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On the structure of closed 3-manifolds

by

Jan Mycielski (Boulder, CO)

Abstract. We will show that for every irreducible closed 3-manifold M , other than
the real projective space P 3, there exists a piecewise linear map f : S → M where S
is a non-orientable closed 2-manifold of Euler characteristic χ ≡ 2 (mod 3) such that
|f−1(x)| ≤ 2 for all x ∈M , the closure of the set {x ∈M : |f−1(x)| = 2} is a cubic graph
G such that S − f−1(G) consists of 1

3 (2 − χ) + 2 simply connected regions, M − f(S)
consists of two disjoint open 3-cells such that f(S) is the boundary of each of them, and f
has some additional interesting properties. The pair (S, f−1(G)) fully determines M , and
the minimal value of 1

3 (2− χ) is a natural topological invariant of M . Given S there are
only finitely many M ’s for which there exists a map f : S →M with all those properties.
Several open problems concerning the relationship between G and M are raised.

0. Introduction. An n-dimensional manifold, or briefly n-manifold, is
called closed if it is compact, connected and boundaryless. In this paper
we deal only with two- or three-dimensional manifolds, thus without loss of
generality we can limit ourselves to the piecewise linear category.

Let us recall briefly the definition and basic results of the theory of
connected sums. If M and N are two closed 3-manifolds, we can excavate
from each of them the interior of a tame 3-cell and identify the resulting
boundary spheres S2. The resulting manifold is called their connected sum,
denoted M#N . In general M#N depends upon the choice of one of the two
non-homotopic identifications of those spheres. (If M or N is not orientable
this choice does not matter.)

A closed 3-manifold M is called irreducible if every tame sphere S2 ⊆M
disconnects M and at least one of the two connected components of M −S2

is an open 3-cell. And M is called prime if it is not a sphere S3 and it has no
decomposition into a connected sum of two closed 3-manifolds both different
from S3. Hence every irreducible M , with the exception of the sphere S3,
is prime. It is also known that all prime manifolds with two exceptions are
irreducible. The exceptions are S2 × S1 and S2 ×̃ S1, where ×̃ is the skew
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product (thus S2 ×̃ S1 is not orientable). In 1929 H. Kneser showed that
every M other than S3 has a factorization into a connected sum of a finite
sequence of prime 3-manifolds. Moreover, as shown by J. Milnor [M], if M is
orientable then the Kneser decomposition is unique (up to the order of the
factors), and if M is not orientable then the decomposition is also unique
if we impose the additional condition that S2×̃S1 does not occur unless
all the other prime factors are orientable and, in that case, it occurs only
once. (If M is not orientable then the connected sums (S2 ×̃ S1) #M and
(S2×S1)#M are homeomorphic.) The non-orientable cases (and extensions
of the above results to manifolds with boundary) are due to J. Hempel [H].
An error in [H] was corrected independently in [JP] and [Tr].

A closed 3-manifold M will be called aprojective if M does not contain
the real projective plane P 2. We point out an easy proposition: if M is
prime, orientable, and other than the real projective space P 3, then M is
aprojective.

The purpose of this paper is to show that all irreducible closed 3-mani-
folds M , with the possible exception of P 3, can be constructed in a certain
way outlined above in the Abstract, and that the construction simplifies
in many cases if M is aprojective. In Section 1, we will define the con-
struction, show that it produces closed 3-manifolds (it seems that not all
manifolds which it produces are irreducible), and prove a few properties
of this construction. In Section 2, we will show that each irreducible 3-
manifold other than P 3 can be constructed in this way. (It may be useful
for the reader to jump now to Section 2, since the proofs which appear
there are simple and they illustrate and motivate the definitions of Sec-
tion 1.)

I am indebted to Randall Dougherty, Józef Przytycki and the referee for
critical remarks which led to several improvements. Moreover, Dougherty
solved Problem 3 (see below).

1. Definitions and results. We begin our construction as follows.
Choose a positive integer s and let S be a non-orientable closed 2-manifold
of Euler characteristic χ(S) = 2− 3s. Recall that a cubic graph G is a con-
nected graph whose vertices are of valency 3 (multiple edges and loops are
allowed). Choose a cubic graph G with 2s vertices (and hence 3s edges).
[For example Kuratowski’s graph K3,3 and Petersen’s graph are cubic with
s = 3 and s = 5 respectively. See Fig. 1 for all cubic graphs with s ≤ 3.
According to A. T. Balaban [B] for s = 1, 2, . . . , 5 there are 2, 5, 17, 71 and
388 cubic graphs, respectively.] An isthmus is an edge of G whose interior
disconnects G. Many cubic graphs have loops and each loop is connected to
the rest of the graph by an isthmus.
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Fig. 1

Now, double the interiors of all edges of G such that those edges which
were arcs become simple closed curves and those which were loops become
figure 8 curves, that is, pairs of simple closed curves sharing a vertex. The
resulting graph 2G is regular of valency 6, it has 2s vertices and 6s edges.
Then, if possible, choose a homeomorphism

h : 2G→ S

which satisfies certain conditions. To state them we need the following no-
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tions. Let H = h(2G) and let the simple closed curves and the figure 8
curves of H which are the images of the doubled edges of G be called basic
curves of type O and type 8, respectively. Thus if M is to be irreducible and
aprojective there are no basic curves of type 8. We impose three conditions
on the pair (S,H):

(α) If two basic curves of type O intersect at a vertex v of H, then they
cross each other in S at v. If C is a basic curve of type 8 at v, then the two
loops of C kiss the basic curve of type O which they meet at v from opposite
sides of O.

(β) S − H consists of simply connected regions. (Since χ(S) = 2 − 3s
and H has 2s vertices and 6s edges, there are s+ 2 such regions.)

To state the third condition (γ) we need the following operations. We
cut S along all the edges of H, thus getting s+ 2 disjoint simply connected
pieces (polygonal disks). Then, if possible, we reconstruct from these pieces
some other surfaces in two different ways. Namely given any vertex v of H
we glue some pairs of edges of those pieces which were meeting at v in one
of two ways A and B shown in Fig. 2, which can be explained as follows.

Fig. 2

In the case A, v doubles into two vertices of the reconstructed surface
with the cycles of edges (a, b, c) and (x, y, z) at the new vertices. In the
case B, v triples with the cycles of edges (a, b), (p, q) and (x, y) at the new
vertices. Notice that once we decide how to glue one pair of edges, say a to
a as in A (or as in B), then the whole pattern of gluing all the s+ 2 pieces
is uniquely determined (since H is connected and only the patterns A or B
are allowed at the vertices).

Remark 1. If C is a basic curve of type O and v1, v2 are the two ver-
tices of C, then the pieces meeting at v1 and those meeting at v2 are glued
in the same way (both as in A or both as in B) iff C has an orientable
open neighborhood in S. Likewise they are glued in different ways (one
as in A and the other as in B) iff all open neighborhoods of C in S are
non-orientable.
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Notice that if our reconstructions are possible, then each yields a finite
set of closed 2-manifolds. Our last condition on (S,H) is:

(γ) Both reconstructions are possible and each yields a single sphere S2.

Twelve examples of pairs (S,H) satisfying conditions (α), (β) and (γ)
are shown in Figs. 3–13. The plane of each figure represents S with its
3s crosscaps represented by small empty circles. The large smooth closed
curves are the basic curves of type O. Smaller type 8 basic curves appear in
Figs. 4, 5, and 8. Three branches cross each other at every vertex and any
(positive) number of basic curves may traverse the crosscaps. The vertices
are split into two sets V1, V2 (marked 1 or 2) which will be explained below
(in condition (γ1)).

Fig. 3

Fig. 4

Problem 1. Which cubic graphs yield such constructions? (The first
and fourth graph of Fig. 1 are not possible. Compare Problem 3 below.)
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Fig. 5 Fig. 6

Fig. 7

Remark 2. In order to check that a pair (S,H) satisfies condition (γ)
it is useful to observe that (γ) is equivalent to the conjunction of the two
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Fig. 8

Fig. 9

conditions (γ1) and (γ2) below. (Figs. 3–13 were constructed with the help
of this equivalence.)

(γ1) The set of vertices of H can be split into two disjoint sets V1 and
V2, both of size s, such that every basic curve of type O whose vertices
belong to the same Vi has an orientable open neighborhood in S, and every
open neighborhood of every basic curve of type O whose vertices belong to
different sets Vi is non-orientable. Finally, for each basic curve C of type 8,
none of the loops of C have orientable open neighborhoods in S.

Notice that (γ1) implies that both reconstructions are possible. By Re-
mark 1, (γ) implies the first part of (γ1) for basic curves of type O. It
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Fig. 10

Fig. 11

is easy to check that it implies also the second part for basic curves of
type 8.

(γ2) Both reconstructions yield a single connected surface.

Observe that (γ1) & (γ2) implies (γ). Indeed, by (γ1) each reconstruction
yields a set of closed 2-manifolds whose total number of vertices, edges and
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Fig. 12

Fig. 13

regions is 5s, 6s and s+ 2 respectively. Thus the Euler characteristic of the
whole set is 2. Hence by (γ2) both sets are single spheres S2.

Remark 3. The condition (γ1) could not have been satisfied if S was
orientable.
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Finally, assuming (α), (β) and (γ), we will construct a certain space
M : We attach to each of the spheres given by (γ) disjoint open 3-cells
obtaining disjoint closed 3-cells C1 and C2. Then we identify all pairs of
edges in the boundary of each Cj in the way they were identified in S (prior
to the reconstruction). Finally, M is obtained by identifying all pairs of
2-dimensional faces of those two complexes in the way they correspond to
the 2-faces of (S,H).

Proposition. The space M is a closed 3-manifold and M is fully de-
fined by the pair (S,H).

Proof. The first part can be checked by inspecting the construction at
all its vertices. The second part follows from Remark 1.

Our construction of M defines a piecewise linear map

f : S →M

such that f identifies the pairs of arcs of the basic curves of H such that
f(H) is homeomorphic to the original cubic graph G. And M−f(S) consists
of two open 3-cells such that f(S) is the boundary of each of them.

Remark 4. Given the graph G, M still depends on the homeomorphism
h : 2G → S. Indeed the two pairs (S,H) of Fig. 3 yield different M ’s. The
first is the sphere S3 and the second has a cyclic group of order 3 as its
fundamental group.

The main result of this paper is the following

Theorem 1. Every irreducible closed 3-manifold , with the possible ex-
ception of the real projective space P 3, can be constructed in the above way.

The proof will be given in Section 2.

Remark 5. Given the integer s there are only finitely many 3-manifolds
M which can be obtained in the above way. [Indeed, there are only finitely
many pairs (S,H) which can be constructed from 2s vertices, 6s edges and
s+2 regions.] This finiteness distinguishes our construction from Heegaard’s
construction (by identifying the boundaries of two handlebodies of the same
genus); see [H]. Indeed, already in the case of handlebodies of genus 1 Hee-
gaard’s construction yields infinitely many irreducible 3-manifolds.

Problems. 2. Can any of the manifolds P 3, S1 × S2 and S1×̃S2 be
constructed in the above way?

3. Recall Petersen’s theorem that every cubic graph without isthmus
(i.e., no single point disconnects the graph) has a 1-factor. Suppose that G
is isthmus free. Must the graph G of our construction have a 1-factor F such
that no basic curve corresponding to an edge of F has an orientable open
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neighborhood in S? Added in proof : R. Dougherty found a counterexample
in which the cubic graph G is the graph of edges of a cube.

4. Suppose again that G is isthmus free. Can our construction yield a
composite (i.e., non-prime) manifold?

5. Can one choose one edge from each basic curve such that the union
of those 3s edges does not disconnect S?

Remark 6. Since the complement of f(S) in M consists of two open
3-cells, f(S) is a retract of M twice punctured. Hence

π1(M) = π1(f(S)).

Remark 7. Suppose that G has no loops. Then M is not simply con-
nected iff S has a proper covering map φ : S̃ → S such that, for each basic
curve C of S, the set φ−1(C) splits into disjoint closed curves each of which
is homeomorphically mapped by φ onto C. [This follows from Remark 6,
since if there is such a map φ, we can collapse all the simple closed curves
of φ−1(C) (for each C) into arcs so as to obtain a non-trivial covering space
of f(S).]

Theorem 2. If the graph G (that is, f(H)) has an isthmus then M
contains a projective plane P 2 or a sphere S2 which properly crosses the
interior of an isthmus of f(H) at one point , and does not intersect f(H)
anywhere else.

Proof. Let p be a point in the interior of an isthmus of G. Let Cj
(j = 1, 2) be the two 3-cells in our construction of M whose boundaries
are mapped onto f(S). Let {pj1, pj2} be the inverse image of p in Cj . Since
p disconnects f(H), {pj1, pj2} disconnects the inverse image Gj of f(H)
in Cj . It follows that there exists a simple closed curve Lj in the boundary
of the cell Cj , for j = 1, 2, such that Lj∩Gj = {pj1, pj2} and the two images
of L1 and of L2 in f(S) constitute the same figure 8 curve. Then we can
span in the interiors of the two cells two or three open disks bounded by
that figure 8 curve, which constitute a P 2 or an S2 as required.

There are 4 edges of faces of f(S) meeting along each of the 3s edges of
f(H). Therefore there are 33s ways of pairing those face edges and glueing
each pair consistently with f . (One of them is the way they are glued in
S, two other ways are those which appear in the two spheres S2 of condi-
tion (γ).)

Theorem 3. If M is simply connected then each of the 27s ways yields
a single closed 2-manifold.

Proof. Suppose to the contrary that one of those ways of glueing gives
more than one manifold and let S0 be one of them. Then we have a piecewise
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linear map
g : S0 → f(S)

consistent with f and such that g(S0) is a proper subset of f(S). Hence
M − g(S0) is connected. Then there exists a simple closed curve C ⊆ M
such that C properly crosses g(S0) just once. Since the parity of the number
of crossings is invariant under piecewise linear homotopic deformations of C,
C is not contractible in M . This contradicts the assumption of Theorem 3.

Problem 6 (for s large enough). Is the conclusion of Theorem 3 suffi-
cient for the vanishing of H1(M) or even the simple connectedness of M?
{If the answer was yes, this would yield an algorithm for checking if M
is simply connected. I guess that the answer is no, and moreover that the
latter is undecidable. [Undecidability would imply that the Poincaré Con-
jecture fails since, as shown by J. H. Rubinstein in 1992, the problem if M
is homeomorphic to S3 is decidable; see A. Thompson [T] and references
therein.]}

Corollary. If M is simply connected and K is a union of disjoint
basic curves in S, then S −K is connected.

Proof. By Theorem 3.

Remark 8. Let T be a finite tree in S such that T ∩ H is the set of
vertices of H. Thus f restricted to T is a homeomorphism. We can contract
T to a point p in S, and likewise contract f(T ) to f(p) in M , and we get a
new map

f̃ : S →M,

which has all the properties of f except that now there is only one point p
in S at which f̃ is not a local homeomorphism. However, the singularity of
f̃ at p is complicated, while the 2s singularities of f are all of the same type
and they are very simple: Each vertex of f(H) has a spherical neighborhood
B such that f(S) ∩ B is homeomorphic to a cone over the curve shown in
Fig. 14.

Fig. 14

Remark 9. Let R be a spanning tree in the graph f(H). Let us contract
R in M to a single point. In the same way as in Remark 8 we get a new
singular cellular decomposition ofM with one vertex, s+1 edges (loops), s+2
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faces and two 3-cells. Then the dual of this cellular decomposition has two
vertices, s+2 regular edges, s+1 singular quadrilateral faces, and one 3-cell.
As is well known, every closed 3-manifold can be obtained from a 3-cell B
by identifying pairs of countries of a certain map Q on the boundary sphere
of B. But in the case of irreducible manifolds M other than P 3, the above
dual singular decomposition of M yields a more regular construction of this
kind. Namely, all the countries of Q are quadrilateral, the graph of vertices
and edges of Q is 2-chromatic and the mapping identifying the countries is
such that both color classes of vertices collapse into single vertices.

It remains to prove Theorem 1.

2. Proof of Theorem 1. We work in the piecewise linear category.
Let Σ be the 2-dimensional skeleton of a triangulation of M . Our first task
is to turn Σ into a more amenable object. We will do this by a series of
contractions, i.e., modifications of the following kind. If X and Y are two
closed subsets of M , we say that Y is a contraction of X if there exists a
continuous surjection g : M → M such that g(X) = Y and g restricted
to M −X is a homeomorphism. Then, for any subset of M containing X,
its image under g will also be called a contraction. Later we will apply our
modification of Σ to construct f(H), f(S) and f .

We pick a spanning tree of the 1-skeleton of Σ and we contract it in M
to a single vertex v. Then each 2-face of the resulting singular complex Σ ′

is of one of the three types shown in Fig. 15.

Fig. 15

Then we contract each face of type (a) to v, and repeat this operation
as long as possible. So we get a complex Σ′′ with 2-faces of types (b) or (c)
only. Now we remove the interiors of some of the 2-faces of Σ ′′ until we get
a complex Σ′′′ such that M −Σ′′′ consists of one open 3-cell. This may have
left us with some 2-faces having an edge which does not belong to any other
2-face. We contract those 2-faces to their remaining edges and repeat this
operation as long as possible. Thus the remaining complex Σ(4) is such that
M −Σ(4) is a single open 3-cell, Σ(4) has 2-faces of types (b) and (c) only.
[But it may have edges (loops) belonging to none of the 2-faces.] Now we
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modify Σ(4) to get rid of all edges belonging to more than three 2-faces. We
do this by inserting additional 2-faces of type (b). So we get a singular com-
plex Σ(5) such that each edge belongs to at most three 2-dimensional faces.

Lemma 1. If M is irreducible there exists a 2-dimensional singular com-
plex Σ0 ⊆M such that :

(1) Σ0 has only one vertex v;
(2) all the 2-faces of Σ0 are of type (b) or (c);
(3) every edge of Σ0 belongs to two or three 2-faces of Σ0;
(4) M −Σ0 is an open 3-cell ;
(5) v does not locally disconnect Σ0, that is, v has arbitrarily small open

neighborhoods B in M such that (B ∩Σ0)− {v} is connected.

Proof. Without using irreducibility we have already constructed a com-
plex Σ(5) which has properties (1), (2), a weaker version of (3) where edges
belonging to no faces are allowed, and (4). Notice that (5) implies that there
are no such isolated edges. Thus it suffices to modify Σ(5) so as to satisfy
(5) while preserving the other properties.

If Σ(5) violates (5), then there exists a 2-disk D ⊆M such that v is in the
interior of D, D∩Σ(5) = {v}, and for every sufficiently small ball B around
v both components of B − D intersect Σ(5). And there also exists a disk
D′ ⊆M−Σ(5) such that D∪D′ is a sphere S2. Thus, by the irreducibility of
M , this S2 splits M into two components, and the closure of one of them is
a 3-cell. We collapse this 3-cell in M to v. This removes some 2-faces of Σ(5)

(which collapsed to v) and it is easy to check that the resulting 2-complex
still has the properties (1)–(4) with the above weakening of (3). Repeating
this operation as long as possible we obtain a Σ0 which also satisfies (3)
and (5).

Notice that if M is S3 then Σ0 can (but does not have to) be a single
point (see the second part of Fig. 3).

Now we can define the graph G, and even the graph f(H) in M . Namely,
we choose one point in the interior of each edge of Σ0 and one point in the
interior of each 2-face of Σ0. In each 2-face we choose some arcs with disjoint
interiors contained in the interior of the face connecting the chosen point of
the interior of the 2-face with the points chosen on its edges. The union of all
those arcs forms a connected graph whose vertices are the points chosen in
the interiors of the faces of type (c) and those chosen in the interiors of edges
which belong to three 2-faces. Clearly all those vertices are of valency 3.
This is the graph f(H) of our construction, which will also be the graph G.
However, we must show that for all cases that matter G is not empty and
does not reduce to a simple closed curve.
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Lemma 2. If M is not homeomorphic to S3 nor to P 3, then G is a cubic
graph.

Proof. Since M is not S3, Σ0 has some 2-faces, and hence G has edges.
Since Σ0 has no faces of type (a), it remains to show that G is not a simple
closed curve. If that was the case then all 2-faces of Σ0 would be of type (b),
and Σ0 would be a projective plane. Then, since M −Σ0 is an open 3-cell,
M would be homeomorphic to P 3. But this is excluded by the assumption.
Hence G has vertices of valency > 2. By the structure of Σ0 (conditions (2)
and (3)) all those vertices are of valency 3.

In order to complete the proof of Theorem 1 it remains to construct S
and f .

Proof of Theorem 1. The theorem is true for S3 (see Remark 4). So let
us assume that M is not S3. We choose Σ0 ⊆ M given by Lemma 1 and
the cubic graph G (that is f(H)) given by Lemma 2. Now we imagine a
sphere S2 inflating around the single vertex v of Σ0. Let the inflation go
faster along the edges of Σ0 so that the inflating sphere engulfs these edges
until it meets itself at all the points which were chosen in the interiors of the
edges of Σ0. Then let it stop inflating along the edges but continue a faster
inflation along the 2-faces of Σ0 such that the sphere engulfs those faces until
it meets itself along the arcs of f(H) (which were chosen in the interiors of
those faces). At this point the inflation stops. In this way our original S2

turns into a 2-complex whose 1-skeleton is f(H). This is the complex f(S)
required in Theorem 1. Notice that, by Lemma 1(5), the interiors of the
2-faces of f(S) are simply connected, and that M − f(S) consists of two
open 3-cells.

In order to construct S it is enough to split f(S) into its 2-faces and
attach them back together by pairs along every (doubled) edge of f(H) in
the right way, that is, in such a way that we get a 2-manifold S and a map
f : S →M which makes S cross itself along each edge. By Lemma 2 we can
check all the properties of f described in Section 1. For example, since G
is cubic, there is an s such that G has 2s vertices and 3s edges. Hence the
number n of faces of f(S) must satisfy the Euler–Poincaré equation for M ,
namely

2s− 3s+ n− 2 = 0.

Therefore n = s+ 2. And since 2G has 6s edges,

χ(S) = 2s− 6s+ (s+ 2) = 2− 3s.

Then it is easy to check that the graph H of edges of S is as required, that is,
it satisfies conditions (α), (β) and (γ). And since (γ) implies (γ1) it follows
that S is not orientable.

This completes the proof of Theorem 1.
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