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Mixing actions of groups with
the Haagerup approximation property

by

Greg Hjorth (Melbourne)

Abstract. A countable group Γ has the Haagerup approximation property if and
only if the mixing actions are dense in the space of all actions of Γ .

1. Introduction. Given a countable group Γ and an atomless standard
Borel probability space (X,µ), we can form the space of all measure pre-
serving actions of Γ . In the usual weak topology, as discussed below, this
becomes a Polish space. In the lines below, every action is assumed to be
measurable, measure preserving, on some such (X,µ).

The present paper is part of a series of results which relate representa-
tion-theoretic properties of a group to the properties of its space of all actions
on some such (X,µ).

Theorem 1.1 (Ornstein–Weiss; [9]). A countable group Γ is amenable
if and only if every free measure preserving action has almost invariant sets.

Here, we say that an action of Γ on (X,µ) has almost invariant sets if
there exists a sequence of measurable sets, (An)n∈N, with measure bounded
away from 0 and 1, such that for any γ ∈ Γ ,

lim sup
n→∞

µ(An 4 γ ·An) = 0.

Theorem 1.2 (Connes–Weiss, Schmidt; [3], [11]). A countable group Γ
has property (T) if and only if no ergodic action has almost invariant sets.

Theorem 1.3 (Glasner–Weiss; [4]). A countable group Γ has property
(T) if and only if the set of ergodic actions is closed in the space of all
actions.
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In answer to a question of Bergelson and Rosenblatt:

Theorem 1.4 (Kerr–Pichot; [8]). A countable group Γ does not have
property (T) if and only if the weak mixing actions on (X,µ) are a dense
Gδ in the space of all actions.

In the present paper we answer a question due to Alexander Kechris [7]
by showing:

Theorem 1.5. If a countable group Γ has the Haagerup approximation
property (HAP) then the mixing actions are dense in the space of all actions.

The converse direction was known and is a straightforward consequence
of the definitions—see for instance [7, 12.7]. Thus we have

Corollary 1.6. A countable group Γ has the Haagerup approximation
property if and only if the mixing actions are dense in the space of all actions.

2. Representation-theoretic notions. For the reader’s convenience
we recall the relevant notions arising from the theory of unitary representa-
tions.

Definition. For H a Hilbert space, we let U(H) be the unitary opera-
tors. Given a unitary representation

π : Γ → U(H), γ 7→ πγ ,

of a countable group Γ , we say that π has almost invariant vectors if for all
ε > 0 and F ⊂ Γ finite there exists v ∈ H with ‖v‖ = 1, and for all γ ∈ F ,

‖πγ(v)− v‖ < ε.

We say that the representation is mixing if for all u, v ∈ H,

lim sup
γ→∞

〈πγ(v), u〉 = 0.

In other words, for all ε > 0 there exists a finite set F ⊂ Γ such that for all
γ ∈ Γ \ F ,

|〈πγ(v), u〉| < ε.

Definition. Given a countable group Γ , we define the left regular repre-
sentation of Γ by

λ : Γ → `2(Γ ), γ 7→ λγ ,

where
(λγ(f))(x) = f(γ−1x).

With these concepts, we can define the classes of groups from the intro-
duction. Note that the definition we give for amenability is equivalent to the
more traditional definitions; there are manifold different characterizations
of amenability, most of which, including the one used here, are discussed
in [10].
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Definition. A countable group Γ is amenable if the left regular rep-
resentation has almost invariant vectors. A countable group Γ has property
(T) if whenever a unitary representation has almost invariant vectors, there
is an invariant vector of norm one. A countable group has the Haagerup
approximation property, HAP for short, if there exists a mixing action with
almost invariant vectors.

Examples. (i) The group Z is amenable, as is any abelian group. More
generally, any solvable group is amenable. See [10].

(ii) F2, the free group on two generators, is non-amenable, but it does
have the Haagerup approximation property. See the appendix of [6] for an
entirely elementary proof of this fact first due to Haagerup.

(iii) SL3(Z) has property (T). See for instance [5]. It is not amenable,
since no countably infinite group can have an invariant unit vector in its left
regular representation. Similarly, it does not have HAP, since mixing actions
cannot have invariant unit vectors.

(iv) Under the natural semidirect product provided by linear action of
SL2(Z) on Z2, the group

∆ = SL2(Z) n Z2

is non-amenable, since it has a subgroup isomorphic to F2. It does not have
property (T), since it has SL2(Z) as a homomorphic image, and this group
in turn has the free group on two generators as a finite index subgroup. On
the other hand, as shown for example in [2], it does have a kind of relative
property (T), which is sufficient to exclude the Haagerup approximation
property.

3. Measure-theoretic notions. We follow the notation of [7].

Notation. For (X,µ) a standard Borel space, we let Aut(X,µ) be the
collection of invertible measure preserving transformations. Given a count-
able group Γ , A(Γ,X, µ) denotes the collection of homomorphisms from Γ
to Aut(X,µ). Given such an automorphism

a : Γ → Aut(X,µ)

and a group element γ ∈ Γ , we denote by γa the invertible measure preserv-
ing transformation associated to γ. In the rare cases below that there can
be no possible confusion regarding which action we have in mind, we will
simply write γ instead of γa, and γ · x instead of γa · x.

Notation. The weak topology on Aut(X,µ) is the topology with sub-
basic open sets of the form

{π ∈ Aut(X,µ) : µ(B 4 π(A)) < ε}
for A,B ⊂ X measurable, ε > 0.
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Provided we identify measure preserving transformations which agree on
a conull set, Aut(X,µ) becomes a Polish space in the weak topology. Then
A(Γ,X, µ) becomes a closed subset of∏

Γ

Aut(X,µ),

and is again Polish in its own right. These and other preliminary facts can
be found at §1 and §10 of [7].

Definition. Given a countable group Γ and an action a ∈ A(Γ,X, µ),
we say that the action is mixing if for all measurable A,B ⊂ X,

lim sup
γ→∞

|µ(A4 γa ·B)− µ(A)µ(B)| = 0.

We will need a non-trivial, but well known, consequence of the Haagerup
approximation property.

Definition. Let E and F be equivalence relations on standard Borel
spaces X and Y . A homomorphism from E to F is a function θ : X → Y
such that for all x1, x2 ∈ X with x1Ex2 we have

θ(x1)Fθ(x2).

Definition. E0 is the equivalence relation of eventual agreement on
infinite binary sequences: thus, for f, g ∈ {0, 1}N =

∏
N{0, 1}, we set fE0g

if there exists some N ∈ N such that

(∀n > N)(f(n) = g(n)).

Theorem 3.1 (Jolissaint, see for instance [7, 11.1]). A countable group Γ
has the Haagerup approximation property if and only if it has a free, measure
preserving , mixing action on a standard Borel probability space which is not
E0-ergodic.

Corollary 3.2. If Γ has the Haagerup approximation property , then
for any finite F ⊂ Γ we can find a standard Borel probability space, (Y, ν),
which, for any δ > 0, has a partition

Y =
⋃
i≤N

Ai,

and an action of Γ on Y such that :

(i) the action is measure preserving and mixing ;
(ii) for each γ ∈ F and i ≤ N ,

ν(Ai 4 γ ·Ai) < δ;

(iii) each Ai has measure 1/N .
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Proof. Take as our (Y, ν) the witness that Γ has a mixing, measure
preserving action which is not E0-ergodic. Let θ : Y → 2N be the function
witnessing failure of E0-ergodicity.

First we choose some large M such that for all γ ∈ F ,

ν({y ∈ Y : (∃n ≥M)(θ(y)(n) 6= θ(γ · y)(n))}) < δ.

Then we define

% : Y → 2N by %(y)(n) = θ(y)(M + n).

Rephrasing our assumption on M we see that for each γ ∈ F ,

ν({y ∈ Y : %(y) 6= %(γ · y)}) < δ.

The assumptions on θ imply that the pullback of every point in 2N under θ
is ν-null, and hence the pullback of every point under % is ν-null.

Define µ = %∗(ν) on 2N by µ(A) = ν(%−1[A]). The previous remark im-
plies that this measure is continuous—that is, no point has non-zero mea-
sure. Now if we partition 2N into sets B1, . . . , BN , each of µ-measure 1/N ,
then we can finish with Ai = θ−1[Bi].

There is one further piece of notation which we will find convenient to
use.

Notation. Given A ⊂ X × Y , we let

Ax = {y ∈ Y : (x, y) ∈ A} for x ∈ X,
Ay = {x ∈ X : (x, y) ∈ A} for y ∈ Y .

4. Proof. In everything below, Γ is a countable group with the Haage-
rup approximation property. The next lemma, with its cutting and splicing
along almost invariant sets, has obvious parallels with the arguments of [8].

Lemma 4.1. Let (X,µ) be an atomless standard Borel probability space.
Let a ∈ A(Γ,X, µ), B1, . . . , Bn be measurable subsets of X, F ⊂ Γ finite,
and ε > 0. Then there exists an atomless standard Borel probability space
(X̂, µ̂) and b ∈ A(Γ, X̂, µ̂) and measurable subsets B̂1, . . . , B̂n such that :

(a) for any S ⊂ {1, . . . , n},

µ̂
(⋂
i∈S

(
B̂i \

⋂
i/∈S

B̂i

))
= µ

(⋂
i∈S

(
Bi \

⋂
i/∈S

Bi

))
;

(b) for all m ≤ n and γ1, . . . , γm ∈ F and i1, . . . , im ≤ n,

|µ(γa1 ·Bi1 ∩ · · · ∩ γam ·Bim)− µ̂(γb1 · B̂i1 ∩ · · · ∩ γbm · B̂im)| < ε;

(c) for all γ ∈ Γ and i, j ≤ n,

|µ̂(B̂i ∩ γb · B̂j)− µ̂(B̂i) · µ̂(B̂j)| ≤ |µ(Bi ∩ γa ·Bj)− µ(Bi) · µ(Bj)|;
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(d) for all i, j ≤ n,

lim sup
γ→∞

|µ̂(γb · B̂i ∩ B̂j)− µ̂(B̂i)µ̂(B̂j)| < ε.

Proof. To begin, let us fix some large N ∈ N. (It will be clear after the
later calculations that any sufficiently large N will work; in fact, N > 2/ε
suffices.) We equip XN with the diagonal action, c, where

γc · (x1, . . . , xN ) = (γa · x1, . . . , γ
a · xN )

and the product measure µN . For each i ≤ n we let

πi : XN → X, (x1, . . . , xN ) 7→ xi.

Now let δ > 0 be very small. (Again, it will be clear from the later
calculations that any sufficiently large δ will fill our needs; in fact, δ < ε/N
suffices.) Keeping in mind that Γ has HAP as at 3.2, let (Y, ν) be a standard
Borel probability space with a partition

Y =
⋃
i≤N

Ai

and an action d of Γ on Y such that:

(i) the action d is measure preserving and mixing;
(ii) for each γ ∈ F and i ≤ n,

ν(Ai 4 γd ·Ai) < δ;

(iii) each ν(Ai) equals 1/N .

We let X̂ = XN ×Y , equipped with the product measure, which we now
denote by µ̂, and the action

γb · (~x, y) = (γc · ~x, γd · y).

We then let B̂j be the set of (~x, y) ∈ XN × Y such that for all i ≤ N ,

y ∈ Ai ⇒ πi(~x) ∈ Bj .

Property (a) from the lemma should be obvious from the construction.
Property (b) follows by making δ sufficiently small.

For each γ ∈ Γ we let

Cγ = {y ∈ Y : (∀i)(y ∈ Ai ⇒ γd · y /∈ Ai)}.
Since the action of d is mixing we deduce that, as γ →∞,

ν(Ai ∩ (γd)−1 · (Y \Ai))→
N − 1
N2

,

and hence

ν(Cγ)→ N(N − 1)
N2

=
N − 1
N

.
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Claim. For all γ outside a finite set, and for all j, l ≤ n,
N − 2
N

µ(Bj) · µ(Bl) < µ̂(B̂j ∩ γb · B̂l) <
N − 2
N

µ(Bj) · µ(Bl) +
2
N
.

Proof of Claim. Outside a finite set of γ’s we obtain ν(Cγ) > (N − 2)/N .
Then for y ∈ Cγ , y ∈ Ai, γd · y ∈ Ak, z ∈ Ak we find firstly that i 6= k and
then

µN ((B̂j)z ∩ (γb · B̂l)γ
d·y) = µN ((B̂j)z ∩ (γc · (B̂l)y))

= µ(π−1
k (Bj) ∩ π−1

i (γa ·Bl)) = µ(Bj) · µ(Bl).

And thus for z ∈ γd · Cγ we have

µN ((B̂j)z ∩ (γb · B̂l)z) = µ(Bj) · µ(Bl).

For z outside this set,

0 ≤ µN ((B̂j)z ∩ (γb · B̂l)z) ≤ 1.

Since we have ν(Cγ) = ν(γd · Cγ) > (N − 2)/N the claim follows by inte-
grating z over Y . Claim

Thus for N with 2/N < ε we obtain (d) from the statement of the lemma.
Note then that for all i, l ≤ n and γ ∈ Γ we have, as above,

µ̂(B̂i ∩ γb · (B̂l)) =
�

Y

µN ((B̂i)z ∩ (γb · B̂l)z dν(z).

For z ∈ γd · Cγ again

µN ((B̂j)z ∩ (γb · B̂l)z) = µ(Bj) · µ(Bl),

whilst for z /∈ γd · Cγ we obtain

µN ((B̂j)z ∩ (γb · B̂l)z) = µ(Bj ∩ γa ·Bl).
This yields (c).

Corollary 4.2. Let (X,µ) be an atomless standard Borel probability
space. Let a ∈ A(Γ,X, µ), C1, . . . , Ck be measurable subsets of X, F ⊂ Γ
finite, and ε > 0. Then there exists c ∈ A(Γ,X, µ) such that :

(i) for all m ≤ k and γ1, . . . , γm ∈ F and i1, . . . , im ≤ k,

|µ((γa1 · Ci1 ∩ · · · ∩ γam · Cim)4 (γc1 · Ci1 ∩ · · · ∩ γcm · Cim))| < ε;

(ii) for all γ ∈ Γ and i, j ≤ n
|µ(Ci ∩ γc · Cj)− µ(Ci) · µ(Cj)| ≤ |µ(Ci ∩ γa · Cj)− µ(Ci) · µ(Cj)|;

(iii) for all i, j ≤ n,

lim sup
γ→∞

|µ(γc · Ci ∩ Cj)− µ(Ci) · µ(Cj)| < ε.
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Proof. Let B be the finite Boolean algebra generated by {γ · Ci : i ≤ k,
γ ∈ F}. Let B1, . . . , Bn enumerate the elements of B. Apply the last lemma
to obtain b and (X̂, µ̂) for B1, . . . , Bn, a ∈ A(Γ,X, µ), ε > 0, and the
indicated F .

Now we can find a measure preserving bijection ψ : X̂ → X with
ψ[B̂i] = Bi. Taking

γc · x = ψ(γb · ψ−1(x))

is as required.

Theorem 4.3. Let Γ be a countable group with the Haagerup approxi-
mation property. Let (X,µ) be an atomless standard Borel probability space.
Then the mixing actions are dense in the space A(Γ,X, µ).

Proof. Fix a ∈ A(Γ,X, µ). Fix ε > 0. Fix B a finite Boolean algebra
of measurable subsets of X. Fix a finite subset F of Γ . We need to find
a mixing action b of Γ such that for all A ∈ B and all γ ∈ F ,

µ(γb ·A4 γa ·A) < ε.

Let B0 = B ⊂ B1 ⊂ B2 ⊂ · · · be an increasing sequence of finite Boolean
algebras of measurable subsets of X whose union is dense in M(X,µ),
the metric space of all measurable subsets of X equipped with the met-
ric d(A,B) = µ(A 4 B). Let F0 = F ⊂ F1 ⊂ F2 ⊂ · · · be an increasing
sequence of finite subsets of Γ whose union equals all of Γ .

Applying the above corollary repeatedly we can find actions

a0 = a, a1, a2, . . .

such that for each n ≥ 0 and C1, . . . , Ck ∈ Bn we have:

(i) for all m ≤ k and γ1, . . . , γk ∈ Fn,

|µ((γan
1 ·C1∩· · ·∩γan

k ·Ck)4(γan+1

1 ·C1∩· · ·∩γan+1

k ·Ck))| < 2−n−1ε;

(ii) for all γ ∈ Γ and i, j ≤ k,

|µ(Ci∩γan+1 ·Cj)−µ(Ci) ·µ(Cj)| ≤ |µ(Ci∩γan ·Cj)−µ(Ci) ·µ(Cj)|;
(iii) for all i, j ≤ k,

lim sup
γ→∞

|µ(γan+1 · Ci ∩ Cj)− µ(Ci) · µ(Cj)| < 2−n−1ε.

For each γ ∈ Γ we can define the corresponding sequence of transforma-
tions

ψγn : x 7→ γan · x.
In light of (i) above, these converge in the Polish topology on Aut(X,µ)
and hence we have a transformation ψγ : X → X such that for all A ⊂ X
measurable,

µ(γan ·A4 ψγ(A))→ 0 as n→∞.
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Thus we obtain a fresh action b ∈ A(Γ,X, µ), with each γb = ψγ , such that
for all A ⊂ X measurable,

µ(γan ·A4 γb ·A)→ 0 as n→∞.

Note in particular that for all A ∈ B = B0 and γ ∈ F = F0 we have

µ(γb ·A4 γa ·A) < ε,

and so it only remains to show the action is mixing.
Given any n and A,B ∈ Bn and any δ > 0 we can find some m > n with

2−m−1ε < δ.

Then for all γ outside some finite set we have

|µ(A4 γam+2 ·B)− µ(A)µ(B)| < δ/2

by (iii). Then by (ii) we have, for all k ≥ m+ 2,

|µ(A4 γak ·B)− µ(A)µ(B)| < δ/2,

and hence
|µ(A4 γb ·B)− µ(A)µ(B)| ≤ δ/2 < δ.

Since
⋃
n∈N Bn is dense in M(X,µ), this suffices to show the action is mix-

ing.
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