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The even-odd hat problem

by

Daniel J. Velleman (Amherst, MA)

Abstract. We answer a question of C. Hardin and A. Taylor concerning a hat-
guessing game.

1. Introduction. The purpose of this paper is to answer a question
stated by C. Hardin and A. Taylor in their paper [3]. Hardin and Taylor
study hat problems, in which a set of players have hats of a variety of different
colors placed on their heads. Each player can see the hats of some subset of
the other players, but no player can see his own hat. Each player must try to
guess the color of his own hat. There is no communication among the players
once the hats are placed on their heads; in particular, no player hears the
guesses made by any other players. However, the players may meet before
the game begins to agree on strategies that they will use when formulating
their guesses. The question Hardin and Taylor ask in each case is whether
or not there are strategies the players can use that will guarantee that at
least one player guesses correctly. For more background on hat problems we
refer the reader to [2] and [3].

To formalize these problems, we let P be the set of players and C the set
of available hat colors. A hat assignment is then represented by a function
f : P → C, and as usual we let PC denote the set of all such functions. We
let V be the visibility relation among the players. In other words,

V = {〈p, q〉 ∈ P 2 : p can see q’s hat}.
Since no player can see his own hat, V will be irreflexive. For any p ∈ P we
let

V (p) = {q ∈ P : 〈p, q〉 ∈ V }.
Thus, V (p) is the set of players whose hat p can see. A strategy for p is a
function Sp : PC → C; we think of Sp(f) as the color that p guesses when
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the hat assignment is f . Of course, when formulating this guess p should not
be allowed to use information about the colors of hats that he cannot see.
To enforce this condition, we require that if f, g ∈ PC and f�V (p) = g�V (p)
then Sp(f) = Sp(g). We say that p guesses correctly using this strategy if
Sp(f) = f(p), which means that his guess matches the actual color of his hat.

A predictor is a sequence S = 〈Sp : p ∈ P 〉 of strategies, one for each
player. It is a minimal predictor if it guarantees that at least one player will
guess correctly, no matter how the hat colors are assigned. In other words,
a predictor S is a minimal predictor if for every function f ∈ PC, there is
some p ∈ P such that Sp(f) = f(p). (The motivation for this term is that
if we measure the success of a predictor by the number of correct guesses
it guarantees, then a minimal predictor is one that achieves at least the
minimum positive degree of success.) With this terminology, we can now
state more precisely the question we will discuss: Given sets P and C and a
visibility relation V , does there exist a minimal predictor? (In Hardin and
Taylor’s notation, the statement that such a predictor exists can be written
〈P, V 〉⇀ 〈1〉C ; however, we will not use that notation in this paper.)

Hardin and Taylor study a number of hat problems of this form. One
class of problems that they focus on is the case in which P = 2 × ω and
V = {〈〈i, p〉, 〈j, q〉〉 : i 6= j and p < q}. In this situation we can think of the
players as belonging to two denumerable teams, {0} × ω and {1} × ω, with
each player on one team able to see the higher-numbered players on the
opposite team. Following Taylor and Hardin, we refer to this as the “even-
odd context” (because one could also formalize this situation by letting the
two teams consist of the even and odd natural numbers). The existence of
a minimal predictor will now depend on the number of colors.

Hardin and Taylor prove that in the even-odd context there is a minimal
predictor if C has 2 elements, there is no minimal predictor if |C| ≥ ℵ2, and
the existence of a minimal predictor is independent of ZFC if |C| is either
ℵ0 or ℵ1. However, they leave the case 2 < |C| < ℵ0 unresolved (see [3,
Theorems 4.1 and 5.5 and Question 6.4]). In this paper we resolve this last
case. Our main theorem is:

Theorem 1. In the even-odd context with any finite number of colors,
there is a minimal predictor.

2. Proof of the theorem. In this section we assume that the number
of colors is a fixed positive integer c. Of course, the problem is trivial if
c = 1, so we may as well assume c ≥ 2, and we can take the set C of colors
to be c = {0, 1, . . . , c − 1}. One of the key steps in our proof will be the
following result of S. Butler, M. Hajiaghayi, R. Kleinberg, and T. Leighton
(see [1, Theorem 7]). For completeness, we provide a proof.
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Lemma 2. There are disjoint finite sets A and B such that in the hat
problem with P = A ∪ B, V = (A × B) ∪ (B × A), and c colors, there is a
minimal predictor.

Proof. Let B = c− 1 and A = {X ⊆ Bc : |X| = c}. Of course, B and A

are finite, with cardinalities c − 1 and
(
cc−1

c

)
, respectively. Let P and V be

defined as in the lemma. According to the definition of V , all of the players
in A can see the hats of all of the players in B (but no others), and vice versa.
Any hat assignment f : P → c can be thought of as a union f = fA ∪ fB,
where fA = f�A and fB = f�B.

We first explain the strategies that the players in A will use. Fix a linear
ordering≺ on Bc. Consider a player X ∈A, and write X = {h0, h1, . . . , hc−1},
where h0 ≺ h1 ≺ · · · ≺ hc−1. For any hat assignment f : P → c, we define
SX(f) as follows:

SX(f) =

{
i if fB = hi,

0 if fB /∈ X.

In other words, a player X ∈ A can be thought of as a list of c possible
assignments of hats to the players in B. His strategy is to see if the hat
assignment he can see, namely fB, is one of the assignments in this list. If
so, he guesses the corresponding color, and if not he guesses 0.

Next we define the strategies for the players in B. Suppose f : P → c is
a hat assignment. For any function h ∈ Bc, let fh = fA ∪ h. The functions
fh, for all h ∈ Bc, are the hat assignments that the players in B think are
possible, based on the colors of the hats they can see.

Let W be the set of all h ∈ Bc such that under the hat assignment fh,
no player in A would guess correctly. That is,

W = {h ∈ Bc : for all X ∈ A, SX(fh) 6= fh(X)}.

Note that if fB /∈ W then for some X ∈ A, SX(ffB ) = ffB (X). But
ffB = fA ∪ fB = f , so this means SX(f) = f(X), and therefore X guesses
correctly. Thus, we need only worry about the case fB ∈W . It will suffice to
define the strategies for the players in B so as to guarantee that if fB ∈W ,
then one of the players in B guesses correctly.

Let m = |W |, and write W = {h0, h1, . . . , hm−1}, where h0 ≺ h1 ≺
· · · ≺ hm−1. We claim that m < c. To see why, suppose m ≥ c, and let
X = {h0, h1, . . . , hc−1} ⊆ W . Let j = f(X) = fA(X), the color of X’s hat
under the assignment f . Then according to the definition of SX ,

SX(fhj ) = j = fA(X) = fhj (X),

contradicting the fact that hj ∈W . Thus m < c, so m ≤ c− 1.
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For any player i ∈ B, we now define the strategy Si as follows:

Si(f) =

{
hi(i) if i < m,

0 otherwise.

Notice that W depends only on fA and not on fB, so the players in B
can compute W = {h0, h1, . . . , hm−1}, and therefore this is an admissible
strategy. If fB ∈ W then there is some i < m such that fB = hi. Since
m ≤ c− 1, we have i ∈ B, and

Si(f) = hi(i) = fB(i) = f(i),

so i guesses correctly, as required.

We are now ready to prove our main theorem.

Proof of Theorem 1. Partition the set {1} × ω into infinitely many sets
B0, B1, . . . , each of cardinality c − 1. Choose disjoint sets A0, A1, . . . con-

tained in {0}×ω, each of cardinality
(
cc−1

c

)
, so that for every i, Bi×Ai ⊆ V .

Thus, every player in Bi can see the hats of all players in Ai.
Our plan is to have each pair (Ai, Bi) play according to the strategies in

the lemma. But there is a problem with this plan: the players in Ai cannot
see the hats of the players in Bi. Our solution to this problem will be to have
the players in Ai guess the colors of the hats in Bi. If they guess correctly
for any i, then, by the lemma, some player in Ai∪Bi will guess his hat color
correctly, as required.

For each i, by enumerating the second coordinates of the elements of Bi

in increasing order we can put Bi in one-to-one correspondence with c− 1,
and we can therefore think of the colors of the hats of the players in Bi as
being given by a function hi ∈ c−1c. Fix a linear ordering ≺ of c−1c, and
let h be the ≺-least element of c−1c such that for infinitely many i, hi = h.
Although the players in Ai do not know hi, they do know hj for all but
finitely many j, so they can determine h. The players in Ai guess that the
hat assignment for the players in Bi is h. For infinitely many i we have
hi = h, and therefore the players in Ai correctly guess the colors of the hats
of the players in Bi. Thus some player (indeed, infinitely many players) will
guess his hat color correctly.

3. The axiom of choice. The proof in Section 2 does not use the axiom
of choice. But if we are willing to assume AC, then an alternative proof is
possible. The proof relies on a fact that may be of independent interest, so
we present it in this section.

One of the complications of the even-odd context, as defined by Hardin
and Taylor, is that players on each team see only the higher-numbered players
on the other team. A simpler scenario would be one in which all players
on each team can see all players on the other team. To distinguish these
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two scenarios, in this section we will refer to Hardin and Taylor’s even-odd
context, as defined in Section 1, as the upward even-odd context, and we
define the full even-odd context to be the context in which P = 2 × ω and
V = {〈〈i, p〉, 〈j, q〉〉 : i 6= j}. We now show that, as far as the existence
of minimal predictors is concerned, there is no difference between these
contexts:

Theorem 3. For any set of colors C, there is a minimal predictor in
the upward even-odd context if and only if there is a minimal predictor in
the full even-odd context.

Proof. One direction is clear: if there is a minimal predictor in the up-
ward even-odd context, then there is one in the full even-odd context as well,
because players in the full even-odd context can simply ignore the extra in-
formation that is available to them and use the predictor for the upward
even-odd context.

Now suppose there is a minimal predictor for the full even-odd context.
We first observe that there must be a predictor for the full even-odd context
that guarantees infinitely many correct guesses. To see why, partition ω into
infinitely many infinite sets {Ai : i ∈ ω} and let Pi = 2×Ai. We now let the
players in Pi use a minimal predictor among themselves, ignoring the players
in Pj for j 6= i. For each i, at least one player in Pi will guess correctly, so
altogether infinitely many players guess correctly.

Thus, we may assume that we have a predictor S for the full even-odd
context that guarantees infinitely many correct guesses. To define a minimal
predictor for the upward even-odd context, consider a hat assignment f : 2×
ω → C. Define f0, f1 : ω → C by fi(p) = f(i, p). Thus, f0 and f1 are the hat
assignments for the two teams in the even-odd context. Define an equivalence
relation ≡ on ωC by letting g ≡ h if and only if {p ∈ ω : g(p) 6= h(p)} is
finite. By the axiom of choice, choose a representative from each equivalence
class, and let ĝ denote the representative of the equivalence class of g. In
particular, f̂0 and f̂1 are functions that disagree with f0 and f1 in only
finitely many places, and we can combine them into a function f̂ : 2×ω → C
that disagrees with f only finitely often by letting f̂(i, p) = f̂i(p). Notice
that in the upward even-odd context, a player 〈i, p〉 cannot see all of the
hat assignment f1−i for the opposite team, but he can see all but finitely

many values of it, which is enough to determine f̂1−i. Thus, we can define
a predictor Ŝ for the upward even-odd context as follows:

Ŝ〈i,p〉(f) = S〈i,p〉(f̂ ).

By assumption, there are infinitely many players 〈i, p〉 such that S〈i,p〉(f̂ ) =

f̂(i, p). Since f̂ and f disagree only finitely many times, this means that
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there are infinitely many players 〈i, p〉 such that Ŝ〈i,p〉(f) = f(i, p). Thus,

Ŝ is a minimal predictor for the upward even-odd context.

The relevance of this result to Theorem 1 is that Lemma 2 immediately
implies the existence of a minimal predictor in the full even-odd context with

finitely many colors: simply choose
(
cc−1

c

)
players from one team and c − 1

players from the other team, let them play the strategies from Lemma 2,
and ignore all other players. Applying Theorem 3, we get another proof of
Theorem 1.
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