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On the connectivity of finite subset spaces

by

Jacob Mostovoy and Rustam Sadykov (México)

Abstract. We prove that the space expk

∨
Sm+1 of nonempty subsets of cardinality

at most k in a bouquet of m + 1-dimensional spheres is (m + k − 2)-connected. This,
as shown by Tuffley, implies that the space expk X is (m + k − 2)-connected for any
m-connected cell complex X.

1. Introduction and the statement of the result. The kth finite
subset space expkX of a topological space X is the space of nonempty sub-
sets of X of cardinality at most k. The topology is taken to be the quotient
topology with respect to the map Xk → expkX that sends (x1, . . . , xk) to
{x1} ∪ · · · ∪ {xk} ⊂ X. The space expkX can be interpreted as the space
of faces of dimension at most k of the infinite-dimensional simplex whose
space of vertices is X. It is easy to see that expk is a homotopy functor.

The finite subset space functor (under the name of “symmetric product”,
which has a different use now) was introduced by Borsuk and Ulam [3] as
a means to construct examples of topological spaces with interesting prop-
erties. This construction can produce rather nontrivial results even in the
simplest cases [2, 4, 10]. Finite subset spaces turned out to be of impor-
tance in various problems of geometry and topology: see, for instance, [1]
and [5].

The most important property of finite subset spaces is that the colimit

expX =
⋃

expkX

has trivial homotopy groups. This follows essentially from the fact that
expX is a topological semigroup with an idempotent operation (see page
172 of [1] for a brief proof). In contrast to expX, the spaces expkX are
not necessarily contractible. In this note we prove a lower bound on the
connectivity of expkX.

2010 Mathematics Subject Classification: Primary 55P65.
Key words and phrases: finite subset spaces, Tuffley conjecture.

DOI: 10.4064/fm217-3-6 [279] c© Instytut Matematyczny PAN, 2012



280 J. Mostovoy and R. Sadykov

Theorem 1.1. If X is an m-connected cell complex, then the finite sub-
set space expkX is (k +m− 2)-connected.

This was proved for m = 0 and 1 and conjectured for m ≥ 2 by
Tuffley [13].

Theorem 1.1 has also been established by Kallel and Sjerve [9] in the
case k = 3, by Félix and Tanré [7] rationally for k = 3 and 4, and by
Taamallah [11] for k = 4.

2. The proof. It has been shown by Tuffley [13] that it is sufficient to
prove Theorem 1.1 for finite bouquets of (m + 1)-dimensional spheres. He
also established it for bouquets of circles. Namely, he showed [12] that for a
connected graph Γ the space expk Γ has vanishing reduced homology groups
in degrees different from k − 1 and k. Since expkX is simply connected for
all connected X and k > 2 (see [13, Theorem 1] or [9, Corollary 2.2]), this
implies that expk Γ is (k − 2)-connected.

The proof for bouquets of spheres of any given dimension is by induction
on the dimension of the spheres, the base being the case of bouquets of circles
proved by Tuffley. Our argument is very close to that of Tuffley and uses the
following simple lemma (which is a stronger version of Lemma 1 of [13]):

Lemma 2.1. Let Y be a union of open sets U1, . . . , Ur such that

• U1 ∩ · · · ∩ Ur is nonempty,
• each intersection Ui1...is = Ui1 ∩ · · ·∩Uis has vanishing reduced homol-

ogy in dimensions less than j, and
• each Ui has vanishing reduced homology in dimensions less than j+ 1.

Then Y has vanishing reduced homology in dimensions less than j + 1.

Proof. Observe that U1 ∪U2 has vanishing reduced homology in dimen-
sions less than j + 1. Indeed, this immediately follows from the Mayer–
Vietoris sequence

· · · → H̃i+1(U1)⊕ H̃i+1(U2)→ H̃i+1(U1 ∪ U2)→ H̃i(U12)→ · · · .
Next we apply the same argument to the open cover {Vi} of Y , where V1 =
U1 ∪ U2, V2 = U3, . . . , Vr−1 = Ur, and use induction.

Assume that Theorem 1.1 has been established for all k and m ≤ n.
Let us prove it for all k and m = n+ 1. As mentioned before, it suffices to
consider the case of finite subset spaces expk(

∨
Sn+1).

Let P1, . . . , Pk+1 be disjoint subsets of a finite bouquet
∨
Sn+1 of n+ 1-

dimensional spheres such that each Pi has exactly one point in each sphere,
and the common point of the spheres does not belong to any of the sets Pi.
Then the open sets

Ui = expk(
∨
Sn+1 − Pi)
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cover expk

∨
Sn+1. Since expk is a homotopy functor, it follows that each

Ui is contractible and the intersections

Ui1···is = expk(
∨
Sn+1 − Pi1 − · · · − Pis) ' expk(

∨
Sn)

are (n+ k − 3)-connected by the induction assumption. By Lemma 2.1, we
deduce that expk(

∨
Sn+1) is (n+ k − 2)-connected.

3. Some remarks. The space expX can be thought of as a space of
particles with summable labels (such as those in [8]), with the monoid of
labels being the set {0,∞} endowed with the natural addition. There is a
whole family of monoids interpolating between this monoid and the natural
numbers: take the set {0, 1, . . . , n,∞} with the operation being the usual
sum unless the result is greater than n, in which case it is taken to be ∞.
Particle spaces with labels in these monoids are also readily seen to be
contractible.

The functor expk is actually defined on sets. For a set S the set expk S
is the colimit of the diagram consisting of all cartesian products of at most
k copies of S with arrows being (1) all possible products of diagonal maps
with identity maps and (2) all permutations of the factors. If S is given
a topology, these arrows are continuous maps, and therefore expk S is a
topological space. If S is a simplicial set, that is, a functor from ∆op to sets,
expk S can be defined simply as the composition expk◦S. Note that since the
geometric realization commutes both with cartesian products and colimits,
for any simplicial set S the geometric realization |expk S| is homeomorphic
to expk |S|. This fact can be used to produce cell decompositions of the
spaces expkX, such as those in [9]. (See [6] for basics on simplicial sets.)
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