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The super fixed point property for
asymptotically nonexpansive mappings

by

Andrzej Wiśnicki (Lublin)

Abstract. We show that the super fixed point property for nonexpansive mappings
and for asymptotically nonexpansive mappings in the intermediate sense are equivalent.
As a consequence, we obtain fixed point theorems for asymptotically nonexpansive map-
pings in uniformly nonsquare and uniformly noncreasy Banach spaces. The results are
generalized to commuting families of asymptotically nonexpansive mappings.

1. Introduction. The classical problem in metric fixed point theory, a
branch of fixed point theory which emerged from the Banach contraction
principle, is the existence of fixed points of nonexpansive mappings. Recall
that a mapping T : C → C is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C. A Banach space X is said to have the fixed point property
(FPP for short) if every nonexpansive self-mapping defined on a nonempty
bounded closed and convex set C ⊂ X has a fixed point (see [2, 10, 11]). One
natural and extensively studied generalization of nonexpansive mappings was
introduced by Goebel and Kirk [9]. A mapping T : C → C is said to be
asymptotically nonexpansive if there exists a sequence (kn) of real numbers
with limn kn = 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖

for all x, y ∈ C and n ∈ N.
Let B be the closed unit ball in `2 and set

T (x1, x2, x3, . . .) = (0, x2
1, a2x2, a3x3, . . .),

where (x1, x2, x3, . . .) ∈ B and (an) is a sequence of reals in (0, 1) such that
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n=2 an = 1/2. Then

‖Tx− Ty‖ ≤ 2‖x− y‖

and

‖Tnx− Tny‖ ≤ 2

n∏
i=2

ai‖x− y‖

(see [9]). This shows that the class of asymptotically nonexpansive mappings
is wider than the class of nonexpansive mappings.

In spite of the common belief that asymptotically nonexpansive mappings
share a lot of properties with nonexpansive mappings, there exist relatively
few results concerning the existence of fixed points for such mappings. The
original result from [9] stating that asymptotically nonexpansive mappings
have the fixed point property in uniformly convex spaces was generalized in
[22] to the case whenX is nearly uniformly convex, in [17] toX satisfying the
uniform Opial condition, and in [15] to X having uniform normal structure.
It is still unknown whether normal structure implies the fixed point property
for asymptotically nonexpansive mappings acting on a convex and weakly
compact subset of a Banach space X. Until now, the situation has been even
worse in Banach spaces without normal structure.

In 1998, Kirk, Martínez Yáñez and Shin [16] showed that if X has the
super fixed point property for nonexpansive mappings (i.e., every Banach
space finitely representable in X has FPP), then every asymptotically non-
expansive mapping defined on a bounded closed and convex subset of X
has approximate fixed points, i.e., there exists a sequence (xn) such that
limn ‖Txn−xn‖ = 0. In the present paper we strengthen this result by show-
ing, in Theorem 2.4, that the super fixed point property for nonexpansive
mappings is equivalent to the super fixed point property for asymptotically
nonexpansive mappings in the intermediate sense (see Section 2 for the defi-
nition). In particular, we obtain fixed point theorems for asymptotically non-
expansive mappings in both uniformly nonsquare and uniformly noncreasy
Banach spaces. In Section 3, the above results are extended to commuting
families of asymptotically nonexpansive mappings in the intermediate sense.

It was shown in [6, Th. 10] that every Banach space X which contains an
isomorphic copy of c0 fails the fixed point property for asymptotically non-
expansive mappings. Our results support the conjecture that the fixed point
property for nonexpansive mappings and for asymptotically nonexpansive
mappings are equivalent, which would imply the failure of the FPP inside
isomorphic copies of c0.
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2. Main result. Let X and Y be Banach spaces and let 0 < ε < 1.
A linear map T : Y → X is an ε-isometry if

(1− ε)‖y‖ ≤ ‖Ty‖ ≤ (1 + ε)‖y‖

for all y ∈ Y . Recall that Y is said to be finitely representable in X if for
each ε ∈ (0, 1) and every finite-dimensional subspace M ⊂ Y there exists an
ε-isometry T :M → X.

We say that X is superreflexive if every Banach space Y which is finitely
representable in X is reflexive. A Banach space X has the super fixed point
property for nonexpansive mappings (SFPP) if every Banach space Y which
is finitely representable in X has FPP. It follows from the result of van Dulst
and Pach [7, Th. 3.2] that SFPP implies superreflexivity.

The notion of finite representability is closely related to the construction
of the Banach space ultrapower. Let U be an ultrafilter defined on a set I.
The ultrapower X̃ (or (X)U ) of a Banach space X is the quotient space of

l∞(X) =
{
(xn) : xn ∈ X for all n ∈ I and ‖(xn)‖ = sup

n
‖xn‖ <∞

}
by {

(xn) ∈ l∞(X) : lim
n→U
‖xn‖ = 0

}
.

Here limn→U denotes the ultralimit over U . One can prove that the quotient
norm on (X)U is given by

‖(xn)U‖ = lim
n→U
‖xn‖,

where (xn)U is the equivalence class of (xn). It is also clear thatX is isometric
to a subspace of (X)U by the mapping x 7→ (x)U .

The connection between ultrapowers and finite representability was ob-
served independently by Henson and Moore [13] and Stern [21] (see also
[1, 12, 20]).

Theorem 2.1. A Banach space Y is finitely representable in X if and
only if there exists an ultrafilter U such that Y is isometric to a subspace of
(X)U .

It follows from the above theorem that X has SFPP iff every ultrapower
(X)U has FPP.

In 1980, the Banach space ultrapower construction was applied in fixed
point theory by Maurey [18] who proved the fixed point property for all re-
flexive subspaces of L1[0, 1] and the weak fixed point property for c0 and H1.
Inspired by [16], we apply this construction to asymptotically nonexpan-
sive mappings in a slightly more general setting. Recall that a mapping
T : C → C is said to be asymptotically nonexpansive in the intermediate
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sense if T is continuous and

(2.1) lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0

(in the original definition, in [4], T was assumed to be uniformly continuous).
In particular, the condition (2.1) is satisfied if lim supn→∞ |Tn| ≤ 1, where
|Tn| denotes the (exact) Lipschitz constant of Tn (and C is bounded).

Let C be a nonempty bounded closed and convex subset of a Banach
space X and T : C → C be asymptotically nonexpansive in the intermediate
sense. Take a free ultrafilter p on N and denote by C̃ ⊂ (X)p the set

C̃ = {(xn)p ∈ (X)p : xn ∈ C for all n ∈ N}.
Let

N = {(αn) ∈ NN : α0 < α1 < · · · }
be the family of all increasing sequences of natural numbers directed by the
relation (αn) � (βn) iff αn ≤ βn for every n ∈ N. Notice that if (xn)p, (yn)p ∈
C̃ and (αn) ∈ N , then
lim
n→p

(‖Tαnxn−Tαnyn‖−‖xn−yn‖)≤ lim sup
n→∞

sup
x,y∈C

(‖Tnx−Tny‖−‖x−y‖)≤0.

Therefore, we may extend the mapping T by setting, unambiguously,

(2.2) T̂(αn)(xn)p = (Tαnxn)p.

It is not difficult to see that T̂(αn) : C̃ → C̃ is nonexpansive for every (αn)
in N . For x ∈ C, we shall write ẋ = (x)p = (x, x, . . .)p.

Lemma 2.2. Let T : C → C be asymptotically nonexpansive in the in-
termediate sense and suppose that there exists ỹ ∈ C̃ such that

(2.3) T̂(αn)ỹ = ỹ

for all (αn) ∈ N . Let ‖ỹ − ẋ0‖ < δ for some x0 ∈ C and δ > 0. Then for
every ε > 0 there exist x ∈ C and n0 ∈ N such that ‖x − x0‖ < δ and
‖Tnx− x‖ < ε for every n ≥ n0.

Proof. Since ‖ỹ − ẋ0‖ < δ, there exists a sequence (yn) in C such that
‖yn − x0‖ < δ for all n ∈ N and ỹ = (yn)p. Assume, contrary to our claim,
that there exists ε0 > 0 such that for every x ∈ C and n0 ∈ N there exists
n ≥ n0 such that ‖x − x0‖ ≥ δ or ‖Tnx − x‖ ≥ ε0. We shall define a
sequence (βn) by induction. For n = 0 and y0 ∈ C, there exists β0 such that
‖T β0y0−y0‖ ≥ ε0. Suppose that we have chosen β0 < β1 < · · · < βn such that
‖T βiyi − yi‖ ≥ ε0 for i = 0, 1, . . . , n. By assumption, since ‖yn+1 − x0‖ < δ,
there exists βn+1 > βn such that ‖T βn+1yn+1 − yn+1‖ ≥ ε0. (To be more
precise, we can define, for example, βn+1 as the minimum of {β > βn :
‖T βyn+1 − yn+1‖ ≥ ε0}.) Thus we obtain a sequence (βn) ∈ N such that
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‖T βnyn − yn‖ ≥ ε0 for all n ∈ N. Hence ‖T̂(βn)ỹ − ỹ‖ ≥ ε0, a contradiction
with (2.3).

A Banach space X is said to have the fixed point property for asymp-
totically nonexpansive mappings (in the intermediate sense) if every asymp-
totically nonexpansive (in the intermediate sense) self-mapping acting on a
nonempty bounded closed and convex set C ⊂ X has a fixed point.

Theorem 2.3. Assume that X has the super fixed point property for non-
expansive mappings. Then X has the fixed point property for asymptotically
nonexpansive mappings in the intermediate sense.

Proof. Assume that X has the super fixed point property for nonexpan-
sive mappings. Let T : C → C be an asymptotically nonexpansive mapping
in the intermediate sense acting on a nonempty bounded closed and convex
set C ⊂ X. By [7, Th. 3.2], X is superreflexive and hence C is weakly com-
pact. Without loss of generality we can assume that diamC = 1. Take a free
ultrafilter p on N, (αn) ∈ N , and define T̂(αn) by (2.2). Notice that for every
(αn), (βn) ∈ N and any (zn)p ∈ C̃,

(T̂(αn) ◦ T̂(βn))(zn)p = (TαnT βnzn)p = (T̂(βn) ◦ T̂(αn))(zn)p.

It follows from Bruck’s theorem (see [3, Th. 1]) that there exists ỹ0 ∈ C̃ such
that T̂(αn)ỹ0 = ỹ0 for all (αn) ∈ N (a similar argument but for two mappings
was used in [16, Th. 4.1]). Fix ε < 1 and x0 ∈ C.We shall define by induction
a sequence (nj) of natural numbers and a sequence (xj) of elements in C
such that

(2.4) ‖xj − xj−1‖ < 3εj−1 and ‖Tnxj − xj‖ < εj for every n ≥ nj , j ≥ 1.

By Lemma 2.2, there exist x1 ∈ C and n1 ∈ N such that ‖Tnx1 − x1‖ < ε
for every n ≥ n1 and ‖x1 − x0‖ ≤ diamC < 3.

Suppose that we have chosen natural numbers n1, . . . , nj and x1, . . . , xj ∈
C (j ≥ 1) such that

‖xi − xi−1‖ < 3εi−1 and ‖Tnxi − xi‖ < εi for every n ≥ ni, 1 ≤ i ≤ j.

Let
Dj =

{
ỹ = (yn)p ∈ C̃ : lim sup

(αn)∈N
‖T̂(αn)ẋj − ỹ‖ ≤ εj

}
,

where ẋj = (xj , xj , . . .)p and

lim sup
(αn)∈N

‖T̂(αn)ẋj − ỹ‖ = inf
(αn)∈N

sup
(βn)�(αn)

lim
n→p
‖T βnxj − yn‖

denotes the upper limit of the net (‖T̂(αn)ẋj − ỹ‖)(αn)∈N . It is not difficult
to see that Dj is a nonempty closed and convex subset of C̃ (notice that
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ẋj ∈ Dj). Furthermore, for fixed (βn) ∈ N and ỹ ∈ Dj ,

lim sup
(αn)∈N

‖T̂(αn)ẋj − T̂(βn)ỹ‖ = lim sup
(αn)∈N

‖T̂(αn+βn)ẋj − T̂(βn)ỹ‖

≤ lim sup
(αn)∈N

‖T̂(αn)ẋj − ỹ‖ ≤ εj ,

and hence T̂(βn)(Dj) ⊂ Dj for every (βn) ∈ N . Again, by Bruck’s theorem,
there exists ỹj ∈ Dj such that T̂(αn)ỹj = ỹj for all (αn) ∈ N . Notice that
‖ỹj− ẋj‖ ≤ 2εj < 3εj and by Lemma 2.2, there exist xj+1 ∈ C and nj+1 ∈ N
such that ‖xj+1−xj‖ < 3εj and ‖Tnxj+1−xj+1‖ < εj+1 for every n ≥ nj+1.

Thus we obtain by induction a sequence (nj) of natural numbers and a
sequence (xj) of elements in C such that (2.4) is satisfied. It follows that
(xj) is a Cauchy sequence converging to some x ∈ C. Hence

‖Tnx− x‖ ≤ ‖Tnx− Tnxj‖+ ‖Tnxj − xj‖+ ‖xj − x‖
≤ (‖Tnx− Tnxj‖ − ‖xj − x‖) + εj + 2‖xj − x‖

for every n ≥ nj , j ≥ 1, and consequently limn→∞ ‖Tnx− x‖ = 0. Since T
is continuous, Tx = x.

A Banach spaceX is said to have the super fixed point property for asymp-
totically nonexpansive mappings (in the intermediate sense) if every Banach
space Y which is finitely representable in X has the fixed point property for
asymptotically nonexpansive mappings (in the intermediate sense). We can
strengthen Theorem 2.3 in the following way.

Theorem 2.4. A Banach space X has the super fixed point property for
nonexpansive mappings if and only if X has the super fixed point property
for asymptotically nonexpansive mappings in the intermediate sense.

Proof. Assume that X has SFPP (for nonexpansive mappings) and let
U be an ultrafilter defined on a set I. By Theorem 2.1, (X)U has SFPP too,
and it follows from Theorem 2.3 that (X)U has the fixed point property
for asymptotically nonexpansive mappings in the intermediate sense. By
Theorem 2.1 again, X has the super fixed point property for asymptotically
nonexpansive mappings in the intermediate sense. The reverse implication
is obvious.

We conclude this section by giving some consequences of Theorem 2.3.
Recall [14] that a Banach space is uniformly nonsquare if

sup
x,y∈SX

min{‖x+ y‖, ‖x− y‖} < 2.

García Falset, Lloréns Fuster and Mazcuñan Navarro (see [8]) solved a long-
standing problem in metric fixed point theory by proving that uniformly
nonsquare Banach spaces have FPP and hence SFPP.
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Corollary 2.5. Let C be a nonempty bounded closed and convex subset
of a uniformly nonsquare Banach space. Then every mapping T : C → C
asymptotically nonexpansive in the intermediate sense has a fixed point.

In [19], Prus introduced the notion of uniformly noncreasy spaces. A real
Banach space X is said to be uniformly noncreasy if for every ε > 0 there
is δ > 0 such that if f, g ∈ SX∗ and ‖f − g‖ ≥ ε, then diamS(f, g, δ) ≤ ε,
where

S(f, g, δ) = {x ∈ BX : f(x) ≥ 1− δ ∧ g(x) ≥ 1− δ}

(diam ∅ = 0). It is known that both uniformly convex and uniformly smooth
spaces are uniformly noncreasy. The Bynum space l2,∞, which is l2 with the
norm

‖x‖2,∞ = max{‖x+‖2, ‖x−‖2},

and the space X√2, which is l2 with the norm

‖x‖√2 = max{‖x‖2,
√
2 ‖x‖∞},

are examples of uniformly noncreasy spaces without normal structure. It
was proved in [19] that all uniformly noncreasy spaces are superreflexive and
have SFPP. This yields

Corollary 2.6. Let C be a nonempty bounded closed and convex subset
of a uniformly noncreasy Banach space. Then every mapping T : C → C
asymptotically nonexpansive in the intermediate sense has a fixed point.

Recently, a fixed point theorem in direct sums of two Banach spaces
was proved in [23]. Assume that X has SFPP (for nonexpansive mappings)
and Y is uniformly convex, uniformly smooth or finite-dimensional. Since
uniformly convex, uniformly smooth as well as finite-dimensional spaces are
stable under passing to the Banach space ultrapowers and have uniform
normal structure, it follows from [23, Th. 3.4], that X ⊕ Y with a strictly
monotone norm has SFPP. Thus we obtain the following theorem.

Corollary 2.7. Assume that X has SFPP and Y is uniformly convex,
uniformly smooth or finite-dimensional. Then X⊕Y with a strictly monotone
norm has the fixed point property for asymptotically nonexpansive mappings
in the intermediate sense.

3. Common fixed points. In this section we generalize Theorem 2.3 to
a commuting family of mappings. Let {Tt : t ∈ I} be a commuting family of
asymptotically nonexpansive self-mappings in the intermediate sense acting
on a nonempty bounded closed and convex subset C of a Banach space X.
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Consider the set

A = {{(t1, α1), (t2, α2), . . . , (tk, αk)} : t1, . . . , tk ∈ I, ti 6= tj for i 6= j,

α1, . . . , αk ∈ N, k > 0},
directed by the relation

{(t1, α1), . . . , (tk, αk)} v {(s1, β1), . . . , (sm, βm)}
iff

{t1, . . . , tk} ⊆ {s1, . . . sm} and ∀i ∀j (ti = sj ⇒ αi ≤ βj).
If v = {(t1, α1), . . . , (tk, αk)} ∈ A, write

Tvx = Tα1
t1
· · ·Tαk

tk
x,

and let

D =
{
(vn) ∈ AN : lim sup

n→∞
sup
x,y∈C

(‖Tvnx− Tvny‖ − ‖x− y‖) ≤ 0
}
.

Note that D 6= ∅ since ({(t, n)})n∈N ∈ D for every t ∈ I. If (vn), (un) ∈ D,
define (vn) � (un) iff vn v un for every n ∈ N. It is not difficult to see that
for every (vn), (un) ∈ D there exists (wn) ∈ D such that (vn) � (wn) and
(un) � (wn). Indeed, let

vn = {(t(n)
1 , α

(n)
1 ), . . . , (t

(n)
kn
, α

(n)
kn

)},

un = {(s(n)
1 , β

(n)
1 ), . . . , (s(n)

mn
, β(n)
mn

)},
and put

(3.1) wn = {(t(n)
1 , α

(n)
1 ), . . . , (t

(n)
kn
, α

(n)
kn

), (s
(n)
1 , β

(n)
1 ), . . . , (s(n)

mn
, β(n)
mn

)},
n ∈ N (to shorten notation, we use the convention that if ti = sj for some i, j,
then the pairs (ti, αi), (sj , βj) in wn are identified with one pair (ti, αi+βj)).
Notice that

s((Twn)) = lim sup
n→∞

sup
x,y∈C

(‖TvnTunx− TvnTuny‖ − ‖x− y‖)

≤ s((Tvn)) + s((Tun)) ≤ 0,

where
s((Tvn)) = lim sup

n→∞
sup
x,y∈C

(‖Tvnx− Tvny‖ − ‖x− y‖).

Hence (wn) ∈ D and clearly (vn) � (wn) and (un) � (wn). Thus (D,�) is a
directed set.

Let p be a free ultrafilter on N. Then, for every (xn)p, (yn)p ∈ C̃ and
(vn) ∈ D,
(3.2)
lim
n→p

(‖Tvnxn−Tvnyn‖−‖xn−yn‖)≤ lim sup
n→∞

sup
x,y∈C

(‖Tvnx−Tvny‖−‖x−y‖)≤0.
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Therefore, we may define unambiguously a mapping T̂(vn) : C̃ → C̃ by setting

(3.3) T̂(vn)(xn)p = (Tvnxn)p.

It follows from (3.2) that T̂(vn) is nonexpansive for every (vn) ∈ D.
We can now prove a counterpart of Lemma 2.2.

Lemma 3.1. Let {Tt : t ∈ I} be a commuting family of asymptoti-
cally nonexpansive mappings in the intermediate sense acting on a nonempty
bounded closed and convex subset C of a Banach space X. Suppose that there
exists ỹ ∈ C̃ such that

(3.4) T̂(vn)ỹ = ỹ

for all (vn) ∈ D. Let ‖ỹ−ẋ0‖ < δ for some x0 ∈ C and δ > 0. Then for every
ε > 0 there exist x ∈ C and n ∈ N such that ‖x−x0‖ < δ and ‖Tux−x‖ < ε
for every u ∈ D′(n), where

D′(n) =
{
v = {(t1, α1), . . . , (tk, αk)} ∈ A :

sup
x,y∈C

(‖Tvx− Tvy‖ − ‖x− y‖) ≤
1

n+ 1

}
.

Proof. Since ‖ỹ − ẋ0‖ < δ, there exists a sequence (yn) in C such that
‖yn − x0‖ < δ for all n ∈ N and ỹ = (yn)p. Assume, contrary to our claim,
that there exists ε0 > 0 such that for every x ∈ C and n ∈ N there exists
u ∈ D′(n) such that ‖x − x0‖ ≥ δ or ‖Tux − x‖ ≥ ε0. We shall define
a sequence (un) ∈ D by induction. For n = 0 and y0 ∈ C, there exists
u0 ∈ D′(0) such that ‖Tu0y0 − y0‖ ≥ ε0. Suppose that we have chosen
u0 ∈ D′(0), u1 ∈ D′(1), . . . , un ∈ D′(n) such that ‖Tuiyi − yi‖ ≥ ε0 for
i = 0, 1, . . . , n. By assumption, since ‖yn+1 − x0‖ < δ, there exists un+1 ∈
D′(n + 1) such that ‖Tun+1yn+1 − yn+1‖ ≥ ε0. Thus we obtain a sequence
(un) ∈ AN such that ‖Tunyn − yn‖ ≥ ε0 and

sup
x,y∈C

(‖Tunx− Tuny‖ − ‖x− y‖) ≤
1

n+ 1

for all n ∈ N. Hence
lim sup
n→∞

sup
x,y∈C

(‖Tunx− Tuny‖ − ‖x− y‖) = 0,

i.e., (un) ∈ D. But this contradicts (3.4), since ‖T̂(un)ỹ − ỹ‖ ≥ ε0.

We will also make use of the following simple observation.

Lemma 3.2. For every (un) ∈ D and x̃, ỹ ∈ C̃,

lim sup
(vn)∈D

‖T̂(vn)x̃− T̂(un)ỹ‖ = lim sup
(vn)∈D

‖T̂(vn)T̂(un)x̃− T̂(un)ỹ‖.
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Proof. Fix (un) ∈ D, x̃, ỹ ∈ C̃, and notice that for every (vn) ∈ D,

sup
(w̄n)�(wn)

‖T̂(w̄n)x̃− T̂(un)ỹ‖ = sup
(v̄n)�(vn)

‖T̂(v̄n)T̂(un)x̃− T̂(un)ỹ‖,

where (wn) is defined by (3.1). Hence

lim sup
(vn)∈D

‖T̂(vn)x̃− T̂(un)ỹ‖ ≤ lim sup
(vn)∈D

‖T̂(vn)T̂(un)x̃− T̂(un)ỹ‖.

The reverse inequality is obvious since T̂(vn)T̂(un)x̃ = T̂(wn)x̃ and (vn) �
(wn).

We are now in a position to prove the following generalization of Theorem
2.3.

Theorem 3.3. Suppose C is a nonempty bounded closed and convex sub-
set of a Banach space X with SFPP and T = {Tt : t ∈ I} is a commuting
family of asymptotically nonexpansive mappings in the intermediate sense
acting on C. Then there exists x ∈ C such that Ttx = x for every t ∈ I
(a common fixed point for T ).

Proof. We partly follow the reasoning in the proof of Theorem 2.3. As-
sume that X has the super fixed point property for nonexpansive mappings.
Let T = {Tt : t ∈ I} be a commuting family of asymptotically nonexpansive
mappings in the intermediate sense acting on a nonempty bounded closed
and convex set C ⊂ X. We can assume that diamC = 1. Take a free ul-
trafilter p on N, (vn) ∈ D and define T̂(vn) by (3.3). Notice that for every
(vn), (un) ∈ D and any (xn)p ∈ C̃,

(T̂(vn) ◦ T̂(un))(xn)p = (T̂(un) ◦ T̂(vn))(xn)p.

It follows from Bruck’s theorem that there exists ỹ0 ∈ C̃ such that T̂(vn)ỹ0 =
ỹ0 for all (vn) ∈ D. Fix ε < 1 and x0 ∈ C. We shall define by induction a
sequence (nj) of natural numbers and a sequence (xj) of elements in C such
that

(3.5)

‖xj − xj−1‖ < 3εj−1 and ‖Tuxj − xj‖ < εj for every u ∈ D′(nj), j ≥ 1.

By Lemma 3.1, there exist x1 ∈ C and n1 ∈ N such that ‖Tux1 − x1‖ < ε
for every u ∈ D′(n1) and ‖x1 − x0‖ ≤ diamC < 3.

Suppose that we have chosen natural numbers n1, . . . , nj and x1, . . . , xj ∈
C (j ≥ 1) such that

(3.6)

‖xi − xi−1‖ < 3εi−1 and ‖Tuxi − xi‖ < εi for every u ∈ D′(ni), 1 ≤ i ≤ j.
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Let
Dj =

{
ỹ = (yn)p ∈ C̃ : lim sup

(vn)∈D
‖T̂(vn)ẋj − ỹ‖ ≤ εj

}
,

where ẋj = (xj , xj , . . .)p and

lim sup
(vn)∈D

‖T̂(vn)ẋj − ỹ‖ = inf
(vn)∈D

sup
(un)�(vn)

lim
n→p
‖Tunxj − yn‖.

Notice that for every (vn) ∈ D and η > 0, there exists k ∈ N such that
supx,y∈C(‖Tvnx− Tvny‖ − ‖x− y‖) < η for every n > k. Hence vn ∈ D′(nj)
for sufficiently large n and applying the induction assumption (3.6) gives
limn→p ‖Tvnxj − xj‖ ≤ εj for every (vn) ∈ D. It follows that ẋj ∈ Dj and
Dj is a nonempty closed and convex subset of C̃. By Lemma 3.2, for fixed
(un) ∈ D and ỹ ∈ Dj ,

lim sup
(vn)∈D

‖T̂(vn)ẋj − T̂(un)ỹ‖ = lim sup
(vn)∈D

‖T̂(vn)T̂(un)ẋj − T̂(un)ỹ‖

≤ lim sup
(vn)∈D

‖T̂(vn)ẋj − ỹ‖ ≤ εj ,

and hence T̂(un)(Dj) ⊂ Dj for every (un) ∈ D. By Bruck’s theorem, there
exists ỹj ∈ Dj such that T̂(vn)ỹj = ỹj for all (vn) ∈ D. It is easy to see that
‖ỹj− ẋj‖ < 3εj and, by Lemma 3.1, there exist xj+1 ∈ C and nj+1 ∈ N such
that ‖xj+1− xj‖ < 3εj and ‖Tuxj+1− xj+1‖ < εj+1 for every u ∈ D′(nj+1).
Thus we obtain by induction a sequence (nj) of natural numbers and a
sequence (xj) of elements in C such that (3.5) is satisfied. It follows that
(xj) is a Cauchy sequence converging to some x ∈ C.

Fix Tt ∈ T and notice that for every nj , there exists kj such that
{(t, n)} ∈ D′(nj) for n > kj , since Tt is asymptotically nonexpansive in
the intermediate sense. Applying (3.5) gives

lim sup
n→∞

‖Tnt xj − xj‖ ≤ εj , j ≥ 1.

Furthermore,

‖Tnt x− x‖ ≤ (‖Tnt x− Tnt xj‖ − ‖x− xj‖) + ‖Tnt xj − xj‖+ 2‖xj − x‖
≤ sup

x,y∈C
(‖Tnt x− Tnt y‖ − ‖x− y‖) + ‖Tnt xj − xj‖+ 2‖xj − x‖

for every j, n ≥ 1, and consequently lim supn→∞ ‖Tnt x− x‖ = 0. Since Tt is
continuous, Ttx = x.

Remark. It was proved in [5, Th. 4] that if C is a nonempty weakly
compact convex subset of a Banach space X and every asymptotically non-
expansive mapping of C has the (ω)-fixed point property (which is a little
stronger than the fixed point property), then the set of common fixed points
of any commuting family of asymptotically nonexpansive mappings acting
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on C is a nonexpansive retract of C. It is not known whether a similar
conclusion can be drawn under the assumptions of Theorem 3.3.
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