate dia-
gram D. Then, for n > 0,

d+[JK(r,2)(n)] = −2rn2 + 2r if r < −4k−(D),

d−[JK(r,2)(n)] = −2rn2 + 2r if r > 4k+(D).

Proof. We prove the formula for d+[JK(r,2)(n)]. For d−[JK(r,2)(n)] the
argument is similar. By (3.1),

(3.3) d+[JK(r,2)(n)] = −2r(n2−1)+d+

[ n∑
i=1

(−1)r(n−i)t2ri(i−1)JK(2i−1)
]
.

Consider the quadratic polynomial f(x) defined by

f(x) = (2r+8k−(D))x2−(2r+8k−(D)+4k(D)−4s+(D))x+4k(D)−4s+(D)

where x ∈ R. From Lemma 3.1 we have

d+[t2ri(i−1)JK(2i− 1)] = 2ri(i− 1) + d+[JK(2i− 1)] = f(i).

Suppose r < −4k−(D). The quadratic polynomial f(x) is concave down
and attains its maximum on the real line at

x = x0 :=
1

2
+
k(D)− s+(D)

r + 4k−(D)
.

By [Li, Lemma 5.6], we have s+(D) + s−(D) ≤ k(D) + 2. Since K is a non-
trivial adequate knot, s−(D) ≥ 2 and hence we must have s+(D) ≤ k(D).
This implies that x0 ≤ 1/2, and so f(x) is a strictly decreasing function
on the interval [1, n]. Hence, for i = 2, 3, . . . , n, we have f(i) < f(1) =
d+[JK(1)] = 0. Then

d+

[ n∑
i=1

(−1)r(n−i)t2ri(i−1)JK(2i− 1)
]

= 0.

The lemma now follows from (3.3).

Proposition 3.3. Suppose K is a non-trivial knot with an adequate
diagram D. If r is an odd integer with r < −4k−(D) or r > 4k+(D), then
αK(r,2) = αJKM

r(L+ t−2rM−2r).

Proof. We first claim that αK(r,2) is left divisible by M r(L+ t−2rM−2r).
Indeed, write

αK(r,2) = QM r(L+ t−2rM−2r) +R

where Q ∈ R[M±1][L] and R ∈ R[M±1].



300 A. T. Tran

From (3.2) we have

0 = αK(r,2)JK(r,2) = QM r(L+ t−2rM−2r)JK(r,2) +RJK(r,2)(3.4)

= QJK +RJK(r,2) .

Assume that R 6= 0. Write Q =
∑d

i=0 ai(M)Li where ai(M) ∈ R[M±1].
If r > 4k+(D) then, for n large enough, by Lemma 3.2,

d−[RJK(r,2)(n)] = d−[JK(r,2)(n)] +O(n) = −2rn2 +O(n).

Similarly, if ai 6= 0 then by Lemma 3.1,

d−[(aiL
iJK)(n)] = d−[JK(2n+ 2i+ 1)] +O(n) ≥ −8k+n

2 +O(n).

It follows that for n large enough we have

d−[RJK(r,2)(n)] < min
0≤i≤d

{d−[(aiL
iJK)(n)]} ≤ d−[QJK(n)].

This contradicts (3.4).

If r < −4k−(D) then by similar arguments we have

d+[RJK(r,2)(n)] > max
0≤i≤d

{d+[(aiL
iJK)(n)]} ≥ d+[QJK(n)],

for n large enough. This also contradicts (3.4).

Hence R = 0, which means αK(r,2) is left divisible by M r(L+ t−2rM−2r).
Then, since M r(L+ t−2rM−2r)JK(r,2) = JK , it is easy to see that αK(r,2) =
αJKM

r(L+ t−2rM−2r).

4. Proof of Theorem 1. Consider the m-twist knot Km in Figure 1.
It has a reduced alternating (and hence adequate) diagram D with

k+(D) =

{
2m if m > 0,

1− 2m if m < 0,
k−(D) =

{
2 if m > 0,

0 if m < 0.

For non-zero f, g ∈ C(M)[L], we write f
M
= g if the quotient f/g does

not depend on L.

4.1. The A-polynomial. A formula for the A-polynomial of cable
knots has recently been given by Ni and Zhang [NZ]. In particular, for an
odd integer r we have

(4.1) AK(r,2)(L,M) = (L− 1) Resλ

(
AK(λ,M2)

λ− 1
, λ2 − L

)
F (L,M),

where Resλ denotes the polynomial resultant eliminating the variable λ and

F (L,M) :=

{
M2rL+ 1 if r > 0,

L+M−2r if r < 0.
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Lemma 4.1. Suppose P (L,M) ∈ C[L,M ] is irreducible and P (L,M) 6=
P ((−L,M). Let Q(L,M) :=Resλ(P (λ,M), λ2−L). Then Q(L,M)∈C[L,M ]
is irreducible and has L-degree equal to that of P (L,M).

Proof. Since P (L,M)∈C[L,M ] is irreducible and P (L,M) 6=P (−L,M),
we have

Q(L,M) = P (
√
L,M)P (−

√
L,M).

Then Q has L-degree equal to that of P (L,M). It remains to show that
Q(L,M) is irreducible in C[L,M ].

Suppose that Q(L,M)=Q1(L,M)Q2(L,M), where Qi(L,M)∈C[L,M ].
By replacing L by λ2, we have

(4.2) Q1(λ2,M)Q2(λ2,M) = P (λ,M)P (−λ,M).

Consider (4.2) in C[λ,M ]. Without loss of generality, we may assume
that P (λ,M) divides Q1(λ2,M). Then P (λ,M)P (−λ,M) also divides
Q1(λ2,M). Equation (4.2) implies that Q2(λ2,M) is a constant polynomial.
Hence Q(L,M) is irreducible.

If P (L,M) =
∑

i,j aijL
iM j ∈ C[L,M ] then its Newton polygon is the

smallest convex set in the plane containing all integral lattice points (i, j)
for which aij 6= 0.

We recall from [HS] some properties of the A-polynomial of the twist
knot Km in the following lemma. Note that Km = J(2,−2m) in the notation
of [HS].

Lemma 4.2 ([HS]). Write

AKm(L,M) = (L− 1)A′Km(L,M).

Then the polynomial A′Km(L,M) ∈ Z[L,M ] has the following properties:

(i) A′Km(L,M) has L-degree equal to 2m if m > 0, and −(2m + 1) if
m < 0.

(ii) A′Km(L,M) is irreducible in C[L,M ].
(iii) The Newton polygon of A′Km(L,M) has vertex set

{(1, 8m), (m, 8m), (0, 4m), (2m, 4m), (m, 0), (2m− 1, 0)}

if m > 0, and{
(0,−8m− 2), (−m− 1,−8m− 2), (1,−4m− 4),

(−2m− 2,−4m+ 2), (−m, 0), (−2m− 1, 0)
}

if m < 0.
(iv) A′Km(L, 0) = L|m|(L− 1)|m|−1.
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Proposition 4.3. Let

RKm(L,M) := Resλ(A′Km(λ,M), λ2 − L).

Then each of RKm(L,M) and RKm(L,M2) is irreducible in C[L,M ], and
has L-degree equal to 2m if m > 0 and −(2m+ 1) if m < 0.

Proof. From the Newton polynomial of A′Km(L,M) in Lemma 4.2, we

see that A′Km(L,M) contains at least one monomial aijL
iM j , where i is an

odd integer. This implies that A′Km(L,M) 6= A′Km(−L,M). By Lemma 4.2,
A′Km(L,M) is irreducible and has L-degree equal to 2m if m > 0 and
−(2m + 1) if m < 0. Hence, by Lemma 4.1, the same conclusion holds
true for RKm(L,M) = Resλ(A′Km(λ,M), λ2 − L). Moreover,

RKm(L,M) = A′Km(
√
L,M)A′Km(−

√
L,M).

It remains to show thatRKm(L,M2) is irreducible in C[L,M ].Otherwise,
we must have RKm(L,M2) = S(L,M)S(L,−M) for some S ∈ C[L,M ]. In
particular,

(S(L, 0))2 = RKm(L, 0) = A′Km(
√
L, 0)A′Km(−

√
L, 0)

= −L|m|(L− 1)|m|−1,

since AKm(λ, 0) = λ|m|(λ− 1)|m|−1 by Lemma 4.2. This cannot occur since
|m| and |m| − 1 cannot be not simultaneously even.

4.2. The recurrence polynomial. Suppose r is an odd integer satis-
fying {

(r + 8)(r − 8m) > 0 if m > 0,

r(r + 8m− 4) > 0 if m < 0.

By Proposition 3.3, we have α
K

(r,2)
m

= αJKm (L+ t−2rM−2r).

Lemma 4.4. For P (L,M) ∈ T we have

(P (L2,M)JK)(2n+ 1) = (P (L, t2M2)JK)(n).

Proof. This is because (MkL2lJK)(2n+ 1) = ((t2M2)kLlJK)(n).

To determine αJKm (and hence α
K

(r,2)
m

), by Lemma 4.4 we need to find an

element P (L,M) ∈ T of minimial L-degree such that P (L2,M) annihilates
the colored Jones function JKm . Note that this is done for the figure eight
knot K1 in [Ru, Tr1] by using explicit formulas for the colored Jones poly-
nomial. We now use skein theory to show the existence of such an element P
for all twist knots.
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4.2.1. The action matrix. Recall that D = R[M±1] and D̄ its localiza-
tion at (1 + t). Let

d =

{
2m if m > 0,

−(2m+ 1) if m < 0.

For the twist knot Km, we know that S(X) is a free Dσ-module with
basis {yi | 0 ≤ i ≤ d} (see [BL, Le]). This implies that S(X) = S(X)⊗Dσ D̄
is a free D̄-module with basis {yi | 0 ≤ i ≤ d}. Note that T = T σ ⊗Dσ D̄ is
a free D̄-module with basis {Li | i ∈ Z}.

Recall that S(∂X) = T σ and S(X) has a T σ-left module structure via
the gluing of the cylinder over ∂X = T2 to X. This implies that S(X) has
a T -module structure. We study the action of T on the D̄-module S(X).
Denote the action of L on S(X) by a matrix L ∈ Mat(d+1)×(d+1)(D̄), and

let ei := yi for 0 ≤ i ≤ d.
We have L · ei =

∑
j Lijej and

L2 · ei = L · (L · ei) = L ·
(∑

j

Lij(M)ej

)
=
∑
j

τ(Lij(M))(L · ej),

where τ(f(M)) := f(t2M) for f(M) ∈ D̄. Hence

L2 · ei =
∑
j

τ(L)ij
∑
k

Ljkek =
∑
k

(∑
j

τ(L)ijLjk
)
ek =

∑
k

[τ(L)L]ikek,

which means that L2 acts on S(X) as the matrix τ(L)L. By induction,
we can show that Lj acts on S(X) as the matrix L(j) := τ j−1(L)τ j−2(L)
· · · τ(L)L.

4.2.2. An annihilator of JKm. Let v0 := [1, 0, . . . , 0]T be a vector in

D̄d+1. Recall that Θ̄ : T̄ → S(X) is the map defined by Θ̄(`) = ` · ∅, and
P̄ ⊂ T̄ is its kernel.

Lemma 4.5. Let P (L,M) =
∑

i ai(M)Li ∈ T̄ where ai(M) ∈ D̄. Then

P ∈ P̄ if and only if
∑

i ai(M)L(i)v0 = 0.

Proof. By definition, P ∈ T̄ is in P̄ if and only if P · e0 = 0 in S(X).
We have

P · e0 =
(∑

i

aiL
i
)
· e0 =

∑
i

ai
∑
j

L(i)
0j ej =

∑
j

(∑
i

aiL(i)
0j

)
ej .

Hence P · e0 = 0 if and only if
∑

i aiL
(i)
0j = 0 for all j. This system of

equations can be rewritten as
∑

i ai[L
(i)
00 , . . . ,L

(i)
0m]T = 0, which is equivalent

to
∑

i aiL(i)v0 = 0.

Let vj := L(2j)v0 ∈ D̄d+1 for 1 ≤ j ≤ d + 1, and M := [v0, . . . , vd] ∈
Mat(d+1)×(d+1)(D̄).
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Proposition 4.6. We have

det ε(M) 6= 0.

Proof. This is equivalent to showing that the vectors ε(v0), . . . , ε(vd) are
linearly independent in C(M)d+1. Note that ε(S(X)) = C[χ(X)] for the
twist knot Km.

Recall the action of tσ on the C[M±1]σ-module C[χ(X)] in Subsection
2.1.3. This action induces an action of t̄ = C(M)[L±1] on the C(M)-vector
space C[χ(X)]. Then the matrix of the action of L on C[χ(X)] is equal
to ε(L) ∈ Mat(d+1)×(d+1)(C(M)). From the definition of the B-polynomial
of Km, we see that BKm(ε(L),M) is the minimal polynomial of ε(L). More-
over, by Proposition 2.1 we have

BKm(L,M)
M
= AKm(L,M) = (L− 1)A′Km(L,M).

Let L′ = L(2) and CKm(ε(L′),M) be the minimal polynomial of ε(L′) =
ε(L)2. Then

CKm(L′,M) = ResL(BKm(L,M), L2 − L′)
M
= ResL

(
(L− 1)A′Km(L,M), L2 − L′

)
= (L′ − 1)RKm(L′,M).

By Proposition 4.3, RKm(L′,M) has L′-degree d, and hence CKm(L′,M)
has L′-degree d+ 1. By Lemma 4.5, CKm(ε(L′),M) is also a polynomial in
C[ε(L′),M ] of minimal ε(L′)-degree that annihiates ε(v0). Since ε(vi) =
ε(L′)iε(v0), it follows that the vectors ε(v0), . . . , ε(vd) are linearly indepen-
dent in C(M)d+1. Hence det ε(M) 6= 0.

We are now ready to define an annihilator of JKm . For 0 ≤ i ≤ d let
Mi be the matrix obtained by replacing the (i+ 1)th column of M by the
column vector vd+1. Let bi(M) := detMi/ detM. Proposition 4.6 implies
that bi(M) ∈ D̄. Let

β(L,M) := −Ld+1 +

d∑
i=0

bi(t
2M2)Li ∈ T̄ .

Proposition 4.7. We have βJKm = 0. Moreover

ε(β)
M
= (L− 1)RKm(L,M2).

Proof. From the definition of bi(M) and Cramer’s rule we have∑d
i=0 bi(M)vi=vd+1, which means that (−L(2d+2) +

∑d
i=0 bi(M)L(2i))v0 =0.

Then, by Lemma 4.5, −L2d+2 +
∑d

i=0 bi(M)L2i is an element in P̄.

Let Ā := A ⊗D D̄ be the localized recurrence ideal of Km. Proposition
2.2 implies P̄ ⊂ Ā, and hence −L2d+2 +

∑d
i=0 bi(M)L2i ∈ Ā. By Lemma 4.4
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we have

βJKm(n) =
(
−Ld+1 +

d∑
i=0

bi(t
2M2)Li

)
JKm(n)

=
(
−L2d+2 +

d∑
i=0

bi(M)L2i
)
JKm(2n+ 1) = 0.

Hence βJKm = 0. It remains to show that ε(β)
M
= CKm(L,M2).

Write CKm(L,M) = −cd+1(M)Ld+1 +
∑d

i=0 ci(M)Li, where ci(M) is
in C(M) for 0 ≤ i ≤ d + 1 and cd+1(M) 6= 0. Since CKm(ε(L′),M) is a
polynomial in C[ε(L′),M ] that annihilates ε(v0), we have(

−cd+1(M)ε(L′)d+1 +
d∑
i=0

ci(M)ε(L′)i
)
ε(v0) = 0.

This implies
∑d

i=0
ci(M)
cd+1(M)ε(vi) = ε(vd+1). Since the vectors ε(v0), . . . , ε(vd)

are linearly independent in C(M)d+1, Cramer’s rule implies that

ci(M)

cd+1(M)
=

det ε(Mi)

det ε(M)
= ε(bi(M)).

Hence

ε(β) = −Ld+1 +
d∑
i=0

ε(bi(t
2M2))Li = −Ld+1 +

d∑
i=0

ci(M
2)

cd+1(M2)
Li

M
= CKm(L,M2).

The proposition follows since CKm(L,M2) = (L− 1)RKm(L,M2).

4.3. Completing the proof of Theorem 1. Since Km is an alter-
nating knot, Propositions 2.5 and 2.6 in [Tr1] imply that ε(αJKm ) is divis-
ible by L − 1 and has L-degree > 1. By Proposition 4.7 above, β annihi-
lates JKm and hence is left divisible by αJKm . We see that ε(αJKm ) divides

ε(β)
M
= (L−1)RKm(L,M2), and hence ε(αJKm )/(L−1) divides RKm(L,M2)

in C(M)[L]. Since ε(αJKm )/(L − 1) has L-degree ≥ 1 and RKm(L,M2) is
irreducible in C[L,M ], we conclude that

ε(αJKm )

L− 1

M
= RKm(L,M2).

Therefore, by (4.1) we have

A
K

(r,2)
m

(L,M) = (L− 1)RKm(L,M2)(L+M−2r)

M
= ε(αJKm )(L+M−2r)

M
= ε(α

K
(r,2)
m

).

This completes the proof of Theorem 1.
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